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Origin and evaluation of the four-spin operators in magnetic lattices
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The four-spin operators are suspected to have a significant amplitude and an impact on the collective
properties in spin ladders and magnetic two-dimensional lattices. They originate from cyclic circulation of
electrons~ring currents!. Starting from a simple Hubbard Hamiltonian one may establish their form from a
fourth order expansion of quasidegenerate perturbation theory. This form slightly deviates from the generally
assumed biquadratic expression. From a quantitative point of view, their amplitude can be assessed from
accurateab initio explicitly correlated wave functions and energies on embedded clusters. The present work
shows that symmetry-broken density functional theory calculations may also provide estimates of the four-
body operator amplitudes, but reliable results require the use of a large Fock component in the exchange
functional.
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I. INTRODUCTION

The Heisenberg Hamiltonians were introduced in
1930’s1–3 to rationalize the properties of magnetic system
This Hamiltonian can be derived as an effective Ham
tonian, working on the space generated by the product
the highest multiplicity ground state of the magnetic cente
It can be obtained fromN-electron Hamiltonians~either ex-
act or simplified! through the perturbative expansion in th
frame of the quasidegenerate perturbation theory~QDPT!.
The leading operators appear as first and second order
tributions and concern the two-body effective exchange
teractionsJi j between the sitesi and j. The magnitude of
these interactions decreases very rapidly as a function o
distance between the centersi and j.

Strictly speaking, these terms are not unique, higher o
corrections introduce four-spin and six-spin terms. The
velopments from simplifiedN-electron Hamiltonians such a
the Hubbard Hamiltonian for half-filled band, with one ele
tron per site, show that the four-body operators are impor
in four-member rings. Respectively, the six-body terms p
a role in the six-member rings. From a chemical point
view, these contributions can be related with the antiarom
and aromatic character of the four-member and six-mem
rings, respectively.4 Similar derivations have been performe
by solid state physicists.5 Recently these many-body effec
have been suspected to play a role in the physics of
lattices, involving square or rectangular plaquettes.6–13 For
instance, their role has been invoked to resolve contra
tions regarding the properties of two-leg ladders.12,13Ab initio
quantum chemical calculations have provided direct e
mates of the amplitude of these terms, which confirm th
physical importance.14–16

Section II of the present work returns on the origin of t
four-body corrections. Starting from a Hubbard Hamiltoni
all the fourth order corrections involving circulation of ele
trons on the four-member rings are established. The resu
spin operators slightly deviate from the usually accepted
quadratic form of the Heisenberg Hamiltonian, although th
coincide regarding the most important four-spin cyclic e
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change. This section also shows the possible occurrenc
the four-body operators which involve hopping between s
ond neighbor sites, i.e., those placed in the diagonal of
plaquette. Section III discusses the procedure to determ
the amplitudes of the four-body corrections fromab initio
embedded cluster calculations. Previous works have used
eigenenergies and wave functions coming from exten
configuration interaction~CI! calculations.14,16 The present
work proposes a procedure to obtain an estimate of the f
body terms from density functional theory~DFT! based
symmetry-broken calculations, as frequently practiced
the two-body exchanges. As is well known, the quality
such estimates strongly depends on the excha
functional.17–21 As shown on the case of a series of sp
ladders compounds and 2D cuprates, the mixing of the F
and Slater exchanges which provides correct estimates o
first neighbor interactions happens to lead to values of
four-body terms which agree with theab initio CI results.

II. FORMAL ASPECTS

A. Formal requirements for a four-spin effective Hamiltonian

The spin Hamiltonians, with respect to the exact Ham
tonian, must be considered as effective Hamiltonians, in
strict and rigorous definition of this concept. The effecti
Hamiltonians for a givenN-electron system work in a mode
spaceS, the dimension of which,N, is much smaller than the
Hilbert space relative to the exact HamiltonianH. Calling PS
the projector on the model space

Heff5PSH
effPS . ~1!

The N eigenvectors and eigenvalues of the effect
HamiltonianHeff fulfill two requirements:~i! the eigenener-
gies are the eigenenergies ofH and ~ii ! the eigenvectors are
projections of the corresponding eigenvectors ofH onto the
model spaceS.

TheseN eigenvectors ofH define a stable subspace, calle
the target spaceS8. Hence theseN eigenvectorscm of H
belonging toS8:
©2004 The American Physical Society35-1
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TABLE I. The effective spin Hamiltonian on the basis of the model space forSz50. ( j nn refers to the
sum over all the first-neighbor interactionsA5 j ac1 j bd1 j ad1 j bc , B5 j ac1 j bd1 j ab1 j cd .

ua↓b↑c↓d↑u ua↑b↓c↑d↓u ua↓b↓c↑d↑u ua↑b↑c↓d↓u ua↓b↑c↑d↓u ua↑b↓c↓d↑u

2( j nn2h1

h1 2( j nn2h1

j bc j ad 2A2h2

j ad j bc h2 2A2h2

j cd j ab j bd j ac 2B2h3

j ab j cd j ac j bd h3 2B2h3
th

te

no

s

te
tr
s

ha
n
s

s

of
vec-

spin
op-

an
nd
ls

ng
the

ter-
an

e

Hucm&5Emucm& ~2!

define entirely the effective HamiltonianHeff by the condi-
tions

HeffuPScm&5EmuPScm&, ; cm e S8. ~3!

This basic equation leads to the spectral definition of
Bloch effective Hamiltonian22

HBloch
eff 5 (

m51,N
uPScm&Em^PScm

'u, ~4!

whereuPScm
'& represents the biorthogonal vector associa

to uPScm&. Actually the projections of the~orthogonal!
eigenvectors ofH onto the model space have in general
reason to be orthogonal. They define an overlap matrixS:

Smn5^PScmuPScn& ~5!

and

PScm
'5S21PScm . ~6!

The Bloch effective Hamiltonian is non-Hermitian. ItsN2

matrix elements are defined from theN2 conditions imposed
by Eq. ~4!.

An Hermitian definition of the effective Hamiltonian wa
proposed a few years later by des Cloizeaux.23 Orthogonal-
izing the projected eigenvectorsuPScm& through a least-
moving S21/2 transformation

$cm8 %5S21/2$PScm% ~7!

the des Cloizeaux effective Hamiltonian is such that

HdC
eff ucm8 &5Emucm8 &, ~8!

HdC
eff 5 (

m51,N
ucm8 &Em^cm8 u. ~9!

The spin Hamiltonians concern half-filled bands. For si
with spin 1/2 the model space is spanned by the neu
valence-bond determinants, i.e., by those where each
bears one and only one electron. These determinants all
the same space part and only differ by the spin distributio
The resulting effective Hamiltonian therefore appears a
spin-only Hamiltonian. For aSz50 2n-site problem the di-
mension of the model space isC2n

n and the target space i
09443
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spanned by theC2n
n eigenstates ofH having the largest pro-

jections on the model space. For the magnetic regime
interactions the target states are usually the lowest eigen
tors of H.

From these basic considerations one can see that a
Hamiltonian has no reason to be reducible to two-body
erators, as usually assumed in Heisenberg Hamiltonians

HHeis5(̂
i j &

Ji j Si
WSj
W . ~10!

They in principle will present four-body, six-body, . . . ,
operators, since the matrix element ofHeff between two spin
distributionsf I andfJ differing by four, six, . . . , spins has
no reason to be zero:

^f I uHeffufJ&5 (
m51,N

^f I ucm8 &Em^cm8 ufJ&. ~11!

The simplest approach to establish the structure of
Heisenberg Hamiltonian starts from a Hubbard single ba
Hamiltonian. The metallic on-site singly occupied orbita
i , j , . . . , are supposed to have been optimized, includi
variational delocalization tails on the ligands surrounding
metal ions. In this Hamiltonian

HHubb5(̂
i j &

t i j ~ai↑
† aj↑1aj↑

† ai↑1ai↓
† aj↓1aj↓

† ai↓!

1U(
i

ni↑ni↓ ~12!

the t integrals are intersite hopping integrals andU is the
on-site Coulomb repulsion. The neutral valence-bond de
minants have an energy zero, the singly ionic ones have

TABLE II. The effective spin Hamiltonian on the basis of th
model space forSz51. The term2( i j ai8 corresponds to2 j ab8
2 j ac8 2 j ad8 , and similarly for the rest.

ua↓b↑c↑d↑u ua↑b↓c↑d↑u ua↑b↑c↓d↑u ua↑b↑c↑d↓u

2( i j ai8

j ab8 2( i j bi8

j ac8 j bc8 2( i j ci8

j ad8 j bd8 j cd8 2( i j di8
5-2
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energyU. The second order expression of the intersite eff
tive exchange can be obtained by using the quasidegen
perturbation theory

Ji j 5
4t i j

2

U
. ~13!

Let us consider now a four-site problem. The model sp
is six dimensional forSz50, spanned by determinants whic
may be associated two by two:

f15ua~↓!b~↑!c~↓!d~↑!u, f185ua~↑!b~↓!c~↑!d~↓!u, ~14!

f25ua~↓!b~↓!c~↑!d~↑!u, f285ua~↑!b~↑!c~↓!d~↓!u, ~15!

f35ua~↑!b~↓!c~↓!d~↑!u, f385ua~↓!b~↑!c~↑!d~↓!u. ~16!

They generate one quintet, three triplet, a
two singlet states. For Sz51, the four deter-
minants ua(↓)b(↑)c(↑)d(↑)u, ua(↑)b(↓)c(↑)d(↑)u,
ua(↑)b(↑)c(↓)d(↑)u, and ua(↑)b(↑)c(↑)d(↓)u generate
three triplet and one quintet states. In a six-dimensio
space an Hermitian effective Hamiltonian may in princip
have @(3616)/2#521, $(@C2n

n #21C2n
n )/2%, different matrix

elements. However it must obey symmetry constraints
the eigenvectors have to commute withS2. The number of
degrees of freedom is much lower. By imposing the zero
energy to the upper multiplet state, the sum of the ma
elements on each line~or column! is zero. There are five
eigenenergy differences, only one degree of freedom in
singlet eigenvectors and three in the triplet eigenvectors,
nine degrees of freedom. The effective Hamiltonian ma
for Sz50 will take the form shown in Table I. Thej mn and
hp parameters concern, respectively, two-body spin excha
operators and four-body operators. ForSz51 the effective
Hamiltonian matrix takes the form shown in Table II. Th
spin algebra imposes some relations betweenj mn , j mn8 , and
hp quantities.

B. Perturbative derivation

While the two-body operators appear at second orde
the quasidegenerated perturbation theory~QDPT!, it is nec-
essary to go to fourth-order to permute four spins. Let

FIG. 1. First and second-neighbor hopping integrals in
plaquette.
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recall the expression of the fourth order contribution to t
effective Hamiltonian. IfI, J, K, L represent vectors of the
model space,a, b, g being vectors of the outer space,

^I uH (4)uJ&5 (
a,b,g

^I uVua&^auVub&^buVug&^guVuJ&
DaDbDg

2 (
a,b,K

^I uVua&^auVub&^buVuK&^KuVuJ&

Da2Db

1 (
a,b,K

^I uVua&^auVuK&^KuVub&^buVuJ&

Da2Db

1 (
a,K,L

^I uVua&^auVuK&^KuVuL&^LuVuJ&

Da3
,

~17!

a

FIG. 2. The three four-body terms:~a! circular movement of the
electronsh1, ~b! simultaneous exchange along the legsh2, and~c!
simultaneous exchange across the rungsh3.

FIG. 3. Contribution toh1 due to the cyclic circulation of the
four electrons of the plaquette.
5-3
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where Da represent the zero-order energy differencesE0
0

2Ea
0 .

Let consider now a four-atom ring~Fig. 1!, with tab , tbc ,
tcd , andtad being hopping integrals~the tac andtbd integrals
being zero!. We can go from ua(↑)b(↓)c(↑)d(↓)u to
ua(↓)b(↑)c(↓)d(↑)u through a cyclic circulation of elec
trons@Fig. 2~a!#, for instance, as in Fig. 3, which will lead t
a contribution toh1 equal to

gabcd5
tabtbctcdtda

U3
. ~18!

The possible contributions are numerous and lead to

h1540
tabtbctcdtda

U3
540gabcd. ~19!

However, it should be noticed that such cyclic fourth o
der corrections also appear between determinants which
fer only by two spins, either on a bond, for instance, fro
ua(↑)b(↓)c(↑)d(↓)u to ua(↓)b(↑)c(↑)d(↓)u as in Fig. 4, or
between nonbonded atoms, for instance, fr
ua(↑)b(↓)c(↓)d(↑)u to ua(↑)b(↑)c(↓)d(↓)u as in Fig. 5.
Diagonal corrections also exist, for instance as in Fig. 6.

The final fourth order contributions may be written in
matrix form in terms ofgabcd quantities. Let us callOper4(0)

abcd

the operator forSz50 andOper4(1)
abcd its Sz51 counterpart. A

careful and exhaustive counting of all cyclic corrections le
to the matrix representation of the four-body operators
ported in Tables III and IV.

The coupling between ua(↑)b(↓)c(↑)d(↓)u and
ua(↓)b(↑)c(↓)d(↑)u which is the largest term
(h1aa↓

† ab↑
† ac↓

† ad↑
† ad↓ac↑ab↓aa↑540gabcd) commutes four

spins. The other terms only exchange two spins but they o
act in presence of two other spins in the plaquette.
instance, in the coupling betweenua(↑)b(↓)c(↑)d(↓)u
and ua(↓)b(↑)c(↑)d(↓)u, (212gabcdaa↑

† ab↓
† ac↑

† ad↓
† ad↓ac↑ab↑aa↓),

the spinsc andd appear as spectators, but this correction
the exchange betweena andb only exists ifa andb belong

FIG. 4. Cyclic contributions to the exchange of two spins on
same bond.

FIG. 5. Cyclic contributions to the exchange between two n
bonded atoms.
09443
-
if-

d
-

ly
r

o

to a ring, that is, it is a four-body correction to the two-bo
operator, which results from the electronic circulation alo
the ring.

Notice that the fourth order correction linked to the cyc
circulation on the ring does not bring any contribution to t
h2 and h3 terms, i.e., to the interaction betwee
ua(↑)b(↑)c(↓)d(↓)u andua(↓)b(↓)c(↑)d(↑)u @Fig. 2~b!# or
between ua(↑)b(↓)c(↓)d(↑)u and ua(↓)b(↑)c(↑)d(↓)u
@Fig. 2~c!# because we have imposedtac5tbd50. It is pos-
sible to check that theOper4(S)

abcd operators commute withS2

and that their eigenenergies for the triplet and quintet sta
are equal forSz50 andSz51.

C. Comparison with biquadratic spin operators

It is worth comparing the so-obtained four-body corre
tions to the classical expression in terms of biquadratic s
operators for a ring

Obiqua
abcd 5Jring

abcdF ~Sa
WSb
W !~Sc

WSd
W !1~Sa

WSd
W !~Sb

WSc
W !

2~Sa
WSc
W !~Sb

WSd
W !2

1

16G . ~20!

The constant 1/16 has been introduced to put to zero
energy corrections on the quintet state. For the same rea
the two-body Heisenberg Hamiltonian is then shifted from
usual form and becomes

HHeis5(̂
i j &

Ji j S Si
WSj
W2

1

4D . ~21!

The termJring
abcd has been established to be 80t4/U3 for a

square plaquette.4 More generally it is possible to write

Jring
abcd580tabtbctcdtad /U3580gabcd. ~22!

The matrix representation of this operator ingabcd units for
Sz50 is shown in Table V and in Table VI forSz51.

The four-spin permuting operato
ua(↓)b(↑)c(↓)d(↑)&^a(↑)b(↓)c(↑)d(↓)u, which is the
largest one, coincide with the exact perturbative va
(40gabcd). The deviations on the off-diagonal elemen
(62gabcd) are small, but they result in more significant d
viations on the diagonal (8gabcd for Sz50). Hence the
fourth order corrections do not coincide with the usual fo
mulation. It can be shown that the operator strictly deriv
from the fourth order perturbative expansion can be writ
as

Oper4
abcd5Obiqua

abcd 1O8, ~23!

e

-

FIG. 6. Cyclic correction to the diagonal energy.
5-4



il-

ORIGIN AND EVALUATION OF THE FOUR-SPIN . . . PHYSICAL REVIEW B69, 094435 ~2004!
TABLE III. Matrix representation ofOper4(0)
abcd operator forSz50 in the perturbation-based effective Ham

tonian, in terms ofgabcd units.

ua↓b↑c↓d↑u ua↑b↓c↑d↓u ua↓b↓c↑d↑u ua↑b↑c↓d↓u ua↓b↑c↑d↓u ua↑b↓c↓d↑u

Oper4(0)
abcd 8

40 8
212 212 8
212 212 0 8
212 212 8 8 8
212 212 8 8 0 8
.
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ten
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where the operatorO8 is

O852
Jring

abcd

10 F S Sa
WSb
W2

1

4DScSd1S Sa
WSc
W2

1

4DSbSd

1S Sa
WSd
W2

1

4DSbSc1S Sb
WSc
W2

1

4DSaSd

1S Sb
WSd
W2

1

4DSaSc1S Sc
WSd
W2

1

4DSaSbG ~24!

and Sa5Sb5Sc5Sd51/2 are the local spin momentum
This difference between the two formulations results in
correction to the two-body interaction values

JHeis5
4t2

U
2

4t4

U3
5Jpert2

Jring
abcd

20
. ~25!

TABLE IV. Matrix representation of theOper4(1)
abcd operator for

Sz51 in the perturbation-based effective Hamiltonian, in terms
gabcd units.

ua↓b↑c↑d↑u ua↑b↓c↑d↑u ua↑b↑c↓d↑u ua↑b↑c↑d↓u

Oper4(1)
abcd 24

8 24
212 8 24

8 212 8 24
09443
a

For a general cluster, the total four-body operator will
the sum of the three four-body operators corresponding
the three possible four-step circulations along the edges
~possibly irregular! tetrahedron24

O[abcd]5Oabcd1Oadbc1Oacdb. ~26!

The extended Heisenberg Hamiltonian can be writ
as9–11,16

HHeis
biqua5(̂

i j &
Ji j S Si

WSj
W2

1

4D1 (
^ i jkl &

Jring
i jkl F ~Si

WSj
W !~Sk

WSl
W !

1~Si
WSl
W !~Sj

WSk
W !2~Si

WSk
W !~Sj

WSl
W !2

1

16G , ~27!

whereJi j corresponds to the nearest-neighbor exchange
the second-neighbor exchange depending on the relative
sition of i and j andJring

i jkl represents the three types of fou
body cyclic interactions:Jring

abcd52h1 , Jring
adbc52h2, and

Jring
acdb52h3. The matrix representation of this extende

Heisenberg Hamiltonian, involving two-body and four-bod
terms is shown in Table VII.

Similarly, the perturbation-based Hamiltonian can be w
ten as

HHeis
per45(̂

i j &
Ji j S Si

WSj
W2

1

4D1 (
^ i jkl &

Jring
i jkl F ~Si

WSj
W !~Sk

WSl
W !

1~Si
WSl
W !~Sj

WSk
W !2~Si

WSk
W !~Sj

WSl
W !2

1

16G
2(

i jkl

1

10
~Jring

i jkl 1Jring
ik j l 1Jring

i l jk !S Si
WSj
W2

1

4DSkSl .

~28!

The matrix representation of this perturbation-based Ham
tonian is shown in Table VIII. Comparing Tables VII an
VIII makes clear the difference between the two formalism

In the case of a rectangle, witht i and t' on the external
bonds andtd on the diagonal of the rectangle~as occurs in
ladder cuprates!

f

5-5
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TABLE V. Matrix representation of the biquadratic operator in the Heisenberg extended matrix fSz

50 in gabcd units.

ua↓b↑c↓d↑u ua↑b↓c↑d↓u ua↓b↓c↑d↑u ua↑b↑c↓d↓u ua↓b↑c↑d↓u ua↑b↓c↓d↑u

Obiqua(0)
abcd 0

40 0
210 210 0
210 210 0 0
210 210 10 10 0
210 210 10 10 0 0
at
n
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ng
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s.
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gabcd5
~ t it'!2

U3
, ~29!

gadbc5
~ t itd!2

U3
, ~30!

gacdb5
~ t'td!2

U3
. ~31!

As a result one sees that

h2

h1
5

gadbc

gabcd
5S td

t i
D 2

5
Jd

Ji
, ~32!

h3

h1
5

gacbd

gabcd
5S td

t'
D 2

5
Jd

J'

. ~33!

These relations are also valid for the canonical biquadr
expression of the four-body effects. All these developme
have been obtained from the Hubbard Hamiltonian.Ab initio
calculations, which involve more physical effects, may
principle lead to values of the four-body effects deviati
from the above relations.

III. NUMERICAL EVALUATION OF THE FOUR-BODY
OPERATORS FROM AB INITIO CALCULATIONS

ON PLAQUETTES

The amplitudes of the two-body exchange operatorsJ are
usually obtained from energy differences on two-site fra
ments, properly embedded in the Madelung field. Whenab
initio CI calculations are performed, the magnetic coupling
obtained as the energy difference betweenS2 eigenfunctions.
For instance, for two centers withSz51/2, J is equal to the

TABLE VI. Matrix representation of the biquadratic operator
the extended Heisenberg matrix forSz51, in gabcd units.

ua↓b↑c↑d↑u ua↑b↓c↑d↑u ua↑b↑c↓d↑u ua↑b↑c↑d↓u

Obiqua(1)
abcd 210

10 210
210 10 210
10 210 10 210
09443
ic
ts
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energy difference between the lowest singlet and trip
states.

Density functional theory uses an unrestricted formali
and performs a calculation of the highestSz component of
the upmost multiplet and a symmetry-broken calculation
the lower value ofSz , which is a mixture of spin eigenstate
Approximated projections of the low spin determinant pr
vide values of the coupling constant.25

A. Ab initio calculations

Performing ab initio CI calculations on four-site frag
ments make possible direct and simultaneous determina
of the amplitude of the first- and second-neighbor two-bo
exchanges, as well as of the four-body operators. This de
mination proceeds through the use of the effective Ham
tonian theory according to the formalism of Bloch22 or des
Cloizeaux23 and implies the knowledge of the exact energ
and projections of the eigenfunction on the model space

For a general case of an arbitrary irregular tetrahed
one may always extract the amplitude of the six two-bo
operators and the three terms of the four-body operators f
the knowledge of the five energy differences between
quintet, three triplet and the two singlet states, and the
grees of freedom in the coefficients of the wave functio
namely, three for the triplet manifold and one for the sing
states. Actually, looking, for instance, at theSz51 triplet
which has expanded on four determinants, the orthogona
with the quintet state and the normalization leave only t
degrees of freedom for the lowest triplet state. The sec
triplet must be also orthogonal to the first one, reducing
degrees of freedom to one, and the third one is entirely
termined by the orthogonality to the other two triplet sta
and the quintet. A similar rationalization is possible in t
singlet manifold.

The theoretical procedure has been explicit
elsewhere14,15 and a systematic study of three spin ladde
(SrCu2O3, CaCu2O3, and Sr2Cu3O5) and of the 2D square
spin lattice La2CuO4 has been recently reported.16 These val-
ues have been included in Tables IX–XII, together with t
DFT results reported in the next section. The model used
the different compounds are shown in Fig. 7.

Since theab initio derivation has produced prejudicele
estimates of the two-body exchange interactions betw
first and second neighbor centers and of the three four-b
5-6
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TABLE VII. The extended Heisenberg Hamilto
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TABLE VIII. The perturbation based effective Ham
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terms, it is possible to check the consistency of the Heis
berg Hamiltonian and the possible deviation from Eqs.~32!
and ~33!.

In all the systems the second-neighbor exchangesJd are
antiferromagnetic and much smaller than the first-neigh
interaction, also antiferromagnetic. TheJd /J ratio for
La2CuO4 is in good agreement with the square of the ratio
the hopping integrals as determined in a previous work.15

The four-body termsh1 which imply circulation of the
electrons between only nearest-neighbor sites are m
larger than the four-body termsh2 andh3 which arise from
the circulation of electrons involving hopping between s
ond neighbors. More quantitatively the ratiosh2 /h1 and
h3 /h1 compare rather well with the ratiosJd /J' andJd /Ji
in agreement with Eqs.~32! and~33! as shown in Table XIII.

B. DFT calculations

The same systems have been considered to test the v
ity of the hereafter proposed DFT procedure. In these hig
correlated systems one may generate specific self-consi
solutions for each distributions of spin on the four magne
centers. The number of independent solutions depends oSz
being one forSz52, four for Sz51, and three forSz50.

For an irregular tetrahedron these eight solutions have
ferent energies and then we have seven energy differen
which is not sufficient to extract the nine amplitudes of t
general effective spin operators~four first-neighbor ex-
changes, two second-neighbor exchanges, and three
body terms!. When the system presents any symmetry, so
energies become identical and also some two-body opera

TABLE IX. Exchange couplings for La2CuO4 in meV (h2

5h3). per4 and biqua represent, respectively, the extraction u
the perturbation-based effective Hamiltonian~Eq. 28! and the bi-
quadratic Heisenberg formulation~Eq. 27!.

J Jd 2h1 2h2

CI per4 125 7.8 14 1
biqua 124 7.0 14 1

B3LYP per4 198 16 64
biqua 195 12.5 64

33% Fock per4 131 6.9 20
biqua 130 6.0 19

TABLE X. Exchange couplings for SrCu2O3 in meV. per4 and
biqua represent, respectively, the extraction using the perturba
based effective Hamiltonian~Eq. 28! and the biquadratic Heisen
berg formulation~Eq. 27!.

Ji J' Jd 2h1 2h2 2h3

CI per4 204.5 160 16.4 34 4.1 2.7
biqua 203 157 13 34 4.1 2.7

B3LYP per4 247 231 27 120
biqua 241 225 21 120

33% Fock per4 166 157 12 39
biqua 164 155 10 39
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have equal amplitudes. For an isosceles trapeze, there
two distinct Sz51 energies, threeSz50 energies, and five
energy differences, while four different two-body operato
and three four-body terms exist. In this case, an exact ext
tion of all the parameters is not possible, it is necessary
assume that the four-body operators involving hopping in
diagonal (h2 and h3) are negligible in order to fix the fou
two-body operators and the dominant four-body term. Thi
the situation faced in the three-leg ladder Sr2Cu3O5 since the
bond in the internal leg must be considered as different to
external leg.

For a rectangle, there are just oneSz51 energy, threeSz
50 different solutions and four energy differences. In th
case, there are six exchange operators~three two-body op-
erators and three four-body terms!. So as in the previous
case, it is necessary to neglect theh2 andh3 terms in order to
establish the three two-body amplitudes and the domin
four-body term. These comments are relevant for the two-
ladders (SrCu2O3 and CaCu2O3).

For a square plaquette we have oneSz51 energy and two
Sz50 solutions, so three energy differences. There are
two-body amplitudes and three four-body terms. As befo
we neglect theh2 andh3 terms. This is the situation in the
2D square lattice as La2CuO4 system.

g

n-

TABLE XI. Exchange couplings for CaCu2O3 in meV. per4 and
biqua represent, respectively, the extraction using the perturba
based effective Hamiltonian~Eq. 28! and the biquadratic Heisen
berg formulation~Eq. 27!.

Ji J' Jd 2h1 2h2 2h3

CI per4 148 15 0.7 4 1.3 ;1022

biqua 147 15 0.2 4 1.3 ;1022

B3LYP per4 218 20 2 16
biqua 217 19 1 16

33% Fock per4 138 13 0.85 5
biqua 138 13 0.6 5

TABLE XII. Exchange coupling values for Sr2Cu3O5 in meV.
per4 and biqua represent, respectively, the extraction using
perturbation-based effective Hamiltonian~Eq. 28! and the biqua-
dratic Heisenberg formulation~Eq. 27!.

Ji J' Jd 2h1 2h2 2h3

CI per4 197~ext! 177 18 39 4.1 3.3
210~int!

biqua 195~ext! 177 14 39 4.1 3.3
208~int!

B3LYP per4 246~ext! 227 27 110
228~int!

biqua 240~ext! 221 21 120
222~int!

33% Fock per4 164~ext! 154 12 37
154~int!

biqua 162~ext! 152 10 40
153~int!
5-8
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The procedure consists in the identification of the ene
of the broken-symmetry solutions with the diagonal eleme
of the effective Hamiltonian matrix, involving not only th
four-body terms as in Tables III and IV and V and VI, b
also two-body exchange between first and second neighb
For instance, in a rectangular plaquette the energy differe
between theSz52 ua(↑)b(↑)c(↑)d(↑)u wave function and
the ua(↓)b(↑)c(↑)d(↑)u Sz51 solution can be identified
with

Eua(↑)b(↑)c(↑)d(↑)u2Eua(↓)b(↑)c(↑)d(↑)u5
J'1Ji1Jd

2
1

h1

10
~34!

in the perturbation based effective Hamiltonian and with

Eua(↑)b(↑)c(↑)d(↑)u2Eua(↓)b(↑)c(↑)d(↑)u5
J'1Ji1Jd

2
1

h1

4
~35!

in the Heisenberg extended Hamiltonian. For the threeSz
50 solutions the energy difference with respect to the qu
tet state may be identified in the perturbation based effec
Hamiltonian as

FIG. 7. Models used inab initio and DFT calculations: Cu4O12

plaquettes and first-neighbor TIP’s environment models for~a1!
La2CuO4, ~b1! SrCu2O3 and CaCu2O3, and ~c1! Sr2Cu3O5 com-
pounds. Gray, small black and big dark circles correspond, res
tively, to Cu, O, and counterions atoms (Sr12, Ca12, or La13).
Types of exchange interactions in~a2! the La2CuO4 square
plaquette,~b2! the SrCu2O3 and CaCu2O3 rectangular plaquette
and ~c2! the Sr2Cu3O5 irregular rectangular plaquette.
09443
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rs.
ce
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e

Eua(↑)b(↑)c(↑)d(↑)u2Eua(↓)b(↑)c(↓)d(↑)u5J'1Ji2
h1

5
,

~36!

Eua(↑)b(↑)c(↑)d(↑)u2Eua(↑)b(↓)c(↓)d(↑)u5Ji1Jd2
h1

5
,

~37!

Eua(↑)b(↑)c(↑)d(↑)u2Eua(↑)b(↑)c(↓)d(↓)u5J'1Jd2
h1

5
.

~38!

In the case of the extended Heisenberg Hamiltonian, we h

Eua(↑)b(↑)c(↑)d(↑)u2Eua(↓)b(↑)c(↓)d(↑)u5J'1Ji , ~39!

Eua(↑)b(↑)c(↑)d(↑)u2Eua(↑)b(↓)c(↓)d(↑)u5Ji1Jd , ~40!

Eua(↑)b(↑)c(↑)d(↑)u2Eua(↑)b(↑)c(↓)d(↓)u5J'1Jd . ~41!

All the calculations have been performed with hybr
functionals, which mix Fock and Slater exchanges. T
original B3LYP mixing26 is known to overestimate the delo
calization of the magnetic orbitals between the metal a
ligands20 and to lead to overestimated antiferromagne
nearest-neighbor exchanges. Better agreement with the
periment is obtained when around a 33% of Fock excha
is used in the exchange functional.17,19,20It must be noticed
that small errors in theJ values give strong deviations in th
four-body terms, due to the quadraticJ dependence of thes
terms (Jring55J2/U).

Both kinds of mixing have been used, the results
shown in Tables IX–XII. The models used are the same a
ab initio calculations~Fig. 7!. GAUSSIAN9827 has been used to
perform DFT calculations.28

The amplitudes of the parameters are almost identical
the extraction using the perturbation-based effective Ham
tonian and the biquadratic Heisenberg formulation~per4 and
biqua, respectively, in Tables IX–XII!, the differences being
lower than 3% of error. In all the systems the amplitude of
the exchange operations are overestimated when B3LY
used. It would be noted that the four spin cyclic term
unlikely large, going up to half of the first neighbor intera
tion in SrCu2O3. Increasing the percentage of Fock exchan
a better agreement with the CI results is obtained. The fo
body operator also compares quite well with theab initio
estimates. The largest amplitude concerns the SrCu2O3 sys-
tem.

TABLE XIII. Comparison between theab initio four-body term
ratio and second and first-neighbor exchanges ratio. In all case
values coming from the biquadratic Heisenberg Hamiltonian h
been used.

h2 /h1 Jd /J' h3 /h1 Jd /Ji

SrCu2O3 0.12 0.08 0.08 0.07
Sr2Cu3O5 0.10 0.08 0.08 0.06
La2CuO4 0.07 0.05 0.07 0.05

c-
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IV. CONCLUSIONS

The amplitudes of the four-body effects have been de
mined on a series of four-spin lattices, spin ladders w
either two or three legs, and the La2CuO4 square 2D lattice.
The knowledge of the eigenenergies and eigenvectors, as
tained fromab initio extended configuration interaction ca
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