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Abstract. In this paper we present an implementation in Prolog of an 
effective solution to the Knapsack problem via a family of deterministic 
P systems with active membranes using 2-division.

1 Introduction

The aim of this work is to present an effective solution to the Knapsack problem
through a simulator, written in Prolog, implementing deterministic P systems
with active membranes using 2-division.

The different variants of P systems found in the literature are generally
thought as generating devices, and many of them have been proved to be compu-
tationally complete. Nevertheless, it is not usual to find in these variants effective
solutions to hard numerical problems. The model we study here, P systems with
active membranes (see [4], section 7.2.), works with symbol–objects, and one of
its most relevant features is that it provides rules for division of membranes.
These rules enable the creation of an exponential workspace in linear time, al-
lowing thus the design of efficient cellular solutions.

The paper is organized as follows: Section 2 briefly presents a linear-time
solution to the decision Knapsack problem using a family of deterministic P
systems with active membranes; Section 3 gives some ideas about the simulator
developed in Prolog used to implement this solution; a standard work session
with the interface provided with the simulator is included in Section 4; finally,
in Section 5 some conclusions and future work about the subject of this paper
are presented.

2 Solving the Decision Knapsack Problem in Linear Time

The decision Knapsack problem can be stated as follows:

Given a knapsack of capacity k ∈ N, a set A of n elements, where each 
element has a “weight” wi ∈ N and a “value” vi ∈ N, and a constant c ∈ 
N, decide whether or not there exists a subset of A such that its weight 
does not exceed k and its value is greater than or equal to c.



We will represent the instances of the problem using tuples of the form
(n, (w1, . . . , wn), (v1, . . . vn), k, c), where n is the size of the set A; (w1, . . . , wn)
and (v1, . . . vn) are the weights and values, respectively, of the elements of A;
moreover, k and c are the two bound constants. We can define in a natural way
additive functions w and v that correspond to the data in the instance.

A family of language recognizer P systems with active membranes using 2-
division, without cooperation nor dissolution nor priority among rules solving
this problem is presented in [5]. We refer the reader to this paper for a com-
plete understanding of the process followed by this family, and for the formal
verification that this family in fact solves the Knapsack problem.

The family presented there is

Π = {(Π(〈n, c, k〉), Σ(n, c, k), i(n, c, k)) : (n, c, k) ∈ N
3},

where 〈n, c, k〉 is a bijection from N
3 to N induced by the pair function 〈x, y〉 =

[(x + y)(x + y + 1)/2] + x namely, 〈n, c, k〉 = 〈〈n, c〉, k〉; the input alphabet is
Σ(n, c, k) = {x1, . . . , xn, y1, . . . , yn}; the input membrane is i(n, c, k) = e and
the P system

Π(〈n, c, k〉) = (Γ (n, c, k), {e, s}, µ,Ms,Me, R)

is defined as follows:

• Working alphabet:
Γ (n, c, k) = {a0, a, ā0, ā, b0, b, b̄0, b̄, b̂0, b̂, d+, d−, e0, . . . , en, q0, . . . , q2k+1,
q, q̄, q̄0, . . . , q̄2c+1, x0, . . . , xn, y0, . . . , yn, yes, no, z0, . . . , z2n+2k+2c+6,#}.

• Membrane structure: µ = [s [e ]e ]s.
• Initial multisets: Ms = z0; Me = e0 āk b̄c.

• The set of evolution rules, R, consists of the following rules:

(a) [eei]0e → [eq]−e [eei]+e , for i = 0, . . . , n.
[eei]+e → [eei+1]0e[eei+1]+e , for i = 0, . . . , n − 1.

(b) [ex0 → ā0]0e; [ex0 → ε]+e ; [exi → xi−1]+e , for i = 1, . . . , n.
[ey0 → b̄0]0e; [ey0 → ε]+e ; [eyi → yi−1]+e , for i = 1, . . . , n.

(c) [eq → q̄q0]−e ; [eā0 → a0]−e ; [eā → a]−e ; [eb̄0 → b̂0]−e ; [eb̄ → b̂]−e .

(d) [ea0]−e → [e]0e#; [ea]0e → [e]−e #.

(e) [eq2j → q2j+1]−e , for j = 0, . . . , k; [eq2j+1 → q2j+2]0e, for j = 0, . . . , k − 1.

(f) [eq2j+1]−e → [e]+e #, for j = 0, . . . , k.

(g) [eq̄ → q̄0]+e ; [eb̂0 → b0]+e ; [eb̂ → b]+e ; [ea → ε]+e .

(h) [eb0]+e → [e]0e#; [eb]0e → [e]+e #.

(i) [eq̄2j → q̄2j+1]+e , for j = 0, . . . , c; [eq̄2j+1 → q̄2j+2]0e, for j = 0, . . . , c − 1.

(j) [eq̄2c+1]+e → [e]0eyes; [eq̄2c+1]0e → [e]0eyes.



(k) [szi → zi+1]0s, for i = 0, . . . , 2n + 2k + 2c + 5; [sz2n+2k+2c+6 → d+d−]0s.

(l) [sd+]0s → [s]+s d+; [sd− → no]+s ; [syes]+s → [s]0syes; [sno]+s → [s]0sno.

Notice that the membrane labelled with e is the input membrane where the
weights and values are provided. This is done via a multiset over the alphabet Σ
that is introduced into membrane e before starting the computation. Therefore,
at the beginning, the multiplicities of objects xj and yj (with 1 ≤ j ≤ n) encode
the weights and the values, respectively, of the corresponding elements of A. The
multiplicities of ā and b̄ encode the constants k and c, respectively, while the
weight and value of the subset associated with each membrane will be encoded
as the multiplicity of objects ā0 and b̄0, respectively. The other elements of the
working alphabet are used due to technical reasons.

3 The Simulator

We use a new version of the P system simulator presented in [2]. This simulator
is written in Prolog1. This language is expressive enough to handle symbolic
knowledge in a natural way and to deal with complex structures, in our case,
configurations of P systems.

On one hand, the tree-based data structure and the use of infix operators
defined ad hoc by the programmer allow us to imitate the natural language and
the user can follow the evolution of the system without any knowledge of Prolog.
On the other hand, the structure of membranes and the rules of the systems are
Prolog facts and the design of the inference engine that performs the evolutions
of the system has a natural treatment from a programmer point of view.

In the current version2, the simulator has two different parts. First, we can
consider the inference engine. It is a Prolog program which takes as input an ini-
tial configuration of a P system and a set of rules, and carries out the evolution.
The simulator only explores one branch of the computation tree; therefore, a
necessary condition to ensure a faithfully evolution of the system is dealing with
a confluent P system (i.e., all the computations with the same initial configura-
tion must give the same output). Let us emphasize that the inference engine is
completely general, that is, it does not depend on the P system considered at
all. The second part of the simulator provides a generator tool to automatically
build the initial configuration and the set of the rules for concrete instances of
some well known NP–complete problems (e.g., SAT, Validity, Subset Sum and,
of course, the Knapsack problem). The design of this generator tool allows future
additions of specific modules for new problems. These modules could be easily
designed by any Prolog user for carrying out his own experiments.

The new version of the simulator improves the previous one. The main im-
provements are related to programming techniques. From an user point of view,
the new version provides an easier way of introducing the parameters and offers a
broader set of type of problems to solve. Nevertheless, the formal representation
1 A good starting point for Prolog can be [1] or [8].
2 Available from the website http://www.cs.us.es/gcn



in Prolog of the basic structures of P systems is the same as the one introduced
in [2].

In order to clarify the format used for representing the configurations and
rules of the system, let us remember that a given configuration for the membrane
structure will be expressed by means of a labelled tree. In short, [ ] is the position
to denote the root of the tree and it will be associated with the skin; then [i]
will denote the position of the i-th inner membrane to the skin.

In a general form, to denote that in the t-th step of its evolution, a P system
P has a membrane at position [pos] with label h, polarity α, and m as multiset,
we shall write

P :: h ec α at [pos] with m at time t.

The rules are also represented as literals, according to the following format:

• [hx → y]αh
P rule x evolves to [y] in h ec α.

• x[h ]α1
h → [hy]α2

h
P rule x out of h ec α1 sends in y of h ec α2.

• [hx]α1
h → [h ]α2

h y
P rule x inside of h ec α1 sends out y of h ec α2.

• [hx]α1
h → [hy]α2

h [hz]α3
h

P rule x inside of h ec α1 divides into y inside of h ec α2
and z inside of h ec α3.

It is worth pointing out that each rule is indeed a Prolog fact. Several opera-
tors (such as inside of, divides into, . . . ) have been defined ad hoc in order
to obtain a natural-language-like appearance. The simulator also deals with dis-
solution rules although they are not used in the presented solution to solve the
Knapsack problem.

4 A Prolog Session

In this section we show a session for one instance of the problem. We consider
a set A = {a1, a2, a3, a4} with four elements (n = 4), with weights w(a1) = 3,
w(a2) = 2, w(a3) = 3, w(a4) = 1, and values v(a1) = 1, v(a2) = 3, v(a3) = 3,
v(a4) = 2. The question is to decide whether or not there exists B ⊆ A such
that the weights of the elements in B do not exceed 3 (k = 3) and their values
are greater than 4 (c = 4).

According to the design presented in [5], the P system that solves this in-
stance is Π(〈4, 3, 4〉) with input x3

1 x2
2 x3

3 x4 y1 y3
2 y3

3 y2
4 . The initial configuration

associated with the previous instance of the problem is shown in Fig. 1. The
following two Prolog facts allow us to represent3 this initial configuration (we
have chosen the name p1 to denote the P system that solves the above instance
of the problem).
3 Note that we use ASCII symbols to represent the objects of the alphabet; e.g., a

stands for ā, b0g stands for b̂0, and so on.
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Fig. 1. Initial configuration

p1 :: s ec 0 at [] with [z0] at_time 0.
p1 :: e ec 0 at[1] with [e0, a_, a_, a_, b_, b_, b_, b_,

x1, x1, x1, x2, x2, x3, x3, x3,
x4, y1, y2, y2, y2, y3, y3, y3,
y4, y4] at_time 0.

The simulator automatically generates them from the data typed by the user
and stores them in a text file.

Observe that the multiplicities of the objects xj and yj correspond to the
weights and values of the elements aj , respectively. Also, there are three copies
of ā (k = 3) and four copies of b̄ (c = 4).

In the same way as above, the simulator automatically generates the set of
rules associated with the instance of the problem. This generation is done by
instantiating several schemes of rules to the concrete values of the parameters.
This produces a text file containing the rules that can be easily edited, modified
or reloaded by the user. We would like to remark that the set of rules only
depends on the parameters n, k, and c. Consequently, if we want to solve several
instances with the same parameters, we only need to generate the set of rules
once.

In this example, we have obtained 89 rules. Some of them are listed in the
Appendix.

To start with the simulation of the evolution of the P system p1 from the
time 0, we type the following command:

?- evolve(p1,0).

The simulator returns the configuration at time 1 and the set of used rules
indicating how many times they have been used. Moreover, if the skin sends out
any object, then this will be reported to the user. The multisets are represented
as lists of pairs obj–n, where obj is an object and n is the multiplicity of obj in
the multiset.

?- evolve(p1,0).

p1 :: s ec 0 at [] with [z1-1] at_time 1



p1 :: e ec -1 at [1] with [a_-3, b_-4, q-1, x1-3, x2-2, x3-3,
x4-1, y1-1, y2-3, y3-3, y4-2] at_time 1

p1 :: e ec 1 at [2] with [a_-3, b_-4, e0-1, x1-3, x2-2, x3-3,
x4-1, y1-1, y2-3, y3-3, y4-2] at_time 1

Used rules in the step 1:
* The rule 1 has been used only once
* The rule 57 has been used only once

In this step only rules 1 and 57 have been applied. Rule 1 is a division rule,
the membrane labelled by e at position [1] divides into two membranes that
are placed at positions [1] and [2]; rule 57 is an evolution rule, z0 evolves to
z1 in the skin membrane. To obtain the next configuration in the evolution of
p1, now we type:

?- evolve(p1,1).

p1 :: s ec 0 at [] with [z2-1] at_time 2
p1 :: e ec -1 at [1] with [a-3, bg-4, q0-1, q_-1, x1-3,

x2-2, x3-3, x4-1, y1-1, y2-3, y3-3, y4-2] at_time 2
p1 :: e ec 0 at [2] with [a_-3, b_-4, e1-1, x0-3, x1-2,

x2-3, x3-1, y0-1, y1-3, y2-3, y3-2] at_time 2
p1 :: e ec 1 at [3] with [a_-3, b_-4, e1-1, x0-3, x1-2,

x2-3, x3-1, y0-1, y1-3, y2-3, y3-2] at_time 2

Used rules in the step 2:
* The rule 6 has been used only once
* The rule 14 has been used 3 times
* The rule 15 has been used 2 times

...
evolution rules from set (b) (see Appendix)

...
* The rule 22 has been used only once
* The rule 25 has been used 4 times
* The rule 26 has been used 3 times
* The rule 58 has been used only once

In this step, the first relevant membrane (that is, one of the membranes
having negative charge and containing an object q0) appears at position [1].
This membrane is associated with the empty set. The membrane at position [2]
will continue dividing to generate new membranes. All the subsets associated
with these descendent membranes will contain the object a1. On the other hand,
the membrane at position [3] is responsible of the membranes corresponding to
all the nonempty subsets that do not contain object a1.

Notice that rules from (b) have been applied. That is, the weight and values
calculation stage has already begun. This stage takes place in parallel with the
generation one. Immediately after an element aj is added to the associated subset



(i.e., when an object ej appears in a membrane with neutral charge), w(aj)
new copies of a0 and v(aj) new copies of b0 are generated in the membrane.
This process is controlled by the rules in (b), according to the polarity changes
produced by the division rules in (a).

The purpose of the system’s first stage is to generate a single relevant mem-
brane for each subset of A, i.e., 2n = 24 = 16 relevant membranes in all. Other
non relevant membranes are generated as well due to technical reasons. This is
done in the first 2n + 2 = 10 steps of the computation.

The simulator also allows us to ask for a configuration at time t without
showing the previous steps by typing the following command.

?- configuration(p1,4).
...

p1 :: e ec -1 at [2] with [a-3, a0-3, b0g-1, bg-4, q0-1, q_-1,
x1-2, x2-3, x3-1, y1-3, y2-3, y3-2] at_time 4

...

In this step the second relevant membrane is obtained. Note that the electric
charge is negative and the object q0 belongs to it. The subset associated with
this membrane is the unitary subset {a1}. Let us observe that there are three
copies of a0 (w(a1) = 3) and one copy of b0g (v(a1) = 1).

?- evolve(p1,4).
...

p1 :: e ec 0 at [2] with [a-3, a0-2, b0g-1, bg-4, q1-1,
q_-1, x1-2, x2-3, x3-1, y1-3, y2-3, y3-2] at_time 5

p1 :: e ec -1 at [3] with [a-3, a0-2, b0g-3, bg-4, q0-1,
q_-1, x1-3, x2-1, y1-3, y2-2] at_time 5

...

Used rules in the step 5:
...

* The rule 27 has been used only once
...

In this step, the membrane at position [2] starts the checking stage for
the weight function w (note that rule 27 from the set (d) has been applied,
see Appendix). A new relevant membrane appears at position [3]. The subset
associated with this membrane is the unitary subset {a2}. In the following steps
new relevant membranes appear and their corresponding checking stages start.

?- configuration(p1,10).

...
p1 :: e ec -1 at [12] with [a-2, a0-2, b0g-5, bg-4, q2-1, q_-1]

at_time 10
...



p1 :: e ec -1 at [24] with [a-3, a0-9, b0g-9, bg-4, q0-1, q_-1]
at_time 10

...

In this step the relevant membrane associated with the total subset appears
at position [24]. It is the last relevant membrane to be generated, that is, no
more division will take place in the rest of the computation and no new relevant
membranes will appear.

Let us focus on the membrane at position [12]. This membrane encodes the
subset {a2, a4}, which is the only solution for the instance considered in our
example. There have already been carried out two steps of the checking stage
for w (note the counter q2).

?- configuration(p1,16).
...

p1 :: e ec 1 at [12] with [b0g-5, bg-4, q_-1] at_time 16
...

The checking stage is finished in this membrane. There was the same amount
of objects a and a0 so the checking has been successful. Next, a transition step
is carried out that leads to the checking stage for the values. This stage mainly
consists in applying rules 44 and 45 (see Appendix) alternatively until we run
out of objects b0 or b.

?- configuration(p1,25).
...

p1 :: e ec 1 at [12] with [b0-1, q_8-1] at_time 25
...

Notice that the checking for the values has been finished and it has been
successful because the number of objects b0 was greater than the number of
objects b. Let us pay attention now to the answer stage.

?- evolve(p1,25).

p1 :: s ec 0 at [] with [# -127, z26-1] at_time 26
...

p1 :: e ec 0 at [12] with [q_9-1] at_time 26
...

The inner membrane at position [12] is now ready to send to the skin an object
yes (see rule 56 in the Appendix).

?- evolve(p1,26).

p1 :: s ec 0 at [] with [# -127, yes-1, z27-1] at_time 27
...



p1 :: e ec 0 at [12] with [] at_time 27
...

Used rules in the step 27:
* The rule 56 has been used only once
* The rule 83 has been used only once

Due to technical reasons (cf. [5]) the counter in the skin will wait two more steps
before releasing the special objects d+ and d−.

?- configuration(p1,29).

p1 :: s ec 0 at [] with [# -127, d1-1, d2-1, yes-1] at_time 29
...

In this step all inner processes are over. The only object that evolves is z28 (see
the set of rules (k) in Section 2 and note that 28 = 2n + 2k + 2c + 6).

?- evolve(p1,29).

p1 :: s ec 1 at [] with [# -127, d2-1, yes-1] at_time 30
...

Used rules in the step 30:
* The rule 86 has been used only once

The P-system has sent out d1 at step 30

In this step the object d1 leaves the system and the skin gets positive charge.

?- evolve(p1,30).

p1 :: s ec 0 at [] with [# -127, no-1] at_time 31
...

Used rules in the step 31:
* The rule 87 has been used only once
* The rule 88 has been used only once

The P-system has sent out d1 at step 30
The P-system has sent out yes at step 31

In this step the object yes is sent out of the system. To check the system we try
to evolve one more time, though this is a halting configuration.

?- evolve(p1,31).
No more evolution!
The P-system p1 has already reached a halting
configuration at step 31



5 Conclusions and Future Work

In this paper we have pointed out that P systems are suitable to solve efficiently
numerical NP–complete problems. We have presented a family of deterministic
P systems with active membranes using 2–division that solves the Knapsack
problem in an effective and efficient way (in fact, in linear time). Furthermore,
we have presented a simulation of a concrete instance of the problem using a
new version of the Prolog simulator introduced in [2].

It is not easy to find examples in the literature related to effective solutions
for NP–problems using P systems and a lot of work remains to be done in this
field. Looking for general patrons and recycling subroutines in the algorithms
are open problems.

Following this idea, an effective tool for simulation allows us to carry out
faithful studies of the evolution of the system and to check, step by step, how
the rules are applied.

Besides, the scope of the Prolog program that we have presented goes beyond
the simulation tool itself. Both the chosen way to represent the knowledge about
the system and the design of the inference engine lead us towards putting in
touch P systems with other well known problems and techniques of computation
and Artificial Intelligence which have a natural representation in Prolog. We
think that this connection deserves to be deeply studied in the next future.
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Appendix

In what follows, we show the rules generated by the simulator for the instance
of the problem considered in section 4. Note that the number after ** is the
ordinal of the corresponding rule.

% Set (a)
p1 rule e0 inside_of e ec 0 divides_into q inside_of e ec -1

and e0 inside_of e ec 1 ** 1.
...

p1 rule e4 inside_of e ec 0 divides_into q inside_of e ec -1
and e4 inside_of e ec 1 ** 5.

p1 rule e0 inside_of e ec 1 divides_into e1 inside_of e ec 0
and e1 inside_of e ec 1 ** 6.

...
p1 rule e3 inside_of e ec 1 divides_into e4 inside_of e ec 0

and e4 inside_of e ec 1 ** 9.

% Set (b)
p1 rule x0 evolves_to [a0_] in e ec 0 ** 10.

p1 rule y0 evolves_to [b0_] in e ec 0 ** 11.

p1 rule x0 evolves_to [] in e ec 1 ** 12.

p1 rule y0 evolves_to [] in e ec 1 ** 13.

p1 rule x1 evolves_to [x0] in e ec 1 ** 14.
...

p1 rule x4 evolves_to [x3] in e ec 1 ** 17.

p1 rule y1 evolves_to [y0] in e ec 1 ** 18.
...

p1 rule y4 evolves_to [y3] in e ec 1 ** 21.

% Set (c)
p1 rule q evolves_to [q_, q0] in e ec -1 ** 22.

p1 rule b0_ evolves_to [b0g] in e ec -1 ** 23.

p1 rule a0_ evolves_to [a0] in e ec -1 ** 24.

p1 rule b_ evolves_to [bg] in e ec -1 ** 25.

p1 rule a_ evolves_to [a] in e ec -1 ** 26.



% Set (d)
p1 rule a0 inside_of e ec -1 sends_out # of e ec 0 ** 27.

p1 rule a inside_of e ec 0 sends_out # of e ec -1 ** 28.

% Set (e)
p1 rule q0 evolves_to [q1] in e ec -1 ** 29.

p1 rule q2 evolves_to [q3] in e ec -1 ** 30.

p1 rule q4 evolves_to [q5] in e ec -1 ** 31.

p1 rule q6 evolves_to [q7] in e ec -1 ** 32.

p1 rule q1 evolves_to [q2] in e ec 0 ** 33.

p1 rule q3 evolves_to [q4] in e ec 0 ** 34.

p1 rule q5 evolves_to [q6] in e ec 0 ** 35.

% Set (f)
p1 rule q1 inside_of e ec -1 sends_out # of e ec 1 ** 36.

p1 rule q3 inside_of e ec -1 sends_out # of e ec 1 ** 37.

p1 rule q5 inside_of e ec -1 sends_out # of e ec 1 ** 38.

p1 rule q7 inside_of e ec -1 sends_out # of e ec 1 ** 39.

% Set (g)
p1 rule q_ evolves_to [q_0] in e ec 1 ** 40.

p1 rule b0g evolves_to [b0] in e ec 1 ** 41.

p1 rule bg evolves_to [b] in e ec 1 ** 42.

p1 rule a evolves_to [] in e ec 1 ** 43.

% Set (h)
p1 rule b0 inside_of e ec 1 sends_out # of e ec 0 ** 44.

p1 rule b inside_of e ec 0 sends_out # of e ec 1 ** 45.

% Set (i)



p1 rule q_0 evolves_to [q_1] in e ec 1 ** 46.

p1 rule q_2 evolves_to [q_3] in e ec 1 ** 47.

p1 rule q_4 evolves_to [q_5] in e ec 1 ** 48.

p1 rule q_6 evolves_to [q_7] in e ec 1 ** 49.

p1 rule q_8 evolves_to [q_9] in e ec 1 ** 50.

p1 rule q_1 evolves_to [q_2] in e ec 0 ** 51.

p1 rule q_3 evolves_to [q_4] in e ec 0 ** 52.

p1 rule q_5 evolves_to [q_6] in e ec 0 ** 53.

p1 rule q_7 evolves_to [q_8] in e ec 0 ** 54.

% Set (j)
p1 rule q_9 inside_of e ec 1 sends_out yes of e ec 0 ** 55.

p1 rule q_9 inside_of e ec 0 sends_out yes of e ec 0 ** 56.

% Set (k)
p1 rule z0 evolves_to [z1] in s ec 0 ** 57.

p1 rule z1 evolves_to [z2] in s ec 0 ** 58.
...

p1 rule z26 evolves_to [z27] in s ec 0 ** 83.

p1 rule z27 evolves_to [z28] in s ec 0 ** 84.

p1 rule z28 evolves_to [d1, d2] in s ec 0 ** 85.

% Set (l)
p1 rule d1 inside_of s ec 0 sends_out d1 of s ec 1 ** 86.

p1 rule d2 evolves_to [no] in s ec 1 ** 87.

p1 rule yes inside_of s ec 1 sends_out yes of s ec 0 ** 88.

p1 rule no inside_of s ec 1 sends_out no of s ec 0 ** 89.
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