
An Agent Based Approach of Collective Foraging

Marian Gheorghe, Carlos Mart́ın-Vide, Victor Mitrana, and Mario J. 
Pérez Jiménez

Abstract. In this paper the behaviour of a bee colony is modeled as a 
society of communicating agents acting in parallel and synchroniz-ing
their behaviour. Two computational models for defining the agents
behaviour are introduced and compared and tools developed for these
models are briefly illustrated.

1 Introduction

An agent is an encapsulated computer system that is situated in some environ-
ment and that is capable of flexible, autonomous action in that environment in 
order to meet its design objectives [11]. There are two fundamental concepts as-
sociated with any dynamic or reactive system, such as an agent, that is situated 
in and reacting with some environment [9]:

– the environment itself must be defined in some precise, mathematical way,
something which involves identifying the important aspects of the environ-
ment and the way in which they may change in accordance with the activities
of the agent;

– the agent will be responding to environmental changes by changing its basic
parameters and possibly affecting the environment as well. Thus, there are
two ways in which the agent reacts, i.e. it undergoes internal changes and it
produces outputs that affect the environment.



Agents, as highly dynamic systems, are concerned with three essential factors:

– a set of appropriate environmental stimuli or inputs;
– a set of internal states of the agent;
– a rule that relates the two above and determines what the agent state will
change to if a particular input arrives while the agent is in a particular state.

One of the challenges that emerge in intelligent agent engineering is to develop
agent models and agent implementations that are correct. According to [9], the
criteria for correctness are:

– the initial agent model should match with the requirements;
– the agent model should satisfy any necessary properties in order to meet its
design objectives;

– the implementation should pass all tests constructed using a complete func-
tional test generation method.

All the above criteria are closely related to three stages of agent system
development, i.e. modelling, verification and testing.

In agent oriented engineering, there have been several attempts to use formal
methods, each one focusing on different aspects of agent systems development.
One of them was to formalize PRS (Procedural Reasoning System), a variant of
the BDI architecture [15] with the use of Z, in order to understand the architec-
ture in a better way, to be able to move to the implementation through refinement
of the specification and to be able to develop proof theories for the architecture
[10]. Trying to capture the dynamics of an agent system, [16] viewed an agent as
a situated automaton that generates a mapping from inputs to outputs, medi-
ated by its internal state. [6] developed the DESIRE framework, which focuses
on the specification of the dynamics of the reasoning and acting behaviour of
multi-agent systems. In an attempt to verify whether properties of agent models
are true, work has been done on model checking of multi-agent systems with re-
use of existing technology and tools [5], [14]. Towards implementation of agent
systems, [2] focused on program generation of reactive systems through a formal
transformation process. Finally, in a less formal approach, extensions to UML
to accommodate the distinctive requirements of agents (AUML) were proposed
[17].

A specific class of agents, namely cooperative ones, have been used to mod-
elling the collective foraging behaviour of a colony of honey-bees [8]. This class
of agents is fully compatible with the rules used by foraging honey-bees that
include specifications for [18]:

– travelling from the nest to the source;
– searching for the source;
– collecting nectar from the source;
– travelling back to the nest;
– transmitting the information about the source - the dancing of the returning
bee;

– the reaction of a bee in the nest to the dancing of a nest mate.



In this paper, we intend to show how simple agents motivated from biology
can be modelled as P systems [13] and X-machines [9]. Such modelling will facili-
tate both verification and testing of an agent model, since appropriate strategies
for model checking and testing are already developed around these methods. In
addition, modular construction of agent models is feasible since these models are
provided with communicating features, which allow simple models to interact.
Finally, tools developed for these models are briefly presented in order to demon-
strate the practicality of the approach. The two models present many similarities,
but also important differences making them complementary approaches which is
an important characteristic of the models developed in the area of biochemical
systems [7].

2 P systems and stream X-machines. Basic definitions

Definition 1. A P system Π = (V, T, µ,M1, . . . ,Mm, R1, . . . , Rm) is a con-
struct, where:

– V is an alphabet; its elements are called objects;
– T ⊆ V is the output alphabet;
– µ is a membrane structure (a rooted tree where the nodes are called mem-

branes and the root is called skin) consisting of m membranes, with the
membranes and the regions labeled in a one to one manner with elements
1, . . . ,m;

– M1, . . . ,Mm are multisets over V associated with the regions 1, 2, . . . ,m;
– R1, . . . , Rm are finite sets of rewriting (evolution) rules of the form a −→ x

where a is a word over V and x is a word over {ahere, ain, aout | a ∈ V }.
Usually the membrane structure is materialized by matching pairs of parenthe-
ses. The multisets Mi and the rule sets Ri are associated with the regions of
µ. When a rule a −→ x is used in a region then the objects designed by a are
removed, and the objects designed by x are sent to the regions indicated by tar.
When tar = here, the object is kept in the same region; when tar = out, the
object leaves the current region and goes into the outer one; when tar = in,
the object is sent to one of the directly included regions, if any exists, otherwise
the rule can not be applied. The target indication here is in general omitted. A
computation is defined as follows: the process starts with the multisets present in
the initial configuration and proceeds iteratively by applying in parallel the rules
in each region to all multisets that can be rewritten. The result (the number of
objects) is collected outside of the system at the end of the halting computation.
The language generated by a system Π is denoted by L(Π) and consists of all
numbers that are computed during halting computations. Other ingredients are
also considered alongside of such a definition: priority rules among the compo-
nents of the sets Ri, membrane polarization or the permeability (thikness) of a
membrane etc., [13]. Also the symbol-objects with no internal structure may be
replaced by string-objects and in this case we deal with usual languages over a
given alphabet.



Definition 2. A stream X-machine X = (Σ,Γ,Q,M,Φ, F, I, T,m0) is a sys-
tem, where:

– Σ and Γ are finite sets called the input and the output alphabets, respectively;
– Q is the finite set of states;
– M is a (possibly infinite) set of memory symbols;
– Φ is a set of basic partial functions of the form f : Σ ×M −→ M × Γ ∗;
– F is the next state function F : Q× Φ −→ 2Q;
– I and T are the sets of initial and final states;
– m0 is the initial memory value.

A computation in X is defined as follows: the process starts with the initial
configuration (m0, q0, s, ε), where q0 ∈ I, s ∈ Σ∗, ε denotes the empty output,
and proceeds iteratively by processing the current input symbol - the symbol
on the left of the input string - and the current memory value by a function f
emerging from the current state q, producing an output symbol going to the
right of the output string and updating the memory value; the next state is one
belonging to F (q, f). The machine will stop when arrives in a final state and has
processed all the input symbols of s. The output string obtained in this state is
the result of the computation. The set of all output strings obtained by using
all the possible computations in X starting with an input set Inp is denoted by
LX(Inp).

Comparisons involving these models based on their computational power,
when they both are dealing with strings, has been investigated [1], and ways
of combining them into a hybrid model called Eilenberg P system have been
proposed [4]. For such a model has been shown that NP-complete problems like
SAT can be solved in linear time [4].

3 Two computational models of collective foraging

In this section an agent based approach using both P systems and X-machines
will be used in order to specify the collective foraging behaviour of a colony of
honey-bees.

The P system model has the following elements organized on three layers:

– the environment (M1) containing the nectar source;
– the nest (M2);
– the bees (M3 to Mm).

M1 will contain information about the amount of nectar carried by a bee, its
current position, and information about the source. M2 will have for each bee
in the hive, the amount of nectar carried, its current position, a memory value
identifying the nectar source position as well as an identification of each bee.
Mi, 1 ≤ i ≤ m will give the position of a bee, the amount of nectar carried by
a bee and a position of the source as a memory value; when some nectar will
be transferred to another bee, the position and amount to be transferred will be
also specified.



The membrane structure is: µ = [1[2[i1 ]i1 . . . [ip
]ip
]i2 [ip+1 ]ip+1 . . . [im−2 ]im−2 ]1.

The following rules are applied:

– 1. (nectar, p,m) −→ (nectar, p′,m′), where p, p′ are positions, nectar is an
arbitrary amount of nectar from a finite set of values and m is the memory
content defining the position of the source; this rule mentions that a bee
changes its postion and may update its memory;

– 2. (0, p source,m) −→ (nectar taken, p source,m) - this rule describes what
a bee is doing once she has arrived at the source: the current amount of nectar
she carries is 0, the source position is p source, the bee picks up the amount
nectar taken and keeps the position;

– 3. (nectar, p,m) −→ (nectar, p,m, i)1 - according to this rule a foraging bee i
being in the environment communicates its load, position and identity to the
environment (the element on the right hand side is sent to the environment,
1); similarly we have 3’. (nectar, p,m) −→ (nectar, p,m, j)2 - the bee j
communicates with the hive;

– 4. (nectar, p,m, i) −→ (nectar, p,m, i)2(0, p,m, i)k2 according to this rule,
from the environment it passes to the hive the nectar load of the foraging
bee i and k copies indicating the source position simulating the information
that is passed through the waggle dance to k bees (the amount of nectar is
not considered);

– 5. (nectar, p1, m1, i)(nectar, p2, m2, j) → (nectar′1, p1, m1, i)(1)(nectar′2, p2, m2)j -
this rule shows that the bees i and j exchange nectar; the first object could
go to the environment or rest in the hive (the notation (1) means either 1 i.e.
the environment or nothing which means the objects remains in the hive);

– 6. (nectar, p,m, i) −→ (nectar, p,m)i - this rule shows that the bee i (re)starts
foraging after nectar has been given to honey-bees in the hive;

– 7. ((∗, p1, source info, i), (nectar2, p2,m, j)) −→ (nectar2, p2, new m)j - ac-
cording to this rule the bee j who attends the dance will refresh her memory
with the position of the source; depending on the distance between the two
bees i and j (the difference between p1 and p2), a transmission error may
occur [18].

The rules 1, 2, 3 or 3′ are in the sets Ri, 3 ≤ i ≤ m, whereas the rules 5, 7 are only
inR2 and 4, 6 inR1. The setsRi, i ≥ 1 formally define the six requirements stated
in [18]. In the next section we will show how these rules are codified in a software
tool which helps to simulate the behaviour of this system. V contains elements
(nectar, p,m) or (nectar, p,m, i) with 0 ≤ nectar ≤ Nectar max, 0 ≤ p ≤
Position max, 0 ≤ memory ≤ Postion max, 3 ≤ i ≤ m; where Nectar max
and Position max are two positive integers.

The next model will approach the foraging problem from a different per-
spective. In this case instead of modeling the whole problem, we will approach
different aspects and model them as separate X-machines. At the end we will
have a set of such machines. In [12] it is proposed a way of aggregating these
components by providing a protocol for communication among them. We will
illustrate here only the X-machine which models the dancing behaviour.

The X-machine X will have the following elements:



– Σ = {fbee, space, nest, source};
– Γ = {”dancing”, ”flying out”, ”flying in”, ”source found”, ”keep flying”};
– Q = {in the nest, out of nest};
– M = {(bee pos, source pos) | bee pos, source pos ∈ Fin}, where Fin is a
finite set of integer values {0, . . . , Position max};

– Φ contains
• dancing(fbee, (bee pos, source pos)) = ((bee pos, source pos), ”dancing”);
• fly out(space, (bee pos, source pos)) =
((bee pos′, source pos), ”flying out”);
• fly in(nest, (bee pos, source pos)) = ((bee pos′, source pos), ”flying in”);
• find source(source, (bee pos, source pos)) =
((source pos, source pos), ”source found”);
• keep fly out(space, (bee pos, source pos)) =
((bee pos′, source pos), ”keep flying”).

– F (in the nest, dancing) = in the nest; F (in the nest, fly out) = out of nest;
F (out of nest, fly in) = in the nest;
F (out of nest, find source) = out of nest;
F (out of nest, keep fly out) = out of nest;

– I = {in the nest};F = Q.

In both systems either their rules (in the first case) or the X-machine compo-
nents (in the second case) run in parallel approaching the honey-bees behaviour
as cooperative agents.

4 Tools

In this section we will show how the formal models defined in the previous section
might be transformed into an executable code such as to be able to simulate the
behaviour of the defined system.

A P system simulator has been implemented; it allows to input a P sys-
tem specification and then to simulate its nondeterministic and highly parallel
behaviour [3].

The MzScheme code for the P system model defined in the previous section,
is presented below (only the rules for the environment are provided):

(define A (vector (n1 p1 m1) ...(nk pk mk) (n1 p1 m1 3)... (n1 p1 m1 m)

...

(nk pk mk 3)... (nk pk mk m)))

;the alphabet codifying the system objects

(define MS ((1 2) (1 3) (1 4)... (1 p)

(2 p+1)... (2 m)); the membrane structure

(define objects

(vector ((n1 p1 m1 3)... (nh ph mh j)))

; initial configuration

(define rules

(vector (((n p m i)->((n p m i) 2)((n p m i) 2) ... ((n p m i) 2))

((n p m i)->((n p m) i)) ; rules corresponding to 4 and 6

)



The X-machine model is supported by a mark-up language called XMDL [12].
An XMDL fragment code of the X-machine specification of the model defined
in the previous section is given below:

#input = {fbee, space, nest, source}.
#output = {"dancing", "flying out", "flying in", "source found",

"keep flying"}.
#memory = {(b,s)| 0<=b<=Position, 0<=s<=Position}.
#state = {in_the_nest, out_of_nest}.
#fun dancing(?inp,(?b p,?s p)) =

if ?inp==fbee then ((?b p,?s p),"dancing").

#fun fly out(?space,(?b p,?s p)) =

if next(?b p,?s p,?b p’,?s p’) then ((?b p’,?s p’),"flying out").

From the above sample code we may notice the fair similarity between their
formats and the formalisms used in these models. Both tools are able to animate
the specified systems and XMDL is also prividing a sort of formal analysis of
the system by generating test sets and supporting model checking analysis.

5 Conclusions

The work reported in this paper refers to two computational models that are
proposed as cooperative agent paradigms suitable to modelling the behaviour
of social insects, in particular honey-bee colonies. The models are parallel dis-
tributed paradigms with specific communication mechanisms and are supported
by software tools able to animate the systems specified in these frameworks.

These approaches have some similarities: they are computational devices with
components running in a fully parallel manner and acting as a society of agents.
For both models the design is flexible and reusable as the whole system may be
built from individual components (multisets and rules in the membrane approach
and component X-machines in the second case) that are assembled and enriched
with the communication aspects. There are also some important differences be-
tween the two approaches. In the case of the membrane systems the outputs are
defined only at the end of the computation and in some specified components;
the inputs are defined only in some variants, the memory is implicitly defined
as being the set of symbols associated to each component. For X-machines the
inputs and the outputs are explicitly associated to every basic function and a
memory element is part of any computation.

The theoretical study of these models has been developed independently and
somehow on different aspects, computational power for P systems [13] and testing
issues for X-machines [9]. Consequently some more work is expected in order to
combine these approaches [4]. On the practical side of modeling the behaviour of
different social insects, more powerful and flexible tools are requested to simulate
and animate various aspects related to the evolution of these colonies and to
capture a broader range of system specifications.



References

1. J. Aguado, T. Bălănescu, T. Cowling, M. Gheorghe, M. Holcombe, F. Ipate, P
systems with replicated rewriting and stream X-machines (Eilenberg machines),
Fundamenta Informaticae 49(2001), 1–17.

2. A. Attoui, A. Hasbani, Reactive systems developing by formal specification transfor-
mations. In Proceedings of the 8th International Workshop on Database and Expert
Systems Applications (DEXA 97), 1997, 339–344.

3. D. Balbot́ın Noval, M. J. Pérez Jiménez, F. Sancho Caparrini, A MzSceme Imple-
mentation of Transition P Systems. In Membrane Computing (Gh. Păun, G. Rozen-
berg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer-Verlag, 2003, 58–73.

4. T. Bălănescu, M. Gheorghe, M. Holcombe, F. Ipate, Eilenberg P systems. In Mem-
brane computing (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS
2597, Springer-Verlag, 2003, 43–57.

5. M. Benerecetti, F. Giunchiglia, L. Serafini, A model checking algorithm for multia-
gent systems. In Intelligent Agents V (J. P. Muller, M. P. Singh, A. S. Rao, eds.),
LNAI 1555, Springer-Verlag, 1999, 163–176.

6. F. Brazier, B. Dunin-Keplicz, N. Jennings, J. Treur, Formal specification of multi-
agent systems: a real-world case. In Proceedings of International Conference on
Multi-Agent Systems (ICMAS’95), MIT Press, 1995, 25–32.

7. L. Clark, R. Paton, Towards computational models of chemotaxis in Escherichia
coli. In Information Processing in Cells and Tissues (M. Holcombe, R. Paton, eds.),
Plenum Press, 1998, 39-46.

8. M. Gheorghe, M. Holcombe, P. Kefals, Computational models of collective foraging,
BioSystems, 61(2001), 133–141.

9. M. Holcombe, F. Ipate, Correct systems: Building a Business Process Solution,
Springer Verlag, London, 1998.

10. M. d’Inverno, D. Kinny, M. Luck, M. Wooldridge, A formal specification of
dMARS. In Intelligent Agents IV (M.P.Singh, A.Rao, M.J.Wooldridge, eds.), LNAI
1365, Springer-Verlag, 1998, 155–176.

11. N. R. Jennings, On agent-based software engineering, Artificial Intelligence,
117(2000), 277–296.

12. E. Kapeti, P. Kefalas, A design language and tool for X-machines specification. In
Advances in Informatics (D. I. Fotiadis, S. D. Nikolopoulos, eds.), World Scientific
Publishing Company, 2001, 134–145.

13. Gh. Păun, Membrane Computing. An Introduction, Springer, Berlin, 2002.
14. A. S. Rao, M. P. Georgeff, A model-theoretic approach to the verification of situ-
ated reasoning systems. In Proceedings of the Thirteenth International Joint Con-
ference on Artificial Intelligence (IJCAI’93) (R. Bajcsy, ed.), 1993, 318-324.

15. A. S. Rao, M. P. Georgeff, BDI Agents: from theory to practice. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS95), 1995,
312–319.

16. S. R. Rosenschein, L. P. Kaebling, A situated view of representation and control,
Artificial Intelligence, 73(1995), 149–173.

17. J. Odell, H. V. D. Parunak, B. Bauer, Extending UML for agents. In Proceedings of
the Agent-Oriented Information Systems Workshop at the 17th National conference
on Artificial Intelligence, 2000.

18. H. de Vries, J. C. Biesmeijer, Modelling collective foraging by means of individual
behaviour rules in honey-bees, Behavioral Ecology and Sociobiology, 44(1998), 109–
124.


	An Agent Based Approach of Collective Foraging
	Introduction
	P systems and stream X-machines. Basic definitions
	Two computational models of collective foraging
	Tools
	Conclusions
	References




