On minimax-regret Huff location models*

Lenys Bello, Universidad de Carabobo, Venezuela, lcbello@uc.edu.ve
Rafael Blanquero and Emilio Carrizosa, Universidad de Sevilla, Spain, \{rblanquero, ecarrizosa\}@us.es

April 2, 2010

Abstract

We address the following single-facility location problem: a firm is entering into a market by locating one facility in a region of the plane. The demand captured from each user by the facility will be proportional to the users buying power and inversely proportional to a function of the user-facility distance. Uncertainty exists on the buying power (weight) of the users. This is modeled by assuming that a set of scenarios exists, each scenario corresponding to a weight realization. The objective is to locate the facility following the Savage criterion, i.e., the minimax-regret location is sought. The problem is formulated as a global optimization problem with objective written as difference of two convex monotonic functions. The numerical results obtained show that a branch and bound using this new method for obtaining bounds clearly outperforms benchmark procedures.

Keywords: continuous location, Huff model, DC functions, DCM functions, global optimization, minimax regret.

1 The model

The Huff location model $\left[2,10, \underline{13}, \underline{17,18]}\right.$ in the plane can be described as follows: Let $A \subset \mathbb{R}^{2}$ be a set of users, asking for a certain service. Each user $a \in A$ has demand ω_{a}. Such demand is being patronized by the different existing facilities, located at points x_{1}, \ldots, x_{r}, so that the demand captured by facility at x_{i} from user a is inversely proportional to a positive non-decreasing function of the distance $\left\|a-x_{i}\right\|$ from the user at a to the facility at x_{i}. In other words, the demand captured by the facility at x_{i} from the user at a is given by

$$
\begin{equation*}
\omega_{a} \frac{1 / \varphi_{a i}\left(\left\|a-x_{i}\right\|\right)}{\sum_{j=1}^{r} 1 / \varphi_{a j}\left(\left\|a-x_{j}\right\|\right)} . \tag{1}
\end{equation*}
$$

The norm $\|\cdot\|$ is typically the Euclidean norm, and the usual choice for each $\varphi_{a j}$ has the form $\varphi_{a j}(d)=d^{\alpha}$. When $\alpha=2$, we have the so-called gravitational model.

[^0]A new firm is entering the market, by locating one facility at some $x \in S$. This perturbs market share, since the new facility at x will capture a demand from $a \in A$ equal to

$$
\begin{equation*}
\omega_{a} \frac{1 / \varphi_{a}(\|a-x\|)}{1 / \varphi_{a}(\|a-x\|)+\sum_{j=1}^{r} 1 / \varphi_{a j}\left(\left\|a-x_{j}\right\|\right)} . \tag{2}
\end{equation*}
$$

Here φ_{a} is assumed to be non-negative, non-decreasing and continuous in \mathbb{R}_{+}. The goal of the entering firm is the maximization of its market share. This is written as the following optimization problem:

$$
\begin{equation*}
\max _{x \in S} \sum_{a \in A} \omega_{a} \frac{1 / \varphi_{a}(\|a-x\|)}{1 / \varphi_{a}(\|a-x\|)+\sum_{j=1}^{r} 1 / \varphi_{a j}\left(\left\|a-x_{j}\right\|\right)} \tag{3}
\end{equation*}
$$

Defining for each $a \in A$ the positive constant β_{a},

$$
\begin{equation*}
\beta_{a}=\sum_{j=1}^{r} \frac{1}{\varphi_{a j}\left(\left\|a-x_{j}\right\|\right)}, \tag{4}
\end{equation*}
$$

it follows that Problem (3) can be rewritten as

$$
\begin{equation*}
\max _{x \in S} \sum_{a \in A} \omega_{a} \frac{1}{1+\beta_{a} \varphi_{a}(\|a-x\|)} \tag{5}
\end{equation*}
$$

Problem (5) is a multimodal problem, solved heuristically in [7], and via Global-Optimization methods, among others, in $[2,10]$.

An important limitation in practice of (5) is the assumption that weights are known. Since weights are affected, among other things, by the demographic growth of each $a \in A$, a more realistic model would accommodate some type of uncertainty in these parameters. In a recent paper by Tammy Drezner, [8], uncertainty is modeled by assuming the existence of a (finite) set E of different scenarios, where, for each scenario $e \in E$, a vector $\left(\omega_{a}^{e}\right)_{a \in A}$ of weights is given. Under scenario $e \in E$, the ideal market share for the entering firm is z^{e},

$$
\begin{equation*}
z^{e}=\max _{x \in S} \sum_{a \in A} \omega_{a}^{e} \frac{1}{1+\beta_{a} \varphi_{a}(\|a-x\|)} \tag{6}
\end{equation*}
$$

The aim in [8], also pursued here, is to find the location for the facility achieving a market share closest to the ideal, i.e, by solving

$$
\begin{equation*}
\min _{x \in S} F(x):=\left\|\left(z^{e}-\sum_{a \in A} \omega_{a}^{e} \frac{1}{1+\beta_{a} \varphi_{a}(\|a-x\|)}\right)_{e \in E}\right\|_{p} \tag{7}
\end{equation*}
$$

where $\|\cdot\|_{p}$ is the ℓ_{p} norm, and $1 \leq p \leq \infty$. See $[6, \underline{20,21]}$ for further details on minimax regret, and also [9] for alternative approaches to modeling uncertainty in continuous location with competition.

In [8] the following procedure is suggested to obtain a global optimum of (7): a branch-andbound method proposed in $\lfloor 12]$ is used. Lower bounds for F are obtained in two steps:

1. Upper bounds U^{e} for each term $\sum_{a \in A} \omega_{a}^{e} \frac{1}{1+\beta_{a} \varphi_{a}(\|a-x\|)}$ are constructed following [10].
2. A lower bound for F is given by $\left\|\left(z^{e}-U^{e}\right)_{e \in E}\right\|_{p}$.

The purpose of this paper is to show how a new bounding strategy, proposed by the authors in [2], can notably reduce the computing times and storage requirements, enabling one to solve in reasonable times more complex problems, with many more data points or scenarios. In our procedure, applicable also to more general settings than those described in [8], the objective function F is expressed as $F(x)=G(D(x))$, with $D(x)=(\|a-x\|)_{a \in A}$ and $G: \mathbb{R}^{|A|} \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
G\left(\left(d_{a}\right)_{a \in A}\right)=\left\|\left(z^{e}-\sum_{a \in A} \omega_{a}^{e} \frac{1}{1+\beta_{a} \varphi_{a}\left(d_{a}\right)}\right)_{e \in E}\right\|_{p} \tag{8}
\end{equation*}
$$

and then the properties of the function G are successfully exploited. As shown in Section 2, G is $D C M$, i.e., it can be written as a difference of two convex and monotonic functions [2]. As a consequence, the bounding strategy for DCM functions described in [2] can be used to solve (7).

Section 3 presents numerical results, showing that our strategy outperforms the method suggested in [8].

2 Properties

We discuss some general properties of the objective function in (7), which will be used in Section 2.2 to construct bounds for F.

$2.1 G$ is DCM

We recall the reader that, given a convex set $\Omega \subset \mathbb{R}^{n}$, a function is said to be $D C$ on Ω if it can be written as a difference of two convex functions on Ω. DC functions constitute a wide class of functions (note that convex and concave functions are dc), that can be found in many applications fields, Locational Analysis being one of them, $\underline{1,} \underline{2}, \underline{4}, \underline{5}, \underline{11}, \underline{15} \underline{19]}$. In [2] a proper subset of dc functions has been introduced, namely the set of functions that can be expressed as the difference of two convex and monotonic (DCM) functions. When the objective function can be written as the composition of a DCM function with a convex function, sharp bounds can be obtained, enabling one to design more efficient branch and bound procedures.

In what follows we assume that each φ_{a} in (7) is such that the function $1 /\left(1+\beta_{a} \varphi_{a}(d)\right)$ is DCM in \mathbb{R}_{+}and there exists a DCM decomposition where both functions are non-decreasing or non-increasing simultaneously. A sufficient condition for this to happen is given in the following result.

Proposition 1 Let $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$be a convex and non-decreasing function and let $\beta \geq 0$. Then $\Phi(d)=1 /(1+\beta \varphi(d))$ is DCM in \mathbb{R}_{+}and a DCM decomposition with non-decreasing components is given by:

$$
\begin{equation*}
\Phi(d)=(\Phi(d)+(1+\beta \varphi(d)))-(1+\beta \varphi(d)) . \tag{9}
\end{equation*}
$$

Proof. The function $h(t)=1 / t+t$ is convex and non-decreasing in $[1,+\infty]$, since $h^{\prime}(t)=$ $-1 / t^{2}+1 \geq 0 \forall t \geq 1$ and $h^{\prime \prime}(t)=2 / t^{3} \geq 0 \forall t \geq 1$. Taking into account that $1+\beta \varphi(d)$ is convex and non-decreasing, it follows that the function $h(1+\beta \varphi(d))$ has the same properties and the result holds.

An alternative DCM decomposition can be easily obtained when $\varphi(d)=d^{\alpha}$ with $\alpha \geq 1$. In such a case, the function Φ in Proposition 1 is concave in the interval $\left[0, d_{0}\right)$ and convex in $\left[d_{0},+\infty\right)$, where

$$
d_{0}=\left(\frac{\alpha-1}{(\alpha+1) \beta}\right)^{\frac{1}{\alpha}}
$$

Hence, $\Phi^{1}-\Phi^{2}$ is a DC decomposition of Φ where
$\Phi^{1}(d)=\left\{\begin{array}{ll}\Phi\left(d_{0}\right)+\Phi^{\prime}\left(d_{0}\right)\left(d-d_{0}\right) & \text { if } d \leq d_{0} \\ \Phi(d) & \text { if } d>d_{0}\end{array} \quad \Phi^{2}(d)= \begin{cases}\Phi\left(d_{0}\right)+\Phi^{\prime}\left(d_{0}\right)\left(d-d_{0}\right)-\Phi(d) & \text { if } d \leq d_{0} \\ 0 & \text { if } d>d_{0}\end{cases}\right.$
Moreover, $\Phi^{1}-\Phi^{2}$ is a DCM decomposition of Φ. Indeed, Φ^{1} is clearly non-increasing, as Φ has the same property. On the other hand, Φ^{2} is also a non-increasing function since its derivative, $\Phi^{\prime}\left(d_{0}\right)-\Phi^{\prime}(d)$, is non-positive in $\left[0, d_{0}\right)$ due to the concavity of Φ in such interval.

The concept of DCM function was originally introduced in $\lfloor 2]$ for a function $\varphi: K \rightarrow \mathbb{R}$ with $K \subset \mathbb{R}$. Now we extend that definition to a real function defined over a subset of \mathbb{R}^{n}.

Definition 2 Given $K \subset \mathbb{R}^{n}$, a function $\varphi: K \rightarrow \mathbb{R}$ is said to be monotonic in K if φ is a non-decreasing componentwise function or a non-increasing componentwise function in K, i.e. either one has for all $x, y \in K$ with $x_{i} \leq y_{i}, 1 \leq i \leq n$, that $\varphi(x) \leq \varphi(y)$ or one has that $\varphi(x) \geq \varphi(y)$.

Definition 3 Given $K \subset \mathbb{R}^{n}$, a function $\varphi: K \rightarrow \mathbb{R}$ is said to be difference of convex monotonic (DCM) in K if there exist $\varphi^{1}, \varphi^{2}: K \rightarrow \mathbb{R}$, convex and monotonic in K such that $\varphi=\varphi^{1}-\varphi^{2}$.

We claim that, under mild assumptions, the function G defined in (8) is DCM, and a decomposition as a difference of two convex and monotonic functions is then given.

Proposition 4 For each $a \in A$, let $1 /\left(1+\beta_{a} \varphi_{a}(d)\right)=f_{a}(d)-g_{a}(d)$, with f_{a}, g_{a} convex and monotonic in \mathbb{R}_{+}, and assume that the functions $\left\{f_{a}, g_{a}\right\}_{a \in A}$ are all of them non-decreasing or non-increasing simultaneously.

Define for each $a \in A$ the scalar $\Omega_{a}=\left\|\left(\omega_{a}^{e}\right)_{e \in E}\right\|_{p}$. Then, G as defined in (8) is DCM, and can be written as

$$
\begin{equation*}
G\left(\left(d_{a}\right)_{a \in A}\right)=\left(G\left(\left(d_{a}\right)_{a \in A}\right)+\sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right)\right)-\sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right), \tag{11}
\end{equation*}
$$

where $G\left(\left(d_{a}\right)_{a \in A}\right)+\sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right), \sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right)$ are both convex and monotonic in $\mathbb{R}_{+}^{|A|}$.

Proof. The idea of the proof is similar to the one given in [3]. Let $\|\cdot\|_{q}$ be the dual norm to $\|\cdot\|_{p}$ in $\mathbb{R}^{|E|}$. By definition of dual norm, we have that

$$
\begin{align*}
G\left(\left(d_{a}\right)_{a \in A}\right)= & \max _{u \in \mathbb{R}^{|E|}:\|u\|_{q} \leq 1}\left\{\sum_{e \in E} u_{e}\left(z^{e}-\sum_{a \in A} \omega_{a}^{e}\left(f_{a}\left(d_{a}\right)-g_{a}\left(d_{a}\right)\right)\right)\right\} \\
= & \max _{u \in \mathbb{R}^{|E|}:\|u\|_{q} \leq 1}\left\{\sum_{e \in E} u_{e} z^{e}+\sum_{a \in A}\left(\Omega_{a}+\sum_{e \in E} u_{e} \omega_{a}^{e}\right) g_{a}\left(d_{a}\right)+\right. \tag{12}\\
& \left.+\sum_{a \in A}\left(\Omega_{a}-\sum_{e \in E} u_{e} \omega_{a}^{e}\right) f_{a}\left(d_{a}\right)\right\}-\sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right) .
\end{align*}
$$

By Hölder's inequality, it follows for all $u \in \mathbb{R}^{|E|},\|u\|_{q} \leq 1$, that

$$
\begin{equation*}
\pm \sum_{e \in E} u_{e} \omega_{a}^{e} \leq \Omega_{a} \quad \forall a \in A \tag{13}
\end{equation*}
$$

thus

$$
\begin{equation*}
\Omega_{a} \pm \sum_{e \in E} u_{e} \omega_{a}^{e} \geq 0 \quad \forall a \in A \tag{14}
\end{equation*}
$$

This implies that, for each $u,\|u\|_{q} \leq 1$, the following functions are convex:

$$
\begin{aligned}
& \sum_{a \in A}\left(\Omega_{a}+\sum_{e \in E} u_{e} \omega_{a}^{e}\right) g_{a}\left(d_{a}\right) \\
& \sum_{a \in A}\left(\Omega_{a}-\sum_{e \in E} u_{e} \omega_{a}^{e}\right) f_{a}\left(d_{a}\right) \\
& \sum_{e \in E} u_{e} z^{e}+\sum_{a \in A}\left(\Omega_{a}+\sum_{e \in E} u_{e} \omega_{a}^{e}\right) g_{a}\left(d_{a}\right)+\sum_{a \in A}\left(\Omega_{a}-\sum_{e \in E} u_{e} \omega_{a}^{e}\right) f_{a}\left(d_{a}\right) .
\end{aligned}
$$

Since the maximum of convex functions is convex, we have shown convexity of the function $\max _{u \in \mathbb{R}|E|:\|u\|_{q} \leq 1}\left\{\sum_{e \in E} u_{e} z^{e}+\sum_{a \in A}\left(\Omega_{a}+\sum_{e \in E} u_{e} \omega_{a}^{e}\right) g_{a}\left(d_{a}\right)+\sum_{a \in A}\left(\Omega_{a}-\sum_{e \in E} u_{e} \omega_{a}^{e}\right) f_{a}\left(d_{a}\right)\right\}$, which, by (12), equals $G\left(\left(d_{a}\right)_{a \in A}\right)+\sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right)$. Moreover, since each $\Omega_{a} \geq 0$, the function $\sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right)$ is also convex. Hence, (11) gives a DC decomposition of G.

Finally, since all the functions f_{a} and g_{a} are non-decreasing or non-increasing at the same time and the coefficients $\Omega_{a}, \Omega_{a} \pm \sum_{e \in E} u_{e} \omega_{a}^{e}$ are, by (14), non-negative, it follows that the two functions involved in (11) yield also a DCM decomposition of G, as asserted.

By applying Proposition 4, we are in position to derive a bounding procedure for the objective function F of Problem (7).

2.2 Constructing lower bounds for F

The bounding procedure proposed here is an extension of that obtained in [2] for a DCM function defined over \mathbb{R}. Let $S \subset \mathbb{R}^{2}$ be a polytope where a lower bound of F is computed, and let $G^{1}-G^{2}$ be a DCM decomposition of G, for instance, following Proposition 4.

A lower bound of $F(x)$ over S is obtained as follows:

1. Construct a concave minorant $L(x)$ of $F^{1}(x)=G^{1}(D(x))$ over S.
2. Construct a convex majorant $U(x)$ of $F^{2}(x)=G^{2}(D(x))$ over S.
3. Compute a lower bound of F on S from L and U.

The three steps are now detailed.

2.2.1 Constructing a concave minorant of F^{1}

1. If G^{1} is componentwise non-decreasing, then $F^{1}(x)=G^{1}(D(x))$ is the composition of a convex and non-decreasing componentwise function with a convex function. Hence, it is also convex, [16], and it can be bounded below by an affine function. Indeed, if $x^{0} \in S \backslash A$ and ξ is a subgradient at x^{0} of the convex function $F^{1}(x)=G^{1}(D(x))$, one has the following:

$$
G^{1}(D(x)) \geq G^{1}\left(D\left(x^{0}\right)\right)+\xi^{T}\left(x-x^{0}\right) \quad \forall x \in S
$$

by definition of subgradient.
2. If G^{1} is componentwise non-increasing, then given $x^{0} \in S \backslash A$, for any ξ, subgradient at $d^{0}=D\left(x^{0}\right)$ of G^{1}, by definition of subgradient, one has

$$
G^{1}(d) \geq G^{1}\left(d^{0}\right)+\xi^{T}\left(d-d^{0}\right) \quad \forall d
$$

and then,

$$
G^{1}(D(x)) \geq G^{1}\left(\left(D\left(x^{0}\right)\right)+\xi^{T}\left(D(x)-D\left(x^{0}\right)\right)\right.
$$

Since G^{1} is assumed to be componentwise non-increasing, one has that $\xi_{a} \leq 0 \forall a \in A$, and hence the minorant found is concave.

2.2.2 Constructing a convex majorant of F^{2}

1. If G^{2} is componentwise non-decreasing, then $F^{2}(x)=G^{2}(D(x))$ is convex, since it is the composition of a convex and non-decreasing componentwise function with a convex function, [16]. Hence, we can take $U(x)=F^{2}(x)$.
2. If G^{2} is componentwise non-increasing, then given $x^{0} \in S \backslash A$, for each $a \in A$ let ξ_{a} be a subgradient of $\|a-\cdot\|$ at x^{0}. Then, by definition of subgradient, one has

$$
\|a-x\| \geq\left\|a-x^{0}\right\|+\xi_{a}^{T}\left(x-x^{0}\right) \quad \forall a \in A
$$

and, since G^{2} is componentwise non-increasing,

$$
G^{2}(D(x)) \leq G^{2}\left(\left(\left\|a-x^{0}\right\|+\xi_{a}^{T}\left(x-x^{0}\right)\right)_{a \in A}\right)
$$

we obtain a convex majorant, since it is the composition of a convex function and a componentwise affine function.

2.2.3 Computing a lower bound of F

Once a concave minorant L of F^{1} and a convex majorant U of F^{2} have been obtained, one has that $L(x)-U(x)$ is a concave function bounding F. Hence, denoting by $V=\left\{v_{i}: i \in I\right\}$ the set of extreme points of S, one has

$$
F(x)=G(D(x))=F^{1}(x)-F^{2}(x) \geq L(x)-U(x) \geq \min _{i \in I}\left(L\left(v_{i}\right)-U\left(v_{i}\right)\right) \quad \forall x \in S .
$$

In summary, the previous procedure yields the following lower bound \underline{F} on S for F :

$$
F(x) \geq \underline{F}:=\min _{i \in I}\left(L\left(v_{i}\right)-U\left(v_{i}\right)\right) \quad \forall x \in S .
$$

2.2.4 Bounding procedure: An example

In order to illustrate the bounding procedure proposed in this paper, we address here the problem of locating a competitive facility in the square $S=[0,10] \times[0,10]$, with a set A of four users located at positions $(2,1),(9,4),(6,5)$ and $(3,9)$, and two existing facilities, at $(7,2)$ and $(3,5)$. Three scenarios for the demand have been considered, with weights given in the following table:

User

Scenario	a_{1}	a_{2}	a_{3}	a_{4}
e_{1}	4	1	1	2
e_{2}	1	1	1	1
e_{3}	1	6	3	2

All functions $\varphi_{a j}$ in (5) are assumed to be $\varphi_{a j}(d)=d^{2}$, and the norm there considered is the Euclidean. As regards the ℓ_{p} norm in (7), we have taken $p=\infty$, as in [8]. The constants β_{a} in (5) have been computed according to (4), giving the following values:

$$
\beta_{1}=0.097285 \quad \beta_{2}=0.152027 \quad \beta_{3}=0.211111 \quad \beta_{4}=0.077885
$$

First, the values z^{e} in (6) have been computed. To do this, for each scenario e, a branch-and-bound algorithm has been used. Bounds were calculated using the fact that each term in (4) is a DCM function of $\|a-$.$\| (see \underline{[2]}$ for details). This yields:

$$
z^{1}=4.570515 \quad z^{2}=1.982744 \quad z^{3}=7.546552
$$

As previously stated in the paper, the objective function $F(x)$ of Problem (7) can be written as $F(x)=G(D(x))$, where $D(x)=(\|a-x\|)_{a \in A}$ and G is a DCM function. Moreover, a DCM decomposition $G^{1}-G^{2}$ of G is obtained by using Proposition 4, provided that a DCM decomposition of the function $1 /\left(1+\beta_{a} \varphi_{a}(d)\right)$ is known. The constant values Ω_{a} in (11) turned out to be:

$$
\Omega_{1}=\|(4,1,1)\|_{\infty}=4 \quad \Omega_{2}=\|(1,1,6)\|_{\infty}=6 \quad \Omega_{3}=\|(1,1,3)\|_{\infty}=3 \quad \Omega_{4}=\|(2,1,2)\|_{\infty}=2
$$

We have computed two bounds, DCM1 and DCM2, for the objective function F in (7) over the initial square S. Both are based on the DCM approach described in the paper, and differ from each other in the DCM decomposition used: DCM1 has been obtained from (9), whereas (10) has been used in DCM2.

Firstly we analyze DCM1. Take the DCM decomposition of $1 /\left(1+\beta_{a} \varphi_{a}(d)\right)$ given by (9) and consider the initial square S, whose extreme points are $v_{1}=(0,0)^{\top}, v_{2}=(10,0)^{\top}, v_{3}=(10,10)^{\top}$ and $v_{4}=(0,10)^{\top}$. Since the components of the DCM decomposition (9) are non-decreasing, we have that G^{1} is non-decreasing too. Hence, a concave minorant of $F^{1}(x)=G^{1}(D(x))$ is given by:

$$
L(x)=G^{1}\left(D\left(x^{0}\right)\right)+\xi^{\top}\left(x-x^{0}\right)
$$

where $x^{0} \in S \backslash A$ and ξ is a subgradient of F^{1} at x^{0}. If we choose $x^{0}=(5,5)^{\top}$, then we have $D\left(x^{0}\right)=(5, \sqrt{17}, 1,2 \sqrt{5})^{\top}$ and $G^{1}\left(D\left(x^{0}\right)\right)=96.388609$. On the other hand, using the algebra
of subgradients it turns out that $\xi=(-11.360750,7.184373)^{\top}$ is a subgradient of F^{1} at x^{0}. We evaluate L at each extreme point of S, with the following results:

$$
\begin{aligned}
& L\left(v_{1}\right)=96.388609+(-11.360750,7.184373)(-5,-5)^{\top}=117.270495 \\
& L\left(v_{2}\right)=96.388609+(-11.360750,7.184373)(5,-5)^{\top}=3.662993 \\
& L\left(v_{3}\right)=96.388609+(-11.360750,7.184373)(5,5)^{\top} \\
& L\left(v_{4}\right)=96.388609+(-11.360750,7.184373)(-5,5)^{\top}
\end{aligned}=189.506723014224
$$

Regarding $F^{2}(x)=G^{2}(D(x))$, we have that G^{2} is non-decreasing, so that an upper convex majorant is given directly by:

$$
U(x)=F^{2}(x)
$$

Evaluating U at each extreme point of S, we obtain:

$$
\begin{aligned}
& U\left(v_{1}\right)=G^{2}\left((\sqrt{5}, \sqrt{97}, \sqrt{61}, 3 \sqrt{10})^{\top}\right)=319.693917 \\
& U\left(v_{2}\right)=G^{2}\left((\sqrt{65}, \sqrt{17}, \sqrt{41}, \sqrt{130})^{\top}\right)=206.745637 \\
& U\left(v_{3}\right)=G^{2}\left((\sqrt{145}, \sqrt{37}, \sqrt{41}, 5 \sqrt{2})^{\top}\right)=279.750731 \\
& U\left(v_{4}\right)=G^{2}\left((\sqrt{85}, 3 \sqrt{13}, \sqrt{61}, \sqrt{10})^{\top}\right)=392.073243
\end{aligned}
$$

Finally, a lower bound \underline{F} for F on S is computed by evaluating its lower concave minorant $L-U$ at the extreme points of S,

$$
\begin{aligned}
& L\left(v_{1}\right)-U\left(v_{1}\right)=-202.423422 \\
& L\left(v_{2}\right)-U\left(v_{2}\right)=-203.082643 \\
& L\left(v_{3}\right)-U\left(v_{3}\right)=-204.244009 \\
& L\left(v_{4}\right)-U\left(v_{4}\right)=-202.959019
\end{aligned}
$$

and taking the minimum, yielding $\underline{F}=-204.244009$.
Let us assume now that the DCM decomposition of $1 /\left(1+\beta_{a} \varphi_{a}(d)\right)$ is given by (10) and consider again the initial square S. This time G^{1} is a non-increasing function, since the components of the DCM decomposition (10) have the same property. Hence, a concave minorant of $F^{1}(x)=G^{1}(D(x))$ is given by:

$$
L(x)=G^{1}\left(D\left(x^{0}\right)\right)+\xi^{\top}\left(D(x)-D\left(x^{0}\right)\right)
$$

where $x^{0} \in S \backslash A$ and ξ is a subgradient of G^{1} at $d^{0}=D\left(x^{0}\right)$. Choosing $x^{0}=(5,5)^{\top}$, we have $d^{0}=$ $(5, \sqrt{17}, 1,2 \sqrt{5})^{\top}$ and $G^{1}\left(D\left(x^{0}\right)\right)=8.425917$. On the other hand, a subgradient of G^{1} at d^{0} can be calculated by using the algebra of subgradients, yielding $\xi=(-0.247765,0,-0.063473,0)^{\top}$. Evaluating L at each extreme point of S, one obtains the following:

$$
\begin{aligned}
& D\left(v_{1}\right)=(\sqrt{5}, \sqrt{97}, \sqrt{61}, 3 \sqrt{10})^{\top} \Rightarrow L\left(v_{1}\right)=8.678456333 \\
& D\left(v_{2}\right)=(\sqrt{65}, \sqrt{17}, \sqrt{41}, \sqrt{130})^{\top} \Rightarrow L\left(v_{2}\right)=7.324242191 \\
& D\left(v_{3}\right)=(\sqrt{145}, \sqrt{37}, \sqrt{41}, 5 \sqrt{2})^{\top} \Rightarrow L\left(v_{3}\right)=6.338299846 \\
& D\left(v_{4}\right)=(\sqrt{85}, 3 \sqrt{13}, \sqrt{61}, \sqrt{10})^{\top} \Rightarrow L\left(v_{4}\right)=6.948191851
\end{aligned}
$$

As for $F^{2}(x)=G^{2}(D(x))$, it turns out that G^{2} is non-increasing and, as a consequence, an upper convex majorant of F^{2} is given by:

$$
U(x)=G^{2}\left(\left(\left\|a-x^{0}\right\|+\xi_{a}^{T}\left(x-x^{0}\right)\right)_{a \in A}\right)
$$

where ξ_{a} is a subgradient of $\|a-\cdot\|$ at x^{0}. Such subgradients can be easily computed, yielding:

$$
\xi_{1}=(3 / 5,4 / 5)^{\top} \quad \xi_{2}=(-4 / \sqrt{17}, 1 / \sqrt{17})^{\top} \quad \xi_{3}=(-1,0)^{\top} \quad \xi_{4}=(1 / \sqrt{5},-2 / \sqrt{5})^{\top}
$$

Evaluating U at each extreme point of S, we obtain:

$$
\begin{aligned}
& U\left(v_{1}\right)=G^{2}\left((-2,32 / \sqrt{17}, 6,3 \sqrt{5})^{\top}\right) \\
& =10.74544876 \\
& U\left(v_{2}\right)=G^{2}\left((4,-8 / \sqrt{17},-4,5 \sqrt{5})^{\top}\right)=6.276804878 \\
& U\left(v_{3}\right)=G^{2}\left((12,2 / \sqrt{17},-4, \sqrt{5})^{\top}\right)=21.16614784 \\
& U\left(v_{4}\right)=G^{2}\left((6,42 / \sqrt{17}, 6,-\sqrt{5})^{\top}\right)=6.276804878
\end{aligned}
$$

Finally, a lower bound \underline{F} for F on S is obtained by computing the minimum of its lower concave minorant $L-U$ on the set of extreme points of S. Since

$$
\begin{aligned}
L\left(v_{1}\right)-U\left(v_{1}\right) & =-2.066992427 \\
L\left(v_{2}\right)-U\left(v_{2}\right) & =-23.23436763 \\
L\left(v_{3}\right)-U\left(v_{3}\right) & =-14.82784798 \\
L\left(v_{4}\right)-U\left(v_{4}\right) & =0.671386973
\end{aligned}
$$

it follows that the lower bound is $\underline{F}=-23.23436763$.
For the sake of completeness, we have also computed a lower bound for F on S making use of the method proposed by T. Drezner in [8]. Once the values z^{e} are computed, we find an upper bound U^{e} for each term $\sum_{a \in A} \omega_{a}^{e} \frac{1}{1+\beta_{a} \varphi_{a}(\|a-x\|)}$ on S, using the bounding procedure described in [10], as mentioned in Section 1. This yields:

$$
U^{1}=999.0303230 \quad U^{2}=569.683472 \quad U^{3}=2640.205088
$$

Afterwards, the ℓ_{∞}-norm of the vector $\left(z^{e}-U^{e}\right)_{e \in E}$ provides a lower bound for F on S :

$$
\left\|\left(z^{e}-U^{e}\right)_{e \in E}\right\|_{\infty}=\|(-994.459808,-567.700728,-2632.658536)\|_{\infty}=-567.700728
$$

The incidence of the bounding procedure is evident in this case: The three upper bounds obtained in this particular instance via DCM1, DCM2 and the procedure of [8] are rather different in value, namely $-204.244009,-23.23436763,-567.700728$. As we will show in the following section, the bounding approach based on DCM2 (the one yielding the sharpest bound in this particular instance) turns out to be the most suitable in terms of overall running times and memory requirements.

3 Computational experience

In order to solve Problem (7), the branch and bound method BSSS, $\underline{[14}$, has been implemented using two alternative bounding techniques, namely, the DCM bounding scheme proposed by Blanquero and Carrizosa (2008) in [2], as well as the resolution procedure suggested by Drezner in [8]. It is worth recalling that this bounding strategy for DCM functions was recently compared favorably with other proposals such as [11] for constructing bounds.
Since a DCM decomposition is not unique, different DCM decompositions may yield different bounds, and thus different running times. In the numerical results in Section 3.2, two different DCM decompositions have been used and compared. The results obtained by using the best of them are then compared with those provided by the method proposed in [8].

Type	Number of scenarios	Number of facilities
1	2	2
2	5	5
3	10	10

Table 1: Problem Types

3.1 Description of the experiments

The problems addressed in the numerical experiments are described in Table 1. Three types of problems were considered, with different number of scenarios and existing facilities. All functions $\varphi_{a j}$ are assumed to be $\varphi_{a j}(d)=d^{2}$, and the ℓ_{p} norm is chosen with $p=\infty$, as in [8]. Proposition 4 is first used to express G as

$$
G\left(\left(d_{a}\right)_{a \in A}\right)=G^{1}\left(\left(d_{a}\right)_{a \in A}\right)-G^{2}\left(\left(d_{a}\right)_{a \in A}\right)
$$

where:

$$
\begin{aligned}
G^{1}\left(\left(d_{a}\right)_{a \in A}\right) & =G\left(\left(d_{a}\right)_{a \in A}\right)+\sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right) \\
G^{2}\left(\left(d_{a}\right)_{a \in A}\right) & =\sum_{a \in A} \Omega_{a}\left(f_{a}\left(d_{a}\right)+g_{a}\left(d_{a}\right)\right) \\
\Omega_{a} & =\left\|\left(\omega_{a}^{e}\right)_{e \in E}\right\|_{\infty}
\end{aligned}
$$

The two DCM decompositions, DCM1, DCM2, differ the way functions f_{a}, g_{a} are chosen. Following (9) , for DCM1,

$$
\begin{aligned}
f_{a}\left(d_{a}\right) & =\frac{1}{1+\beta_{a} d_{a}^{2}}+\left(1+\beta_{a} d_{a}^{2}\right) \\
g_{a}\left(d_{a}\right) & =1+\beta_{a} d_{a}^{2}
\end{aligned}
$$

The second DCM decomposition, DCM2, is given by setting f_{a}, g_{a} as in (10):

$$
f_{a}(d)=\left\{\begin{array}{ll}
\Phi_{a}\left(d_{0}\right)+\Phi_{a}^{\prime}\left(d_{0}\right)\left(d-d_{0}\right) & \text { if } d \leq d_{0} \\
\Phi_{a}(d) & \text { if } d>d_{0}
\end{array} \quad g_{a}(d)=f_{a}(d)-\Phi_{a}(d)\right.
$$

where:

$$
\Phi_{a}(d)=\frac{1}{1+\beta_{a} d^{2}} \quad y \quad d_{0}=\left(\frac{1}{3 \beta_{a}}\right)^{\frac{1}{2}}
$$

3.2 Numerical results

The three types of problems described in Table 1 were considered. For each problem type, problems of different number N of demand points, ranging from very small $(N=10)$ to large ($N=10.000$) were constructed, by generating N random points in the feasible region S, always the unit square $[0, \underline{1} \times[0,1]$.

For each problem type $T=1,2,3$ and number N of users, 10 instances were generated and solved, using the BSSS method with the abovementioned DCM decompositions DCM1, DCM2 and the bounding strategy suggested in [8], hereafter referred as DRZ. The program code was written in Fortran, compiled by Intel Fortran 10.1, and run on a 2.4 Ghz computer under Windows XP. The solutions were found to a relative accuracy of 10^{-5}.
Table 2 reports, for DCM1, DCM2 and DRZ, some statistics (minimum, maximum and average) for three indicators of the algorithm performance on Problem Type 1: number of iterations, maximum number of squares in the branch and bound list and running time (see also Figure 1 for a plot of running times for the different values of N). The first two indicators come from the resolution of Problem (7), whereas the running time also includes the resolution of Problem (6). DCM2 clearly outperforms DCM1. This also happens with the remaining types of problems, so that in the sequel we only present the results for problems of type 2-3 for DCM2 and DRZ, as reported in Tables 3-4. Comparing both strategies, we note that DCM2 drastically reduces the computational burden needed to solve the problems. Finally, Figures 2-3 show, for DCM2, how running times and number of iterations are affected by the number N of demand points when the number of scenarios and existing facilities vary. The number of iterations is not affected by N whereas the running times increase linearly in all problems types addressed.

Figure 1: Comparing average running times of DCM1, DCM2 and DRZ for Problem Type 1

3.3 Concluding remarks

A competitive location problem recently addressed in [8], namely, a minimax regret Huff location problem in the plane, is shown to have an objective function which can be written as a difference of two convex monotonic functions.

DCM1									
N	Iterations			Max squares			Time (s)		
	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
10	139	673	408	36	183	106	0.00	0.02	0.01
20	351	1429	670	77	432	185	0.00	0.05	0.02
50	568	4057	1807	168	1418	589	0.05	0.27	0.12
100	555	2831	1675	117	1037	546	0.06	0.39	0.23
200	1129	3429	2096	385	1146	636	0.30	0.95	0.58
500	1357	8660	2713	351	2670	766	0.84	5.59	1.74
1000	1620	7486	2899	426	1631	756	2.11	8.53	3.60
2000	1472	4482	2677	346	1259	713	3.36	10.91	6.57
5000	2226	6773	4060	490	1716	1015	11.97	41.56	23.77
10000	2910	7139	4352	643	1676	1024	31.53	78.00	48.20
DCM2									
10	80	357	149	16	73	31	0.00	0.02	0.00
20	137	307	221	25	53	41	0.00	0.02	0.01
50	122	401	217	23	100	48	0.02	0.03	0.02
100	122	461	259	24	113	56	0.03	0.06	0.05
200	117	668	315	23	109	59	0.05	0.19	0.11
500	255	856	364	45	219	81	0.22	0.61	0.30
1000	143	544	299	26	146	57	0.34	0.84	0.52
2000	246	661	440	38	152	94	0.89	1.98	1.40
5000	228	478	360	27	110	72	2.11	3.63	3.00
10000	214	581	342	31	128	64	3.92	8.67	5.77
DRZ									
10	369	82677	15065	71	50563	8260	0.01	0.64	0.24
20	1366	229046	25726	338	136799	14646	0.07	3.00	0.57
50	2694	1418445	147465	924	864362	88640	0.25	41.26	4.79
100	2304	56830	22513	476	23423	8919	0.68	7.25	3.99
200	3153	110483	46851	916	45088	18490	0.79	23.43	11.07
500	6887	138294	73889	2448	55739	29250	3.65	55.45	30.49
1000	36185	710544	203260	14195	325963	85808	28.95	398.53	134.72
2000	9857	387122	171598	3541	157596	69810	16.67	522.21	221.44
5000	12761	1362762	549849	3926	567341	225325	38.35	3965.93	1577.28
10000	700949	3042246	1753495	279254	1246240	342237	3979.95	16688.20	9718.02

Table 2: Computational results for Problem Type 1

DCM2

N	Iterations			Max squares			Time (s)		
	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
10	76	484	215	19	112	47	0.00	0.02	0.01
20	128	465	260	27	117	53	0.02	0.02	0.02
50	172	453	316	31	82	60	0.03	0.06	0.05
100	302	771	498	42	186	95	0.08	0.16	0.12
200	102	663	346	25	181	60	0.13	0.30	0.20
500	101	1066	384	27	244	88	0.31	1.00	0.53
1000	122	470	237	30	87	46	0.63	1.17	0.84
2000	127	1025	437	34	221	89	1.44	4.19	2.49
5000	144	887	415	44	218	92	3.97	8.47	5.70
10000	146	1129	503	35	274	110	6.77	21.47	13.74
DRZ									
10	282	78374	18201	77	46309	10637	0.17	1.21	0.50
20	2056	94877	28094	690	55370	15838	0.39	3.75	1.37
50	2309	484289	93686	586	284326	55172	1.14	34.96	8.36
100	3027	12256	7731	883	4312	2687	2.42	10.51	5.55
200	837	2283002	235552	148	1365311	139150	5.73	636.01	74.32
500	974	30781	9359	181	10956	3122	10.60	54.06	33.39
1000	2573	47123	16986	428	17798	5522	60.79	147.68	91.73
2000	1205	155069	69125	273	61728	26696	17.10	882.75	381.33
5000	5197	594461	164540	848	241285	64433	235.93	4643.84	1581.68
10000	8130	1430585	292907	1858	601821	115503	252.67	20326.59	4623.17

Table 3: Computational results for Problem Type 2

DCM2									
N	Iterations			Max squares			Time (s)		
	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
10	63	574	311	17	254	81	0.02	0.03	0.02
20	125	419	234	29	70	44	0.02	0.03	0.03
50	119	614	270	28	106	51	0.05	0.09	0.07
100	151	346	249	34	73	51	0.13	0.16	0.14
200	108	666	366	24	204	88	0.20	0.47	0.33
500	150	1233	571	33	301	125	0.63	1.69	1.13
1000	177	998	552	61	221	122	1.70	2.83	2.24
2000	170	1145	470	51	377	124	3.38	6.36	4.51
5000	211	1228	562	57	301	124	8.92	20.42	13.15
10000	186	1198	513	55	263	121	14.22	36.11	23.02
DRZ									
10	258	17749	3860	76	10489	1975	0.17	0.90	0.48
20	701	42783	12007	136	23350	6449	0.84	3.12	1.43
50	660	43985	11894	157	24127	5260	1.15	10.98	4.51
100	1099	226590	47230	189	122814	26060	3.92	71.87	19.27
200	649	1487426	306025	143	912071	185354	11.23	837.90	182.25
500	1212	77159	18260	205	41040	7991	16.04	211.93	78.19
1000	820	1230194	146594	258	739272	83364	19.15	3396.71	511.92
2000	831	243705	45081	230	103900	18113	51.25	1529.32	422.41
5000	2555	208155	40999	363	83246	14903	319.95	4997.31	1371.84
10000	1235	345119	85420	301	138347	32797	147.28	12093.65	3674.73

Table 4: Computational results for Problem Type 3

Figure 2: Comparing running times in the three Problem Types

Figure 3: Comparing the number of iterations in the three Problem Types

The DCM bounding scheme proposed by the authors in [2] is analyzed for this problem and compared with the one suggested in [8].

Two different DCM decompositions are used and tested in a series of numerical experiments with to up to 10000 demand points. As the computational results clearly show, the bounds provided by both DCM decompositions outperform those obtained by using the procedure suggested in [8]. Moreover, we observe that using the decomposition DCM2 proposed in this paper reduces considerably the running times and allows one to solve in very reasonable time problems with a large number of points.
For simplicity, in the model proposed in this paper, only the weights are affected by uncertainty, and thus modeled by means of a set E of scenarios. However, the analysis can be directly extended to the case in which we also have uncertainty on the locations of the competing firms. Indeed, for each scenario, let $I(e)$ denote a finite indexset, representing the set of competing facilities, so that each facility $i \in I(e)$ will be located at x_{i}^{e}, and will attract a market inversely proportional to $\varphi_{a i}^{e}\left(\left\|a-x_{i}^{e}\right\|\right)$. In this case, Problem (7) would become

$$
\begin{equation*}
\min _{x \in S}\left\|\left(z^{e}-\sum_{a \in A} \omega_{a}^{e} \frac{1}{1+\beta_{a}^{e} \varphi_{a}(\|a-x\|)}\right)_{e \in E}\right\|_{p} \tag{15}
\end{equation*}
$$

where, for each $e \in E, \beta_{a}^{e}$ is given by

$$
\begin{equation*}
\beta_{a}^{e}=\sum_{j \in I(e)} \frac{1}{\varphi_{a j}^{e}\left(\left\|a-x_{j}^{e}\right\|\right)} \tag{16}
\end{equation*}
$$

Moreover, distances to the ideal point are measured by $\|\cdot\|_{p}$, an ℓ_{p} norm. Extensions to arbitrary absolute symmetric norms, as discussed in [6], are straightforward, since Proposition 4 can be easily extended to this more general case.

References

[1] Blanquero R. and Carrizosa E. (2002), "A D.C. Biobjective Location Model". Journal of Global Optimization 23, 139-154.
[2] Blanquero R. and Carrizosa E. (2009), "Continuous location problems and Big Triangle Small Triangle: Constructing better bounds". Journal of Global Optimization 45, 389 -402.
[3] Blanquero R. and Carrizosa E. (2000), "Optimization of the norm of a vector-valued DC function and applications". Journal of Optimization Theory and Applications 107, 245 - 260 .
[4] Chen P.C., Hansen P., Jaumard B. and Tuy H. (1992), "Weber's Problem with Attraction and Repulsion". Journal of Regional Science 32, 467-486.
[5] Chen P.C., Hansen P., Jaumard B. and Tuy H. (1998), "Solution of the Multisource Weber and Conditional Weber problems by D.-C. Programming". Operations Research 46, 548-562.
[6] Carrizosa E., Conde E., Pascual A. and Romero-Morales D. (1998), "Closest Solutions in Ideal-Point Methods". In Advances in Multiple Objective and Goal Programming, 274-282. Springer-Verlag, Berlin.
[7] Drezner T. (1994), "Optimal continuous location of a retail facility, facility attractiveness and market share: an interactive model". Journal of Retailing 70, 49-64.
[8] Drezner T. (2009), "Location of retail facilities under conditions of uncertainty". Annals of Operations Research 167, 107-120.
[9] Drezner T. and Drezner Z. (2002), "Retail facility location under changing conditions". IMA Journal of Management Mathematics 13, 283-302.
[10] Drezner T. and Drezner Z. (2004), "Finding the optimal solution to the Huff competitive location model". Computational Management Science 1, 193-208.
[11] Drezner Z. (2007), "A general global optimization approach for solving location problems in the plane". Journal of Global Optimization 37, 305-319.
[12] Drezner Z. and Suzuki A. (2004), "The big triangle small triangle method for the solution of non-convex facility location problems". Operations Research 52, 128-135.
[13] Fernández J., Pelegrin B., Plastria F. and Tóth B. (2007), "Solving a huff-like competitive location and design model for profit maximization in the plane". European Journal of Operational Research 170, 1274-1287.
[14] Hansen P., Peeters D., Richard D. and Thisse J-F. (1985), "The minisum and minimax location problems revisited". Operations Research 33, 1251-1265.
[15] Hansen P., Jaumard, B. and Tuy, H. (1995), "Global Optimization in Location", in Drezner, Z. (ed.), Facility Location. A Survey of Applications and Methods, Springer Verlag, New York.
[16] Hiriart-Urruty J.B. and Lemaréchal C. (1993), Convex Analysis and Minimization Algorithms I, Springer-Verlag, Berlin.
[17] Huff D.L. (1964), "Defining and estimating a trading area". Journal of Marketing 8, 28-34.
[18] Huff D.L. (1966), "A programmed solution for approximating an optimum retail location". Land Economics 303, 42-293.
[19] Tuy H., Al-Khayyal F. and Zhou F. (1995), "A D.C. Optimization Method for Single Facility Location Problems". Journal of Global Optimization 7, 209-227.
[20] Stever R.E. (1986), Multiple criteria optimization: theory, computation and application, Wiley.
[21] Yu P.L. (1973), "A class of solutions for group decision problems". Management Science 19, 936-946.

[^0]: *Research supported by grants MTM2008-09362, MTM2009-14039 of MEC, Spain and FQM-329 of Junta de Andalucía

