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Abstract

We address the following single-facility location problem: a firm is entering into a market
by locating one facility in a region of the plane. The demand captured from each user by
the facility will be proportional to the users buying power and inversely proportional to
a function of the user-facility distance. Uncertainty exists on the buying power (weight)
of the users. This is modeled by assuming that a set of scenarios exists, each scenario
corresponding to a weight realization. The objective is to locate the facility following the
Savage criterion, i.e., the minimax-regret location is sought. The problem is formulated as
a global optimization problem with objective written as difference of two convex monotonic
functions. The numerical results obtained show that a branch and bound using this new
method for obtaining bounds clearly outperforms benchmark procedures.

Keywords: continuous location, Huff model, DC functions, DCM functions, global optimiza-
tion, minimax regret.

1 The model

The Huff location model [2, 10, 13, 17, 18] in the plane can be described as follows: Let A ⊂ R2 be
a set of users, asking for a certain service. Each user a ∈ A has demand ωa. Such demand is being
patronized by the different existing facilities, located at points x1, . . . , xr, so that the demand
captured by facility at xi from user a is inversely proportional to a positive non-decreasing
function of the distance ‖a − xi‖ from the user at a to the facility at xi. In other words, the
demand captured by the facility at xi from the user at a is given by

ωa
1/ϕai(‖a− xi‖)∑r
j=1 1/ϕaj(‖a− xj‖)

. (1)

The norm ‖ · ‖ is typically the Euclidean norm, and the usual choice for each ϕaj has the form
ϕaj(d) = dα. When α = 2, we have the so-called gravitational model.
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A new firm is entering the market, by locating one facility at some x ∈ S. This perturbs
market share, since the new facility at x will capture a demand from a ∈ A equal to

ωa
1/ϕa(‖a− x‖)

1/ϕa(‖a− x‖) +
∑r

j=1 1/ϕaj(‖a− xj‖)
. (2)

Here ϕa is assumed to be non-negative, non-decreasing and continuous in R+. The goal
of the entering firm is the maximization of its market share. This is written as the following
optimization problem:

max
x∈S

∑
a∈A

ωa
1/ϕa(‖a− x‖)

1/ϕa(‖a− x‖) +
∑r

j=1 1/ϕaj(‖a− xj‖)
. (3)

Defining for each a ∈ A the positive constant βa,

βa =
r∑
j=1

1

ϕaj(‖a− xj‖)
, (4)

it follows that Problem (3) can be rewritten as

max
x∈S

∑
a∈A

ωa
1

1 + βaϕa(‖a− x‖)
. (5)

Problem (5) is a multimodal problem, solved heuristically in [7], and via Global-Optimization
methods, among others, in [2, 10].

An important limitation in practice of (5) is the assumption that weights are known. Since
weights are affected, among other things, by the demographic growth of each a ∈ A, a more
realistic model would accommodate some type of uncertainty in these parameters. In a recent
paper by Tammy Drezner, [8], uncertainty is modeled by assuming the existence of a (finite) set
E of different scenarios, where, for each scenario e ∈ E, a vector (ωea)a∈A of weights is given.
Under scenario e ∈ E, the ideal market share for the entering firm is ze,

ze = max
x∈S

∑
a∈A

ωea
1

1 + βaϕa(‖a− x‖)
. (6)

The aim in [8], also pursued here, is to find the location for the facility achieving a market share
closest to the ideal, i.e, by solving

min
x∈S

F (x) :=

∥∥∥∥∥∥
(
ze −

∑
a∈A

ωea
1

1 + βaϕa(‖a− x‖)

)
e∈E

∥∥∥∥∥∥
p

, (7)

where ‖ · ‖p is the `p norm, and 1 ≤ p ≤ ∞. See [6, 20, 21] for further details on minimax
regret, and also [9] for alternative approaches to modeling uncertainty in continuous location
with competition.

In [8] the following procedure is suggested to obtain a global optimum of (7): a branch-and-
bound method proposed in [12] is used. Lower bounds for F are obtained in two steps:
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1. Upper bounds U e for each term
∑

a∈A ω
e
a

1
1+βaϕa(‖a−x‖) are constructed following [10].

2. A lower bound for F is given by ‖ (ze − U e)e∈E ‖p.

The purpose of this paper is to show how a new bounding strategy, proposed by the authors
in [2], can notably reduce the computing times and storage requirements, enabling one to solve
in reasonable times more complex problems, with many more data points or scenarios. In our
procedure, applicable also to more general settings than those described in [8], the objective
function F is expressed as F (x) = G(D(x)), with D(x) = (‖a − x‖)a∈A and G : R|A| → R
defined as

G((da)a∈A) =

∥∥∥∥∥∥
(
ze −

∑
a∈A

ωea
1

1 + βaϕa(da)

)
e∈E

∥∥∥∥∥∥
p

, (8)

and then the properties of the function G are successfully exploited. As shown in Section 2, G
is DCM, i.e., it can be written as a difference of two convex and monotonic functions [2]. As a
consequence, the bounding strategy for DCM functions described in [2] can be used to solve (7).

Section 3 presents numerical results, showing that our strategy outperforms the method
suggested in [8].

2 Properties

We discuss some general properties of the objective function in (7), which will be used in Section
2.2 to construct bounds for F .

2.1 G is DCM

We recall the reader that, given a convex set Ω ⊂ Rn, a function is said to be DC on Ω if it
can be written as a difference of two convex functions on Ω. DC functions constitute a wide
class of functions (note that convex and concave functions are dc), that can be found in many
applications fields, Locational Analysis being one of them, [1, 2, 4, 5, 11, 15, 19]. In [2] a proper
subset of dc functions has been introduced, namely the set of functions that can be expressed
as the difference of two convex and monotonic (DCM) functions. When the objective function
can be written as the composition of a DCM function with a convex function, sharp bounds can
be obtained, enabling one to design more efficient branch and bound procedures.

In what follows we assume that each ϕa in (7) is such that the function 1/(1 + βaϕa(d)) is
DCM in R+ and there exists a DCM decomposition where both functions are non-decreasing or
non-increasing simultaneously. A sufficient condition for this to happen is given in the following
result.

Proposition 1 Let ϕ : R+ −→ R+ be a convex and non-decreasing function and let β ≥ 0.
Then Φ(d) = 1/(1 + βϕ(d)) is DCM in R+ and a DCM decomposition with non-decreasing
components is given by:

Φ(d) = (Φ(d) + (1 + βϕ(d)))− (1 + βϕ(d)). (9)
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Proof. The function h(t) = 1/t + t is convex and non-decreasing in [1,+∞], since h′(t) =
−1/t2 + 1 ≥ 0 ∀ t ≥ 1 and h′′(t) = 2/t3 ≥ 0 ∀ t ≥ 1. Taking into account that 1 + βϕ(d) is
convex and non-decreasing, it follows that the function h(1 + βϕ(d)) has the same properties
and the result holds. 2

An alternative DCM decomposition can be easily obtained when ϕ(d) = dα with α ≥ 1.
In such a case, the function Φ in Proposition 1 is concave in the interval [0, d0) and convex in
[d0,+∞), where

d0 =

(
α− 1

(α+ 1)β

) 1
α

.

Hence, Φ1 − Φ2 is a DC decomposition of Φ where

Φ1(d) =

{
Φ(d0) + Φ′(d0)(d− d0) if d ≤ d0
Φ(d) if d > d0

Φ2(d) =

{
Φ(d0) + Φ′(d0)(d− d0)− Φ(d) if d ≤ d0
0 if d > d0

(10)

Moreover, Φ1−Φ2 is a DCM decomposition of Φ. Indeed, Φ1 is clearly non-increasing, as Φ has
the same property. On the other hand, Φ2 is also a non-increasing function since its derivative,
Φ′(d0)− Φ′(d), is non-positive in [0, d0) due to the concavity of Φ in such interval.

The concept of DCM function was originally introduced in [2] for a function ϕ : K → R with
K ⊂ R. Now we extend that definition to a real function defined over a subset of Rn.

Definition 2 Given K ⊂ Rn, a function ϕ : K → R is said to be monotonic in K if ϕ is a
non-decreasing componentwise function or a non-increasing componentwise function in K, i.e.
either one has for all x, y ∈ K with xi ≤ yi , 1 ≤ i ≤ n, that ϕ(x) ≤ ϕ(y) or one has that
ϕ(x) ≥ ϕ(y).

Definition 3 Given K ⊂ Rn, a function ϕ : K → R is said to be difference of convex monotonic
(DCM) in K if there exist ϕ1, ϕ2 : K → R, convex and monotonic in K such that ϕ = ϕ1 − ϕ2.

We claim that, under mild assumptions, the function G defined in (8) is DCM, and a de-
composition as a difference of two convex and monotonic functions is then given.

Proposition 4 For each a ∈ A, let 1/(1 + βaϕa(d)) = fa(d) − ga(d), with fa, ga convex and
monotonic in R+, and assume that the functions {fa, ga}a∈A are all of them non-decreasing or
non-increasing simultaneously.

Define for each a ∈ A the scalar Ωa = ‖(ωea)e∈E‖p. Then, G as defined in (8) is DCM, and
can be written as

G((da)a∈A) =

(
G((da)a∈A) +

∑
a∈A

Ωa (fa(da) + ga(da))

)
−
∑
a∈A

Ωa (fa(da) + ga(da)) , (11)

where G((da)a∈A) +
∑

a∈A Ωa (fa(da) + ga(da)) ,
∑

a∈A Ωa (fa(da) + ga(da)) are both convex and

monotonic in R|A|+ .

4
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Proof. The idea of the proof is similar to the one given in [3]. Let ‖ · ‖q be the dual norm to
‖ · ‖p in R|E|. By definition of dual norm, we have that

G((da)a∈A) = maxu∈R|E|: ‖u‖q≤1
{∑

e∈E ue
(
ze −

∑
a∈A ω

e
a (fa(da)− ga(da))

)}
= maxu∈R|E|: ‖u‖q≤1

{∑
e∈E uez

e +
∑

a∈A
(
Ωa +

∑
e∈E ueω

e
a

)
ga(da) +

+
∑

a∈A
(
Ωa −

∑
e∈E ueω

e
a

)
fa(da)

}
−
∑

a∈A Ωa (fa(da) + ga(da)) .

(12)

By Hölder’s inequality, it follows for all u ∈ R|E|, ‖u‖q ≤ 1, that

±
∑
e∈E

ueω
e
a ≤ Ωa ∀a ∈ A, (13)

thus
Ωa ±

∑
e∈E

ueω
e
a ≥ 0 ∀a ∈ A. (14)

This implies that, for each u, ‖u‖q ≤ 1, the following functions are convex:∑
a∈A

(
Ωa +

∑
e∈E ueω

e
a

)
ga(da)∑

a∈A
(
Ωa −

∑
e∈E ueω

e
a

)
fa(da)∑

e∈E uez
e +

∑
a∈A

(
Ωa +

∑
e∈E ueω

e
a

)
ga(da) +

∑
a∈A

(
Ωa −

∑
e∈E ueω

e
a

)
fa(da).

Since the maximum of convex functions is convex, we have shown convexity of the function
maxu∈R|E|: ‖u‖q≤1

{∑
e∈E uez

e +
∑

a∈A
(
Ωa +

∑
e∈E ueω

e
a

)
ga(da) +

∑
a∈A

(
Ωa −

∑
e∈E ueω

e
a

)
fa(da)

}
,

which, by (12), equals G((da)a∈A) +
∑

a∈A Ωa (fa(da) + ga(da)) . Moreover, since each Ωa ≥ 0,
the function

∑
a∈A Ωa (fa(da) + ga(da)) is also convex. Hence, (11) gives a DC decomposition

of G.
Finally, since all the functions fa and ga are non-decreasing or non-increasing at the same

time and the coefficients Ωa, Ωa±
∑

e∈E ueω
e
a are, by (14), non-negative, it follows that the two

functions involved in (11) yield also a DCM decomposition of G, as asserted. 2

By applying Proposition 4, we are in position to derive a bounding procedure for the objective
function F of Problem (7).

2.2 Constructing lower bounds for F

The bounding procedure proposed here is an extension of that obtained in [2] for a DCM function
defined over R. Let S ⊂ R2 be a polytope where a lower bound of F is computed, and let G1−G2

be a DCM decomposition of G, for instance, following Proposition 4.

A lower bound of F (x) over S is obtained as follows:

1. Construct a concave minorant L(x) of F 1(x) = G1(D(x)) over S.

2. Construct a convex majorant U(x) of F 2(x) = G2(D(x)) over S.

3. Compute a lower bound of F on S from L and U .

The three steps are now detailed.
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2.2.1 Constructing a concave minorant of F 1

1. If G1 is componentwise non-decreasing , then F 1(x) = G1(D(x)) is the composition of a
convex and non-decreasing componentwise function with a convex function. Hence, it is
also convex, [16], and it can be bounded below by an affine function. Indeed, if x0 ∈ S \A
and ξ is a subgradient at x0 of the convex function F 1(x) = G1(D(x)), one has the
following:

G1(D(x)) ≥ G1(D(x0)) + ξT (x− x0) ∀ x ∈ S

by definition of subgradient.

2. If G1 is componentwise non-increasing , then given x0 ∈ S \ A, for any ξ, subgradient at
d0 = D(x0) of G1, by definition of subgradient, one has

G1(d) ≥ G1(d0) + ξT (d− d0) ∀d

and then,
G1(D(x)) ≥ G1((D(x0)) + ξT (D(x)−D(x0))

Since G1 is assumed to be componentwise non-increasing, one has that ξa ≤ 0 ∀ a ∈ A,
and hence the minorant found is concave.

2.2.2 Constructing a convex majorant of F 2

1. If G2 is componentwise non-decreasing, then F 2(x) = G2(D(x)) is convex, since it is
the composition of a convex and non-decreasing componentwise function with a convex
function, [16]. Hence, we can take U(x) = F 2(x).

2. If G2 is componentwise non-increasing, then given x0 ∈ S \ A, for each a ∈ A let ξa be a
subgradient of ‖a− ·‖ at x0. Then, by definition of subgradient, one has

‖a− x‖ ≥ ‖a− x0‖+ ξTa (x− x0) ∀ a ∈ A

and, since G2 is componentwise non-increasing,

G2(D(x)) ≤ G2((‖a− x0‖+ ξTa (x− x0))a∈A)

we obtain a convex majorant, since it is the composition of a convex function and a
componentwise affine function.

2.2.3 Computing a lower bound of F

Once a concave minorant L of F 1 and a convex majorant U of F 2 have been obtained, one has
that L(x)− U(x) is a concave function bounding F . Hence, denoting by V = {vi : i ∈ I} the
set of extreme points of S, one has

F (x) = G(D(x)) = F 1(x)− F 2(x) ≥ L(x)− U(x) ≥ min
i∈I

(L(vi)− U(vi)) ∀ x ∈ S.

In summary, the previous procedure yields the following lower bound F on S for F :

F (x) ≥ F := min
i∈I

(L(vi)− U(vi)) ∀ x ∈ S.
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2.2.4 Bounding procedure: An example

In order to illustrate the bounding procedure proposed in this paper, we address here the problem
of locating a competitive facility in the square S = [0, 10] × [0, 10], with a set A of four users
located at positions (2, 1), (9, 4), (6, 5) and (3, 9), and two existing facilities, at (7, 2) and (3, 5).
Three scenarios for the demand have been considered, with weights given in the following table:

User
Scenario a1 a2 a3 a4

e1 4 1 1 2
e2 1 1 1 1
e3 1 6 3 2

All functions ϕaj in (5) are assumed to be ϕaj(d) = d2, and the norm there considered is the
Euclidean. As regards the `p norm in (7), we have taken p =∞, as in [8]. The constants βa in
(5) have been computed according to (4), giving the following values:

β1 = 0.097285 β2 = 0.152027 β3 = 0.211111 β4 = 0.077885.

First, the values ze in (6) have been computed. To do this, for each scenario e, a branch-
and-bound algorithm has been used. Bounds were calculated using the fact that each term in
(4) is a DCM function of ‖a− .‖ (see [2] for details). This yields:

z1 = 4.570515 z2 = 1.982744 z3 = 7.546552

As previously stated in the paper, the objective function F (x) of Problem (7) can be written
as F (x) = G(D(x)), where D(x) = (‖a − x‖)a∈A and G is a DCM function. Moreover, a
DCM decomposition G1 − G2 of G is obtained by using Proposition 4, provided that a DCM
decomposition of the function 1/(1 + βaϕa(d)) is known. The constant values Ωa in (11) turned
out to be:

Ω1 = ‖(4, 1, 1)‖∞ = 4 Ω2 = ‖(1, 1, 6)‖∞ = 6 Ω3 = ‖(1, 1, 3)‖∞ = 3 Ω4 = ‖(2, 1, 2)‖∞ = 2

We have computed two bounds, DCM1 and DCM2, for the objective function F in (7) over
the initial square S. Both are based on the DCM approach described in the paper, and differ
from each other in the DCM decomposition used: DCM1 has been obtained from (9), whereas
(10) has been used in DCM2.

Firstly we analyze DCM1. Take the DCM decomposition of 1/(1+βaϕa(d)) given by (9) and
consider the initial square S, whose extreme points are v1 = (0, 0)>, v2 = (10, 0)>, v3 = (10, 10)>

and v4 = (0, 10)>. Since the components of the DCM decomposition (9) are non-decreasing, we
have that G1 is non-decreasing too. Hence, a concave minorant of F 1(x) = G1(D(x)) is given
by:

L(x) = G1(D(x0)) + ξ>(x− x0)

where x0 ∈ S \ A and ξ is a subgradient of F 1 at x0. If we choose x0 = (5, 5)>, then we have
D(x0) = (5,

√
17, 1, 2

√
5)> and G1(D(x0)) = 96.388609. On the other hand, using the algebra
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of subgradients it turns out that ξ = (−11.360750, 7.184373)> is a subgradient of F 1 at x0. We
evaluate L at each extreme point of S, with the following results:

L(v1) = 96.388609 + (−11.360750, 7.184373)(−5,−5)> = 117.270495
L(v2) = 96.388609 + (−11.360750, 7.184373)(5,−5)> = 3.662993
L(v3) = 96.388609 + (−11.360750, 7.184373)(5, 5)> = 75.506723
L(v4) = 96.388609 + (−11.360750, 7.184373)(−5, 5)> = 189.114224

Regarding F 2(x) = G2(D(x)), we have that G2 is non-decreasing, so that an upper convex
majorant is given directly by:

U(x) = F 2(x)

Evaluating U at each extreme point of S, we obtain:

U(v1) = G2((
√

5,
√

97,
√

61, 3
√

10)>) = 319.693917

U(v2) = G2((
√

65,
√

17,
√

41,
√

130)>) = 206.745637

U(v3) = G2((
√

145,
√

37,
√

41, 5
√

2)>) = 279.750731

U(v4) = G2((
√

85, 3
√

13,
√

61,
√

10)>) = 392.073243

Finally, a lower bound F for F on S is computed by evaluating its lower concave minorant
L− U at the extreme points of S,

L(v1)− U(v1) = −202.423422
L(v2)− U(v2) = −203.082643
L(v3)− U(v3) = −204.244009
L(v4)− U(v4) = −202.959019

and taking the minimum, yielding F = −204.244009.

Let us assume now that the DCM decomposition of 1/(1 + βaϕa(d)) is given by (10) and
consider again the initial square S. This time G1 is a non-increasing function, since the com-
ponents of the DCM decomposition (10) have the same property. Hence, a concave minorant of
F 1(x) = G1(D(x)) is given by:

L(x) = G1(D(x0)) + ξ>(D(x)−D(x0))

where x0 ∈ S\A and ξ is a subgradient of G1 at d0 = D(x0). Choosing x0 = (5, 5)>, we have d0 =
(5,
√

17, 1, 2
√

5)> and G1(D(x0)) = 8.425917. On the other hand, a subgradient of G1 at d0 can
be calculated by using the algebra of subgradients, yielding ξ = (−0.247765, 0,−0.063473, 0)>.
Evaluating L at each extreme point of S, one obtains the following:

D(v1) = (
√

5,
√

97,
√

61, 3
√

10)> ⇒ L(v1) = 8.678456333

D(v2) = (
√

65,
√

17,
√

41,
√

130)> ⇒ L(v2) = 7.324242191

D(v3) = (
√

145,
√

37,
√

41, 5
√

2)> ⇒ L(v3) = 6.338299846

D(v4) = (
√

85, 3
√

13,
√

61,
√

10)> ⇒ L(v4) = 6.948191851

As for F 2(x) = G2(D(x)), it turns out that G2 is non-increasing and, as a consequence, an
upper convex majorant of F 2 is given by:

U(x) = G2((‖a− x0‖+ ξTa (x− x0))a∈A)
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where ξa is a subgradient of ‖a− ·‖ at x0. Such subgradients can be easily computed, yielding:

ξ1 = (3/5, 4/5)> ξ2 = (−4/
√

17, 1/
√

17)> ξ3 = (−1, 0)> ξ4 = (1/
√

5,−2/
√

5)>

Evaluating U at each extreme point of S, we obtain:

U(v1) = G2((−2, 32/
√

17, 6, 3
√

5)>) = 10.74544876

U(v2) = G2((4,−8/
√

17,−4, 5
√

5)>) = 6.276804878

U(v3) = G2((12, 2/
√

17,−4,
√

5)>) = 21.16614784

U(v4) = G2((6, 42/
√

17, 6,−
√

5)>) = 6.276804878

Finally, a lower bound F for F on S is obtained by computing the minimum of its lower
concave minorant L− U on the set of extreme points of S. Since

L(v1)− U(v1) = −2.066992427
L(v2)− U(v2) = −23.23436763
L(v3)− U(v3) = −14.82784798
L(v4)− U(v4) = 0.671386973

it follows that the lower bound is F = −23.23436763.

For the sake of completeness, we have also computed a lower bound for F on S making use
of the method proposed by T. Drezner in [8]. Once the values ze are computed, we find an upper
bound U e for each term

∑
a∈A ω

e
a

1
1+βaϕa(‖a−x‖) on S, using the bounding procedure described

in [10], as mentioned in Section 1. This yields:

U1 = 999.0303230 U2 = 569.683472 U3 = 2640.205088

Afterwards, the `∞-norm of the vector (ze − U e)e∈E provides a lower bound for F on S:

‖(ze − U e)e∈E‖∞ = ‖(−994.459808,−567.700728,−2632.658536)‖∞ = −567.700728

The incidence of the bounding procedure is evident in this case: The three upper bounds
obtained in this particular instance via DCM1, DCM2 and the procedure of [8] are rather differ-
ent in value, namely -204.244009, -23.23436763, -567.700728. As we will show in the following
section, the bounding approach based on DCM2 (the one yielding the sharpest bound in this
particular instance) turns out to be the most suitable in terms of overall running times and
memory requirements.

3 Computational experience

In order to solve Problem (7), the branch and bound method BSSS, [14], has been implemented
using two alternative bounding techniques, namely, the DCM bounding scheme proposed by
Blanquero and Carrizosa (2008) in [2], as well as the resolution procedure suggested by Drezner
in [8]. It is worth recalling that this bounding strategy for DCM functions was recently compared
favorably with other proposals such as [11] for constructing bounds.
Since a DCM decomposition is not unique, different DCM decompositions may yield different
bounds, and thus different running times. In the numerical results in Section 3.2, two different
DCM decompositions have been used and compared. The results obtained by using the best of
them are then compared with those provided by the method proposed in [8].
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Type Number of scenarios Number of facilities
1 2 2
2 5 5
3 10 10

Table 1: Problem Types

3.1 Description of the experiments

The problems addressed in the numerical experiments are described in Table 1. Three types of
problems were considered, with different number of scenarios and existing facilities. All functions
ϕaj are assumed to be ϕaj(d) = d2, and the `p norm is chosen with p =∞, as in [8]. Proposition
4 is first used to express G as

G((da)a∈A) = G1((da)a∈A)−G2((da)a∈A)

where:
G1((da)a∈A) = G((da)a∈A) +

∑
a∈A

Ωa(fa(da) + ga(da))

G2((da)a∈A) =
∑
a∈A

Ωa(fa(da) + ga(da))

Ωa = ‖(ωea)e∈E‖∞

The two DCM decompositions, DCM1, DCM2, differ the way functions fa, ga are chosen.

Following (9) , for DCM1,

fa(da) =
1

1 + βad2a
+ (1 + βad

2
a)

ga(da) = 1 + βad
2
a

The second DCM decomposition, DCM2, is given by setting fa, ga as in (10):

fa(d) =

{
Φa(d0) + Φ′

a(d0)(d− d0) if d ≤ d0
Φa(d) if d > d0

ga(d) = fa(d)− Φa(d)

where:

Φa(d) =
1

1 + βad2
y d0 =

(
1

3βa

) 1
2

3.2 Numerical results

The three types of problems described in Table 1 were considered. For each problem type,
problems of different number N of demand points, ranging from very small (N = 10) to large
(N = 10.000) were constructed, by generating N random points in the feasible region S, always
the unit square [0, 1]× [0, 1].
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For each problem type T = 1, 2, 3 and number N of users, 10 instances were generated and
solved, using the BSSS method with the abovementioned DCM decompositions DCM1, DCM2
and the bounding strategy suggested in [8], hereafter referred as DRZ. The program code was
written in Fortran, compiled by Intel Fortran 10.1, and run on a 2.4 Ghz computer under
Windows XP. The solutions were found to a relative accuracy of 10−5.

Table 2 reports, for DCM1, DCM2 and DRZ, some statistics (minimum, maximum and average)
for three indicators of the algorithm performance on Problem Type 1: number of iterations,
maximum number of squares in the branch and bound list and running time (see also Figure 1
for a plot of running times for the different values of N). The first two indicators come from the
resolution of Problem (7), whereas the running time also includes the resolution of Problem (6).
DCM2 clearly outperforms DCM1. This also happens with the remaining types of problems, so
that in the sequel we only present the results for problems of type 2-3 for DCM2 and DRZ, as
reported in Tables 3-4. Comparing both strategies, we note that DCM2 drastically reduces the
computational burden needed to solve the problems. Finally, Figures 2-3 show, for DCM2, how
running times and number of iterations are affected by the number N of demand points when
the number of scenarios and existing facilities vary. The number of iterations is not affected by
N whereas the running times increase linearly in all problems types addressed.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of demand points

lo
g 

of
 A

ve
ra

ge
 r

un
ni

ng
 ti

m
e(

s)

 

 

DCM1
DCM2
DRZ

Figure 1: Comparing average running times of DCM1, DCM2 and DRZ for Problem Type 1

3.3 Concluding remarks

A competitive location problem recently addressed in [8], namely, a minimax regret Huff location
problem in the plane, is shown to have an objective function which can be written as a difference
of two convex monotonic functions.
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DCM1

N Iterations Max squares Time (s)
Min Max Ave Min Max Ave Min Max Ave

10 139 673 408 36 183 106 0.00 0.02 0.01
20 351 1429 670 77 432 185 0.00 0.05 0.02
50 568 4057 1807 168 1418 589 0.05 0.27 0.12
100 555 2831 1675 117 1037 546 0.06 0.39 0.23
200 1129 3429 2096 385 1146 636 0.30 0.95 0.58
500 1357 8660 2713 351 2670 766 0.84 5.59 1.74
1000 1620 7486 2899 426 1631 756 2.11 8.53 3.60
2000 1472 4482 2677 346 1259 713 3.36 10.91 6.57
5000 2226 6773 4060 490 1716 1015 11.97 41.56 23.77
10000 2910 7139 4352 643 1676 1024 31.53 78.00 48.20

DCM2

10 80 357 149 16 73 31 0.00 0.02 0.00
20 137 307 221 25 53 41 0.00 0.02 0.01
50 122 401 217 23 100 48 0.02 0.03 0.02
100 122 461 259 24 113 56 0.03 0.06 0.05
200 117 668 315 23 109 59 0.05 0.19 0.11
500 255 856 364 45 219 81 0.22 0.61 0.30
1000 143 544 299 26 146 57 0.34 0.84 0.52
2000 246 661 440 38 152 94 0.89 1.98 1.40
5000 228 478 360 27 110 72 2.11 3.63 3.00
10000 214 581 342 31 128 64 3.92 8.67 5.77

DRZ

10 369 82677 15065 71 50563 8260 0.01 0.64 0.24
20 1366 229046 25726 338 136799 14646 0.07 3.00 0.57
50 2694 1418445 147465 924 864362 88640 0.25 41.26 4.79
100 2304 56830 22513 476 23423 8919 0.68 7.25 3.99
200 3153 110483 46851 916 45088 18490 0.79 23.43 11.07
500 6887 138294 73889 2448 55739 29250 3.65 55.45 30.49
1000 36185 710544 203260 14195 325963 85808 28.95 398.53 134.72
2000 9857 387122 171598 3541 157596 69810 16.67 522.21 221.44
5000 12761 1362762 549849 3926 567341 225325 38.35 3965.93 1577.28
10000 700949 3042246 1753495 279254 1246240 342237 3979.95 16688.20 9718.02

Table 2: Computational results for Problem Type 1
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DCM2

N Iterations Max squares Time (s)
Min Max Ave Min Max Ave Min Max Ave

10 76 484 215 19 112 47 0.00 0.02 0.01
20 128 465 260 27 117 53 0.02 0.02 0.02
50 172 453 316 31 82 60 0.03 0.06 0.05
100 302 771 498 42 186 95 0.08 0.16 0.12
200 102 663 346 25 181 60 0.13 0.30 0.20
500 101 1066 384 27 244 88 0.31 1.00 0.53
1000 122 470 237 30 87 46 0.63 1.17 0.84
2000 127 1025 437 34 221 89 1.44 4.19 2.49
5000 144 887 415 44 218 92 3.97 8.47 5.70
10000 146 1129 503 35 274 110 6.77 21.47 13.74

DRZ

10 282 78374 18201 77 46309 10637 0.17 1.21 0.50
20 2056 94877 28094 690 55370 15838 0.39 3.75 1.37
50 2309 484289 93686 586 284326 55172 1.14 34.96 8.36
100 3027 12256 7731 883 4312 2687 2.42 10.51 5.55
200 837 2283002 235552 148 1365311 139150 5.73 636.01 74.32
500 974 30781 9359 181 10956 3122 10.60 54.06 33.39
1000 2573 47123 16986 428 17798 5522 60.79 147.68 91.73
2000 1205 155069 69125 273 61728 26696 17.10 882.75 381.33
5000 5197 594461 164540 848 241285 64433 235.93 4643.84 1581.68
10000 8130 1430585 292907 1858 601821 115503 252.67 20326.59 4623.17

Table 3: Computational results for Problem Type 2

DCM2
N Iterations Max squares Time (s)

Min Max Ave Min Max Ave Min Max Ave
10 63 574 311 17 254 81 0.02 0.03 0.02
20 125 419 234 29 70 44 0.02 0.03 0.03
50 119 614 270 28 106 51 0.05 0.09 0.07
100 151 346 249 34 73 51 0.13 0.16 0.14
200 108 666 366 24 204 88 0.20 0.47 0.33
500 150 1233 571 33 301 125 0.63 1.69 1.13
1000 177 998 552 61 221 122 1.70 2.83 2.24
2000 170 1145 470 51 377 124 3.38 6.36 4.51
5000 211 1228 562 57 301 124 8.92 20.42 13.15
10000 186 1198 513 55 263 121 14.22 36.11 23.02

DRZ
10 258 17749 3860 76 10489 1975 0.17 0.90 0.48
20 701 42783 12007 136 23350 6449 0.84 3.12 1.43
50 660 43985 11894 157 24127 5260 1.15 10.98 4.51
100 1099 226590 47230 189 122814 26060 3.92 71.87 19.27
200 649 1487426 306025 143 912071 185354 11.23 837.90 182.25
500 1212 77159 18260 205 41040 7991 16.04 211.93 78.19
1000 820 1230194 146594 258 739272 83364 19.15 3396.71 511.92
2000 831 243705 45081 230 103900 18113 51.25 1529.32 422.41
5000 2555 208155 40999 363 83246 14903 319.95 4997.31 1371.84
10000 1235 345119 85420 301 138347 32797 147.28 12093.65 3674.73

Table 4: Computational results for Problem Type 3
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Figure 2: Comparing running times in the three Problem Types
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The DCM bounding scheme proposed by the authors in [2] is analyzed for this problem and
compared with the one suggested in [8].

Two different DCM decompositions are used and tested in a series of numerical experiments
with to up to 10000 demand points. As the computational results clearly show, the bounds
provided by both DCM decompositions outperform those obtained by using the procedure sug-
gested in [8]. Moreover, we observe that using the decomposition DCM2 proposed in this paper
reduces considerably the running times and allows one to solve in very reasonable time problems
with a large number of points.
For simplicity, in the model proposed in this paper, only the weights are affected by uncertainty,
and thus modeled by means of a set E of scenarios. However, the analysis can be directly ex-
tended to the case in which we also have uncertainty on the locations of the competing firms.
Indeed, for each scenario, let I(e) denote a finite indexset, representing the set of competing
facilities, so that each facility i ∈ I(e) will be located at xei , and will attract a market inversely
proportional to ϕeai(‖a− xei‖). In this case, Problem (7) would become

min
x∈S

∥∥∥∥∥∥
(
ze −

∑
a∈A

ωea
1

1 + βeaϕa(‖a− x‖)

)
e∈E

∥∥∥∥∥∥
p

, (15)

where, for each e ∈ E, βea is given by

βea =
∑
j∈I(e)

1

ϕeaj(‖a− xej‖)
. (16)

Moreover, distances to the ideal point are measured by ‖ · ‖p, an `p norm. Extensions to
arbitrary absolute symmetric norms, as discussed in [6], are straightforward, since Proposition
4 can be easily extended to this more general case.
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