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Abstract

This paper deals with several operations on graphs and combinatorial structures

linking them with their associated Lie algebras. More concretely, our main goal is

to obtain some criteria to determine when there exists a Lie algebra associated with

a combinatorial structure arising from those operations. Additionally, we show an

algorithmic method for one of those operations.
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Algorithm.
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1 Introduction

At present, one of the most stimulating research in Mathematics consists in discovering new

links and relations between di�erent �elds. From this perspective, researchers can achieve

alternative techniques to solve open problems, improve known theories and reveal new ones.

This paper works out with the relation between Graph and Lie theories. Regarding this

working strategy, our research gives continuity to the line started in [1], where a mapping

between Lie algebras and combinatorial structures was introduced in order to translate

properties of Lie algebras into the language of Graph Theory and vice versa.

Research on Lie Theory is very extensive because of its own theoretical importance as

well as of its application to many di�erent �elds, like Engineering, Physics and Applied

Mathematics. Nevertheless, many general questions about Lie algebras remain unanswered

when using traditional techniques, such as the classi�cation of Lie algebras which is still

unsolved. Since Levi's and Malcev's theorems (see [7] and [8], respectively) state that every

�nite-dimensional Lie algebra is decomposable into the semidirect sum of a semisimple Lie

1

https://www.researchgate.net/publication/238850583_Combinatorial_structures_associated_with_Lie_algebras_of_finite_dimension?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/285764622_Sulla_struttura_dei_gruppi_finiti_e_continui?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1


algebra and a solvable ideal, the classi�cation of Lie algebras can be reduced to classify the

semisimple and the solvable families of Lie algebras. Whereas semisimple Lie algebras were

completely classi�ed by Killing and Cartan's classi�cation of simple Lie algebras in 1890,

solvable Lie algebras have only been classi�ed for low dimensions. As current techniques

do not allow researchers successfully to face up to this classi�cation problem, studying new

and di�erent properties of Lie algebras is compulsory and arises naturally. To achieve this

purpose, mathematicians have dealt during the last decades with di�erent links between

solvable Lie algebras and other �elds.

Analogously, Graph Theory is also running in high-level research nowadays due to its

use as a helpful tool to be applied to almost any type of topics and �elds. Concerning Lie

Theory, graphs have been essential for studying semisimple Lie algebras, because trees per-

form an important role to determine the Dynkin diagrams associated to such algebras [10].

Nowadays, Graph Theory is also applied to study the representation of �nite-dimensional

algebras [9].

Our main goal consists in making progress with the link between Lie algebras and

combinatorial structures (including graphs and simplicial complexes), by proceeding in the

line of [1, 2, 3, 4, 6]. Indeed, these papers are based on the de�nition of a mapping between

Lie algebras and combinatorial structures. Furthermore, the graph-based approach in this

research line is completely di�erent from that of papers using Dynkin diagrams, which are

strictly graphs and do not include simplicial complex of higher dimension. This time, we

study the translation of several operations on graphs and combinatorial structures into the

language of Lie algebras.

The structure of this paper is the following: after reviewing some well-known results

on Lie and Graph theories in Section 2, Section 3 recalls the mapping introduced in [1]

to associate combinatorial structures with Lie algebras, as well as remarks some of its

properties proved in [1]. Next, Section 4 shows the behavior of several operations on

graphs and combinatorial structures in relation with this mapping. In this sense, we state

some criteria under which structures coming from these operations preserve the property

of �being associated with Lie algebras�. Finally, Section 5 presents an algorithmic method

which computes the amalgamation of two digraphs and checks if that resulting graph is

associated or not with a Lie algebra.

In our opinion, the tools and results dealt with in this article are very useful and helpful

to advance in understanding the relation between Lie algebras and simplicial complexes,

since the classi�cation of combinatorial structures may involve an easier method to solve

the classi�cation problem of Lie algebras by means of the classi�cation of their associated

combinatorial structures.
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2 Preliminaries

We show some preliminary concepts on Lie algebras, bearing in mind that the reader can

consult [11] for a general overview. From here on, we only consider �nite-dimensional Lie

algebras over the complex number �eld C.

De�nition 1. A Lie algebra g is a vector space with a second bilinear inner composition

law ([·, ·]) called the bracket product or Lie bracket, which satis�es

[X,X] = 0, ∀X ∈ g and J(X,Y, Z) = 0, ∀X,Y, Z ∈ g,

where J is the jacobiator de�ned as J(X,Y, Z) = [[X,Y ], Z]+ [[Y, Z], X]+ [[Z,X], Y ]. The

last expression is called the Jacobi identity.

Given a basis {ei}ni=1 of g, its structure (or Maurer-Cartan) constants are de�ned by

[ei, ej ] =
∑

chi,jeh, for 1 ≤ i < j ≤ n.

De�nition 2. Given a Lie algebra g, its center is de�ned as Z(g) = {X ∈ g | [X,Y ] =

0, ∀Y ∈ g}.

Although the reader can consult [5] as an introductory reference to Graph Theory, some

notions are recalled next in this section.

De�nition 3. A graph consists in an ordered pair G = (V,E), where V is a non-empty

set called the vertex set and E is a set of unordered pairs (edges) of two vertices, called the

edge set. If the edges are ordered pairs of vertices, then the graph is named digraph.

De�nition 4. Let G = (V,E) be a graph. For a vertex v ∈ V , the (open) neighbourhood

of v in G is the vertex subset N(v) = {w ∈ V | (v, w) ∈ E}.

De�nition 5. Given a graph G = (V,E), two vertices u, v ∈ V are twin if they have the

same neighbourhoods; i.e. N(u) = N(v).

De�nition 6. Given a digraph G = (V,E), a vertex v ∈ V is a sink (resp. a source) if all

the edges incident with v are oriented towards v (resp. oriented from v). This de�nition is

illustrated in Figure 1.

Figure 1: Example of sinks and sources, respectively.

De�nition 7. Given n ∈ N, Pn is a weighted digraph of n vertices alternating sources with

sinks.
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3 Associating combinatorial structures with Lie algebras

Let g be an n-dimensional Lie algebra with basis B = {ei}ni=1. The structure constants are

given by [ei, ej ] =
∑n

k=1 c
k
i,jek and, hence, the pair (g,B) is associated with a combinatorial

structure built according to the following steps in the method introduced in [1]

a) Draw vertex i for each ei ∈ B.

b) Given three vertices i < j < k, draw the full triangle ijk if and only if (cki,j , c
i
j,k, c

j
i,k) ̸=

(0, 0, 0). Then, the edges ij, jk and ik have weights cki,j , c
i
j,k and cji,k, respectively.

b1) Use a discontinuous line (named ghost edge) for edges with weight zero.

b2) If two triangles ijk and ijl with 1 ≤ i < j < k < l ≤ n satisfy cki,j = cli,j , draw

only one edge between vertices i and j shared by both triangles (see Figure 2).

Figure 2: Full triangle and two triangles sharing an edge.

c) Given two vertices i and j with 1 ≤ i < j ≤ n and such that cii,j ̸= 0 (resp. cji,j ̸= 0),

draw a directed edge from j to i (resp. from i to j), as can be seen in Figure 3.

i j

cii,j

i j

cji,j

Figure 3: Directed edges.

Consequently, every Lie algebra with a given basis is associated with a combinatorial

structure of this type, which turns out to be simplicial complexes of dimension less than 3.

Throughout the paper, we will refer to the following three results from [1], indicating

both forbidden and allowed con�gurations in graphs associated with Lie algebras.

Lemma 1. [1, Lemma 3.1] Let g be a Lie algebra associated with a digraph G. Then, the

con�gurations shown in Fig. 4 are forbidden in G, for any three di�erent vertices i, j, k

(independently of the weights of the edges).

Hence, there exist only four types of digraphs of 3 vertices associated with 3-dimensional

Lie algebras (see Figure 5). Isomorphism classes of their associated Lie algebras are ob-

tained thanks to the following two results.
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Figure 4: Forbidden con�gurations from [1].

Figure 5: Digraphs of 3 vertices associated with Lie algebras.
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Theorem 1. [1, Theorem 3.2] Let G be a digraph without (oriented) 3-cycles, associated

with a Lie algebra. Then, G is

(i) a unique double edge, or

(ii) a well oriented digraph without double edges.

Conversely, any digraph satisfying (i) or (ii) is associated with a Lie algebra.

Theorem 2. [1, Theorem 3.6] Let G be a digraph containing (oriented) 3-cycles and

associated with a Lie algebra. Then, G satis�es the following conditions

(i) The double edges of G lie on the 3-cycles and there are no 3-cycles without double

edges.

(ii) The adjacent vertices with the end vertices of the double edges are not mutually ad-

jacent. Moreover, they appear in one of the con�gurations of Fig. 6.

(iii) The subdigraph obtained from G by removing its double edges satis�es condition (ii)

of Theorem 1.

Figure 6: Con�gurations containing double edges from [1].

Remark 1. Note that {p1, . . . , pr} and {q1, . . . , qs} in Fig. 6 are both sets of twin vertices.

4 Operations on combinatorial structures associated with Lie

algebras

This section studies the translation of some usual combinatorial operations on graphs and

simplicial complexes into the languages of Lie algebras; namely, vertex amalgamation and

edge addition, deletion and contraction.

4.1 Vertex amalgamation

The amalgamation of two combinatorial structures consists in pasting both structures by

identifying a vertex in both con�gurations. We determine under which conditions the

structure arising from this operation preserves the association with a Lie algebra.
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4.1.1 Digraphs associated with Lie algebras and amalgamation

First, we start studying digraphs associated with Lie algebras, obtaining the following

results.

Proposition 1. Let G be a digraph not associated with Lie algebras. Then, every digraph

obtained from G by using vertex amalgamation is neither associated with Lie algebras.

Proof. Let G′ be a digraph obtained from G by applying vertex amalgamation. Assume

that the number of vertices of G and G′ is respectively n and m, with n < m. The vector

space L with basis {ei}ni=1 associated with the graph G is not a Lie algebra. Therefore,

there exist 1 ≤ i < j < k ≤ n such that J(ei, ej , ek) ̸= 0. Since L ⊂ L′, this Jacobi identity

is neither satis�ed for the vector space L′ of the digraph G′.

Proposition 2. Let G and G′ be two digraphs associated with the Lie algebras L and L′

respectively. We consider the amalgamation of G and G′ by an isolated vertex of G′. Then,

there exists a unique Lie algebra associated with the amalgamation given by the directed

sum L⊕ L̄, L̄ is the Lie algebra associated with the subgraph G′ − {v} of G′.

Proof. If the vertex v of G′ is isolated, then ev ∈ L ∩ L′ and ev ∈ Z(L′). Therefore, the

non-zero brackets of L′ are the ones corresponding to the subalgebra L̄ of L′ associated

with G′ − {v}. The Jacobi identity J(ev, ei, ek) = 0 holds for all ei ∈ L and ek ∈ L̄, since

the brackets between elements of L and L′ are zero.

Proposition 3. Let G and G′ be two digraphs associated with Lie algebras. We consider

the amalgamation by a non-isolated vertex. Then, the following statements hold

1) If G is an oriented 2-cycle, then no Lie algebra is associated with this amalgamation.

2) If G contains 3-cycles (structures from Theorem 2), then the amalgamation is asso-

ciated with a Lie algebra if and only if the amalgamation vertex is a sink in both G

and G′. Moreover, either G and G′ are digraphs of the same type or G′ is a digraph

Pn.

3) If G and G′ do not contain 3- or 2-cycles, the amalgamation is associated with a Lie

algebra if and only if the amalgamation vertex is of the same type in both G and G′.

Proof. In Case 1), G is associated with a 2-dimensional Lie algebra. If we take the amal-

gamation by such a vertex, we get con�gurations b), c) or d) in Figure 4.

For Case 2), according to the previous one, we cannot consider the amalgamation by

vertices of an oriented 2-cycle. Assume that we build the amalgamation by a twin sink of

G. It is easy to prove that the amalgamation is associated with a Lie algebra if the vertex

is also a sink in G′.

In Case 3), the typology of the digraphs G and G′ is based on Theorem 1. If we build

the amalgamation by a vertex of the same type in both digraphs, then the resulting digraph

7



must be of type Pn and, hence, is associated with a Lie algebra. Otherwise, if we consider

di�erent types of vertex in each digraph, we obtain the forbidden con�guration a) from

Lemma 1.

4.1.2 Full triangles associated with Lie algebras and amalgamation

Next, we study the amalgamation of full triangles associated with Lie algebras. Using a

reasoning analogous to Proposition 2, we can prove

Lemma 2. Let G and T be respectively a digraph and a triangular structure, both associated

with Lie algebras. Then, the amalgamation of G and T by an isolated vertex v of G is

associated with the Lie algebra L⊕ L̄, where L and L̄ are the Lie algebras associated with

T and G− {v}, respectively.

Proposition 4. The amalgamation of a full triangle and a digraph by a non-isolated vertex

k is associated with a Lie algebra if and only if k is a source and the opposite edge to k in

the full triangle is ghost.

Proof. The two possible cases are shown in Figures 7 and 8, although edges may be ghost

or full a priori. First, the Lie brackets of the structure in Figure 7 are the following:

[ei, ej ] = cki,jek, [ei, ek] = cji,kej , [ej , ek] = cij,kei and [ek, el] = ckk,lek, where ckk,l ̸= 0. We

compute the following Jacobi identities

J(ei, ej , el) = cki,jc
k
k,lek = 0; J(ei, ek, el) = −ckk,lc

j
i,kej = 0; J(ej , ek, el) = −ckk,lc

i
j,kei = 0.

Since ckk,l ̸= 0, it is veri�ed that cki,j = cij,k = cji,k = 0. This comes into contradiction with

the fact that the triangle is full. Now, we prove that the edge ij in Figure 8 must be

ghost. E�ectively, the non-zero brackets are as follows: [ei, ej ] = cki,jek, [ei, ek] = cji,kej ,

[ej , ek] = cij,kei and [ek, el] = clk,lel, where clk,l ̸= 0. Now, we consider this Jacobi identity

J(ei, ej , el) = cki,jc
l
k,lel = 0. Since clk,l ̸= 0, we deduce that cki,j = 0. Therefore, the opposite

edge to the vertex of the amalgamation is ghost.

Figure 7: Amalgamation by a sink. Figure 8: Amalgamation by a source.

Proposition 5. The amalgamation of two full triangles by a vertex is associated with a

Lie algebra if and only if one of the following conditions holds

8



• The amalgamation vertex is only incident with ghost edges and its opposite edges are

full.

• The edges not being incident with the amalgamation vertex are ghost.

Proof. We consider the amalgamation of two full triangles ijk and klm. The non-zero

brackets for this structure are the following: [ei, ej ] = cki,jek, [ei, ek] = cji,kej , [ej , ek] =

cij,kei, [ek, el] = cmk,lem, [ek, em] = clk,mel and [el, em] = ckl,mek. We compute the following

Jacobi identities

J(ei, ej , el) = cki,jc
m
k,lem = 0, J(ei, el, em) = −ckl,mcji,kej = 0,

J(ei, ej , em) = −cki,jc
l
k,mel = 0, J(ej , el, em) = −ckl,mcij,kei = 0,

and solve the resulting system of equations, being obtained two families of solutions:{
cki,j = ckl,m = 0, (cji,k, c

i
j,k) ̸= (0, 0), (cmk,l, c

l
k,m) ̸= (0, 0)

}
and{

clk,m = cmk,l = cji,k = cij,k = 0, ckl,m ̸= 0, cki,j ̸= 0
}
.

In Figure 9, we show all the possible amalgamations between two triangles.

Figure 9: Amalgamation between two triangles.

4.2 Edge addition, deletion and contraction in relation with Lie algebras

Next, we study the edge addition on a digraph. Consider a digraph G and two non-adjacent

vertices i and j of G. Then, a new edge can be added to G connecting both vertices. After

inserting this additional edge, a new digraph arises from G and we can naturally ask

whether this new digraph would also be associated with a Lie algebra. When answering

this question, we obtain the following results

Proposition 6. If G is a digraph from a con�guration in Theorem 1, then every digraph

arising from G by edge addition is not associated with Lie algebras.
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Proof. First, note that it is not possible to add edges in an oriented 2-cycle. If we have the

digraph Pn and add a new edge, then the forbidden con�gurations b) and c) in Lemma 1

appear.

Proposition 7. Let G be a digraph corresponding to the �rst con�guration in Theorem 2

with r twin vertices. Then we must add r + 1 edges to obtain a digraph associated with

a Lie algebra. Moreover, the resulting digraph corresponds to the second con�guration in

Theorem 2.

Proof. If we add a new edge between two twin vertices, we obtain the forbidden con�gu-

rations a) or i) from Lemma 1. Analogously, if we add k edges, with 2 < k < r + 1, then

the forbidden con�gurations b), f), g) or i) in Lemma 1 appear. In case of adding r + 1

edges, we consider the procedure indicated in Figure 10.

Figure 10: Addition of edges.

Proposition 8. Let G be a digraph corresponding to the second con�guration in Theorem 2

with s twin vertices. Then we must add, at least, s(s+2) edges to obtain a digraph associated

with a Lie algebra.

Proof. Obviously, we cannot add a unique edge to G since the forbidden con�gurations

f) and i) would appear. Therefore, we must add the edges between a twin vertex and

a second vertex belonging to an oriented 2-cycle. Moreover, we need to add a new edge

connecting each twin vertex to each vertex from oriented 2-cycles to avoid con�gurations

b) and i).

The following result is related to the operation called edge deletion for a particular

type of digraphs.

Proposition 9. Let G be a digraph corresponding to the second con�guration in Theorem 2

with s twin vertices. Then a digraph corresponding to the �rst con�guration in Theorem 2

can be obtained by deletion of s+ 2 edges.

Proof. We only must consider the method indicated in Figure 11.
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Figure 11: Edge deletion.

Finally, we conclude this subsection with a result about edge contraction for the digraph

Pn to generate subgraphs associated with Lie algebras.

Proposition 10. A subgraph of the digraph Pn is associated with a Lie algebra if and only

if it is obtained by successive contractions of edges incident with end vertices.

Proof. If we apply a contraction by an edge incident with an end vertex, we obtain the

digraphs Pn−1. In case of contracting another di�erent edge, we get the forbidden con�g-

uration a) in Lemma 1.

5 Algorithm for the amalgamation of two digraphs

In this section, we show an algorithmic procedure to compute the amalgamation of two

digraphs associated with Lie algebras. Moreover, we also study if the digraph obtained

in the amalgamation is associated with a Lie algebra. Such an algorithm consists of the

following two steps:

a) Compute the amalgamation of two digraphs associated with Lie algebras.

b) Check if the digraph obtained in the previous step is associated with a Lie algebra.

In order to implement the algorithm, we have used the symbolic computation package

MAPLE 12. The libraries DifferentialGeometry, LieAlgebras and GraphTheory must

be loaded. In this way, we can use commands related to Lie algebras and Graph Theory.

The �rst step of this algorithm is executed by the routine amalgamation, which receives

as input two digraphs G and H. Both digraphs must be de�ned with the order Digraph(V,E),

where V is a list with the vertices of G and E is a set whose elements are the edge (i.e. ordered

pairs of vertices) with their corresponding weight. To implement this routine, several local

variables are de�ned and a loop is programmed to compute the amalgamation.

> amalgamation:=proc(G,H)

> local U,V,A,B,W,C;

> U:=Vertices(G);

> V:=Vertices(H);

11



> A:=Edges(G,weights);

> B:=Edges(H,weights);

> W:=U;

> C:=A union B;

> for i from 1 to nops(V) do

> if member(V[i],W)=true then W:=W;

> else W:=[op(W),V[i]];

> end if;

> end do;

> Ga:=Digraph(W,C);

> return Ga;

> end proc:

Now, the representation of this digraph can be obtained with the following sentence

> DrawGraph(amalgamation(G,H));

Next, we show the implementation of the second step of our algorithm, where we check

if the digraph obtained with the amalgamation is associated with a Lie algebra. To do

so, we implement the routine program, which allows us to build a vector space associated

with the digraph. This vector space is the candidate for the bracket product. The routine

program receives the following two inputs: the list V with the vertices of the digraph and the

set E with its directed, weighted edges. As outputs, we obtain the vector space with basis

{ei}ni=1, where ei corresponds to vertex i in the list V, and the brackets associated with the

edges in the set E. To implement this routine, two local variables B and L are de�ned, where

B saves the basis {ei}ni=1 and L is a list containing the indexes of the structure constants

from the non-zero brackets.

> program:=proc(V,E)

> local B, L;

> B:=[]; L:=[];

> for x from 1 to nops(V) do

> B:=[op(B),e[x]];

> end do;

> for i from 1 to nops(E) do

> if E[i][1][1] < E[i][1][2] then

> L:=[op(L),[[E[i][1][1],E[i][1][2],E[i][1][2]],E[i][2]]];

> else L:=[op(L),[[E[i][1][2],E[i][1][1],E[i][1][2]],E[i][2]]];

> end if;

> end do;

> return _DG([["LieAlgebra",Alg1,[nops(V)]],L]);

> end proc:

Once the vector space and the structure constants (i.e. the bracket product) are gen-

erated by the routine program, we must de�ne the law corresponding to these, which is

done by evaluating the sentence
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> DGsetup(program(V,E));

After de�ning this vector space, saved as Alg1, we can operate over it. More concretely,

running the next sentence, we can test if the Jacobi identities hold for Alg1:

Alg1 > Query(Alg1,"Jacobi");

The vector space Alg1, de�ned by the output of program, is a Lie algebra if and only

if the answer true is obtained for this question. In the a�rmative case, Alg1 saves all the

data of the Lie algebra, including its law.

Example 1. Consider digraphs b) and c) from Figure 5. Now, we computationally de�ne
both digraphs by means of the list of vertices and the set of edges.

> U:=[1,2,3];

> A:={[[1,2],-1],[[2,1],1],[[1,3],1],[[2,3],1]};

> G:=Digraph(U,A);

> V:=[3,4,5];

> B:={[[4,3],1],[[4,5],1]};

> H:=Digraph(V,B);

After de�ning both digraphs, we compute the amalgamation between them and draw it
with the sentence

> amalgamation(G,H);

> DrawGraph(amalgamation(G,H));

Now, we use the routine program with the set of vertices and edges obtained in the
amalgamation. This routine returns its associated vector space, which is endowed with a
law given by the weights (i.e. structure constants). In this way, we execute the sentence

> program(Vertices(amalgamation(G,H)),Edges(amalgamation(G,H),weights));

Finally, we check the Jacobi identities to test if this vector space is or not a Lie algebra.

> DGsetup(program(Vertices(amalgamation(G,H)),Edges(amalgamation(G,H),weights)));

Alg1 > Query(Alg1,"Jacobi");

> true

Since the answer is true, the digraph in Figure 11 is associated with a 5-dimensional

Lie algebra.

Next, we compute the complexity of the algorithm. To do so, we consider the number

of operations carried out in the worst case. We use the big O notation to express the

complexity. To recall the big O notation, the reader can consult [12]: given two functions

f, g : R → R, we could say that f(x) = O(g(x)) if and only if there exist M ∈ R+ and

x0 ∈ R such that |f(x)| < M · g(x), for all x > x0.

We denote by Ni(n) the number of operations when considering the step i. This

function depends on the dimension n of the Lie algebra. Table 1 shows the number of

computations and the complexity of each step, as well as indicating the name of the routine

corresponding to each step.
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Figure 12: Digraph of Example 1.

Table 1: Complexity and number of operations.

Step Routine Complexity Operations

1 amalgamation O(n) N1(n) = 14 +

n∑
i=1

1

2 program O(n) N2(n) = 5 + 2

n∑
i=1

1

14



Acknowledgment

This work has been partially supported by MTM2010-19336 and FEDER.

References

[1] A. Carriazo, L.M. Fernández, J. Núñez, Combinatorial structures associated with Lie

algebras of �nite dimension, Linear Algebra Appl. 389 (2004), 43�61.

[2] M. Ceballos, J. Núñez, A.F. Tenorio, Complete triangular structures and Lie algebras,

Int. J. Computer Math. 88:9 (2011), 1839�1851.

[3] M. Ceballos, J. Núñez, A.F. Tenorio, Study of Lie algebras by using combinatorial

structures, Linear Algebra Appl. 436 (2012), 349�363.

[4] M. Ceballos, J. Núñez, A.F. Tenorio, Combinatorial structures and lie algebras of

upper-triangular matrices, Appl. Math. Lett. 25 (2012), 514�519.

[5] R. Diestel, Graph Theory, 4th. Edition, Springer-Verlag, Heidelberg, 2010.

[6] L.M. Fernández, L. Martín-Martínez, Lie algebras associated with triangular con�gu-

rations. Linear Algebra Appl. 407 (2005), 43�63.

[7] E.E. Levi, Sulla struttura dei gruppi �niti e continui, Atti. Accad. Sci. Torino 40 (1905),

551�565.

[8] A.I. Malcev, Solvable Lie algebras. Trans. Amer. Math. Soc. Transl. 9 (1962), 228�262.

[9] M. Primc, Basic representations for classical a�ne Lie algebras, J. of Algebra 228

(2000), 1�50.

[10] J.P. Serre, Algèbres de Lie Semi-Simples Complexes, Benjamin Inc., New York, 1996.

[11] V.S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Springer, New

York, 1984.

[12] H.S. Wilf, Algorithms and Complexity, Prentice Hall, 1986.

15

https://www.researchgate.net/publication/242987188_Lie_algebras_associated_with_triangular_configurations?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/242987188_Lie_algebras_associated_with_triangular_configurations?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/235326151_Study_of_Lie_algebras_by_using_combinatorial_structures?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/235326151_Study_of_Lie_algebras_by_using_combinatorial_structures?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/238850583_Combinatorial_structures_associated_with_Lie_algebras_of_finite_dimension?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/238850583_Combinatorial_structures_associated_with_Lie_algebras_of_finite_dimension?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/220661189_Complete_triangular_structures_and_Lie_algebras?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/220661189_Complete_triangular_structures_and_Lie_algebras?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/220319361_Combinatorial_structures_and_Lie_algebras_of_upper_triangular_matrices?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/220319361_Combinatorial_structures_and_Lie_algebras_of_upper_triangular_matrices?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/232366523_Basic_Representations_for_Classical_Affine_Lie_Algebras?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/232366523_Basic_Representations_for_Classical_Affine_Lie_Algebras?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/268651474_Algebres_de_Lie_Semisimples_Complexes?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/285764622_Sulla_struttura_dei_gruppi_finiti_e_continui?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/285764622_Sulla_struttura_dei_gruppi_finiti_e_continui?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/236470528_Lie_Groups_Lie_Algebras_and_Their_Representations?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1
https://www.researchgate.net/publication/236470528_Lie_Groups_Lie_Algebras_and_Their_Representations?el=1_x_8&enrichId=rgreq-0fcf72cace4314ebeecd1df8789b55f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjMyOTM3MztBUzo5ODk2MzUxNjU1OTM2NUAxNDAwNjA2MTQ5NTQ1

