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Abstract

In this work we show some multiplicity results for the anisotropic equation
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where © € RY is a bounded smooth domain, 1 < p1 < p2 < ... < pn
and A is a positive parameter. Using genus theory, we study the subcritical
case gr(u) = Au|7?u with ¢ € (1,pny) and the critical case gi(u) =
Mul?™%u + |ul” ~%u with ¢ € (1,p1) and p* = Np/(N — p), with p the
harmonic mean.
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1 Introduction
In this paper we are concerned with the multiplicity of nontrivial solutions for the

following classes of nonlinear anisotropic problems
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where Q is a bounded smooth domain in RY, N > 3, A is a positive parameter,
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where P denotes the harmonic mean p = N/ ( E ) .
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Throughout all the paper, we assume that
pn <p".
Observe that the anisotropic operator is a generalization of the Laplacian

one. Indeed, when p; =2 for all i =1, ..., N, then
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A considerable effort has been devoted during the last years to the study
anisotropic problems. With no hope to be thorough, let us mention, for example,
[1], [9], [10], [11], [15], [16], [17], [20], [21], [22], [23], [24], [26], [27] and references
given there.

This is greatly justified in view of two basic aspects of mathematical research.
The first one is that this class of problems has a rich physical motivation. It
appears, for instance, in biology, see [7] and [8], as a model describing the spread
of an epidemic disease in heterogeneous environments. It also emerges, see [3] and
[5], from the mathematical description of the dynamics of fluids with different
conductivities in different directions. To application in image processing, see [25].

The second aspect of the relevance of anisotropic problems is related to the
mathematical techniques used to approach it. Sometimes, some refined estimates
are needed due to different orders of derivation of the operator in different
directions.

In this paper we are interested in giving some multiplicity results, which
complete the existing in the literature. With respect to (P1y), the main results
are:

Theorem 1.1. Assume that ¢ € (1,p1). Then, problem (P1y) has infinitely many
solutions, for all X € (0, +00).

Theorem 1.2. Assume that q € [p1,pn). Then, for each k € N, there exists A\, > 0
such that problem (P1y) has at least k pairs of solutions, for all X € (Mg, +00).

With respect to (P2y) we have:

Theorem 1.3. Assume that q € (1,p1). Then, there exists A\* > 0 such that
problem (P2y) has infinitely many solutions, for all X € (0, \*).

In some sense our paper is a natural continuation of the studies initiated
in [1], [11] and [17] and it completes the results obtained there. Indeed, in [17],

the authors studied important properties on the Banach space Dé’?(Q) and they
showed that problem (P1y) with ¢ € (pn,p*) has one solution for all A > 0.

For the case ¢ € (p1,pn), it was proved in [11] that problem (P1,) possesses
at least one solution for large A and no solution when A is small.

In [1], the authors showed that problem (P2)) has one solution when
q € (1,p1) and X small and when ¢ € (py,p*) and A is large.

In order to prove our results, mainly we have used variational methods. Thus,
for Theorems 1.1 and 1.2 we utilize notions on the Krasnoleskii genus and Clarke’s
Theorem. The proof of the Theorem 1.3 is more complicated. We have used a
similar idea to that of [4], where the authors showed a multiplicity result for
problem

—Apu = Mu|®2u + |u|P" 2w in ),

(@pP)
u € WOLP(Q)a qe (17p)7



see also [14], where a nonlocal operator is considered. However, due to the
anisotropic operator, we need to prove new bounds for the truncated functional,
see Section 5 for details.

The plan of this paper is as follows. In Section 2, we write our problem in
a variational framework. In Section 3, we recall some properties of genus theory
and Clarke’s Theorem. We study in Section 4 the subcritical case. Finally, in the
Section 5, we analyze the critical case.

2 Variational framework

It is well known that Dé’? (), which is the completion of the space D(€2) with

respect to the norm
N

ou
Jull = 3| 2

i=1

)
pi

is a reflexive Banach space and is continuously embedded in LP"(Q). Here |.|,, is
the usual norm in LPi(Q).

Since €2 is a bounded domain of R, from [17, Theorem 1], the continuity
of the embedding Dé’?(Q) — L*(Q), for all s € [1,p*] relies on a well-known
Poincaré-type inequality. More precisely, denoting by ej,...,e, the canonical
basis of RV, assume that €2 has width ¢ > 0 in the direction of e;, namely

sup (z — y,e;) = a. Thus, for every ¢ > 1, we have
z,yeN
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lulgy < , for all w € D(Q). (2.1)

Definition 2.1. We say that u € Dé’?(Q) is a weak solution of the problem
(Piy), i = 1,2 if it verifies

>/

for all ¢ € Dé’?(ﬂ), where h(t) = 0 in problem (P1y) and h(t) = [t|* ~2t in
problem (P2)).
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dr — )\/ |u|1"%up do — / h(u)¢ dz =0, (2.2)
Q Q

If a function v € Déj(ﬂ) () L () satisfies (2.2), then u is a strong solution
of the problem (Piy). From [1, Lemma 4.1] and [17, Theorem 4], weak solutions
of problem (Piy), ¢ = 1,2 are strong solutions.

We will look for solutions of (Piy), i = 1,2 by finding critical points of the
C'-functional T : Dé’y(ﬂ) — R given by

pi
/1 Ou dx—)\}/|u|q dx—/H(u) dz,
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only in the case h(t) = 0 and h(t) = [t|* ~2t, where H(t / h(T
Note that

N
’u>¢=;/ﬂ

for all ¢ € Dé’? (). Hence critical points of I are weak solutions for (Piy), i =1, 2.
In order to use variational methods, we first derive some results related to
the Palais-Smale compactness condition.

Ou [P~ du d¢ 2
oz, 9%, 9z, dx — )\/Q |u|T“u¢ dx —/Qh(u)gzﬁ dz,

We say that a sequence (u,) C Dé’?(Q) is a Palais-Smale sequence for the
functional I if

I(un) — ¢ and ||’ (u)]| — 0 in (DL (Q)), (2.3)

for some ¢, € R.
If (2.3) implies the existence of a subsequence (u,,) C (u,) which converges

in Dé’?(Q), we say that I satisfies the Palais-Smale condition. If this strongly
convergent subsequence exists only for some d values, we say that I verifies a local
Palais-Smale condition.

3 Abstract results

We will start by considering some basic notions on the Krasnoselskii genus which
we will use in the proof of our main results.

Let E be a real Banach space. Let us denote by 2 the class of all closed
subsets A C E \ {0} that are symmetric with respect to the origin, that is, u € A
implies —u € A.

Definition 3.1. Let A € . The Krasnoselskii genus v(A) of A is defined as being
the least positive integer k such that there is an odd mapping ¢ € C(A,R*) such
that ¢(x) # 0 for all x € A. If k does not exist we set y(A) = co. Furthermore, by
definition, v(0) = 0.

In the sequel we will establish only the properties of the genus that will be
used through this work. More information on this subject may be found in the
references [2], [12], [13] and [18].

Proposition 3.2. Let A and B be sets in 2.

i) If there exists an odd application ¢ € C(A, B) then v(A) < y(B).

1) If there exists an odd homeomorphism ¢ : A — B then v(A) = ~(B).

1i) If A is a compact set, then there exists a neighborhood K € A of A such
4) = ().

0) If4(B) < oo, then 1(A\B) > ~(A) — 1(B).

(
(
(i
that y(
(i
(v) If y(A) > 2, then A has infinitely many points.



Proposition 3.3. Let E = RY and 99 be the boundary of an open, symmetric
and bounded subset Q@ C RN with 0 € Q. Then v(9§) = N.

Corollary 3.4. v(SN=1) = N where SN~ is a unit sphere of RV.
We now establish a result due to Clarke [19].

Theorem 3.5. Let J € CH(X,R) be a functional satisfying the Palais-Smale

condition. Furthermore, let us suppose that

Aq) J is bounded from below and even;

Ag) there is a compact set K € A such that v(K) = k and sup J(z) < J(0).
zeK

Then J possesses at least k pairs of distinct critical points and their corresponding
critical values c; are less than J(0).
4 Subcritical case

In this section we study some properties related to the functional I : Dé’?(Q) — R,

given by
Mo i 1
I(u) = /f dm—)\f/uqu.
(w) ; QP q Q| |

The next two lemmas are true for ¢ € (1,py). In [11] the authors showed
that I is coercive when ¢ € (p1,pn), by using the boundedness of levels sets
I"={ue Dé’ﬁ (Q) : I(u) < b}. In the following lemma we will show this same
fact for ¢ € (1, pn) with simpler arguments.

ou
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Lemma 4.1. [ is bounded from below.

Proof. We will show that I is coercive. In fact, suppose by contradiction that

— oo for all 7 €
Pi

u
|lu|| = oo. Unfortunately, we can not to assure that 3
L

{1,..., N}. Hence, we will consider two cases.
If |ul, is bounded, then we have already I(u) — oo. On the other hand, if
|ulg = oo then, by using Holder’s inequality and (2.1), we conclude that

Moreover, for some ¢ < p; fixed, we have

q
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1 pi
I(u) > C/\

> - dx.
p;

DPi

Tt follows from (4.1) that I(u) — co. In any case, I is coercive and, therefore, I is
bounded from below. [ ]



Lemma 4.2. I satisfies the (PS) condition.
Proof. Let (u,) be a sequence in Dé’?(ﬂ) such that

I(u,) = C and I'(u,) — 0.

Since I is coercive, we conclude that (u,) is bounded in Dé’?(ﬂ). Thus,
passing to a subsequence, if necessary, we have

Up, — u in Dé’?(Q),

u, = u in L7(Q) with o € [1,p"),

and
up(z) = u(z) a.ein Q.

Thus, from convergence in L7(Q2) we get

/ |tn|? dz — / [t |9 2w dz = 0,(1), (4.2)
Q Q

and from weak convergence

N pi—2 N
Z/ ou ou Ouy, de Z/
i—1 Q axz 31'1 3 Q

ox;
7 1

Pi

ou
axi
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Hence, from (4.3) we obtain
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From (4.2), we derive

0<(JZ

where C), is a constant which appears in the standard inequality in R given by

dx_;/ﬂ

Pi

‘9“" < I () un — I (un)u + 0 (1),
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ifp>2or
Cp|$_y|2

P72z — |y %y) (z — —_—
(|| yl”"y)( y)2(|x‘+|y|)2_p,

ifl<p<2.
Thus, we conclude that u, — u in Dy F( Q) and the proof is complete. H

4.1 Proof of Theorem 1.1

Let Xy = span{es,ea,...,ex} be a subspace of Dé’?(Q) with dim X} = k. Note
that Xy is continuously embedded in L9(2). Thus, the norms of Dé’? () and
L1(Q) are equivalent on X} and there exists a positive constant C(k) which
depends on k, such that
—C(k)||ul|? > 7/ |ul? de, for all ue Xj.
Q

Thus we conclude that
N
< =
<y o],

Let 0< R<1landue€ Dé’?(ﬂ) be such that ||u|| < R. Thus

—/\C( )*IIUH‘?

1 1 1 1
I(u) < —||ullPr = AC(k)—=||ul|? = ||ul|? | —||u]|P*™7 = ANC(k)-
()7p1|| | ()q|| 1= [Jul Ln” | ()q

1

Choosing R < min {1, A (%) plq} we have

I(u) < R? [1

1
RPr—1 _\C(k)-|< 0=1(0),
P1 ()Q] ©)

for all u € K = {u € X}, : ||ul]| = R}. This inequality implies

sup I(u) < 0=1I(0).
ueK

Since X}, and R* are isomorphic and K and S*~! are homeomorphic, we conclude
that v(k) = k. Moreover, I is even. By Clarke’s theorem (Theorem 3.5), I has at
least k pairs of different critical points. Since k is arbitrary, we found infinitely
many critical points of I. ]



4.2 Proof of Theorem 1.2

Before of the proof, we will need the following lemma.

PN
i=1,...,N—1%.

PN

Lemma 4.3. Let A be the set defined by

ou
8(Ei

pi

ou
< | 2
- 8xN

A= {u e D7 (Q)\{0} : ‘

Pi

For each compact set K C Dé’F(Q)\{O}, there exists tixr > 0 such that tK C A
for allt >ty , where tK = {tu:u € K}.

Proof. By using (2.1), we define the continuous functions h; : Dé’?(ﬂ)\{O} - R
by

‘@ Di
6951- .
hi(u) = Tf;N ic{l,...,N—1}.
02N |y
Since K is compact, there exists u; € K such that h;(u) < h;(u;) for all u € K.
1
Define still ¢; := [h;(u;)]P~ 7, h;(u;) = | ax 1hi(ui) and choose tx = t;.

Thus, if ¢ > tx we have t > t; and tP¥N~Pi > t#¥7P" =}, (u;). Consequently,

ﬂpi
O Pi PN —Pi
o PN <t 5
O PN
and 5 . 5 o
t ‘ t
()™ 90 ™ e K andVie{1,..., N —1}.
83’:1‘ Pi 8%‘]\[ PN

Finally, we are ready to prove Theorem 1.2 .

Proof of Theorem 1.2: In a similar way to the previous theorem, for each
k € N, we consider a k-dimensional subspace X = span{ey,ea, ..., ey} of Dé’?(Q)7
continuously embedded in LP~ (). This is, there exists a positive constant C(k)
which depends on k, such that

ou
dzy

—C(k)

> —|ulpy, forall ue Xg. (4.4)
PN

Denoting by Sk the unit sphere of X}, and noting that S; C D(l)"? (\{0} is
a compact set, it follows from previous lemma that there exists ¢; > 0 such that
tSy C A, for all t > t;. Thus, for each u € Sk, we have

PN k) | Ou
A
8$N

q

PN q PN



and so

ou | (N]ou P Ok
i < |24 (X \ RGN (4.5)
awN PN p 8xN PN q
From (2.1) we conclude that @ := min |—| > 0. Hence,
u€ELy Sk BxN PN
N o0 C(k
I(u) < af (ti” 7_ <))\> <0,
p q
when A > A\ = T)g](\;) thN 9. Therefore,

sup Iy <0, VA > A,
tr Sk

with (£ Sk) = k. Arguing as in the proof of Theorem 1.1, the result follows from
Clarke’s Theorem (Theorem 3.5). n

5 Ciritical case

Since I is not bounded from below, in the critical case, to apply genus theory,
we will need to make a truncation in the functional I. In fact, the idea is to get
a truncated functional J such that critical points u of J with J(u) < 0 are also
critical points of 1.

However, the anisotropy of (P2)) becomes our job somewhat more
complicated. To overcome the difficulties , we need to consider separately the
cases ||ul]| <1 and [Ju]| > 1 in the building of J.

Case 1: |ul| < 1.

<1lforallie{l,...,N}, and consequently
pi

In this case, we have

Zq

Ppi

pi

aﬂl‘i

ou
8xi

PN ou
S ‘

Pi
Hence

ou
al’i

L 1 .
—)\f/ |ul? dx — —*/ |u|P dx.
pi qJa p Q

From continuous embedding,

1N
I(u) > —
Wz

/ ful* dz < Cllul®, s € [L,p"]
Q
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From previous inequality we obtain

C .
2 Ti\lﬂll”N = AC|[ul|? = Calul” = g([[ul), (5-1)

I(u)
where g(t) = gtp’\’ — A\Ct9 — Cot?”.
PN

So, there exists A* > 0 such that, if A € (0, A\*), then g attains its positive
maximuim.

We denote by 0 < Ro(A) < Ryi(A) the unique two roots of g. The next lemma
is essential to construct the truncated functional.

Lemma 5.1. Ry(A) — 0 as A — 0.
Proof. Indeed, from g(Rp(A)) = 0 and ¢'(Ro(A)) > 0, we have

%RO(A)”N = ACRo(\)? + CoRo (AP (5.2)
N
and )

C1Ro(M)PY =1 > ACqR(N)"! + Cop*Ro(\)P Y, (5.3)

for all A € (0, A*). From (5.2), we conclude that Ry(\) is bounded. Suppose that
Ro(/\) — Ry >0as A\ —0. Then,

C . _ .
~LRPN — CLRP and C1 RPN ' > Cop* R T,
PN
a contradiction, because p* > py. Therefore Ry = 0. ]

Now we consider the following truncation in the functional I:
From Lemma 5.1, we have Ry(A) < 1 for small A. So Ry(A) < min{R;(A),1} and
we can take ¢ € C§°([0,+00)), 0 < ¢(t) < 1, for all ¢ € [0, +00), such that

[ 1,t€]0,Ro(N)],
o(t) = { 0,te [min({)Rl()\),l},'f‘OO)'

We define the functional

N
J(u):;/ﬂl

ou
83%

Pi 1 1 .
de — A= [ |u|? dw—qﬁ(HuH)—* |u|P dz.
q.Jq P Ja

P

Note that J € Cl(Dé’?(Q),R) and, as in (5.1), J(u) > g(||ul), for all
u € Dé’?(ﬂ) with [Ju|| < 1, where

_G

. P — ACt? — Cop(t)tP” >0, V t € (Ro(A), min[R1(N),1}].  (5.4)
N

g(t)

11



By definition, if ||u|| < Ro(A) < min{R1(A),1} then J(u) = I(u). Once we
will obtain critical points u of J with J(u) < 0, to show that these critical points
verify |lul| < Rp(A) is important to ensure that J(u) > 0 when |Ju| > 1.

In fact, suppose just for a moment that J(uw) > 0 when ||u|| > 1. Let @ be a
critical point of J such that

J(w) < 0. (5.5)

So ||@|] < 1. If min{R;(X),1} = 1, follows from (5.4) and (5.5) that ||| < Ro(N).
On the other hand, if min{R;(\),1} = R1(\), we conclude again from (5.4), (5.5)
and definition of J that ||@| < Ro(A). It remains to prove that J(u) > 0 when
lul| > 1.

Case 2: ||ul| > 1.

Note that in this case we have ¢(||ul|) = 0, and there exists i = i(u) € {1,2,...,N}

such that Ou > % So,
Oz |,
pi
N :
1]1oulP 1
J = - A ule
w = b |
- 1| 0u pl_g ‘Bu 1
S P Iz Di q Oz Di
= G )
axi Di
where g; : [L/N,00) — R is defined by
1 C
gi(t) = —tPi — =X\, i=1,...,N,
Di q

which has a global minimum point at ¢; = (C’)\)Pi%q and

git:) = (CN)7i =7 (1 - 1) < 0.

pi q

Observe that g;(t) > 0 if, and only if, ¢t > (CTP)\)TI*Q Hence, to ensure that

. . . q *
{Iznﬁn gi(t) > 0, we take \* < ing CoNv—T Therefore, for each A € (0, \*)
1<i<N

we have J(u) > 0 for all ||u| > 1. Moreover, we conclude that the functional J is
coercive and bounded from below.

Now, we will show that J satisfies the local Palais-Smale condition. For this,
we need the following technical result.

12



Lemma 5.2. Let (uy) C Dé’?(ﬂ) be a bounded sequence such that
I(uy) — ¢ and I'(u,) — 0.
If

c < (1 _ 1) gp"/ (0" —pN)
PN P
1_ 1

(7 - —) Q7 10"/ (" —a) P/ (p"—q) a/(p"—q)

- [ e px ] KQ) _ (q) ]Ap*/wq)

-5 )
PN P

hold, then there exists A* > 0 such that, for all A € (0, \*), we have that, up to a

subsequence, (uy,) is strongly convergent in Dé’?(Q).

Proof: Using a version of Lions’s concentration compactness-principle (see [15,
Corollary 1 of Lemma 5]), we obtain at most a countable index set A, sequences
(z;) C R, (b;),(a;) C (0,00), such that

N s N ;

8’un Pi ou Pi " " .

— = —1 4p and |un|? — |ulP +v (weak*-sense of measures
Pt 0x; — ox; ’
i= i=
where

> ijémj, v= Zaﬁ%, Sa];N/p* < b;,
jeA JEA
for all j € A and 6., is the Dirac mass at z; € Q.
Now, for every o > 0, we set 1, () := ¥((z—x;)/0) where ¢ € C§°(RY,[0,1])
is such that 1 = 1 on B1(0), ¥ = 0 on RN \ By(0) and |V¢)|s < 2. Since (¥,uy,)
is bounded, I’ (uy)(ou,) — 0, that is,

Pi

Ouy,
axi

Oou,
Bxi

pi—2
Ouy, 09,

N
de = —

N
AL

+ )\/ [un| %1, dac+/ 1/19|un\p* dx + 0, (1).
Q Q

Arguing as [4], we can prove that

N
o ngr;o; /,

Moreover, since u, — w in L7(2) and 1, has compact support, we can let
n — oo in the above expression to obtain

[ vato = [ v

13
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Letting ¢ — 0 we conclude that a; > b;. Since Sa?N/p* < b; we have that

P/ (pr=pN) < aj. (5.6)

Now we shall prove that the above expression cannot occur, and therefore the
set A is empty. Indeed, arguing by contradiction, let us suppose that the inequality
(5.6) holds for some j € A. Thus,

c = I(uy)— ]%I/(un)un +o0,(1).

Hence

(pN )/%Iunlp dr — A <—)/ un|? dz < ¢+ 0, (1).

Letting n — oo, we get

<1 — 1) / lulP” do + (1 — 1) §p"/(p"—pN)
py P Ja pN o P*
A

1 1
- ()/u|q dz < c.
9 PN/ Ja
By Holder’s inequality

(1 — 1)/ lulP” de + <1 1) SP"/(p"—pN)
N P*) Ja PN P
1 1 q/p”
- A( > |Q| (P —a)/P" (/ |ulP” dx) <e.
q PN

0-(-3)¢ 2 -2)

This function attains its absolute minimum, for £ > 0, at the point

. [q)\ (7 — —) |Q\ }1/@ —q)-
v (5 - )

Let

Thus, we conclude that

(1 — ) S —pn)/p
PN P*

1 1 P*:‘Z - * * *_ *_

(5= ) 1915 s = e g \w 00 gl N
(L_%) P* P

PN p

< e
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But this is a contradiction. Thus A is empty and it follows that w, — v in
LP" (). Arguing as in the proof of Lemma 4.2, we find

l[un —ull = on(1).

By the Lemma 5.2 we conclude, for A > 0 sufficiently small, that

(1 _ 1> S —pN)/pP
PN p”
1 1 ”;7:‘1 % % w
- {(q pN)|Q| r/(p q)[(q>p /(@ q)_(q>q/(p Q)})\p*/(p*_q)>0

(; _ L) p* p*
PN p*

and, hence, if (u,) is a sequence bounded such that I(u,) — ¢, I'(u,) — 0 with
¢ < 0, then (u,) has a subsequence convergent.

Lemma 5.3. If J(u) < 0, then ||ul]] < Ro(A), for all i € {1,...,N} and
J(v) = I(v), for all v in a small enough neighborhood of w. Moreover, J verifies a
local Palais-Smale condition for ¢ < 0.

Proof: Since A € (0, \*) then J(u) > 0 whenever ||u|| > 1. Hence, if J(u) < 0 we
have |Ju|| < 1 and consequently g(||u||) < J(u) < 0. Therefore, ||u|| < Ro(A) and
J(u) = I(u). Moreover, we conclude that J(v) = I(v), for all ||[v—ul|| < Ro(N\)—||ul|.
Moreover, if (u,) is a sequence such that J(u,) — ¢ < 0 and J'(u,) — 0, for n
sufficiently large, I(u,) = J(u,) — ¢ < 0 and I'(u,) = J'(un) — 0. Since J
is coercive, we get that (u,) is bounded in D{'? (€2). From Lemma 5.2, for \
sufficiently small,

c < (1 — 1) S —pn)/p

pN  P*
(l - i) Q7 10"/ 0" ~a) P/ (p"—q) a/(p"—q)
N DR C e
(,TN - F) p p
and, hence, up to a subsequence, (u,) is strongly convergent in Dé’?(Q). [ |

Now, we will construct an appropriate mini-max sequence of negative critical
values for the functional J. Thus, for each real number ¢, we consider the set

Jc={ue Dé’?(Q) s J(u) < —e} e A
Lemma 5.4. Given k € N, there exists € = (k) > 0 such that

V() = k.
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Proof: Since
N

J(u) < iz

P

Pi 1
—AaC(k)IIUIlﬂ

Pi

ou
8581‘

we can argue as proof of Theorem 1.1 and conclude, there exists € = €(k) such
that

V() = k.
|
We define now, for each k£ € N, the sets
I ={CcDYP(Q):Cent and +(C) > kb,
Ke={ue D) (Q):J'(u)=0 and J(u) = c}
and the number
Ck = Cléllﬁk sup J(u).
Lemma 5.5. Given k € N, the number ¢y, is negative.
Proof: It is sufficient to use Lemma 5.4 and to argument as in [4].
|

The next Lemma allows us to prove the existence of critical points of J. The
proof is very similar to that in [4], we omit it here.

Lemma 5.6. If ¢ = ¢y = k41 = ... = Cpyr for some r € N, then there exists
A* > 0 such that
V(K. >r+1,

for X e (0, X%).

5.1 Proof of Theorem 1.3

If —co<ecp <ep <. < < ... <0 with ¢; # ¢j, since each ¢y, is critical value
of J, the we obtain infinitely many critical points of J and, hence problem (P2y)
has infinitely many solutions.

On the other hand, if there are two constants ¢y = cgy,, then ¢ = ¢ =
Ck+1 = ... = Cktr and from Lemma 5.6, there exists A* > 0 such that

VE)>r+1>2

for all A € (0,\*). From Proposition 3.2, K, has infinitely many points, that is,
problem (P2,) has infinitely many solutions. n
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