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Abstract

In this work we show some multiplicity results for the anisotropic equation

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= gλ(u) in Ω, and u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, 1 < p1 ≤ p2 ≤ . . . ≤ pN
and λ is a positive parameter. Using genus theory, we study the subcritical
case gλ(u) = λ|u|q−2u with q ∈ (1, pN ) and the critical case gλ(u) =
λ|u|q−2u + |u|p

∗−2u with q ∈ (1, p1) and p∗ = Np/(N − p), with p the
harmonic mean.

2000 Mathematics Subject Classification : 35J25, 35B65, 35J70 and
46E35.
Key words: Anisotropic operator, Genus theory, Subcritical or critical
growth.

∗Supported by PROCAD/CASADINHO: 552101/2011-7, CNPq/PQ 301242/2011-9 and
CNPQ/CSF 200237/2012-8
†Supported by CAPES/PDSE - Brazil - 7155123/2012-9
‡Supported by MICINN and FEDER under grant MTM 2012-31304

1



1 Introduction

In this paper we are concerned with the multiplicity of nontrivial solutions for the
following classes of nonlinear anisotropic problems

(P1λ)


−

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= λ|u|q−2u in Ω,

u ∈ D1,−→p
0 (Ω), q ∈ (1, pN )

and

(P2λ)


−

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= λ|u|q−2u+ |u|p

∗−2u in Ω,

u ∈ D1,−→p
0 (Ω), q ∈ (1, p1),

where Ω is a bounded smooth domain in RN , N ≥ 3, λ is a positive parameter,

1 < p1 ≤ p2 ≤ . . . ≤ pN ,
N∑
i=1

1

pi
> 1,

D1,−→p
0 (Ω) := {u ∈ Lp

∗
(Ω) :

∂u

∂xi
∈ Lpi(Ω); i = 1, ..., N},

−→p = (p1, ..., pN ), and

p∗ :=
N(

N∑
i=1

1

pi

)
− 1

=
Np

N − p
,

where p denotes the harmonic mean p = N/

(
N∑
i=1

1

pi

)
.

Throughout all the paper, we assume that

pN < p∗.

Observe that the anisotropic operator is a generalization of the Laplacian
one. Indeed, when pi = 2 for all i = 1, ..., N , then

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= ∆u.
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A considerable effort has been devoted during the last years to the study
anisotropic problems. With no hope to be thorough, let us mention, for example,
[1], [9], [10], [11], [15], [16], [17], [20], [21], [22], [23], [24], [26], [27] and references
given there.

This is greatly justified in view of two basic aspects of mathematical research.
The first one is that this class of problems has a rich physical motivation. It
appears, for instance, in biology, see [7] and [8], as a model describing the spread
of an epidemic disease in heterogeneous environments. It also emerges, see [3] and
[5], from the mathematical description of the dynamics of fluids with different
conductivities in different directions. To application in image processing, see [25].

The second aspect of the relevance of anisotropic problems is related to the
mathematical techniques used to approach it. Sometimes, some refined estimates
are needed due to different orders of derivation of the operator in different
directions.

In this paper we are interested in giving some multiplicity results, which
complete the existing in the literature. With respect to (P1λ), the main results
are:

Theorem 1.1. Assume that q ∈ (1, p1). Then, problem (P1λ) has infinitely many
solutions, for all λ ∈ (0,+∞).

Theorem 1.2. Assume that q ∈ [p1, pN ). Then, for each k ∈ N, there exists λk > 0
such that problem (P1λ) has at least k pairs of solutions, for all λ ∈ (λk,+∞).

With respect to (P2λ) we have:

Theorem 1.3. Assume that q ∈ (1, p1). Then, there exists λ∗ > 0 such that
problem (P2λ) has infinitely many solutions, for all λ ∈ (0, λ∗).

In some sense our paper is a natural continuation of the studies initiated
in [1], [11] and [17] and it completes the results obtained there. Indeed, in [17],

the authors studied important properties on the Banach space D1,−→p
0 (Ω) and they

showed that problem (P1λ) with q ∈ (pN , p
∗) has one solution for all λ > 0.

For the case q ∈ (p1, pN ), it was proved in [11] that problem (P1λ) possesses
at least one solution for large λ and no solution when λ is small.

In [1], the authors showed that problem (P2λ) has one solution when
q ∈ (1, p1) and λ small and when q ∈ (pN , p

∗) and λ is large.
In order to prove our results, mainly we have used variational methods. Thus,

for Theorems 1.1 and 1.2 we utilize notions on the Krasnoleskii genus and Clarke’s
Theorem. The proof of the Theorem 1.3 is more complicated. We have used a
similar idea to that of [4], where the authors showed a multiplicity result for
problem

(GP )


−∆pu = λ|u|q−2u+ |u|p∗−2u in Ω,

u ∈W 1,p
0 (Ω), q ∈ (1, p),
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see also [14], where a nonlocal operator is considered. However, due to the
anisotropic operator, we need to prove new bounds for the truncated functional,
see Section 5 for details.

The plan of this paper is as follows. In Section 2, we write our problem in
a variational framework. In Section 3, we recall some properties of genus theory
and Clarke’s Theorem. We study in Section 4 the subcritical case. Finally, in the
Section 5, we analyze the critical case.

2 Variational framework

It is well known that D1,−→p
0 (Ω), which is the completion of the space D(Ω) with

respect to the norm

‖u‖ =

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

,

is a reflexive Banach space and is continuously embedded in Lp
∗
(Ω). Here |.|pi is

the usual norm in Lpi(Ω).
Since Ω is a bounded domain of RN , from [17, Theorem 1], the continuity

of the embedding D1,−→p
0 (Ω) ↪→ Ls(Ω), for all s ∈ [1, p∗] relies on a well-known

Poincaré-type inequality. More precisely, denoting by e1, ..., en the canonical
basis of RN , assume that Ω has width a > 0 in the direction of ei, namely
sup
x,y∈Ω

(x− y, ei) = a. Thus, for every q ≥ 1, we have

|u|q ≤
aq

2

∣∣∣∣ ∂u∂xi
∣∣∣∣
q

, for all u ∈ D(Ω). (2.1)

Definition 2.1. We say that u ∈ D1,−→p
0 (Ω) is a weak solution of the problem

(Piλ), i = 1, 2 if it verifies

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

∂φ

∂xi
dx− λ

∫
Ω

|u|q−2uφ dx−
∫

Ω

h(u)φ dx = 0, (2.2)

for all φ ∈ D1,−→p
0 (Ω), where h(t) = 0 in problem (P1λ) and h(t) = |t|2∗−2t in

problem (P2λ).

If a function u ∈ D1,−→p
0 (Ω)

⋂
L∞(Ω) satisfies (2.2), then u is a strong solution

of the problem (Piλ). From [1, Lemma 4.1] and [17, Theorem 4], weak solutions
of problem (Piλ), i = 1, 2 are strong solutions.

We will look for solutions of (Piλ), i = 1, 2 by finding critical points of the

C1-functional I : D1,−→p
0 (Ω)→ R given by

I(u) =

N∑
i=1

∫
Ω

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx− λ1

q

∫
Ω

|u|q dx−
∫

Ω

H(u) dx,

4



only in the case h(t) = 0 and h(t) = |t|2∗−2t, where H(t) =

∫ t

0

h(τ) dτ .

Note that

I ′(u)φ =

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

∂φ

∂xi
dx− λ

∫
Ω

|u|q−2uφ dx−
∫

Ω

h(u)φ dx,

for all φ ∈ D1,−→p
0 (Ω). Hence critical points of I are weak solutions for (Piλ), i = 1, 2.

In order to use variational methods, we first derive some results related to
the Palais-Smale compactness condition.

We say that a sequence (un) ⊂ D1,−→p
0 (Ω) is a Palais-Smale sequence for the

functional I if

I(un)→ c∗ and ‖I ′(un)‖ → 0 in (D1,−→p
0 (Ω))′, (2.3)

for some c∗ ∈ R.
If (2.3) implies the existence of a subsequence (unj

) ⊂ (un) which converges

in D1,−→p
0 (Ω), we say that I satisfies the Palais-Smale condition. If this strongly

convergent subsequence exists only for some d values, we say that I verifies a local
Palais-Smale condition.

3 Abstract results

We will start by considering some basic notions on the Krasnoselskii genus which
we will use in the proof of our main results.

Let E be a real Banach space. Let us denote by A the class of all closed
subsets A ⊂ E \ {0} that are symmetric with respect to the origin, that is, u ∈ A
implies −u ∈ A.

Definition 3.1. Let A ∈ A. The Krasnoselskii genus γ(A) of A is defined as being
the least positive integer k such that there is an odd mapping φ ∈ C(A,Rk) such
that φ(x) 6= 0 for all x ∈ A. If k does not exist we set γ(A) =∞. Furthermore, by
definition, γ(∅) = 0.

In the sequel we will establish only the properties of the genus that will be
used through this work. More information on this subject may be found in the
references [2], [12], [13] and [18].

Proposition 3.2. Let A and B be sets in A.
(i) If there exists an odd application ϕ ∈ C(A,B) then γ(A) ≤ γ(B).
(ii) If there exists an odd homeomorphism ϕ : A→ B then γ(A) = γ(B).
(iii) If A is a compact set, then there exists a neighborhood K ∈ A of A such

that γ(A) = γ(K).
(iv) If γ(B) <∞, then γ(A\B) ≥ γ(A)− γ(B).
(v) If γ(A) ≥ 2, then A has infinitely many points.
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Proposition 3.3. Let E = RN and ∂Ω be the boundary of an open, symmetric
and bounded subset Ω ⊂ RN with 0 ∈ Ω. Then γ(∂Ω) = N .

Corollary 3.4. γ(SN−1) = N where SN−1 is a unit sphere of RN .

We now establish a result due to Clarke [19].

Theorem 3.5. Let J ∈ C1(X,R) be a functional satisfying the Palais-Smale
condition. Furthermore, let us suppose that
A1) J is bounded from below and even;
A2) there is a compact set K ∈ A such that γ(K) = k and sup

x∈K
J(x) < J(0).

Then J possesses at least k pairs of distinct critical points and their corresponding
critical values cj are less than J(0).

4 Subcritical case

In this section we study some properties related to the functional I : D1,−→p
0 (Ω)→ R,

given by

I(u) =

N∑
i=1

∫
Ω

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx− λ1

q

∫
Ω

|u|q dx.

The next two lemmas are true for q ∈ (1, pN ). In [11] the authors showed
that I is coercive when q ∈ (p1, pN ), by using the boundedness of levels sets

Ib = {u ∈ D1,−→p
0 (Ω) : I(u) ≤ b}. In the following lemma we will show this same

fact for q ∈ (1, pN ) with simpler arguments.

Lemma 4.1. I is bounded from below.

Proof. We will show that I is coercive. In fact, suppose by contradiction that

‖u‖ → ∞. Unfortunately, we can not to assure that

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

→ ∞ for all i ∈

{1, . . . , N}. Hence, we will consider two cases.
If |u|q is bounded, then we have already I(u) → ∞. On the other hand, if

|u|q →∞ then, by using Holder’s inequality and (2.1), we conclude that∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

→∞, q ≤ pi. (4.1)

Moreover, for some q < pi fixed, we have

I(u) ≥ 1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

−C
q
λ

∣∣∣∣ ∂u∂xi
∣∣∣∣q
pi

dx.

It follows from (4.1) that I(u)→∞. In any case, I is coercive and, therefore, I is
bounded from below.
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Lemma 4.2. I satisfies the (PS) condition.

Proof. Let (un) be a sequence in D1,−→p
0 (Ω) such that

I(un)→ C and I ′(un)→ 0.

Since I is coercive, we conclude that (un) is bounded in D1,−→p
0 (Ω). Thus,

passing to a subsequence, if necessary, we have

un ⇀ u in D1,−→p
0 (Ω),

un → u in Lσ(Ω) with σ ∈ [1, p∗),

and
un(x)→ u(x) a.e in Ω.

Thus, from convergence in Lσ(Ω) we get∫
Ω

|un|q dx−
∫

Ω

|un|q−2unu dx = on(1), (4.2)

and from weak convergence

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

∂un
∂xi

dx−
N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx = on(1). (4.3)

Hence, from (4.3) we obtain

0 ≤ Cp

N∑
i=1

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣pi
pi

≤
N∑
i=1

∫
Ω

(∣∣∣∣∂un∂xi

∣∣∣∣pi−2
∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2
∂u

∂xi

)(
∂un
∂xi
− ∂u

∂xi

)
dx

=

N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣pi dx− N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣pi−2
∂un
∂xi

∂u

∂xi
dx+ on(1).

From (4.2), we derive

0 ≤ Cp
N∑
i=1

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣pi
pi

≤ I ′(un)un − I ′(un)u+ on(1),

where Cp is a constant which appears in the standard inequality in R given by

(|x|p−2x− |y|p−2y)(x− y) ≥ Cp|x− y|p,
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if p ≥ 2 or

(|x|p−2x− |y|p−2y)(x− y) ≥ Cp|x− y|2

(|x|+ |y|)2−p ,

if 1 < p < 2.

Thus, we conclude that un → u in D1,−→p
0 (Ω) and the proof is complete.

4.1 Proof of Theorem 1.1

Let Xk = span{e1, e2, ..., ek} be a subspace of D1,−→p
0 (Ω) with dimXk = k. Note

that Xk is continuously embedded in Lq(Ω). Thus, the norms of D1,−→p
0 (Ω) and

Lq(Ω) are equivalent on Xk and there exists a positive constant C(k) which
depends on k, such that

−C(k)‖u‖q ≥ −
∫

Ω

|u|q dx, for all u ∈ Xk.

Thus we conclude that

I(u) ≤
N∑
i=1

1

pi

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

−λC(k)
1

q
‖u‖q.

Let 0 < R < 1 and u ∈ D1,−→p
0 (Ω) be such that ‖u‖ ≤ R. Thus

I(u) ≤ 1

p1
‖u‖p1 − λC(k)

1

q
‖u‖q = ‖u‖q

[
1

p1
‖u‖p1−q − λC(k)

1

q

]
.

Choosing R < min

{
1, λ

(
C(k)p1
q

) 1
p1−q

}
we have

I(u) < Rq
[

1

p1
Rp1−q − λC(k)

1

q

]
< 0 = I(0),

for all u ∈ K = {u ∈ Xk : ‖u‖ = R}. This inequality implies

sup
u∈K

I(u) < 0 = I(0).

Since Xk and Rk are isomorphic and K and Sk−1 are homeomorphic, we conclude
that γ(k) = k. Moreover, I is even. By Clarke’s theorem (Theorem 3.5), I has at
least k pairs of different critical points. Since k is arbitrary, we found infinitely
many critical points of I.
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4.2 Proof of Theorem 1.2

Before of the proof, we will need the following lemma.

Lemma 4.3. Let A be the set defined by

A =

{
u ∈ D1,−→p

0 (Ω)\{0} :

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

≤
∣∣∣∣ ∂u∂xN

∣∣∣∣pN
pN

, i = 1, . . . , N − 1

}
.

For each compact set K ⊂ D1,−→p
0 (Ω)\{0}, there exists tK > 0 such that tK ⊂ A

for all t ≥ tK , where tK = {tu : u ∈ K}.

Proof. By using (2.1), we define the continuous functions hi : D1,−→p
0 (Ω)\{0} → R

by

hi(u) =

∣∣∣ ∂u∂xi

∣∣∣pi
pi∣∣∣ ∂u∂xN

∣∣∣pN
pN

, i ∈ {1, . . . , N − 1}.

Since K is compact, there exists ui ∈ K such that hi(u) ≤ hi(ui) for all u ∈ K.

Define still ti := [hi(ui)]
1

pN−pi , hj(uj) := max
1≤i≤N−1

hi(ui) and choose tK = tj .

Thus, if t ≥ tK we have t ≥ ti and tpN−pi ≥ tpN−pii = hi(ui). Consequently,∣∣∣ ∂u∂xi

∣∣∣pi
pi∣∣∣ ∂u∂xN

∣∣∣pN
pN

≤ tpN−pi ,

and ∣∣∣∣∂(tu)

∂xi

∣∣∣∣pi
pi

≤
∣∣∣∣∂(tu)

∂xN

∣∣∣∣pN
pN

, ∀ u ∈ K and ∀ i ∈ {1, . . . , N − 1}.

Finally, we are ready to prove Theorem 1.2 .

Proof of Theorem 1.2: In a similar way to the previous theorem, for each

k ∈ N, we consider a k-dimensional subspace Xk = span{e1, e2, ..., ek} of D1,−→p
0 (Ω),

continuously embedded in LpN (Ω). This is, there exists a positive constant C(k)
which depends on k, such that

−C(k)

∣∣∣∣ ∂u∂xN
∣∣∣∣
pN

≥ −|u|pN , for all u ∈ Xk. (4.4)

Denoting by Sk the unit sphere of Xk and noting that Sk ⊂ D1,−→p
0 (Ω)\{0} is

a compact set, it follows from previous lemma that there exists tk > 0 such that
tSk ⊂ A, for all t ≥ tk. Thus, for each u ∈ tkSk, we have

I(u) ≤ N

p

∣∣∣∣ ∂u∂xN
∣∣∣∣pN
pN

− C(k)

q
λ

∣∣∣∣ ∂u∂xN
∣∣∣∣q
pN

,
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and so

I(u) ≤
∣∣∣∣ ∂u∂xN

∣∣∣∣q
pN

(
N

p

∣∣∣∣ ∂u∂xN
∣∣∣∣pN−q
pN

− C(k)

q
λ

)
. (4.5)

From (2.1) we conclude that α := min
u∈tkSk

∣∣∣∣ ∂u∂xN
∣∣∣∣
pN

> 0. Hence,

I(u) ≤ αq
(
N

p
tpN−qk − C(k)

q
λ

)
< 0,

when λ > λk = qN
pC(k) t

pN−q
k . Therefore,

sup
tkSk

Iλ < 0, ∀ λ ≥ λk,

with γ(tkSk) = k. Arguing as in the proof of Theorem 1.1, the result follows from
Clarke’s Theorem (Theorem 3.5).

5 Critical case

Since I is not bounded from below, in the critical case, to apply genus theory,
we will need to make a truncation in the functional I. In fact, the idea is to get
a truncated functional J such that critical points u of J with J(u) < 0 are also
critical points of I.

However, the anisotropy of (P2λ) becomes our job somewhat more
complicated. To overcome the difficulties , we need to consider separately the
cases ‖u‖ ≤ 1 and ‖u‖ ≥ 1 in the building of J .

Case 1: ‖u‖ ≤ 1.

In this case, we have

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

≤ 1 for all i ∈ {1, . . . , N}, and consequently

∣∣∣∣ ∂u∂xi
∣∣∣∣pN
pi

≤
∣∣∣∣ ∂u∂xi

∣∣∣∣pi
pi

.

.
Hence

I(u) ≥ 1

pN

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣pN
pi

−λ1

q

∫
Ω

|u|q dx− 1

p∗

∫
Ω

|u|p
∗
dx.

From continuous embedding,∫
Ω

|u|s dx ≤ C‖u‖s, s ∈ [1, p∗].

10



From previous inequality we obtain

I(u) ≥ C1

pN
‖u‖pN − λC‖u‖q − C2‖u‖p

∗
≥ g(‖u‖), (5.1)

where g(t) =
C1

pN
tpN − λCtq − C2t

p∗ .

So, there exists λ∗ > 0 such that, if λ ∈ (0, λ∗), then g attains its positive
maximum.

We denote by 0 < R0(λ) < R1(λ) the unique two roots of g. The next lemma
is essential to construct the truncated functional.

Lemma 5.1. R0(λ)→ 0 as λ→ 0.

Proof. Indeed, from g(R0(λ)) = 0 and g′(R0(λ)) > 0, we have

C1

pN
R0(λ)pN = λCR0(λ)q + C2R0(λ)p

∗
(5.2)

and
C1R0(λ)pN−1 > λCqR0(λ)q−1 + C2p

∗R0(λ)p
∗−1, (5.3)

for all λ ∈ (0, λ∗). From (5.2), we conclude that R0(λ) is bounded. Suppose that
R0(λ)→ R0 > 0 as λ→ 0. Then,

C1

pN
RpN0 = C2R

p∗

0 and C1R
pN−1
0 ≥ C2p

∗Rp
∗−1

0 ,

a contradiction, because p∗ > pN . Therefore R0 = 0.

Now we consider the following truncation in the functional I:
From Lemma 5.1, we have R0(λ) < 1 for small λ. So R0(λ) < min{R1(λ), 1} and
we can take φ ∈ C∞0 ([0,+∞)), 0 ≤ φ(t) ≤ 1, for all t ∈ [0,+∞), such that

φ(t) =

{
1 , t ∈ [0, R0(λ)],
0 , t ∈ [min{R1(λ), 1},+∞).

We define the functional

J(u) =

N∑
i=1

∫
Ω

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx− λ1

q

∫
Ω

|u|q dx− φ(‖u‖) 1

p∗

∫
Ω

|u|p
∗
dx.

Note that J ∈ C1(D1,−→p
0 (Ω),R) and, as in (5.1), J(u) ≥ g(‖u‖), for all

u ∈ D1,−→p
0 (Ω) with ‖u‖ < 1, where

g(t) =
C1

pN
tpi − λCtq − C2φ(t)tp

∗
≥ 0, ∀ t ∈ (R0(λ),min[R1(λ), 1}]. (5.4)
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By definition, if ‖u‖ ≤ R0(λ) < min{R1(λ), 1} then J(u) = I(u). Once we
will obtain critical points u of J with J(u) < 0, to show that these critical points
verify ‖u‖ < R0(λ) is important to ensure that J(u) ≥ 0 when ‖u‖ > 1.

In fact, suppose just for a moment that J(u) ≥ 0 when ‖u‖ > 1. Let u be a
critical point of J such that

J(u) < 0. (5.5)

So ‖u‖ ≤ 1. If min{R1(λ), 1} = 1, follows from (5.4) and (5.5) that ‖u‖ < R0(λ).
On the other hand, if min{R1(λ), 1} = R1(λ), we conclude again from (5.4), (5.5)
and definition of J that ‖u‖ < R0(λ). It remains to prove that J(u) ≥ 0 when
‖u‖ > 1.

Case 2: ‖u‖ > 1.

Note that in this case we have φ(‖u‖) = 0, and there exists i = i(u) ∈ {1, 2, . . . , N}

such that

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

≥ 1
N . So,

J(u) =

N∑
i=1

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

−λ1

q
|u|qq

≥ 1

pi

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

− C

q
λ

∣∣∣∣ ∂u∂xi
∣∣∣∣q
pi

= gi

(∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

)
,

where gi : [1/N,∞)→ R is defined by

gi(t) =
1

pi
tpi − C

q
λtq, i = 1, . . . , N,

which has a global minimum point at ti = (Cλ)
1

pi−q and

gi(ti) = (Cλ)
pi

pi−q

(
1

pi
− 1

q

)
< 0.

Observe that gi(t) ≥ 0 if, and only if, t ≥ (Cpiq λ)
1

pi−q . Hence, to ensure that

min
t≥ 1

N
1≤i≤N

gi(t) ≥ 0, we take λ∗ ≤ min
1≤i≤N

q

CpiNpi−q
. Therefore, for each λ ∈ (0, λ∗)

we have J(u) ≥ 0 for all ‖u‖ ≥ 1. Moreover, we conclude that the functional J is
coercive and bounded from below.

Now, we will show that J satisfies the local Palais-Smale condition. For this,
we need the following technical result.

12



Lemma 5.2. Let (un) ⊂ D1,−→p
0 (Ω) be a bounded sequence such that

I(un)→ c and I ′(un)→ 0.

If

c <

(
1

pN
− 1

p∗

)
Sp

∗/(p∗−pN )

−
[( 1

q −
1
pN

)
|Ω|

p∗−q
p∗(

1
pN
− 1

p∗

) ]p∗/(p∗−q)[(
q

p∗

)p∗/(p∗−q)
−
(
q

p∗

)q/(p∗−q) ]
λp

∗/(p∗−q)

hold, then there exists λ∗ > 0 such that, for all λ ∈ (0, λ∗), we have that, up to a

subsequence, (un) is strongly convergent in D1,−→p
0 (Ω).

Proof: Using a version of Lions’s concentration compactness-principle (see [15,
Corollary 1 of Lemma 5]), we obtain at most a countable index set Λ, sequences
(xj) ⊂ Ω, (bj), (aj) ⊂ (0,∞), such that

N∑
i=1

∣∣∣∣∂un∂xi

∣∣∣∣pi⇀ N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣pi+µ and |un|p

∗
⇀ |u|p

∗
+ν (weak∗-sense of measures),

where
µ ≥

∑
j∈Λ

bjδxj
, ν =

∑
j∈Λ

ajδxj
, Sa

pN/p
∗

j ≤ bj ,

for all j ∈ Λ and δxj
is the Dirac mass at xj ∈ Ω.

Now, for every % > 0, we set ψ%(x) := ψ((x−xj)/%) where ψ ∈ C∞0 (RN , [0, 1])
is such that ψ ≡ 1 on B1(0), ψ ≡ 0 on RN \ B2(0) and |∇ψ|∞ ≤ 2. Since (ψ%un)
is bounded, I ′(un)(ψ%un)→ 0, that is,

N∑
i=1

∫
Ω

ψ%

∣∣∣∣∂un∂xi

∣∣∣∣pi dx = −
N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣pi−2
∂un
∂xi

∂ψ%
∂xi

dx

+ λ

∫
Ω

|un|qψ% dx+

∫
Ω

ψ%|un|p
∗
dx+ on(1).

Arguing as [4], we can prove that

lim
%→0

[
lim
n→∞

N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣pi−2
∂un
∂xi

∂ψ%
∂xi

dx

]
= 0.

Moreover, since un → u in Lq(Ω) and ψ% has compact support, we can let
n→∞ in the above expression to obtain∫

Ω

ψ%dν ≥
∫

Ω

ψ%dµ.
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Letting %→ 0 we conclude that aj ≥ bj . Since Sa
pN/p

∗

j ≤ bj we have that

Sp
∗/(p∗−pN ) ≤ aj . (5.6)

Now we shall prove that the above expression cannot occur, and therefore the
set Λ is empty. Indeed, arguing by contradiction, let us suppose that the inequality
(5.6) holds for some j ∈ Λ. Thus,

c = I(un)− 1

pN
I ′(un)un + on(1).

Hence(
1

pN
− 1

p∗

)∫
Ω

ψ%|un|p
∗
dx− λ

(
1

q
− 1

pN

)∫
Ω

|un|q dx ≤ c+ on(1).

Letting n→∞, we get(
1

pN
− 1

p∗

)∫
Ω

|u|p
∗
dx +

(
1

pN
− 1

p∗

)
Sp

∗/(p∗−pN )

− λ

(
1

q
− 1

pN

)∫
Ω

|u|q dx ≤ c.

By Holder’s inequality

(
1

pN
− 1

p∗

)∫
Ω

|u|p
∗
dx +

(
1

pN
− 1

p∗

)
Sp

∗/(p∗−pN )

− λ

(
1

q
− 1

pN

)
|Ω|(p

∗−q)/p∗
(∫

Ω

|u|p
∗
dx

)q/p∗
≤ c.

Let

f(t) =

(
1

pN
− 1

p∗

)
tp

∗
− λ

(
1

q
− 1

pN

)
|Ω|

p∗−q
p∗ tq.

This function attains its absolute minimum, for t > 0, at the point

t0 =

[qλ( 1
q −

1
pN

)
|Ω|

p∗−q
p∗

p∗
(

1
pN
− 1

p∗

) ]1/(p∗−q)

.

Thus, we conclude that(
1

pN
− 1

p∗

)
S(p∗−pN )/p

−
[( 1

q −
1
pN

)
|Ω|

p∗−q
p∗(

1
pN
− 1

p∗

) ]p∗/(p∗−q)[(
q

p∗

)p∗/(p∗−q)
−
(
q

p∗

)q/(p∗−q) ]
λp

∗/(p∗−q)

≤ c.
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But this is a contradiction. Thus Λ is empty and it follows that un → u in
Lp

∗
(Ω). Arguing as in the proof of Lemma 4.2, we find

‖un − u‖ = on(1).

By the Lemma 5.2 we conclude, for λ > 0 sufficiently small, that(
1

pN
− 1

p∗

)
S(p∗−pN )/p

−
[( 1

q −
1
pN

)
|Ω|

p∗−q
p∗(

1
pN
− 1

p∗

) ]p∗/(p∗−q)[(
q

p∗

)p∗/(p∗−q)
−
(
q

p∗

)q/(p∗−q) ]
λp

∗/(p∗−q) > 0

and, hence, if (un) is a sequence bounded such that I(un) → c, I ′(un) → 0 with
c < 0, then (un) has a subsequence convergent.

Lemma 5.3. If J(u) < 0, then ‖u‖ < R0(λ), for all i ∈ {1, ..., N} and
J(v) = I(v), for all v in a small enough neighborhood of u. Moreover, J verifies a
local Palais-Smale condition for c < 0.

Proof: Since λ ∈ (0, λ∗) then J(u) ≥ 0 whenever ‖u‖ ≥ 1. Hence, if J(u) < 0 we
have ‖u‖ < 1 and consequently g(‖u‖) ≤ J(u) < 0. Therefore, ‖u‖ < R0(λ) and
J(u) = I(u). Moreover, we conclude that J(v) = I(v), for all ‖v−u‖ < R0(λ)−‖u‖.
Moreover, if (un) is a sequence such that J(un) → c < 0 and J ′(un) → 0, for n
sufficiently large, I(un) = J(un) → c < 0 and I ′(un) = J ′(un) → 0. Since J

is coercive, we get that (un) is bounded in D1,−→p
0 (Ω). From Lemma 5.2, for λ

sufficiently small,

c <

(
1

pN
− 1

p∗

)
S(p∗−pN )/p

−
[( 1

q −
1
pN

)
|Ω|

p∗−q
p∗

( 1
pN
− 1

p∗ )

]p∗/(p∗−q)[(
q

p∗

)p∗/(p∗−q)
−
(
q

p∗

)q/(p∗−q) ]
λp

∗/(p∗−q)

and, hence, up to a subsequence, (un) is strongly convergent in D1,−→p
0 (Ω).

Now, we will construct an appropriate mini-max sequence of negative critical
values for the functional J . Thus, for each real number ε, we consider the set

J−ε = {u ∈ D1,−→p
0 (Ω) : J(u) ≤ −ε} ∈ A.

Lemma 5.4. Given k ∈ N, there exists ε = ε(k) > 0 such that

γ(J−ε) ≥ k.
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Proof: Since

J(u) ≤ 1

p1

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

−λ1

q
C(k)‖u‖q,

we can argue as proof of Theorem 1.1 and conclude, there exists ε = ε(k) such
that

γ(J−ε) ≥ k.

We define now, for each k ∈ N, the sets

Γk = {C ⊂ D1,−→p
0 (Ω) : C ∈ A and γ(C) ≥ k},

Kc = {u ∈ D1,−→p
0 (Ω) : J ′(u) = 0 and J(u) = c}

and the number
ck = inf

C∈Γk

sup
u∈C

J(u).

Lemma 5.5. Given k ∈ N, the number ck is negative.

Proof: It is sufficient to use Lemma 5.4 and to argument as in [4].

The next Lemma allows us to prove the existence of critical points of J . The
proof is very similar to that in [4], we omit it here.

Lemma 5.6. If c = ck = ck+1 = ... = ck+r for some r ∈ N, then there exists
λ∗ > 0 such that

γ(Kc) ≥ r + 1,

for λ ∈ (0, λ∗).

5.1 Proof of Theorem 1.3

If −∞ < c1 < c2 < ... < ck < ... < 0 with ci 6= cj , since each ck is critical value
of J , the we obtain infinitely many critical points of J and, hence problem (P2λ)
has infinitely many solutions.

On the other hand, if there are two constants ck = ck+r, then c = ck =
ck+1 = ... = ck+r and from Lemma 5.6, there exists λ∗ > 0 such that

γ(Kc) ≥ r + 1 ≥ 2

for all λ ∈ (0, λ∗). From Proposition 3.2, Kc has infinitely many points, that is,
problem (P2λ) has infinitely many solutions.
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