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Abstract

Where to locate one or several facilities on a network so as to minimize the expected
users-closest facility transportation cost is a problem well studied in the OR literature under
the name of median problem.

In the median problem users are usually identified with nodes of the network. In many
situations, however, such assumption is unrealistic, since users should be better considered to
be distributed also along the edges of the transportation network. In this paper we address
the median problem with demand distributed along edges and nodes. This leads to a global-
optimization problem, which can be solved to optimality by means of a branch-and-bound
with DC bounds. Our computational experience shows that the problem is solved in short
time even for large instances.

Keywords: Network Location, Median Problem, Continuous Demand, DC Functions, Global
Optimization

1 Introduction

Location problems on networks have attracted the interest of researchers and practitioners since
the 60s of last century. Under the usual assumption, the demand is concentrated at the nodes
of the network, and the facilities can be located either at the nodes or along the edges of the
transportation network.

Assuming that the demand is concentrated at the nodes is not realistic when modeling so-
called networks spatial phenomena, e.g. [18], that is, phenomena which do happen in points
along edges of the network, such as, for instance, traffic accidents, or close to such edges, as
happens in urban settings, where edges model the city streets, close to the buildings where
demand happens. See [18, 19] for further discussion on the advantages on continuous network
models against traditional approaches (discrete or planar location models).
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For this reason, several researchers have addressed location problems on networks under the
assumption that demand is not only concentrated on nodes, but also is (continuously) distributed
along the edges of the network.

Most papers consider the case in which, for each edge of the network, demand is uniformly
distributed. [17] addresses the problem of minimizing the expected distance from the users to
one facility, [6, 8] consider the two-facility case on very particular network topologies (trees),
whereas [15] addresses the minimization of the variance of distances from the users to the facility.
Assuming uniform demands on edges should be seen as a first step towards gaining realism of the
model, while maintaining tractability. Indeed, the resulting objective functions admits a rather
simple form, as a piecewise polynomial function in one variable, whose optimization is reduced
to inspecting all critical points, namely, extreme points and points at which the derivative of
the polynomial function vanishes.

Assuming more general distributions for the demand has been advocated by several authors.
[18] suggests the use of general density distributions, from which random samples are generated,
yielding a discrete approximation to the problem, which is the one which is later analyzed.
Statistical kernel methods have also been recently proposed to model the demand, [20, 23],
though, as far as the authors know, no optimization has been carried out, excepting, as said
above, discretization via simulation.

In this paper we consider a single-facility location problem, namely, the 1-median problem:
the point minimizing the expected distance from the users is sought. With respect to the
state-of-the-art, we give a further step towards realism, by assuming arbitrary distributions for
the demand along edges. Contrary to the planar 1-median problem, known to be convex, [7],
the 1-median problem on networks with continuous demand poses nontrivial challenges: we
have no longer a simple expression for the objective, and its optimization calls for the use of
global-optimization techniques. In particular, it is shown that the objective function is DC,
[10, 11, 21, 22] i.e., it can be written as the difference of two convex functions, and thus its
optimization can be addressed via branch-and-bound methods customized for DC functions,
[1, 4, 5].

The remainder of the paper is organized as follows. In Section 2 the 1-median problem with
demand distributed on edges and on nodes of the network is formally introduced. Properties
of the objective function are discussed in Section 3, where it is shown, in particular, how the
function can be expressed as the difference of two convex functions on each edge of the network.
These properties will be the cornerstone for a branch-and-bound algorithm, as described in
Section 4. Our numerical experience is reported in Section 5, showing that our algorithm
enables us to solve problems on large networks in reasonable time.

2 Problem formulation

Let N = (A,E) be a connected and undirected network, with node set A = {a1, . . . , an} and
edge set E, with |E| = m. Let us denote by lij the length of each edge eij = [ai, aj ] ∈ E and
let d(x, y) be the distance between two points x, y ∈ N , obtained as the shortest path from x to
y. In particular, the distance dij = d(ai, aj) between each pair of nodes {ai, aj} can be worked
out by using standard algorithms, [2]. Note that for every pair of nodes ai, aj with [ai, aj ] ∈ E,
it follows that dij ≤ lij , and equality holds if and only if the edge [ai, aj ] is the shortest path
joining ai and aj .
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Given a node ak ∈ A and a point x ∈ [ai, aj ], obtained after covering a distance lx on the
edge [ai, aj ], the distance d(x, ak) from ak to x is, as a function of x, a piecewise linear concave
function given by:

d(x, ak) = min{rkij(x), skij(x)} (1)

where
rkij(x) = d(ai, ak) + lx skij(x) = d(aj , ak) + (lij − lx) (2)

We assume that the demand not only occurs at nodes but also along the edges of the network.
More precisely, the demand of a node a ∈ A will be denoted by ωa ≥ 0, the total demand of a
given edge e ∈ E is pe ≥ 0, and it is distributed along e according to a random variable with
cumulative distribution function (cdf) Fe.

Under the previous assumptions, the median problem with continuous demand can be written
as follows:

min
x∈N

H(x) :=
∑
a∈A

wad(x, a) +
∑
e∈E

pe

∫
y∈e

d(x, y)dFe(y) (3)

Observe that we are making no assumption on the type of distribution followed for the
demand. In case the demand on the edges is continuously distributed along e, i.e., when the cdf
Fe has a pdf fe, (3) can be rewritten as

min
x∈N

H(x) :=
∑
a∈A

wad(x, a) +
∑
e∈E

pe

∫
y∈e

d(x, y)fe(y)dy. (4)

3 Properties

It has been noticed in [12] that the objective function of (3) is neither convex nor concave as
a rule. Indeed, the objective function can exhibit local optima which are not globally optimal,
as the following example shows. So the use of global optimization techniques is required if one
seeks the optimal solution.

Example 1 Let us consider the network N = (A,E) with A = {a1, a2, a3} and E = {[a1, a2], [a1, a3], [a2, a3]}.
Arc lengths, node demands and arc demands are the following:

l12 = 1 l13 = 1 l23 = 1
w1 = 0 w2 = 0 w3 = 0
p12 = 0.35 p13 = 0.30 p23 = 0.35

We also assume that the demand along each arc e is distributed according to a beta distribu-
tion, i.e., the probability density function fe has the form

fe(x) =
Γ(αe + βe)

Γ(αe)Γ(βe)
xαe−1(1− x)βe−1 x ∈ [0, 1].

The parameters αe, βe of these probability distributions in the three edges are as follows:

Arc e αe βe
[a1, a2] 0.6 0.5
[a1, a3] 0.4 0.8
[a2, a3] 0.5 0.5
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Under these assumptions, the objective function of Problem (3) restricted to the edge [a1, a2]
takes the form

H12(x) = 0.35

∫ 1

0

|x−y|f12(y)dy+0.30

∫ 1

0

min{x+y, 3−x−y}f13(y)dy+0.35

∫ 1

0

min{2+x−y, 1−x+y}f23(y)dy.

(5)

Multimodality of the function is clearly seen in Figure 1.
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Figure 1: Objective function H12(x) in Example 1

The special structure of the objective function of Problem (3) will be exploited in order to
design a deterministic global optimization algorithm that allows us to find an optimal solution
to the problem. More precisely, we will show that H(x) in (3) belongs to the broad class of
DC functions, [11, 10, 21]. This key property will allow us to solve Problem (3) by branch-and-
bound algorithms, as the one described in Section 4, since lower and upper bounds can easily
be obtained for DC functions as soon as a DC decomposition is available.

Definition 2 Let Ω ⊂ Rn be a convex set. A function h : Ω → R is called DC in Ω if there
exist two convex functions h+ : Ω→ R, h− : Ω→ R such that

h(x) = h+(x)− h−(x) ∀ x ∈ Ω (6)

A pair (h+, h−) satisfying (6) is called a DC decomposition of h in Ω.

An interesting property of the class of DC functions is that it is closed under the most com-
mon operations in optimization, [3, 10, 11, 21, 22]. In particular, if h1, . . . , hr are DC functions
and λi ∈ R, i = 1, . . . , r, then

∑r
i=1 λihi, maxi=1,...,r hi, mini=1,...,r hi and ‖(h1, . . . , hr)‖ are

also DC and their DC decompositions can be easily obtained from the DC decompositions of
hi, i = 1, . . . , r.

The following result shows that the objective function H(x) in (3) is DC on each arc of the
network.
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Proposition 3 Given ē ∈ E, the function Hē : ē 7→ R defined as

Hē(x) :=
∑
a∈A

wad(x, a) +
∑
e∈E

pe

∫
y∈e

d(x, y)dFe(y)

is DC. A DC decomposition of Hē on ē is given by the pair (H+
ē , H

−
ē ), with

H+
ē (x) = pē

∫
y∈ē
|x− y|dFē(y)

H−ē (x) = H+
ē (x)−Hē(x)

(7)

Proof. Let us rewrite Hē(x) as Hē(x) = h1(x) + h2(x) + h3(x) where

h1(x) =
∑
a∈A

wad(x, a) (8)

h2(x) =
∑

e∈E,e 6=ē
pe

∫
y∈e

d(x, y)dFe(y) (9)

h3(x) = pē

∫
y∈ē

d(x, y)dFē(y) (10)

The function h1 is piecewise linear and concave (see [13] for instance), and h2 is also concave,
see [12]. In what follows it is shown that h3 is DC, and a DC decomposition is given. Given
x, y ∈ ē = [ai, aj ], the distance d(x, y) between x and y is obtained as the minimum of the
lengths of the following paths:

1. the subedge of ē with x, y as end points,

2. the subedge of ē joining x and ai, the shortest path joining ai and aj , and then the subedge
of ē joining aj and y,

3. the subedge of ē joining x and aj , the shortest path joining aj and ai, and then the subedge
of ē joining ai and y.

In other words d(x, y) can be expressed as

d(x, y) = min {|x− y|, x+ dij + (lij − y), (lij − x) + dij + y} (11)

= min {|x− y|, lij + dij − |x− y|} (12)

= |x− y| −max {0, 2|x− y| − (lij + dij)} . (13)

Observe that the last expression gives a DC decomposition of d on ē. Hence, h3 can be written
as

h3(x) = pē

∫
y∈ē
|x− y|dFē(y)− pē

∫
y∈ē

max {0, 2|x− y| − (lij + dij)} dFē(y), (14)

which yields a DC decomposition of h3. Taking into account that Hē = h1 +h2 +h3, with h1, h2

concave and h3 decomposed as a difference of convex functions in (14), it follows that (7) gives
a DC decomposition of Hē, as asserted. 2

We end this section with further properties of the objective function He under some assump-
tion on the edge e. These results extend previous well-known results for particular topologies,
e.g. for networks which are chains or trees.
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Corollary 4 Let ē ∈ E be an edge such that pē = 0. Then Hē is concave on ē.

Proof. If pē = 0, then, by Proposition 3, (0,−Hē) is a valid DC decomposition for Hē. 2

Proposition 5 Let ē ∈ E be an edge such that E \ {ē} is a disconnected network. Then Hē is
convex on ē.

4 The algorithm

Problem (3) will be solved by using a standard branch and bound method [14, 16] which will
find out the optimal solution within a relative accuracy of ε > 0. The bounds of the objective
function required to applying the algorithm will be worked out by taking into account its DC
structure. A brief description of such an algorithm is shown next.

• Phase 1: Initialization

1. Fix the required accuracy ε > 0.

2. Set UB = +∞ (upper bound initialization).

3. Compute the all-pairs distance matrix.

4. Set the list Λ of remaining segments as empty.

5. For each edge e ∈ E do:

(a) Consider e as a segment with its nodes as the segment vertices.

(b) Evaluate the objective function at the segment midpoint. If this value is lower
than UB, then update UB and store in xUB the midpoint as incumbent.

(c) Calculate a lower bound for the segment e, LB(e).

(d) If LB(e) < UB/(1 + ε), then insert e into Λ.

• Phase 2: Branch and Bound process

Repeat as long as no stop was reached:

1. Select from Λ the minimum lower bound segment emin and remove if from Λ.

2. If LB(emin) ≥ UB/(1 + ε), then stop the algorithm with xUB as optimal solution
and UB as optimal objective value.

3. Split emin by its midpoint into two smaller segments, e1
min and e2

min.

4. Evaluate the objective function at the midpoint of the two small segments. If any of
these values is lower than UB, then update UB.

5. Compute a lower bound of the objective function on each small segment.

6. If LB(eimin) < UB/(1 + ε) for i = 1 or i = 2, then insert eimin into Λ.

7. If UB has been updated in this iteration, then discard all segments from Λ whose
lower bound is greater than UB.
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The algorithm uses a data structure Λ where all the segments (bits of edge) that can contain
an optimal solution are stored. The loop in Phase 1 establishes the initial composition of the
data structure by selecting the edges whose lower bound is not greater that the global upper
bound of the optimal objective value. At the same time, that upper bound is improved by
evaluating each edge at its middle point and replacing the bound with the objective value when
this is smaller.

Phase 2 of the algorithm consists of an undefined loop where the segment with the worst
lower bound is processed; the algorithm finishes when the difference between that lower bound
and the global upper bound is smaller than the tolerance ε chosen in Phase 1. If the stopping
rule is not fulfilled, the selected segment is split into two equal segments which are processed
in the same way that the edges in Phase 1. Eventually, if a change in the upper bound took
place during an iteration, all the segments in the data structure that cannot contain an optimal
solution are removed.

The computation of the objective function’s lower bound on each segment requires more
attention and is going to be detailed next.

4.1 Constructing lower bounds

Given an edge ē = [ai, aj ] ∈ E, Proposition 3 provides a DC decomposition for Hē –the re-
striction of the objective H to e– and this fact can be exploited in order to obtain the lower
bounds required in the previous algorithm. Starting from the DC representation (7), a concave
underestimate Lē(x) of Hē is obtained by replacing H+

ē with an affine underestimate built in
the usual way,

Lē(x) = H+
ē (x0) + ξ(x− x0)−H−ē (x)

where ξ is any point in ∂H+
ē (x0), the subdifferential of H+

ē at x0 ∈ ē. Since

∂H+
ē (x0) =

∫
(0,x0)

dFē(y) + [−1, 1]

∫
{x0}

dFē(y)−
∫

(x0,lē)
dFē(y),

one has
2Fē(x0)− 1 ∈ ∂H+

ē (x0),

and thus, a concave underestimate Lē(x) is given by

Lē(x) = H+
ē (x0) + (2Fē(x0)− 1)(x− x0)−H−ē (x)

Due to the concavity of Lē, it is enough to evaluate this function at the extreme points of ē to
obtain its minimum on the segment, which is also a lower bound for H+

ē . Hence,

LB(ē) = min{Lē(ai), Lē(aj)}

5 Computational results

The effectiveness of the proposed algorithm was investigated with the aid of numerical cases.

The algorithm described in Section 4 was coded in Fortran and compiled using Intel c©Fortran
Compiler XE 12.0. Executions were carried out on an Intel Core i7 computer with 8.00 Gb of
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RAM memory at 2.8 Ghz, running Windows 7. The solutions were found to a relative accuracy
of 10−3 and the integrals were calculated by means of the functions qdags and qdagp available
at the IMSL Fortran Numerical Library.

We experimented with a set of 43 test networks obtained from [9, 24]. The number of nodes
of these test problems ranges from 150 to 1000, and the number of edges from 296 to 3083.
Each problem was solved 10 times over each network using randomly generated parameters: the
demands of nodes were obtained from a Uniform distribution on [0, 1], as it is also the case of
the overall demand of each edge. Regarding the demand along each edge, it was assumed to be
distributed following a Beta distribution with parameters randomly generated on the interval
[0.1, 5], which provides a wide range of density functions with very different shapes.

After the resolution of each set of 10 instances, some statistical measures (minimum, maxi-
mum, average and standard deviation) were calculated for the following indicators of the algo-
rithm performance:

• Number of iterations of the Phase 2 of the algorithm.

• Maximum size of the data structure used for storage reached during the algorithm execu-
tion.

• CPU time.

Table 1 shows the computational results, where the number of nodes |A| and edges |E| of
the graphs are reported as well as the above-mentioned computational measures.

The number of iterations and the maximum size of the branch-and-bound list remain low in
all the executions. However, the CPU time results are quite high mainly due to the computation
of the integrals in Phase 1 (steps 5-b and 5-c) and Phase 2 (steps 4 and 5). One can see that
the CPU time required to solve different instances of the same problem shows a great stability.

We summarize the findings of this paper. We have addressed the problem of locating one
facility on a network with demand distributed on nodes and edges, following arbitrary distri-
butions. The problem is shown to be multimodal, calling for the use of global optimization
techniques. The objective function on each edge has been shown to be DC, and a DC decom-
position is given. This enables us to obtain concave underestimates of the objective, which are
used in a branch and bound procedure. Our numerical tests show that problems of large size
are solved rather quickly. Extensions of our techniques to the multifacility case are now under
study.
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