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Abstract

In this paper, we study the asymptotic behaviour of a given equicoercive sequence of
diffusion energies Fn, n ∈ N, defined in L2(Ω), for a bounded open subset Ω of R2. We
prove that, contrary to the three dimension (or greater), the Γ-limit of any convergent
subsequence of Fn is still a diffusion energy. We also provide an explicit representation
formula of the Γ-limit when its domains contains the regular functions with compact
support in Ω. This compactness result is based on the uniform convergence satisfied by
some minimizers of the equicoercive sequence Fn, which is specific to the dimension two.
The compactness result is applied to the period framework, when the energy density is a
highly oscillating sequence of equicoercive matrix-valued functions. So, we give a definitive
answer to the question of the asymptotic behaviour of periodic conduction problems under
the only assumption of equicoerciveness for the two-dimensional conductivity.

1 Introduction

This paper deals with the asymptotic behaviour of sequences of diffusion energies in a
bounded open subset Ω of R2. The prototype of the diffusion energy is given by the
following quadratic functional defined in L2(Ω):

Fn(u) :=


∫

Ω
An∇u · ∇u dx if u ∈ H1

0 (Ω).

+∞ if u ∈ L2(Ω) \H1
0 (Ω),

for n ∈ N, (1.1)

where An is a symmetric positive definite matrix-valued function in L∞(Ω)2×2.
The knowledge of the limit behaviour of Fn is crucial in the homogenization theory

applied to conduction problems (see e.g. [1] for an introduction), since An then represents
the conductivity matrix of a given heterogeneous medium. In this context, Spagnolo [23],
with the G-convergence theory, and Murat & Tartar [25], [20], with the H-convergence
theory, proved the compactness of the sequence Fn, when An is assumed to be both
equicoercive and equibounded. A few times later, Buttazzo & Dal Maso [10] and Car-
bone & Sbordone [12] extended the result of compactness by only assuming that the
sequence An is bounded and equiintegrable in L1(Ω)2×2. At the same period, Fenchenko
& Khruslov [15] showed that the equiintegrability condition cannot be relaxed since high
conductivity regions in three dimension may induce nonlocal effects which correspond to
a lack of compactness in the homogenization process (see also [2], [9], [4] for different
approaches).
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Nonlocal effects naturally appear in the limit behaviour of the diffusion energy. Indeed,
using the Beurling-Deny [3] theory Mosco [18] proved in particular that any sequence Fn

Γ-converges, up to a subsequence, for the strong topology of L2(Ω) (see Definition 3.1) to a
Dirichlet form (see Definition 3.3). According to the Beurling-Deny formula any Dirichlet
form can always be split up into three terms: a strongly local form (the diffusion part),
a local form and a nonlocal one. Inversely, Camar Eddine & Seppecher [11] proved that
any Dirichlet form in L2

loc(R3) can be obtained as the Γ-limit of a sequence of diffusion
energies of type (1.1) with a suitable isotropic conductivity An.

The nonlocal effects obtained in the previous works are based on three-dimensional
microstructures whose model example is a medium reinforced by a periodic lattice of high
conductivity thin fibers. Then, it is natural to ask if the appearance of nonlocal effects is
specific to the three dimension (or greater). Recently, in [6] for periodic microstructures
and more generally in [7], we showed that the answer is positive. Assuming that the
sequence An is both equicoercive and bounded in L1(Ω)2×2, we proved that the Γ-limit of
any sequence of type Fn is a strongly local Dirichlet form. Therefore, the dimension two
preserves the compactness in the homogenization process. The proof in [6], [7] is based
on two-dimensional div-curl type lemmas which extend the one of Murat & Tartar [26],
[21]. Note that the equicoerciveness assumption is essential to obtain strongly convergent
sequences in L2(Ω). However, the use of div-curl lemmas is strictly limited to conductivity
sequences which are bounded in L1(Ω)2×2.

In this paper, we study the asymptotic behaviour of the sequence of diffusion en-
ergies (1.1), without assuming any boundedness assumption on An. Our approach is
completely different of the one used in [6] or [7] for An bounded in L1(Ω)2×2. The key-
ingredient of the method is a uniform convergence result satisfied by some energy mini-
mizers (see Section 2). More precisely, we prove (see Theorem 2.1) that for any bounded
energy (with respect to Fn) sequence in H1(Ω) which strongly converges in L2(Ω) to a
continuous function, there exists a smaller energy subsequence which strongly converges
to the same limit in L∞loc(Ω). The proof of this result uses that the p-capicity, for p ∈ (1, 2),
of a continuous curve is positive (see Lemma 2.8), which is specific to the dimension two.
This combined with the continuity of the limit and the maximum principle allows us to
construct a uniformly convergent sequence.

Up to our knowledge, the previous result provides new uniform estimates on solu-
tions of uniformly elliptic partial differential equations without any control from above
on the coefficients. Here, we give an example (see Corollary 2.5) of such an estimate for
A-harmonic functions, where A is any uniformly elliptic (but not necessarily uniformly
bounded) matrix-valued in L∞(O), for a bounded open subset O of R2. This uniform
estimate is used in the last section of the paper. More general cases are the subject of a
work in progress [8].

On the other hand, thanks to the uniform convergence result of Section 2 and under
the only assumption of equicoerciveness for An, we prove (see Section 3 and Theorem 3.6)
that the diffusion energy Fn Γ-converges (up to a subsequence) for the strong topology
of L2(Ω) to a strongly local Dirichlet form F . Moreover, if the domain of the Γ-limit F
contains the space C1

c (Ω) of the C1-regular functions with compact support in Ω, we
obtain (see Theorem 3.4) the following representation formula

F (u) =
∫

Ω
A∇u · ∇u dµ, ∀u ∈ C1

c (Ω), (1.2)

where µ is a Radon measure on Ω and A a matrix-valued function in L∞µ (Ω)2×2. In
other words, the sequence of the diffusion energies Fn is relatively compact for the L2(Ω)-
strong Γ-convergence topology in the set of the uniformly coercive diffusion energies. In
particular, the compactness result implies that the limit of the energy density An dx is
still a density of type A dµ.
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The compactness result of Section 3 has a remarkable application in the periodic
homogenization framework. In this context, the conductivity An is a highly oscillating
sequence defined by An(x) := Bn( x

εn
), where Bn is an equicoercive sequence of (0, 1)2-

periodic matrix-valued functions in L∞(R2)2×2 and εn is a positive sequence converging
to zero. Associated with Bn the constant matrix A∗

n (see formula (4.4)) obtained, for
a fixed n, from the periodic homogenization of Bn(x

ε ) as ε → 0 (see e.g. [1]), plays a
fundamental role in the homogenization process. Indeed, extending [6] we prove (see
Theorem 4.1) that the asymptotic behaviour of the diffusion energies (1.1) is completely
determined by the limit behaviour of the matrix A∗

n, according to the following alternative:

• if the spectral radius ρ(A∗
n) of A∗

n is bounded, A∗
n converges, up to a subsequence, to

a matrix A∗ and the Γ-limit F of Fn satisfies (1.2) with the constant density A∗ dx,
in the whole space H1

0 (Ω);

• if ρ(A∗
n) tends to +∞, the domain of the Γ-limit reduces to {0}.

As an immediate consequence, the question on the asymptotic behaviour of the two-
dimensional periodic conduction problem{

−div
(
Bn( x

εn
)∇un

)
= f in Ω

un = 0 on ∂Ω,
for f ∈ H−1(Ω), (1.3)

is now definitively solved under the only assumption of equicoerciveness for Bn:

• if ρ(A∗
n) is bounded, (1.3) converges, up to a subsequence, to the conduction problem

with the constant conductivity lim
n→+∞

A∗
n;

• if ρ(A∗
n) tends to +∞, the potential un of (1.3) strongly converges to zero in H1

0 (Ω).

The paper is organized as follows. Section 2 is devoted to the uniform convergence
results and Section 3 to the Γ-convergence of sequences of diffusion energies of type (1.1).
In Section 4 we apply the results of Section 3 to the periodic framework.

Notations

• N∗ := N \ {0} denotes the set of the positive integers;

• a ∨ b, resp. a ∧ b, denotes the maximum, resp. the minimum, of a, b ∈ R;

• B(x0, δ) denotes the disk of center x0 ∈ R2 and of radius δ > 0;

• χE denotes the characteristic of the set E;

• ∃ lim means that the limit does exist;

• Ω denotes an open subset of R2 and Ω̄ the closure of Ω in R2;

• Hloc(Ω) means locally in the space H(Ω);

• C(Ω) denotes the space of the continuous functions in Ω, C0(Ω) the subspace of C(Ω)
composed of the functions which are zero on the boundary of Ω, Cc(Ω) the subspace
of C0(Ω) composed of the functions with compact support in Ω, and Ck

c (Ω), for k ∈
N ∩ {+∞}, the subspace of Cc(Ω) composed of the k-th continuously differentiable
functions in Ω;

• D′(Ω) denotes the set of the distributions on Ω;

• M(Ω) denotes the set of the Radon measures on Ω;
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• a sequence µn in M(Ω) converges to µ ∈ M(Ω) in the weak ∗ sense of the measures
in Ω if

lim
n→+∞

∫
Ω

ϕ dµn =
∫

Ω
ϕ dµ, ∀ϕ ∈ C0(Ω),

and the convergence is denoted by µn ⇀ µ in M(Ω) ∗;
• q.e. means quasi-everywhere in the sense of the 2-capacity in R2, and a.e. means

everywhere in the sense of the Lebesgue measure in R2;

• for any p ∈ (1, 2) and for any subset E of R2, Cp(E) denotes the p-capacity of E
with respect to R2, which is defined by

Cp(E) := inf
{∫

R2

|∇u|p dx : u ∈ D1,p(R2), u ≥ 1 a.e. in a neighbourhood of E

}
,

where D1,p(R2) is the space of the functions u in L
2p

2−p (R2) such that ∇u ∈ L2(R2)2.

2 Uniform convergence results

2.1 Statement of the results

Let Ω be an open subset of R2. In this section, we consider a given sequence of symmetric
matrix-valued functions An ∈ L∞(Ω)2×2, n ∈ N, which satisfies the following equicoer-
civeness property in Ω

∃α > 0 such that ∀n ∈ N, ∀ ξ ∈ R2, Anξ · ξ ≥ α|ξ|2 a.e. in Ω. (2.1)

For any function u ∈ H1(Ω)∩C(Ω), we will study some questions related to the existence
of sequences un in H1(Ω) which both converge uniformly to u in Ω and satisfy the following
minimization property

∃ lim
n→+∞

∫
Ω

An∇un · ∇un dx ≤ lim inf
n→+∞

∫
Ω

An∇vn · ∇vn dx,

for any sequence vn in H1(Ω) (some boundary conditions can be added), which strongly
converges to u in L2(Ω). Our main result in this way is the following theorem:

Theorem 2.1. Let u be a function in H1(Ω) ∩ C(Ω) and let ûn be a sequence H1(Ω)
which strongly converges to u in L2(Ω) and satisfies

∃ lim
n→+∞

∫
Ω

An∇ûn · ∇ûn dx < +∞.

Then, up to a subsequence of n, still denoted by n, there exists un ∈ H1(Ω) which satisfies

lim sup
n→+∞

∫
Ω

An∇un · ∇un dx ≤ lim
n→+∞

∫
Ω

An∇ûn · ∇ûn dx, (2.2)

and un −→ u strongly in L∞loc(Ω). (2.3)

Moreover, if the support of u is contained in a compact set K of Ω, then we can take un

such that un = 0 q.e. in Ω \K, for any n ∈ N.

Remark 2.2. If in Theorem 2.1 the sequence ûn is in H1
0 (Ω) and u in H1

0 (Ω) ∩ C0(Ω),
then we can choose un in H1

0 (Ω), which strongly converges to u in L∞(Ω). To this end,
it is enough to consider a bounded open set Ω̃ such that Ω̄ ⊂ Ω̃ and to apply the second
part of Theorem 2.1 to the sequences ũn and Ãn defined by

ũn(x) :=
{

un(x) if x ∈ Ω
0 if x ∈ Ω̃ \ Ω,

and Ãn(x) :=
{

An(x) if x ∈ Ω
I2 if x ∈ Ω̃ \ Ω.

4



Corollary 2.3. Consider ûn ∈ H1(Ω) and u ∈ H1(Ω) ∩ C(Ω) such that

ûn ⇀ u weakly in H1
loc(Ω) and div (An∇ûn) = 0 in D′(Ω). (2.4)

Then, we have the following uniform convergence

ûn −→ u strongly in C(Ω). (2.5)

Remark 2.4. Note that in Corollary 2.3 each function un is continuous in Ω by the De
Giorgi-Stampacchia theorem (see e.g. [16] Chapter 8).

Corollary 2.5. For any open subset Ω of R2 and any compact subset K of Ω, there exists a
constant C > 0 which only depends on Ω and K such that, for any matrix-valued function
A ∈ L∞(Ω)2×2 satisfying the uniform coerciveness (2.1) and any function u ∈ H1(Ω)
solution of

div (A∇u) = 0 in D′(Ω),

the following estimate holds true

‖u‖C(K) ≤ C ‖u‖H1(Ω).

Remark 2.6. Corollaries 2.3 and 2.5 can be deduced from [8] where more general results,
for non-necessarily homogeneous equations, are proved.

2.2 Proof of the results

Let us now give the proof of the uniform convergence results stated in the previous section.
We will need the two following lemmas:

Lemma 2.7. Let O be a bounded open subset of R2 and let u ∈ H1(O) ∩ C(Ō). Denote
M := max

∂O
u and m := min

∂O
u.

Then, for any function v such that v − u belongs to H1
0 (O), the functions (v −M)+ and

(m− v)+ belong to H1
0 (O).

Proof. Consider ϕε ∈ C∞
c (O), for ε > 0, which strongly converges to v − u in H1

0 (Ω)
as ε → 0. Since u is continuous in Ō, the functions Uε := (u + ϕε − M − ε)+ and
uε := (m − ε − u − ϕε)+ have compact support in O. The functions Uε and uε belong
to H1(O), hence they also belong to H1

0 (O). Therefore, using that Uε and uε strongly
converge respectively to (v −M)+ and (m− v)+ in H1(O), yields the result.

Lemma 2.8. For any p ∈ (1, 2) and any continuous curve L of extremities a, b, we have

Cp(L) ≥ Rp |a− b|2−p, (2.6)

where Rp > 0 is the p-capacity of a unit segment in R2.

Proof. Using a translation, a rotation and a homothety, we can reduce the proof to the
case where a = (0, 0), b = (1, 0). Then, consider a curve L of extremities (0, 0), (1, 0)
and take a function ϕ ∈ C∞

c (R2) such that ϕ > χL. By the Pólya-Szegö inequality [22]
extended to any power p ≥ 1 (see e.g. [24] and Chapter I.4 of [19]), it is known that the
Steiner symmetrization ϕ∗ of ϕ with respect to {x2 = 0}, defined by its level sets

{
(x1, x2) ∈ R2 : ϕ∗(x1, x2) > c

}
=
{

(x1, x2) ∈ R2 : |x2| <
1
2

∣∣{y ∈ R : ϕ(x1, y) > c}
∣∣} ,
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belongs to W 1,p
c (R2) and satisfies∫

R2

|∇ϕ∗|pdx ≤
∫

R2

|∇ϕ|pdx.

Moreover, since L and ϕ are continuous, it is clear that ϕ∗ > 1 in [0, 1]× {0}, hence

Cp([0, 1]× {0}) ≤
∫

R2

|∇ϕ∗|pdx ≤
∫

R2

|∇ϕ|pdx.

Taking the infimum in ϕ, we get the desired estimate (2.6).

Proof of Theorem 2.1. Using the density of H1(Ω) ∩ C∞(Ω) in H1(Ω) (see e.g. [16]),
we can also assume that ûn is continuous in Ω. For any δ > 0, we define Ωδ by

Ωδ := {x ∈ Ω : d(x, ∂Ω) > δ} .

Since u is continuous in Ω̄δ, for any l ∈ N∗, there exists δl > 0, with lim
l→+∞

δl = 0, such

that
|u(x)− u(y)| < 1

2l
, ∀x, y ∈ Ω̄δl

, with |x− y| ≤ δl. (2.7)

Let p ∈ (1, 2). Since ûn weakly converges in H1(Ω), there exists (see e.g. [14]) a subse-
quence of ûn, still denoted by ûn, which converges to u Cp-quasi uniformly in every open
set ω ⊂ Ω, with ω̄ ⊂ Ω (ω can be chosen as Ω if Ω is smooth). Thus, we can choose this
sequence in such a way that for any l ∈ N∗, there exists a relatively closed subset Kl of Ω
satisfying

Cp(Ω \Kl) < Rp δ2−p
l , (2.8)

|ûn(x)− u(x)| < 1
2l

, ∀x ∈ Ωδl
∩Kl, ∀n ≥ l. (2.9)

Then, we define un by
un := ûn in Kl, un − ûn ∈ H1

0 (Ω \Kl),∫
Ω\Kl

An∇un · ∇un dx ≤
∫

Ω\Kl

An∇v · ∇v dx, ∀ v, v − ûn ∈ H1
0 (Ω \Kl).

(2.10)

Clearly, un satisfies (2.2). Let us prove that un strongly converges to u in L∞loc(Ω). To
this end, we fix δ > 0. We have

|un(x)− u(x)| = |ûn(x)− u(x)| < 1
2l

, ∀x ∈ Ωδ ∩Kl, ∀n ≥ l, with δl < δ. (2.11)

Consider a connected component O of Ω \Kl such that O ∩ Ωδ 6= Ø. Since O is opened
and connected, it is connected by curves. Thus, for any y1, y2 ∈ O, there exists a curve
L ⊂ O which connects y1, y2. By Lemma 2.8 and (2.8), we have

Rp |y1 − y2|2−p ≤ Cp(L) ≤ Cp(O) ≤ Cp(Ω \Kl) ≤ Rp δ2−p
l ,

hence diam (O) ≤ δl. Then, taking l large enough such that 2δl < δ, we get that Ō ⊂ Ωδl
,

and in particular, ∂O ⊂ Ωδl
∩Kl. Denote

mn := min
∂O

ûn and Mn := max
∂O

ûn.

By Lemma 2.7 (un−Mn)+ and (mn−un)− belong to H1
0 (O), and by definition (2.10) un

is An-harmonic in O. Then, the maximum principle yields

mn ≤ un ≤ Mn, q.e. in O, ∀n ∈ N. (2.12)
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On the other hand, since ∂O ⊂ Ωδl
∩Kl, we have by (2.9).

mn ≥ min
∂O

u− 1
2l

and Mn ≤ max
∂O

u +
1
2l

, ∀n ≥ l.

Moreover, Ō ⊂ Ωδl
, diam (O) ≤ δl and (2.7) imply that

min
∂O

u ≥ u(x)− 1
2l

and max
∂O

u ≤ u(x) +
1
2l

, ∀x ∈ O, ∀n ≥ l.

Therefore, (2.12) combined with the two previous estimates yields

|un − u| ≤ 1
2l

, q.e. in O,

hence the sequence un satisfies the uniform convergence (2.3).
Now, assume that the support of u is contained in a compact subset K of Ω, and

consider an open set Ω̃ which contains K and is strictly contained in Ω. For any ε > 0,
let Sε be the function defined by Sε(s) := (s− ε sgn(s)))χ{|s|>ε}, for s ∈ R. Since un

strongly converges to u in L∞(Ω̃), the sequence εn := ‖un − u‖L∞(Ω̃) tends to zero.
Therefore, the sequence ũn := χΩ̃ Sεn(un) satisfies conditions (2.2), (2.3) and vanish q.e.
in Ω \K. �

Proof of Corollary 2.3. Since ûn satisfies div (An∇ûn) = 0 in D′(Ω), it is Hölder
continuous in Ω by the De Giorgi-Stampacchia theorem. Then, the argument used in the
proof of Theorem 2.1 proves that the sequence un defined by (2.10) strongly converges
to u in L∞loc(Ω). However, we have un = ûn by construction, which yields the desired
result. �

Proof of Corollary 2.5. We reason by contradiction. If the result does not hold true,
then, for any n ∈ N, there exist un ∈ H1(Ω), An ∈ L∞(Ω)2×2 and γn > 0 such that

Anξ · ξ ≥ γn|ξ|2, ∀ ξ ∈ R2, a.e. x ∈ Ω,

and ‖un‖C(K) > n‖un‖H1(Ω). (2.13)

Up to replace An by An/γn and un by un/‖un‖C(K), we can assume that γn = 1 and
‖un‖C(K) = 1. Then, An is equicoercive and by (2.13) un strongly converges to zero
in H1(Ω). Therefore, by Corollary 2.3 un converges uniformly to zero in K, in contradic-
tion with ‖un‖C(K) = 1. �

3 Γ-limit of equicoercive diffusion energies

3.1 Γ-convergence and Dirichlet forms

In this section we first recall the definition of the De Giorgi Γ-convergence and some of its
properties which will be used in the sequel. We refer to [13] for an exhaustive presentation
of the Γ-convergence.

Definition 3.1. A sequence of functionals Fn : L2(Ω) −→ [0,+∞] is said to Γ-converge
to F : L2(Ω) −→ [0,+∞] for the strong topology of L2(Ω) if, for any u in L2(Ω),

(i) the Γ-liminf inequality holds

∀un −→ u strongly in L2(Ω), F (u) ≤ lim inf
n→+∞

Fn(un), (3.1)
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(ii) the Γ-limsup inequality holds

∃ ūn −→ u strongly in L2(Ω), F (u) = lim
n→+∞

Fn(ūn). (3.2)

Any sequence satisfing (3.2) will be called a recovery sequence for Fn, of limit u.

In the sequel, we will always consider the Γ-convergence with respect to the strong
topology of L2. Consequently, this topology will be not necessarily mentionned.

Properties 3.2.
a) Since L2(Ω) is separable, any sequence of functionals Fn : L2(Ω) −→ [0,+∞] has a
subsequence which Γ-converges with respect to the strong topology of L2(Ω).
b) Let Fn : L2(Ω) −→ [0,+∞] be a sequence of quadratic forms which Γ-converges to F .
Then, F is a quadratic form on L2(Ω) which is semi-lower continuous with respect to the
strong topology of L2(Ω).
c) Let Fn : L2(Ω) −→ [0,+∞] be a sequence of quadratic forms which Γ-converges to F .
Let Φn,Φ be the polar forms respectively associated with Fn, F on their domains. Then,
for any u ∈ L2(Ω), with F (u) < +∞, a sequence un in L2(Ω) is a recovery sequence (3.2)
for Fn, of limit u, if and only if

∀ vn −→ v strongly in L2(Ω), with Fn(vn) ≤ c, lim
n→+∞

Φn(un, vn) = Φ(u, v), (3.3)

or equivalently, (3.3) with v = 0.

Now, we recall some notions about Dirichlet forms, which will be used in the statement
of Theorem 3.8. We refer to [18] for more details in connection with the Γ-convergence.

Definition 3.3. Let X be a Hausdorff, separable, locally compact space, and let m be
a σ-finite nonnegative Radon measure on X. Let H be the space L2

m(X) endowed with
its Hilbert norm ‖ · ‖H . Let F : H −→ [0,+∞] be a quadratic form of domain D(F ) :=
{u ∈ H : F (u) < +∞}, whose polar form Φ is a bilinear form defined in D(F )×D(F ).

(i) The form F is said to be closed if it is semi-lower continuous with respect to the
norm ‖ · ‖H . The form F is said to be closable if there exists an extension F̃ of F
in H such that D(F ) ⊂ D(F̃ ). The closure of a closable form is its smallest closed
extension in H.

(ii) The form F is said to be Markovian if

∀u ∈ D(F ), v := (u ∨ 0) ∧ 1 ∈ D(F ) and F (v) ≤ F (u).

(iii) A Dirichlet form on H is a closed Markovian quadratic form defined in H.

(iv) The form F is said to be regular if there exists a subset of D(F ) ∩ C0(X), which is
dense both in C0(X) with the uniform norm and in D(F ) with the norm (F + ‖ · ‖H)1/2.

(v) The form F is said to be local if

Φ(u, v) = 0, ∀u, v ∈ D(F ), with supp (u) ∩ supp (v) = Ø.

The form F is said to be strongly local if

Φ(u, v) = 0, ∀u, v ∈ D(F ), with u = cst in supp (v). (3.4)

Thanks to the Beurling-Deny theory [3] any regular Dirichlet form F on L2
m(X) can

be split up on its domain into three specific forms: a strongly local form Fd, a local
form and a nonlocal one. More precisely, the following representation formula holds for
any u ∈ D(F ),

F (u) = Fd(u) +
∫

X
u2(x) k(dx) +

∫∫
X×X\diag

(
u(x)− u(y)

)2
j(dx, dy), (3.5)

where Fd is called the diffusion part of F , k the killing measure and j the jumping measure.
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3.2 Statement of the results

As in Section 2, let us consider a bounded open subset Ω of R2, and a sequence of
symmetric matrix-valued functions An ∈ L∞(Ω)2×2 which satisfy (2.1). For any n ∈ N
and any open subset ω of Ω, we define the quadratic form Fn(·, ω) in L2(ω) by

Fn(u, ω) :=


∫

ω
An∇u · ∇u dx if u ∈ H1

0 (ω).

+∞ if u ∈ L2(ω) \H1
0 (ω).

(3.6)

The form Fn(·,Ω) is simply denoted by Fn.
Assume that Fn Γ-converges to some quadratic form F for the topology of L2(Ω),

which holds true for a subsequence in virtue of Properties 3.2 a). Since Fn is clearly
Markovian, the properties (3.1), (3.2) of the Γ-convergence imply that F is also Markovian.
Moreover, thanks to Properties 3.2 b) F is closed. Therefore, F is a Dirichlet form in the
sense of Definition 3.3 (iii). The following result gives a necessary and sufficient condition
to have F regular with C1

c (Ω) ⊂ D(F ). When this condition is satisfied, F is a strongly
local (3.4) Dirichlet form whose integral representation for regular functions is independent
of the domain.

Theorem 3.4. The domain D(F ) of F contains C1
c (Ω) if and only if, for any x0 ∈

Ω, there exists δ > 0, two functions w1, w2 in C1(B(x0, δ)) and two sequences w1
n, w2

n

in H1(B(x0, δ)), n ∈ N, such that

B(x0, δ) ⊂ Ω,

∇w1(x0),∇w2(x0) are linearly independent,

wi
n −→ wi strongly in L2 (B(x0, δ)) , for i = 1, 2,

An∇wi
n · ∇wi

n is bounded in L1 (B(x0, δ)) , for i = 1, 2.

(3.7)

Assume that C1
c (Ω) is contained in D(F ). Then, there exist a nonnegative Radon mea-

sure µ on Ω and a nonnegative matrix-valued function A in L∞µ (Ω)2×2 such that the regular
part Ar of Adµ with respect to the Lebesgue measure satisfies

Arξ · ξ ≥ α|ξ|2, ∀ ξ ∈ R2, a.e. in Ω, (3.8)

and such that, for any open set ω of Ω, the Γ-limit F (·, ω) of Fn(., ω) with respect to the
strong topology of L2(ω) does exist on C1

c (ω) and reads as

F (u, ω) =
∫

ω
A∇u · ∇u dµ, ∀u ∈ C1

c (ω). (3.9)

Moreover, for any u ∈ C1
c (ω) and any un ∈ H1

0 (ω) which strongly converges to u in L2(ω)
and such that Fn(un, ω) tends to F (u, ω), the sequence An∇un · ∇un converges to A∇u ·
∇u dµ in the weak ∗ sense of the measures in ω.

Remark 3.5. In the second part of Theorem 3.4 the Γ-convergence of Fn(·, ω) to F (·, ω)
holds true up to a subsequence which does depend on the open set ω. However, the
integral representation (3.9) of F (u, ω), which is valid on C1

c (ω), is independent of ω.
In fact, the integral expression (3.9) holds true for any u ∈ C1

0 (ω), with A∇u · ∇u ∈
L1

µ(ω). Indeed, it is easy to check that these functions can be approximated by functions
in C1

c (ω) in the strong topology of D(F (., ω)).

Theorem 3.4 provides an integral representation of F , assuming that D(F ) con-
tains C1

c (Ω). The following result gives a corrector result:
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Theorem 3.6. Assume that D(F ) contains C1
c (Ω). Then, there exists a sequence (w1

n, w2
n)

in H1
0 (Ω; R2) ∩ L∞(Ω; R2) which strongly converges to the identity in L∞loc(Ω; R2), and

which satisfies, for any i ∈ {1, 2} and any compact subset K of Ω,

lim sup
n→+∞

∫
K

An∇wi
n · ∇wi

n dx < +∞,

lim
n→+∞

∫
K

An∇wi
n · ∇vn dx = 0,

{
∀ vn ∈ H1

0 (Ω), vn = 0 q.e. in Ω \K,

vn → 0 in L2(Ω), An∇vn · ∇vn bounded in L1(Ω).

Let ω be open subset of Ω and let u ∈ C1
c (ω). Assume that the sequence Fn(·, ω) Γ-

converges to F (·, ω) for the strong topology of L2(ω). Then, for any recovery sequence
un ∈ H1

0 (ω) which is zero q.e. outside a compact subset of ω, which strongly converges
to u in L2(ω) and such that Fn(un, ω) tends to F (u, ω), we have

lim
n→+∞

∫
ω

An

(
∇un −

2∑
i=1

∂iu∇wi
n

)
·

(
∇un −

2∑
i=1

∂iu∇wi
n

)
dx = 0. (3.10)

Theorems 3.4 and 3.6 are consequences of the following lemma:

Lemma 3.7. Assume that there exist x0 ∈ Ω, δ > 0, w1, w2 in H1(B(x0, δ))∩C1(B(x0, δ))
and two sequences w1

n, w2
n in H1(B(x0, δ)), n ∈ N, which satisfy (3.7).

Then, there exists ε ∈ (0, δ), a nonnegative bounded Radon measure µ on B(x0, δ) and a
nonnegative matrix-valued function A in L∞µ (B(x0, ε))2×2, such that for any open subset ω
of Ω, with B(x0, ε) ∩ ω 6= Ø, the sequence Fn(·, ω) defined by (3.6) Γ-converges for the
strong topology of L2(ω) (up to a subsequence of n, still denoted by n, which depends on ω)
to the Dirichlet form F (·, ω) which satisfies the following properties:

(i) The space C1
c (B(x0, ε) ∩ ω)) is contained in D(F (·, ω)), and

F (u, ω) =
∫

B(x0,ε)∩ω
A∇u · ∇u dµ, ∀u ∈ C1

c (B(x0, ε) ∩ ω). (3.11)

(ii) For any u ∈ D(F (., ω))∩C1
0 (ω), and any sequence un in H1

0 (ω), which strongly con-
verges to u in L2(ω) and such that Fn(un, ω) tends to F (u, ω), the sequence An∇un ·
∇un converges to A∇u · ∇u dµ in the weak ∗ sense of the measures in B(x0, ε) ∩ ω.

Theorem 3.4 refers to the case where D(F ) contains C1
c (Ω). In the general case

we obtain a characterization of the Γ-limit of Fn(·, ω) (3.6) but not explicit like the
representation formula (3.9). In fact, we have the following abstract result:

Theorem 3.8. Let R be the equivalence relation defined in Ω̄ by

xR y ⇔ u(x) = u(y), ∀u ∈ D(F ) ∩ C0(Ω),

and note that any function u ∈ D(F )∩C0(Ω) defines a function in Ω̄/R, still denoted by u.
The set Ω̄/R is endowed with the smallest topology T such that the functions in D(F ) ∩
C0(Ω) are continuous for T. Then, Ω̄/R is a Hausdorff, separable and compact topological
space.

We denote by Ω∗ the set Ω̄/R without the class containing the elements of ∂Ω. Then,
Ω∗ is locally compact and the set D(F )∩C0(Ω) is a dense separating subalgebra of C0(Ω∗),
which allows us to define a bounded Radon measure m on Ω∗ by∫

Ω∗
u dm =

∫
Ω

u dx, ∀u ∈ D(F ) ∩ C0(Ω).

Then, the restriction of the Γ-limit F to D(F ) ∩ C0(Ω) is a closable Markovian form
in L2

m(Ω∗), which is strongly local. Its closure F ∗ is a strongly local Dirichlet form.
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Remark 3.9. By Theorem 3.8 the Dirichlet form F ∗ is a diffusion. Denote by M∗ the
space of the Radon measures on Ω∗. Then, following Mosco [18] there exists a bilinear
form ν : D(F ∗)×D(F ∗) −→ M∗, such that

F ∗(u) =
∫

Ω∗
dν(u, u), ∀u ∈ D(F ∗).

For any u ∈ D(F ∗), the measure ν(u, u) is nonnegative and depends locally on u. That
is, if u1, u2 ∈ D(F ∗) agree in an open subset G of Ω∗, then ν(u1, u1) = ν(u2, u2) on G.
Moreover, the measure ν satisfies several properties which are detailed in [18], such as the
Leibnitz rule, the chain rule and the truncation principle.

On the other hand, by the Stone-Weierstrass theorem, D(F )∩C0(Ω) is dense in C0(Ω)
if and only if, for any x ∈ Ω, the class of x by the relation R reduces to {x}. In this case,
the sets Ω and Ω∗ may be identified. However, even under the assumption Ω ≡ Ω∗, we
cannot express F ∗ more precisely, since we do not know the exact composition of the
domain D(F ). We also refer to [18] (p. 192) for an explicit treatment of the diffusion part
of a Dirichlet form.

3.3 Proof of the results

Proof of Lemma 3.7. First, since by Properties 3.2 a) the sequence F ∗
n defined by

F ∗
n (u, B(x0, δ)) :=


∫

B(x0,δ)
An∇u · ∇u dx if u ∈ H1(B(x0, δ))

+∞ if u ∈ L2(B(x0, δ)) \H1(B(x0, δ)),

Γ-converges, up a subsequence, for the strong topology of L2(B(x0, δ)), we may choose w1
n,

w2
n which satisfy (3.7) with limits w1, w2, as recovery sequences for F ∗

n . Then, thanks to
Properties 3.2 c) the sequence wi

n, for i ∈ {1, 2}, satisfies
lim

n→+∞

∫
B(x0,δ)

An∇wi
n · ∇vn dx = 0, ∀ vn ∈ H1(B(x0, δ)),

vn → 0 strongly in L2(B(x0, δ)), An∇vn · ∇vn bounded in L1(B(x0, δ)),
(3.12)

and by Theorem 2.1 wi
n strongly converges to wi in L∞loc(B(x0, δ)).

On the other hand, we define the Radon measure µ on B(x0, δ) and the matrix-valued A
in L∞µ (Ω)2×2 by the following weak ∗ convergences which hold true up to a subsequence,{

An∇w1
n · ∇w1

n + An∇w2
n · ∇w2

n ⇀ µ in M
(
B̄(x0, δ)

)
∗,

An∇wi
n · ∇wj

n dx ⇀ A∇wi · ∇wj dµ in M
(
B̄(x0, δ)

)
∗, i, j ∈ {1, 2}.

(3.13)

Since ∇w1(x0),∇w2(x0) are linearly independent, there exists ε ∈ (0, δ) and an open
subset O of R2, such that ∇w1,∇w2 are linearly independent in B(x0, ε) and the function
w := (w1, w2) is one-to-one from B(x0, ε) onto O, with C1 inverse.

Proof of (i). Let us consider an open subset ω of Ω, with ω ∩ B(x0, ε) 6= Ø, and a new
subsequence of n (which depends on ω), still denoted by n, such that Fn(·, ω) Γ-converges
to F (·, ω) for the strong topology of L2(ω).

Then, for a given function u ∈ C1
c (B(x0, ε) ∩ ω), we may define the function

R := u(w−1) ∈ C1
c (w(B(x0, ε) ∩ ω)) ,

so that u = R(w) in B(x0, ε)∩ω. Set wn := (w1
n, w2

n). Due to the uniform convergence of
wi

n, and to the compactness of supp (R) in w(B(x0, ε) ∩ ω), the function R(wn) belongs
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to H1
0 (B(x0, ε) ∩ ω). Thus, denoting by un the extension of R(wn) by zero outside of

B(x0, ε)∩ ω, un is a sequence in H1
0 (ω), which strongly converges to u in L∞(ω). On the

other hand, using that

Fn(un, ω) =
2∑

i,j=1

∫
B(x0,ε)∩ω

An

(
∂iR(wn)∇wi

n

)
·
(
∂jR(wn)∇wj

n

)
dx (3.14)

is bounded, we deduce that u belongs to D(F (., ω)). Moreover, formula (3.14) combined
with (3.13) and the uniform convergence of ∂iR(wn), yields

lim
n→+∞

Fn(un, ω) =
∫

B(x0,ε)∩ω
A∇u · ∇u dµ.

Therefore, it remains to prove that

F (u, ω) = lim
n→+∞

Fn(un, ω), (3.15)

in order to obtain the desired formula (3.11).
First, note that Remark 2.2 implies that the Γ-limit of Fn(·, ω) for the strong topology

of L2(ω) agrees with the Γ-limit for the strong topology of L∞(ω) over H1
0 (ω) ∩ C0(ω).

Therefore, thanks to Properties 3.2 c), to prove (3.15) it is enough to check that for any
sequence vn in H1

0 (ω), which strongly converges to zero in L∞(ω) and such that An∇vn ·
∇vn is bounded in L1(ω),

lim
n→+∞

∫
ω

An∇un · ∇vn dx = lim
n→+∞

2∑
i=1

∫
B(x0,ε)∩ω

An

(
∂iR(wn)∇wi

n

)
· ∇vn dx = 0. (3.16)

For such a sequence vn, we consider, for ρ > 0, Rρ ∈ C2
c (w(B(x0, ε) ∩ ω)) such that

‖R−Rρ‖C1(w(B(x0,ε)∩ω)) < ρ.

For i ∈ {1, 2}, we start from the equality∫
B(x0,ε)∩ω

An(∂iR(wn)∇wi
n) · ∇vn dx =

∫
B(x0,ε)∩ω

An(∂iRρ(wn)∇wi
n) · ∇vn dx

+
∫

B(x0,ε)∩ω
An

(
(∂iR(wn)− ∂iRρ(wn))∇wi

n

)
· ∇vn dx.

(3.17)

The second term of the right-hand side of (3.17) clearly satisfies

lim sup
n→+∞

∣∣∣∣∣
∫

B(x0,ε)∩ω
An

(
∂i(R(wn)−Rρ(wn))∇wi

n

)
· ∇vn dx

∣∣∣∣∣ ≤ Cρ.

For the first term, defining rn ∈ H1
0 (Ω) as the extension of ∂iRρ(wn) by zero out-

side B(x0, ε) ∩ ω, we have∫
B(x0,ε)∩ω

An(∂iRρ(wn)∇wi
n) · ∇vn dx

=
∫

ω
An∇wi

n · ∇ (rnvn) dx−
∫

B(x0,ε)∩ω
An∇wi

n · ∇(∂iRρ(wn)) vn dx,

where by (3.12) and the uniform convergence of vn to zero, the right-hand side tends to
zero. Therefore, we obtain, for any ρ > 0 and i ∈ {1, 2},

lim sup
n→+∞

∣∣∣∣∫
Ω

An

(
∂iR(wn)∇wi

n

)
· ∇vn dx

∣∣∣∣ ≤ Cρ,
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which proves (3.16) and thus (3.15).

Proof of (ii). Let us consider u ∈ D(F (., ω)) ∩C1
0 (ω) and a sequence un in H1

0 (ω), which
strongly converges to u in L2(ω) and such that Fn(un, ω) tends to F (u, ω). Thanks to
Remark 2.2 there exists another sequence ûn satisfying the same properties but which
also strongly converges to u in L∞(ω). Since un and ûn are recovery sequences (3.2)
for Fn(·, ω), with the same limit u, Properties 3.2 c) implies that

lim
n→+∞

∫
ω

An∇(un − ûn) · ∇(un − ûn) dx = 0,

hence the weak ∗ limits of An∇un · ∇un and An∇ûn · ∇ûn in the sense of the measures
in ω coincide. So, replacing un by ûn we can assume that un strongly converges to u
in L∞(ω).

For ϕ ∈ C1
c (B(x0, ε)∩ω), we take v ∈ C1

c (B(x0, ε)) such that v = u in supp (ϕ). Then,
we consider two sequences ϕn, vn in H1

0 (ω), which strongly converge in L∞(ω) respectively
to ϕ, v and satisfy

lim
n→+∞

Fn(ϕn, ω) = F (ϕ, ω) and lim
n→+∞

Fn(vn, ω) = F (v, ω). (3.18)

Using the second result of Theorem 2.1 we may also choose ϕn such that supp (ϕn) is
contained in supp (ϕ). We have∫

ω
An∇un · ∇un ϕ dx =

∫
ω

An∇un · ∇un (ϕ− ϕn) dx

+
∫

ω
An∇(un − vn) · ∇un ϕn dx +

∫
ω

An∇vn · ∇(un − vn) ϕn dx

+
∫

ω
An∇vn · ∇(vnϕn) dx− 1

2

∫
ω

An∇v2
n · ∇ϕn dx.

(3.19)

The first term of the right-hand side of (3.19) tends to zero thanks to the uniform con-
vergence of ϕn. For the second term, we use∫

ω
An∇(un − vn) · ∇un ϕn dx =

∫
ω

An∇((un − vn)ϕn) · ∇un dx

−
∫

ω
An∇ϕn · ∇un (un − vn) dx.

(3.20)

Combining the convergence of Fn(un, ω) to F (u, ω), the strong convergence of (un−vn)ϕn

to zero in L2(ω) and the boundedness of An∇
(
(un − vn)ϕn

)
· ∇
(
(un − vn)ϕn

)
in L1(ω),

we obtain by (3.3) that the first term of the right-hand side of (3.20) tends to zero. The
second term also tends to zero thanks to the uniform convergence of un − vn to zero in
supp (ϕ) ⊃ supp (ϕn). Therefore, the second term of the right-hand side of (3.19) tends
to zero. Similarly, the third term of the right-hand side of (3.19) converges to zero.
For the fourth term of the right-hand side of (3.19) we apply Properties 3.2 c) to vn which
is a recovery sequence by (3.18). Then, since v and ϕ have support in B(x0, ε) ∩ ω and
v = u in suppϕ, the part (i) of Lemma 3.7 implies that

lim
n→+∞

∫
ω

An∇vn · ∇(vnϕn) dx =
∫

ω
A∇u · ∇(uϕ) dµ.

Similarly, since ϕn is a recovery sequence by (3.18), we have

lim
n→+∞

∫
ω

An∇v2
n · ∇ϕn dx =

∫
ω

A∇u2 · ∇ϕ dµ.
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Finally, passing to the limit in the right-hand side of (3.19) thanks to the previous con-
vergences, yields

lim
n→+∞

∫
ω

An∇un · ∇un ϕ dx =
∫

ω
A∇u · ∇u ϕ dµ, ∀ϕ ∈ C1

c (B(x0, ε) ∩ ω),

which concludes the proof of Lemma 3.7. �

Proof of Theorem 3.4. If C1
c (Ω) is contained in D(F ), then it is clear that for any

x0 ∈ Ω, there exists δ > 0, two functions w1, w2 in C1(B(x0, δ)) and two sequences w1
n, w2

n

in H1(B(x0, δ)) which satisfy (3.7).
Inversely, if condition (3.7) is satisfied, Lemma 3.7 proves that for any x0 ∈ Ω, there

exist ε > 0, a nonnegative bounded Radon measure µ̂ and a nonnegative matrix-valued
function Â in L∞µ̂ (B(x0, ε))2×2 such that (3.11) holds true for any open subset ω of Ω
and for the Γ-limit F (·, ω) of any convergent Γ-subsequence of Fn(·, ω) in L2(ω), with
C1

c (B(x0, ε)) ⊂ D(F (·, ω)). ¿From the covering of Ω by the disks B(x0, ε), we can deduce
the existence of xi ∈ Ω, εi > 0 and ϕi ∈ C∞

c (B(xi, εi)), i ∈ N∗, such that any compact
subset of Ω only intersects a finite number of B(xi, εi) and

∑
i∈N∗ ϕi(x) = 1 in Ω. Then,

considering the Radon measure µi and the matrix-valued function Ai associated with
each disk B(xi, εi), for i ∈ N∗, according to the procedure of Lemma 3.7 combined with
a diagonal extraction, we define the measure µ by

µ(B) :=
∞∑
i=1

µi (B(xi, εi) ∩B) , ∀B Borel subset of Ω,

and, using the Radon-Nikodym theorem we define the matrix-valued measure A dµ by∫
B

A dµ :=
∑
i∈N∗

∫
B(xi,εi)∩B

Aiϕi dµi ∀B Borel set, with B̄ ⊂ Ω.

Now, let us consider an open subset ω of Ω and u ∈ C1
c (ω). We have

u =
∞∑
i=1

uϕi,

where the sum carries on a finite set of indexes i. Since by Lemma 3.7 each function uϕi is
in D(F (·, ω)), the function u also belongs to D(F (·, ω)). Let un be a sequence in H1

0 (ω),
which strongly converges to u in L2(ω) and such that Fn(un, ω) tends to F (u, ω). By the
part (ii) of Lemma 3.7 the sequence An∇un ·∇un converges to Ai∇u·∇u dµi in the weak ∗
sense of the measures in B(xi, εi) ∩ ω, for each i ∈ N∗. Then, since for any ϕ ∈ C1

c (ω),
supp (ϕ) ∩ supp (ϕi) 6= Ø only for a finite set of indexes i, we have

lim
n→+∞

∫
ω

An∇un · ∇un ϕ dx = lim
n→+∞

∞∑
i=1

∫
ω

ϕi An∇un · ∇un ϕ dx

=
∞∑
i=1

∫
ω

ϕi A
i∇u · ∇u ϕ dµi =

∫
ω

A∇u · ∇u ϕ dµ.

(3.21)

This proves that An∇un · ∇un weakly converges to A∇u · ∇u dµ in M(ω) ∗. Thanks to
second result of Theorem 2.1 we can choose un such that supp (un) ⊂ supp (u). Then,
taking in (3.21) ϕ ∈ C1

c (ω) such that ϕ = 1 in supp (u), we get

F (u, ω) = lim
n→+∞

Fn(un, ω) = lim
n→+∞

∫
ω

An∇un · ∇un dx = lim
n→+∞

∫
ω

An∇un · ∇un ϕ dx

=
∫

ω
A∇u · ∇u ϕ dµ =

∫
ω

A∇u · ∇u ϕ dµ =
∫

ω
A∇u · ∇u dµ,

14



which proves (3.9). Moreover, by (2.1) the sequence un converges weakly to u in H1
0 (Ω),

and for any u ∈ C1
c (ω), we have

α

∫
Ω
|∇u|2 dx ≤ α lim inf

n→+∞

∫
Ω
|∇un|2 dx ≤ lim

n→+∞
Fn(un, ω) = F (u, ω) =

∫
Ω

A∇u · ∇u dµ.

This implies (3.8) (see e.g. [13] Lemma 22.5 p. 234) and concludes the proof. �

Proof of Theorem 3.6. Similarly to the proof of Theorem 3.4 we consider ϕj ∈ C1
c (Ω),

for j ∈ N, which gives a partition of the unity associated with a locally finite covering
of Ω. For any i ∈ {1, 2} and any j ∈ N, we consider zi,j

n ∈ H1
0 (Ω), with zi,j

n = 0 q.e.
outside supp (ϕj), such that zi,j

n strongly converges to xiϕ
j in L∞(Ω) and Fn(zi,j

n ) tends
to F (xiϕ

j). Then, for i ∈ {1, 2}, we define

wi
n :=

∑
j∈Jn

zi,j
n , where Jn :=

{
j ∈ N : supp (ϕj) ∩ {x ∈ Ω : dist (x, ∂Ω) < 1

n} = Ø
}

.

The sequences wi
n clearly satisfy the conditions (3.7) of Theorem 3.6.

Now, consider an open subset ω of Ω, a function u ∈ C1
c (ω), and assume that Fn(·, ω)

Γ-converges to F (·, ω) for the strong topology of L2(ω). Since the sequence wn := (w1
n, w2

n)
strongly converges to the identity in L∞loc(Ω), the argument used in the proof of Lemma 3.7
shows that the sequence Fn(u(wn), ω) converges to F (u, ω). So, for any recovery se-
quence un in H1

0 (ω), which strongly converges to u in L2(ω) and such that Fn(un, ω)
tends to F (u, ω), Properties 3.2 c) implies that

lim
n→+∞

∫
ω

An∇(un − u(wn)) · ∇(un − u(wn)) dx = 0. (3.22)

On the other hand, since wn uniformly converges to the identity and u ∈ C1
c (ω), we also

have

lim
n→+∞

∫
ω

An

(
∇[u(wn)]−

2∑
i=1

∂iu∇wi
n

)
·

(
∇[u(wn)]−

2∑
i=1

∂iu∇wi
n

)
dx

= lim
n→+∞

2∑
i,k=1

∫
ω

An∇wi
n · ∇wk

n (∂iu(wn)− ∂iu) (∂ku(wn)− ∂ku) dx = 0,

which combined with (3.22) yields the desired limit (3.10). �

Proof of Theorem 3.8. For x ∈ Ω̄, we denote by [x] its class in Ω̄/R. The class
containing the elements of ∂Ω (note that all the elements of ∂Ω are in relation by R) is
denoted by [∂]. A basis for the topology T is given by the subsets of Ω̄/R of the form

n⋂
i=1

u−1
i

(
(si − εi, si + εi)

)
, (3.23)

with u1, . . . , un ∈ D(F ) ∩ C0(Ω), s1, . . . , sn ∈ R, ε1, . . . , εn > 0 and n ∈ N∗. Then, by
definition of R, for any x, y ∈ Ω̄ with [x] 6= [y], there exists u ∈ D(F ) ∩ C0(Ω) such that
u(x) 6= u(y). Therefore, T is Hausdorff.

Let x ∈ Ω̄ and let V be a neighbourhood of [x] of type (3.23). By the density of Q2

in R2 and the continuity of the functions ui in (3.23), there exists z ∈ Q2 ∩ Ω̄ such that
[z] ∈ V . Therefore, the classes of the elements in Q2 ∩ Ω̄ are dense in Ω̄/R, which implies
the separability of T.

By the definition of T, for any open set O of Ω̄/R, the set {x ∈ Ω : [x] ∈ O} is an
open subset of Ω̄. By considering the complementary the same property holds true for
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the closed sets. Using the compactness of Ω̄, the characterization of the open sets implies
that Ω̄/R is compact and thus, the set Ω∗ := Ω̄/R \ {[∂]} is locally compact.

Using that the Γ-limit F of Fn (3.6) is closed for the strong topology of L2(Ω) and
the definition of the measure m, the restriction of F to D(F ) ∩ C0(Ω) is a closable form
in L2

m(Ω∗), whose closure is denoted by F ∗. Let us prove that F ∗ is a regular Dirichlet
form according to Definition 3.3.

Set H(s) := (s∨ 0)∧ 1, for s ∈ R. Then, for any u ∈ D(F ) and any recovery sequence
un ∈ H1

0 (Ω) associated with u and Fn by (3.2), we have

F (H(u)) ≤ lim inf
n→+∞

Fn(H(un)) ≤ lim Fn(un) = F (u).

In particular, this holds for any u ∈ D(F ) ∩ C0(Ω), hence the restriction of F to D(F ) ∩
C0(Ω) is Markovian.

Since D(F ) ∩ C0(Ω) is an algebra which separates points, the Stone-Weierstrass the-
orem shows that the functions of the form u + c, with u ∈ D(F ) ∩ C0(Ω) and c ∈ R, are
dense in C(Ω̄/R). Now, consider v ∈ Cc(Ω∗), vn ∈ D(F ) ∩ C0(Ω) and cn ∈ R, such that
vn + cn converges to v in C(Ω̄/R). Since v and vn vanish in [∂], the sequence cn converges
to zero and thus vn converges to v in C(Ω̄/R). This proves that D(F ) ∩ C0(Ω) is dense
in C0(Ω∗), which implies that F ∗ is regular. Therefore, F ∗ is a regular Dirichlet form.

It remains to prove that F ∗ is strongly local, i.e., the polar form Φ of F satisfies (3.4).
Let u, v ∈ D(F )∩C0(Ω) and c ∈ R, such that u = c constant in supp (v). First, we assume
that c ≥ 0. Taking into account Remark 2.2, we consider two recovery sequences un, vn

which strongly converge respectively to u, v in L∞(Ω) and such that Fn(un), Fn(vn) tend
respectively to F (u), F (v). We also choose vn such that supp (vn) ⊂ supp (v). Let Hε,
for ε > 0, be the function defined in R by

Hε(s) :=


c

c−ε s if s < c− ε

c if c− ε ≤ s ≤ c + ε
s + ε if s > c + ε,

if ε < c,

(note that Hε(0) = 0), and Hε(s) := (s− ε sgn(s))χ{|s|>ε} if c = 0. The sequence
εn := ‖un − u‖L∞(Ω) converges to zero. Then, the sequence Hεn(un) satisfies the same
properties than un, but we also have Hεn(un) = c in supp (v) ⊃ supp (vn), for εn small
enough. Therefore, the Properties 3.2 c) of the recovery sequence vn yields

Φ(u, v) = lim
n→+∞

∫
Ω

An∇ (Hεn(un)) · ∇vn dx = 0.

In the case c < 0, we simply use the equality Φ(u, v) = −Φ(−u, v) = 0. �

4 Application to the periodic case

4.1 Statement of the results

In this section we consider a sequence Bn of symmetric matrix-valued functions in L∞(R2)2×2,
which satisfies the following assumptions:

Bn is Y -periodic, where Y := (0, 1)2, i.e.,

∀n ∈ N, ∀κ ∈ Z2, Bn(·+ κ) = Bn(·) a.e. in R2, (4.1)

Bn is equicoercive in R2, i.e.,

∃α > 0 such that ∀n ∈ N, ∀ ξ ∈ R2, Bnξ · ξ ≥ α|ξ|2 a.e. in R2. (4.2)
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Let εn be a sequence of positive numbers which tends to 0. From the sequences Bn and εn

we define the highly oscillating sequence of matrix-valued functions An by

An(x) := Bn

(
x

εn

)
, a.e. x ∈ R2. (4.3)

In virtue of (4.1) and (4.2) An is an equicoercive sequence of εn-periodic matrix-valued
functions in L∞(R2)2×2. Let A∗

n be the constant matrix defined by

A∗
nλ·λ := min

{∫
Y

Bn(y)(λ +∇ϕ(y)) · (λ +∇ϕ(y)) dy : ϕ ∈ H1
#(Y )

}
, λ ∈ R2, (4.4)

where H1
#(Y ) denotes the set of Y -periodic functions in H1

loc(R2). The matrix A∗
n is

symmetric and positive definite with A∗
n ≥ α I2. By the classical result of periodic ho-

mogenization (see e.g. [1]) A∗
n, for fixed n, is the homogenized matrix associated with the

oscillating sequence An(x
ε ) as ε tends to zero. Note that in the definition (4.3) of An the

oscillations period εn depends on the sequence n.

In this periodic framework we are interested in the asymptotic behaviour of the diffu-
sion energy Fn defined by

Fn(u) :=


∫

Ω
An∇u · ∇u dx if u ∈ H1

0 (Ω)

+∞ if u ∈ L2(Ω) \H1
0 (Ω),

(4.5)

as well as the conduction problem{
−div (An∇un) = f in Ω

un = 0 on ∂Ω,
(4.6)

for a given f in H−1(Ω).
The following result shows that the asymptotic behaviour of the diffusion energy Fn (4.5)

only depends on the limit of the spectral radius ρ(A∗
n) of the matrix A∗

n (4.4).

Theorem 4.1. Let Ω be a bounded open set of R2. Consider a highly oscillating sequence
of matrix-valued functions An satisfying (4.1), (4.2) and (4.3). Then, we have the following
alternative:

If ρ(A∗
n) is bounded, there exists a subsequence, still denoted by n, and a positive definite

matrix A∗ such that A∗
n (4.4) converges to A∗ in R2×2 and Fn (4.5) Γ-converges for

the strong topology of L2(Ω) to the quadratic form F associated with A∗ by

F (u) :=


∫

Ω
A∗∇u · ∇u dx if u ∈ H1

0 (Ω)

+∞ if u ∈ L2(Ω) \H1
0 (Ω).

(4.7)

If ρ(A∗
n) tends to +∞, the sequence Fn Γ-converges for the strong topology of L2(Ω) to

the quadratic form F whose domain is

D(F ) = {0}. (4.8)

In term of the conduction problem (4.6) Theorem 4.1 implies the following result:

Corollary 4.2. Let Ω be a bounded open set of R2. Consider a highly oscillating sequence
of matrix-valued functions An satisfying (4.1), (4.2) and (4.3). Then, we have the following
alternative:
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If ρ(A∗
n) is bounded, there exists a subsequence, still denoted by n, and a positive definite

matrix A∗ such that A∗
n (4.4) converges to A∗ in R2×2 and, for any f in H−1(Ω), the

solution un of (4.6) weakly converges in H1
0 (Ω) to the solution u of the conduction

problem {
−div (A∗∇u) = f in Ω

u = 0 on ∂Ω.
(4.9)

If ρ(A∗
n) tends to +∞, the sequence un strongly converges to 0 in H1

0 (Ω).

Proof. Corollary 4.2 is a immediate consequence of Theorem 4.1 using the fact that the
solution un of (4.6) is the minimizer of the functional

u ∈ L2(Ω) 7−→ 1
2

Fn(u)−
∫

Ω
f u dx,

and the minimizers convergence property of the Γ-convergence (see e.g. Corollory 7.24
p. 84 of [13]).

Remark 4.3. Corollary 4.2 is an extension of the similar homogenization result obtained
in [4] (by a complete different approach) under the assumption that the sequence of
periodic matrix-valued Bn (4.3) is bounded in L1(Y )2×2. This condition is more restrictive
since it is easy to check that the boundedness of Bn in L1(Y )2×2 implies the boundedness
of ρ(A∗

n). We can also build a periodic two-dimensional microstructure such that ρ(A∗
n) is

bounded while ‖Bn‖L1(Y )2×2 is not. Therefore, Corollary 4.2 provides a complete answer
to the periodic homogenization of the conduction problems with equicoercive sequences
of symmetric conductivities.

4.2 Proof of Theorem 4.1

The case where ρ(A∗
n) is bounded

Let Xi
n, i = 1, 2, be the unique function in H1

#(Y ), with zero Y -average value, solution of

∀ϕ ∈ H1
#(Y ),

∫
Y

Bn∇W i
n · ∇ϕ dy = 0, where W i

n(y) := yi + Xi
n(y), (4.10)

or equivalently,
div
(
Bn

(
ei +∇Xi

n

))
= 0 in D′(R2), (4.11)

where (e1, e2) denotes the canonic basis of R2. Let wi
n be the highly oscillating sequence

defined by

wi
n(x) := εn W i

n

(
x

εn

)
= xi + εn Xi

n

(
x

εn

)
, for x ∈ Ω. (4.12)

By (4.11) and the definition (4.3) of An the function wi
n is clearly An-harmonic. Moreover,

by the Y -periodicity of Bn∇W i
n · ∇W i

n, by (4.10) and the definition (4.4) of A∗
n, we have

for any bounded open subset ω of R2,∫
ω

An∇wi
n · ∇wi

n dx ≤ cω

∫
Y

Bn∇W i
n · ∇W i

n dy = cω A∗
nei · ei ≤ c < +∞.

This combined with the equicoerciveness of An implies that the sequence wi
n is bounded

in H1
loc(R2) and thus weakly converges to xi in H1

loc(R2). Then, thanks to Corollary 2.3 the
sequence wi

n strongly converges to xi in L∞(Ω). On the other hand, by the boundedness
assumption on ρ(A∗

n) the sequence A∗
n converges, up to a subsequence, to some constant
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matrix A∗ in the space R2×2. Moreover, the εn-periodicity of ∇wi
n implies that, for any

i, j = 1, 2,

An∇wi
n · ∇wj

n =
(
Bn∇W i

n · ∇W j
n

)( x

εn

)
⇀ A∗ei · ej weakly in M(R2) ∗ .

So, as the gradients of the functions xi, i ∈ {1, 2}, are independent at each point of Ω,
the sequences wi

n satisfy (3.12) for any open disk contained in Ω. Therefore, since wi
n

are An-harmonic and converge uniformly in Ω, the construction of Lemma 3.7 yields the
measure µ and the matrix-valued A by

dµ = (A∗e1 · e1 + A∗e2 · e2) dx and Aei · ej dµ = A∗ei · ej dx,

hence A∗ = (A∗e1 · e1 + A∗e2 · e2) A. Then, in virtue of Theorem 3.4 the Γ-limit F of the
sequence Fn (4.5) satisfies

C1
c (Ω) ⊂ D(F ) and F (u) =

∫
Ω

A∗∇u · ∇u dx, ∀u ∈ C1
c (Ω). (4.13)

Let us conclude. On the one side, the equicoerciveness of An and the lower semi-
continuity of the H1

0 (Ω)-norm give D(F ) ⊂ H1
0 (Ω). On the other side, the density of C1

c (Ω)
in H1

0 (Ω), combined with the fact that D(F ) is a Hilbert space and that from (4.13) a
sequence of C1

c (Ω) which strongly converges in H1
0 (Ω) also strongly converges in D(F ),

we get D(F ) = H1
0 (Ω) and equality (4.13) holds true in H1

0 (Ω). Note that Fn Γ-converges
to F for the whole sequence such that A∗

n converges to A∗ in R2×2.

The case where ρ(A∗
n) tends to +∞

We proceed by contradiction. We assume that the domain D(F ) of the Γ-limit F does
not reduce to {0}. Then, we prove that ρ(A∗

n) is necessarily bounded. To this end, we
proceed in two steps. In the first step, we prove that there exists a continuous function
in D(F ) \ {0}. The second step is devoted to the proof of the boundedness of ρ(A∗

n).

First step : D(F ) ∩ C(Ω) 6= {0}.
Up to an extraction of a subsequence we can assume that the sequence Fn defined by (4.5)
Γ-converges to some quadratic functional F : L2(Ω) −→ [0,+∞]. The starting assumption
is that D(F ) 6= {0}. Let u ∈ D(F ) \ {0}. By the equicoerciveness of An the function u
belongs to H1

0 (Ω). There exists a sequence un in H1
0 (Ω) which strongly converges to u in

L2(Ω) and such that Fn(un) tends to F (u). Up to enlarge the domain Ω and to extend
the functions of H1

0 (Ω) by 0 outside Ω, we may assume that the supports of u, un are
contained in a fixed compact K of Ω.

Firstly, let us prove that, for any τ ∈ R2 of small enough norm, the translated function
u(·+ τ) belongs to D(F ) and F (u(·+ τ)) = F (u). We follow the procedure given in the
proof of Theorem 24.1 of [13]. Let τ ∈ R2 and let κn be a sequence in Z2 such that
τn := εnκn tends to τ . If τ has a small enough norm, then we have K − τn ⊂ Ω for
any n ∈ N. Then, using successively the fact that un(·+ τn) is equal to 0 in Ω \ (K − τn),
the change of variable y = x + τn and the εn-periodicity of An, we obtain

F (un(·+ τn)) =
∫

K−τn

An(x)∇un(x + τn) · ∇un(x + τn) dx

=
∫

K
An(y)∇un(y) · ∇un(y) dy = Fn(un).

Moreover, the sequence un(·+ τn) strongly converges to u(·+ τ). Therefore, the Γ-liminf
inequality implies that

F (u(·+ τ)) ≤ lim inf
n→+∞

Fn(un(·+ τn)) = lim inf
n→+∞

Fn(un) = F (u),
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which also yields F (u) ≤ F (u(·+ τ − τ)) ≤ F (u(·+ τ)), and thus F (u(·+ τ)) = F (u).
Secondly, let δ be a small enough positive number and let vδ be the function defined

on Ω by

vδ(x) :=
1
δ2

∫
δY

u(x + y) dy, for x ∈ Ω,

which is continuous on Ω. Let (Qj
k)1≤j≤k, for k ∈ N∗, be a covering of the set δY

by k squares of side δ√
k

and let yj
k be the center of Qj

k. Then, the sequence of convex
combinations of translated of u defined by

vk
δ :=

1
δ2

k∑
j=1

|Qj
k|u(·+ yj

k)

strongly converges to vδ in L2(Ω) as k → +∞, for fixed δ. Then, the lower semi-continuity
and the convexity of F yield

F (vδ) ≤ lim inf
k→+∞

F (vk
δ ) ≤ lim inf

k→+∞

1
δ2

k∑
j=1

|Qj
k|F

(
u(·+ yj

k)
)

= F (u) < +∞.

Therefore, vδ belongs to D(F ) ∩ C(Ω). Since vδ strongly converges to u 6= 0 in L2(Ω), vδ

is a non-zero function in D(F )∩C(Ω) for δ small enough, which concludes the first step.

Second step : Boundedness of ρ(A∗
n).

Let v be a non-zero function in D(F ) ∩ C(Ω) and let vn be a sequence in H1
0 (Ω) which

strongly converges to v in L2(Ω) and such that Fn(vn) tends to F (v). By Theorem 2.1 the
sequence vn uniformly converges to v in Ω. Since v is a non-zero continuous function on Ω,
the uniform convergence of vn to v implies that there exists a non-empty open subset ω0

of Ω and a constant c0 > 0 such that

|vn(x)| ≥ c0 a.e. x ∈ ω0. (4.14)

Let λn be a unit norm vector in R2 such that A∗
nλn ·λn = ρ(A∗

n). Let wn be the highly
oscillating sequence defined by

wn(x) := λn ·x+ εn Xn

(
x

εn

)
x ∈ R2, where Xn := (λn · e1) X1

n +(λn · e2) X2
n (4.15)

and Xi
n, i = 1, 2, are the Y -periodic solutions of (4.11). Set Ỹ := (−1

2 , 3
2)2. Since the

function Wn(y) := λn · y + Xn(y) is Bn-harmonic in R2, by Corollary 2.5 there exists a
constant C > 0 such that for any n ∈ N,

‖Wn‖L∞(Y ) ≤ C ‖Wn‖H1(Ỹ ).

Then, using the periodicity and the zero Y -average value of Xn, as well as the Poincaré-
Wirtinger inequality yields

‖Xn‖L∞(Y ) ≤ 1 + ‖Wn‖L∞(Y )

≤ 1 + ‖λn · y‖L∞(Ỹ ) + C ‖Xn‖H1(Ỹ ) ≤ 1 + 3√
2

+ 4 C ‖Xn‖H1(Y )

≤ C ′ + C ′ ‖∇Xn‖L2(Y ) ≤ 2 C ′ + C ′ ‖∇Wn‖L2(Y ).

Moreover, the coerciveness of Bn and the definition (4.4) of A∗
n imply that

α ‖∇Wn‖2
L2(Y )2 ≤

∫
Y

Bn∇Wn · ∇Wn dy = A∗
nλn · λn = ρ(A∗

n),
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which combined with the previous estimates gives

‖Xn‖L∞(Y ) ≤ C ′ +
C ′
√

α

√
ρ(A∗

n).

Therefore, by the Y -periodicity of Xn and the definition (4.15) of wn there exists a con-
stant c > 0 such that for any n ∈ N,

‖wn‖2
L∞(Ω) ≤ c + c ε2

n ρ(A∗
n). (4.16)

On the other hand, using the An-harmonicity of wn (4.15) and the Cauchy-Schwarz
inequality yields∫

Ω
An∇wn · ∇wn v2

n dx = −2
∫

Ω
An∇wn · ∇vn vn wn dx

≤ 2
(∫

Ω
An∇wn · ∇wn v2

n dx

) 1
2
(∫

Ω
An∇vn · ∇vn w2

n dx

) 1
2

,

hence the inequality∫
Ω

An∇wn · ∇wn v2
n dx ≤ 4

∫
Ω

An∇vn · ∇vn w2
n dx. (4.17)

Let us conclude. On the one side, thanks to the uniform estimate (4.14) and the
εn-periodicity of An∇wn · ∇wn the left hand-side of (4.17) is bounded from below by a
positive constant times∫

ω0

An∇wn · ∇wn dx ≥ cω0

∫
Y

Bn∇Wn · ∇Wn dy = cω0 ρ(A∗
n),

where cω0 is a positive constant only depending on ω0. On the other side, thanks to the
uniform estimate (4.16) combined with the boundedness of Fn(vn) the right hand-side
of (4.17) is bounded from above by

c + c ε2
n ρ(A∗

n).

Therefore, there exists a constant c > 0 such that for any n ∈ N,

ρ(A∗
n) ≤ c + c ε2

n ρ(A∗
n), with εn → 0,

which implies that ρ(A∗
n) is bounded. The proof of Theorem 4.1 is done.
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[2] M. Bellieud & G. Bouchitté, “Homogenization of elliptic problems in a fiber
reinforced structure. Nonlocal effects”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (4)
(1998), 407-436.

[3] A. Beurling & J. Deny, “Espaces de Dirichlet”, Acta Matematica, 99 (1958),
203-224.

21

https://www.researchgate.net/publication/235409895_Asymptotic_Anlysis_of_Periodic_Structures?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/235409895_Asymptotic_Anlysis_of_Periodic_Structures?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==


[4] M. Briane, “Homogenization of high-conductivity periodic problems: Application
to a general distribution of one-directional fibers”, SIAM J. Math. Anal., 35 (1)
(2003), 33-60.

[5] M. Briane, “Homogenization of non uniformly bounded operators: critical barrier
for nonlocal effects”, Arch. Rat. Mech. Anal., 164 (2002), 73-101.

[6] M. Briane, “Nonlocal effects in two-dimensional conductivity”, Arch. Rat. Mech.
Anal. 182 (2) (2006), 255-267.

[7] M. Briane & J. Casado-D́ıaz, “Two-dimension div-curl results. Application to
the lack of nonlocal effects in homogenization”, to appear in Com. Part. Diff. Equa.

[8] M. Briane & J. Casado-D́ıaz, “Uniform estimates for solutions of two-dimensional
uniformly elliptic equations with unbounded coefficients”, work in progress.

[9] M. Briane & N. Tchou, “Fibered microstructures for some nonlocal Dirichlet
forms”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 30 (4) (2001), 681-711.

[10] G. Buttazzo & G. Dal Maso, “Γ-limits of integral functionals”, J. Analyse Math.,
37 (1980), 145-185.

[11] M. Camar-Eddine & P. Seppecher, “Closure of the set of diffusion functionals
with respect to the Mosco-convergence”, Math. Models Methods Appl. Sci., 12 (8)
(2002), 1153-1176.

[12] L. Carbone & C. Sbordone, “Some properties of Γ-limits of integral functionals”,
Ann. Mate. Pura Appl., 122 (1979), 1-60.

[13] G. Dal Maso, An introduction to Γ-convergence, Birkhaüser, Boston, 1993.
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