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Abstract

In this paper, we study the asymptotic behaviour of a given equicoercive sequence of
diffusion energies Fj,, n € N, defined in L?(f2), for a bounded open subset  of R%2. We
prove that, contrary to the three dimension (or greater), the I'-limit of any convergent
subsequence of F,, is still a diffusion energy. We also provide an explicit representation
formula of the I'-limit when its domains contains the regular functions with compact
support in . This compactness result is based on the uniform convergence satisfied by
some minimizers of the equicoercive sequence F;,, which is specific to the dimension two.
The compactness result is applied to the period framework, when the energy density is a
highly oscillating sequence of equicoercive matrix-valued functions. So, we give a definitive
answer to the question of the asymptotic behaviour of periodic conduction problems under
the only assumption of equicoerciveness for the two-dimensional conductivity.

1 Introduction

This paper deals with the asymptotic behaviour of sequences of diffusion energies in a
bounded open subset  of R?. The prototype of the diffusion energy is given by the
following quadratic functional defined in L?(Q):

/AnVu-Vud:c if ue Hi(Q).
= Q

F(u) for n € N, (1.1)

+00 if ue L2(Q)\ H(Q),

where A,, is a symmetric positive definite matrix-valued function in L>()2*2.

The knowledge of the limit behaviour of F}, is crucial in the homogenization theory
applied to conduction problems (see e.g. [1] for an introduction), since A,, then represents
the conductivity matrix of a given heterogeneous medium. In this context, Spagnolo [23],

with the G-convergence theory, and Murat & Tartar [25], [20], with the H-convergence
theory, proved the compactness of the sequence F;,, when A, is assumed to be both
equicoercive and equibounded. A few times later, Buttazzo & Dal Maso [10] and Car-
bone & Sbordone [12] extended the result of compactness by only assuming that the
sequence A, is bounded and equiintegrable in L'(£2)2*2. At the same period, Fenchenko
& Khruslov [15] showed that the equiintegrability condition cannot be relaxed since high
conductivity regions in three dimension may induce nonlocal effects which correspond to
a lack of compactness in the homogenization process (see also [2], [9], [4] for different
approaches).


https://www.researchgate.net/publication/237131963_Sulla_convergenza_di_soluzioni_di_equationi_paraboliche_ed_elitiche?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/235409895_Asymptotic_Anlysis_of_Periodic_Structures?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/243095004_Homogenization_of_High-Conductivity_Periodic_Problems_Application_to_a_General_Distribution_of_One-Directional_Fibers?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==

Nonlocal effects naturally appear in the limit behaviour of the diffusion energy. Indeed,
using the Beurling-Deny [3] theory Mosco [18] proved in particular that any sequence F,
I-converges, up to a subsequence, for the strong topology of L2(Q) (see Definition 3.1) to a
Dirichlet form (see Definition 3.3). According to the Beurling-Deny formula any Dirichlet
form can always be split up into three terms: a strongly local form (the diffusion part),
a local form and a nonlocal one. Inversely, Camar Eddine & Seppecher [11] proved that
any Dirichlet form in L2 (R3) can be obtained as the I-limit of a sequence of diffusion
energies of type (1.1) with a suitable isotropic conductivity A,.

The nonlocal effects obtained in the previous works are based on three-dimensional
microstructures whose model example is a medium reinforced by a periodic lattice of high
conductivity thin fibers. Then, it is natural to ask if the appearance of nonlocal effects is
specific to the three dimension (or greater). Recently, in [6] for periodic microstructures
and more generally in [7], we showed that the answer is positive. Assuming that the
sequence A, is both equicoercive and bounded in L!(€2)2*2 we proved that the I'-limit of
any sequence of type F}, is a strongly local Dirichlet form. Therefore, the dimension two
preserves the compactness in the homogenization process. The proof in [6], [7] is based
on two-dimensional div-curl type lemmas which extend the one of Murat & Tartar [26],
[21]. Note that the equicoerciveness assumption is essential to obtain strongly convergent
sequences in L2(Q2). However, the use of div-curl lemmas is strictly limited to conductivity
sequences which are bounded in L!(2)2*2,

In this paper, we study the asymptotic behaviour of the sequence of diffusion en-
ergies (1.1), without assuming any boundedness assumption on A,. Our approach is
completely different of the one used in [6] or [7] for A4, bounded in L!'(Q)?*2. The key-
ingredient of the method is a uniform convergence result satisfied by some energy mini-
mizers (see Section 2). More precisely, we prove (see Theorem 2.1) that for any bounded
energy (with respect to Fj,) sequence in H'(f2) which strongly converges in L?(2) to a
continuous function, there exists a smaller energy subsequence which strongly converges
to the same limit in Ly (€2). The proof of this result uses that the p-capicity, for p € (1,2),
of a continuous curve is positive (see Lemma 2.8), which is specific to the dimension two.
This combined with the continuity of the limit and the maximum principle allows us to
construct a uniformly convergent sequence.

Up to our knowledge, the previous result provides new uniform estimates on solu-
tions of uniformly elliptic partial differential equations without any control from above
on the coefficients. Here, we give an example (see Corollary 2.5) of such an estimate for
A-harmonic functions, where A is any uniformly elliptic (but not necessarily uniformly
bounded) matrix-valued in L*(0O), for a bounded open subset O of R?. This uniform
estimate is used in the last section of the paper. More general cases are the subject of a
work in progress [8].

On the other hand, thanks to the uniform convergence result of Section 2 and under
the only assumption of equicoerciveness for A,,, we prove (see Section 3 and Theorem 3.6)
that the diffusion energy F), I'-converges (up to a subsequence) for the strong topology
of L?(2) to a strongly local Dirichlet form F. Moreover, if the domain of the I'-limit F
contains the space C!(€2) of the Cl-regular functions with compact support in 2, we
obtain (see Theorem 3.4) the following representation formula

F(u):/AVu-Vud,u, Yuec CHQ), (1.2)
Q

2x2 In

where 1 is a Radon measure on @ and A a matrix-valued function in Lj°(€2)
other words, the sequence of the diffusion energies F), is relatively compact for the L?(€2)-
strong I'-convergence topology in the set of the uniformly coercive diffusion energies. In
particular, the compactness result implies that the limit of the energy density A, dx is

still a density of type Adpu.


https://www.researchgate.net/publication/225774484_Nonlocal_Effects_in_Two-Dimensional_Conductivity?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/225774484_Nonlocal_Effects_in_Two-Dimensional_Conductivity?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/225774484_Nonlocal_Effects_in_Two-Dimensional_Conductivity?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/244456260_Composite_Media_and_Asymptotic_Dirichlet_Forms?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/259149510_Compacite_par_Compensation?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==

The compactness result of Section 3 has a remarkable application in the periodic
homogenization framework. In this context, the conductivity A, is a highly oscillating

sequence defined by Ap(z) := Byn(Z), where By, is an equicoercive sequence of (0, 1)2-

periodic matrix-valued functions in L>(R?)2*2? and ¢, is a positive sequence converging

to zero. Associated with B, the constant matrix A’ (see formula (4.4)) obtained, for
a fixed n, from the periodic homogenization of B,(Z) as € — 0 (see e.g. [1]), plays a
fundamental role in the homogenization process. Indeed, extending [6] we prove (see
Theorem 4.1) that the asymptotic behaviour of the diffusion energies (1.1) is completely
determined by the limit behaviour of the matrix A}, according to the following alternative:

e if the spectral radius p(A}) of A} is bounded, A converges, up to a subsequence, to
a matrix A* and the I'-limit F' of F,, satisfies (1.2) with the constant density A* dz,
in the whole space H}(9);

o if p(AY) tends to o0, the domain of the I'-limit reduces to {0}.

As an immediate consequence, the question on the asymptotic behaviour of the two-
dimensional periodic conduction problem

~div (Bu(Z)Ve) = f om0 HY(Q), (1.3)
u, = 0 on 09,
is now definitively solved under the only assumption of equicoerciveness for By,:

e if p(A}) is bounded, (1.3) converges, up to a subsequence, to the conduction problem

with the constant conductivity lim A7 ;
n—+oo

o if p(A}) tends to +oo, the potential u,, of (1.3) strongly converges to zero in H(Q).

The paper is organized as follows. Section 2 is devoted to the uniform convergence
results and Section 3 to the I'-convergence of sequences of diffusion energies of type (1.1).
In Section 4 we apply the results of Section 3 to the periodic framework.

Notations
e N*:= N\ {0} denotes the set of the positive integers;

e a Vb, resp. a Ab, denotes the maximum, resp. the minimum, of a,b € R;
e B(z0,0) denotes the disk of center x¢9 € R? and of radius 6 > 0;

e Y denotes the characteristic of the set E;

e 1 lim means that the limit does exist;

e () denotes an open subset of R? and 2 the closure of ) in R?;

o H(2) means locally in the space H(2);

e (C(Q) denotes the space of the continuous functions in €2, C(€2) the subspace of C(2)
composed of the functions which are zero on the boundary of Q, C.(£2) the subspace
of Cy(Q) composed of the functions with compact support in €, and C¥(Q), for k €
NN {400}, the subspace of C.(Q2) composed of the k-th continuously differentiable
functions in €;

e D'(Q) denotes the set of the distributions on ;
o M(Q2) denotes the set of the Radon measures on §2;
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e a sequence L, in M(Q2) converges to p € M(2) in the weak * sense of the measures
in Q if
i [ pdun= [ wdu, Ve (@),
n—+0o Jo Q
and the convergence is denoted by g, — g in M(2) *;

e g.e. means quasi-everywhere in the sense of the 2-capacity in R?, and a.e. means
everywhere in the sense of the Lebesgue measure in R

e for any p € (1,2) and for any subset E of R? C,(E) denotes the p-capacity of E
with respect to R?, which is defined by

Cp(E) := inf {/ |VulP dz : u € D'P(R?), u > 1 a.e. in a neighbourhood of E} ,
R2

2
where D"P(R?) is the space of the functions u in L>5 (R?) such that Vu € L?(R?)2.

2 Uniform convergence results

2.1 Statement of the results

Let © be an open subset of R?. In this section, we consider a given sequence of symmetric
matrix-valued functions A, € L>(Q)?*%, n € N, which satisfies the following equicoer-
civeness property in 2

Ja>0 suchthat VneN,VECR?E A-€>alé]? ae inQ. (2.1)

For any function u € H*(Q2) NC(Q), we will study some questions related to the existence
of sequences u,, in H'() which both converge uniformly to u in  and satisfy the following
minimization property

3 lim A,Vuy, - Vu, de < liminf / A,Vu, - Vo, dr,
Q

n—-+o0o Q n—-+o0o

for any sequence v, in H'(Q) (some boundary conditions can be added), which strongly
converges to u in L?(2). Our main result in this way is the following theorem:

Theorem 2.1. Let u be a function in H*(Q) N C(Q) and let i, be a sequence H(Q)
which strongly converges to u in L*(Q)) and satisfies

3 lim A, NV, - Vi, de < 4o00.

n—-+o00 Q

Then, up to a subsequence of n, still denoted by n, there exists u, € H'(Q) which satisfies

lim sup/ A, Vu, - Vu, dr < lim A, Vi, - Vi, dz, (2.2)
and  up, — u strongly in L5, (Q). (2.3)

Moreover, if the support of u is contained in a compact set K of €1, then we can take u,
such that u, =0 g.e. in Q\ K, for any n € N.

Remark 2.2. If in Theorem 2.1 the sequence 4, is in H}(Q) and u in H(Q) N Co(),
then we can choose u, in Hg(Q), which strongly converges to u in L>(f2). To this end,
it is enough to consider a bounded open set Q such that Q c  and to apply the second
part of Theorem 2.1 to the sequences i, and A, defined by

. | up(w) ifx € Q ~ f Au(x) ifx € Q
iin () '_{ 0 if €0\ Q, and  An(z) '_{ I if 2 € 0\ Q.



Corollary 2.3. Consider i, € H(Q) and v € H () N C(Q) such that
Uy —u  weakly in H () and  div(A,Vi,) =0 in D'(Q). (2.4)
Then, we have the following uniform convergence

Up —> u  strongly in C(£2). (2.5)

Remark 2.4. Note that in Corollary 2.3 each function w, is continuous in €2 by the De
Giorgi-Stampacchia theorem (see e.g. [16] Chapter 8).

Corollary 2.5. For any open subset Q of R? and any compact subset K of Q, there exists a
constant C' > 0 which only depends on Q2 and K such that, for any matriz-valued function
A € L>®(Q)**2 satisfying the uniform coerciveness (2.1) and any function v € H'(Q)

solution of
div(AVu) =0 in D'(Q),

the following estimate holds true

lullery < Cllull grq)-

Remark 2.6. Corollaries 2.3 and 2.5 can be deduced from [8] where more general results,
for non-necessarily homogeneous equations, are proved.

2.2 Proof of the results

Let us now give the proof of the uniform convergence results stated in the previous section.
We will need the two following lemmas:

Lemma 2.7. Let O be a bounded open subset of R? and let u € H*(O) N C(O). Denote
M := max u and m = ngion u.

Then, for any function v such that v — u belongs to H}(O), the functions (v — M) and
(m —v)T belong to HE(O).

Proof. Consider . € C°(0), for ¢ > 0, which strongly converges to v — u in H}(£)
as ¢ — 0. Since u is continuous in O, the functions U. = (u + ¢. — M — &) and
us := (m — e —u — ¢.)T have compact support in O. The functions U and u. belong
to H'(O), hence they also belong to H}(O). Therefore, using that U. and u. strongly
converge respectively to (v — M)* and (m —v)T in H'(0), yields the result. O

Lemma 2.8. For any p € (1,2) and any continuous curve L of extremities a,b, we have
Cy(L) > Ryla — b, (2.6)

where Ry, > 0 is the p-capacity of a unit segment in R2.

Proof. Using a translation, a rotation and a homothety, we can reduce the proof to the
case where a = (0,0), b = (1,0). Then, consider a curve L of extremities (0,0), (1,0)
and take a function ¢ € C°(R?) such that ¢ > xr. By the Pélya-Szego inequality [22]

extended to any power p > 1 (see e.g. [24] and Chapter 1.4 of [19]), it is known that the
Steiner symmetrization ¢* of ¢ with respect to {z2 = 0}, defined by its level sets

{(z1,79) €R?: @ (1, 22) > c} = {(xl,xQ) ER?: |z < % Hy e R:p(z1,y) > c}}},

5
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belongs to We*(R?) and satisfies

/|V<p*|pdx§/ |VolPdx.
R2 R2

Moreover, since L and ¢ are continuous, it is clear that ¢* > 1 in [0, 1] x {0}, hence

Cp([0,1] x {0}) < / Vo' Pde < / VlPde.
R2 R2

Taking the infimum in ¢, we get the desired estimate (2.6). O

Proof of Theorem 2.1. Using the density of H'(Q) N C>(Q) in H'(Q) (see e.g. [16]),
we can also assume that 4, is continuous in 2. For any d > 0, we define {25 by

Qs :={xeQ: dz,00) > d}.

Since u is continuous in Qs, for any [ € N*, there exists §; > 0, with lim §; = 0, such

=400
that ]
lu(z) —u(y)| < o Va,y €y, with [z —y| < 4. (2.7)

Let p € (1,2). Since 1, weakly converges in H'(f2), there exists (see e.g. [14]) a subse-
quence of 1y, still denoted by ,,, which converges to u Cy,-quasi uniformly in every open
set w C Q, with w C  (w can be chosen as Q if Q is smooth). Thus, we can choose this
sequence in such a way that for any [ € N*, there exists a relatively closed subset K; of €2
satisfying

Cp(Q\ K) < R, 6777, (2.8)
1
[ty (x) —u(z)| < o Vo e Qs NK;, Yn> 1. (2.9)

Then, we define u,, by

Up = Uy in K,  Up — Uy GH&(Q\KZ),
) 1 (2.10)
/ A, Vu, - Vu, dxr < / A NVv - Vvdz, Yv, v—1u, € Hy(Q\ Kj).
O\K; O\K,
o0

Clearly, u,, satisfies (2.2). Let us prove that u, strongly converges to u in L{¥ (2). To
this end, we fix § > 0. We have

1
[un (z) — u(z)| = |Un(z) — u(z)| < o VeeQsN Ky, Vn>1, with o, <. (2.11)

Consider a connected component O of Q \ K; such that O N Qs # . Since O is opened
and connected, it is connected by curves. Thus, for any y;,y2 € O, there exists a curve
L C O which connects y1,y2. By Lemma 2.8 and (2.8), we have

Ry ly1 — 12> < Cp(L) < Cy(0) < Cp(Q\ K)) < R, 8, 7,

hence diam (O) < §;. Then, taking [ large enough such that 2§; < &, we get that O C Qg,,
and in particular, 90 C s, N K;. Denote

m, :=mind, and M, := maxu,.

By Lemma 2.7 (u,, — My)" and (my, —u,,)~ belong to H(O), and by definition (2.10) u,,
is Ap-harmonic in O. Then, the maximum principle yields

My < up < M,, q.e.inO, VneN. (2.12)

6


https://www.researchgate.net/publication/235409895_Asymptotic_Anlysis_of_Periodic_Structures?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/235409895_Asymptotic_Anlysis_of_Periodic_Structures?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/44438750_Weak_Convergence_Methods_for_Nonlinear_Partial_Differential_Equations?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==

On the other hand, since 9O C €25, N K, we have by (2.9).

1 1
> mi - — < — > .
mn_%nonu 5] and Mn_né%xu—i—m7 Vn>1
Moreover, O C Qs,, diam (O) < §; and (2.7) imply that
inu > u(x) 1 d <u(z)+ ! Vre O, Vn>1
nlrauonufu:t 5 an r%%xufux 5] x , Vn > 1.

Therefore, (2.12) combined with the two previous estimates yields

1
Uy —ul < =, .e. in O,
hence the sequence u,, satisfies the uniform convergence (2.3).
Now, assume that the support of u is contained in a compact subset K of €2, and
consider an open set €2 which contains K and is strictly contained in 2. For any ¢ > 0,
let S be the function defined by S:(s) := (s —esgn(s)))X{js|>e}, for s € R. Since uy,

strongly converges to u in L*(2), the sequence e, = |u, — UHLoo(Q) tends to zero.

Therefore, the sequence i, := Xxg Se, (un) satisfies conditions (2.2), (2.3) and vanish q.e.
in Q\ K. O

Proof of Corollary 2.3. Since i, satisfies div(A,Vi,) = 0 in D'(Q), it is Holder
continuous in 2 by the De Giorgi-Stampacchia theorem. Then, the argument used in the
proof of Theorem 2.1 proves that the sequence wu, defined by (2.10) strongly converges
to w in L% (). However, we have u, = 1, by construction, which yields the desired

result. O

Proof of Corollary 2.5. We reason by contradiction. If the result does not hold true,
then, for any n € N, there exist u,, € H'(Q), A, € L>(2)?*? and 7, > 0 such that

Al E> 7l VEER? ae ze€Q,

and HunHC(K) > nHunHH1(Q). (2.13)

Up to replace A, by A, /v, and u, by un/HunHC(K), we can assume that v, = 1 and
lunllc(ry = 1. Then, A, is equicoercive and by (2.13) wuj, strongly converges to zero
in H'(Q). Therefore, by Corollary 2.3 u, converges uniformly to zero in K, in contradic-
tion with ||un||cxy = 1. O

3 TI'-limit of equicoercive diffusion energies

3.1 TI'-convergence and Dirichlet forms

In this section we first recall the definition of the De Giorgi I'-convergence and some of its
properties which will be used in the sequel. We refer to [13] for an exhaustive presentation
of the I'-convergence.

Definition 3.1. A sequence of functionals F}, : L2(£2) — [0, +00] is said to I'-converge
to F: L?(Q2) — [0, +o0] for the strong topology of L?(Q) if, for any u in L?(Q),

(7) the I-liminf inequality holds

Vu, — u strongly in L2(Q), F(u) < liminf Fy,(uy,), (3.1)

n—-+4o0o


https://www.researchgate.net/publication/243716435_An_Introduction_to_G-Convergence?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==

(7i) the I'-limsup inequality holds
34, — u strongly in L*(Q), F(u) = lim F,(ay). (3.2)

n—-+00

Any sequence satisfing (3.2) will be called a recovery sequence for F,, of limit w.

In the sequel, we will always consider the I'-convergence with respect to the strong
topology of L?. Consequently, this topology will be not necessarily mentionned.

Properties 3.2.
a) Since L*(Q) is separable, any sequence of functionals F, : L?(2) — [0,+00] has a
subsequence which T'-converges with respect to the strong topology of L?(£2).
b) Let F,, : L?(2) — [0, +oc] be a sequence of quadratic forms which T'-converges to .
Then, F is a quadratic form on L*(Q) which is semi-lower continuous with respect to the
strong topology of L?(£).
c) Let F,, : L*(Q2) — [0, 4] be a sequence of quadratic forms which T'-converges to F.
Let @, P be the polar forms respectively associated with F,,, F' on their domains. Then,
for any u € L?(2), with F(u) < 400, a sequence u, in L*(Q) is a recovery sequence (3.2)
for F,,, of limit u, if and only if

Yo, — v strongly in L*(Q), with Fy(v,) <¢, lim  ®,(up,v,) = ®(u,v),  (3.3)

n—-+00
or equivalently, (3.3) with v = 0.

Now, we recall some notions about Dirichlet forms, which will be used in the statement
of Theorem 3.8. We refer to [18] for more details in connection with the I'-convergence.

Definition 3.3. Let X be a Hausdorff, separable, locally compact space, and let m be
a o-finite nonnegative Radon measure on X. Let H be the space L2 (X) endowed with
its Hilbert norm || - ||g. Let F': H — [0, +00] be a quadratic form of domain D(F) :=
{ue H: F(u) < +oo}, whose polar form @ is a bilinear form defined in D(F") x D(F).

(i) The form F' is said to be closed if it is semi-lower continuous with respect to the
norm || - ||z. The form F is said to be closable if there exists an extension F of F
in H such that D(F) C D(F). The closure of a closable form is its smallest closed
extension in H.

(74) The form F is said to be Markovian if
Vu € D(F), v:=(uVO0O)Ale D(F) and F(v) < F(u).

(7it) A Dirichlet form on H is a closed Markovian quadratic form defined in H.

(iv) The form F' is said to be regular if there exists a subset of D(F') N Cy(X), which is
dense both in Cy(X ) with the uniform norm and in D(F) with the norm (F + || - ||z)*/2.

(v) The form F is said to be local if
®(u,v) =0, Vu,ve D(F), with supp (u) Nsupp (v) = O.
The form F' is said to be strongly local if
®(u,v) =0, Yu,ve D(F), with u = cst in supp (v). (3.4)

Thanks to the Beurling-Deny theory [3] any regular Dirichlet form F on L2,(X) can
be split up on its domain into three specific forms: a strongly local form Fj, a local
form and a nonlocal one. More precisely, the following representation formula holds for
any u € D(F),

F(u) = Fy(u) + /X u2(:r) k(dz) + //X i (u(:c) — u(y))Qj(dJ:,dy), (3.5)
X iag

where Fy is called the diffusion part of F', k the killing measure and j the jumping measure.
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3.2 Statement of the results

As in Section 2, let us consider a bounded open subset  of R?, and a sequence of
symmetric matrix-valued functions A, € L*>(0)?*? which satisfy (2.1). For any n € N
and any open subset w of 2, we define the quadratic form F,(-,w) in L?(w) by

/AnVu -Vudr if u € H}(w).
w

F,(u,w) = (3.6)

+00 if ue L?(w)\ H(w).

The form F,(-,2) is simply denoted by F,.

Assume that F,, T-converges to some quadratic form F for the topology of L2(£),
which holds true for a subsequence in virtue of Properties 3.2 a). Since F), is clearly
Markovian, the properties (3.1), (3.2) of the I'-convergence imply that F is also Markovian.
Moreover, thanks to Properties 3.2 b) F'is closed. Therefore, F' is a Dirichlet form in the
sense of Definition 3.3 (7i7). The following result gives a necessary and sufficient condition
to have F regular with C1(Q) C D(F). When this condition is satisfied, F is a strongly
local (3.4) Dirichlet form whose integral representation for regular functions is independent
of the domain.

Theorem 3.4. The domain D(F) of F contains CL(Q) if and only if, for any o €
Q, there exists § > 0, two functions w',w? in CY(B(xo,6)) and two sequences w},w?
in H'(B(xg,0)), n € N, such that

B($07 5) C Qa
Vwl(zg), Vw?(xo) are linearly independent,
w!, — w' strongly in L? (B(xo,6)), fori=1,2,
AVt - Vw is bounded in L' (B(xg,8)), fori=1,2.
Assume that C}(Q) is contained in D(F). Then, there exist a nonnegative Radon mea-

sure i on Q and a nonnegative matriz-valued function A in L;’f’(Q)2X2 such that the regular
part A" of Ady with respect to the Lebesgue measure satisfies

ATE € > al¢]?, VEER? ae. inQ, (3.8)

and such that, for any open set w of 2, the I'-limit F(-,w) of Fy,(.,w) with respect to the
strong topology of L?(w) does exist on C}(w) and reads as

F(u,w) :/Avu.vudu, Vu e Clw). (3.9)

Moreover, for any u € CH(w) and any u, € H}(w) which strongly converges to u in L?(w)
and such that F,(un,w) tends to F(u,w), the sequence A,Vuy, - Vu, converges to AVu -
Vudp in the weak x sense of the measures in w.

Remark 3.5. In the second part of Theorem 3.4 the I'-convergence of F,(-,w) to F(-,w)
holds true up to a subsequence which does depend on the open set w. However, the
integral representation (3.9) of F(u,w), which is valid on C!(w), is independent of w.

In fact, the integral expression (3.9) holds true for any u € C§(w), with AVu - Vu €
LL (w). Indeed, it is easy to check that these functions can be approximated by functions
in C}(w) in the strong topology of D(F(.,w)).

Theorem 3.4 provides an integral representation of F, assuming that D(F') con-
tains C1(Q). The following result gives a corrector result:

9



Theorem 3.6. Assume that D(F) contains C1(Y). Then, there exists a sequence (w}, w?)

in HY(Q;R?) N Lo°(Q;R?) which strongly converges to the identity in L (Q;R?), and
which satisfies, for any i € {1,2} and any compact subset K of Q,

lim sup/ A, V!, - V!, de < 400,
K

n—-+o0o

lim Aanfl - Vo, dr =0,

Vo, € HA(Q), v, =0 ge. in Q\ K,
n—+oo J

v, — 0 in L2(Q), A, Vv, - Vv, bounded in LI(Q).

Let w be open subset of Q and let u € Cl(w). Assume that the sequence F,(-,w) T-
converges to F(-,w) for the strong topology of L*(w). Then, for any recovery sequence
Uy € H& (w) which is zero g.e. outside a compact subset of w, which strongly converges
to u in L?*(w) and such that F,(un,,w) tends to F(u,w), we have

2 2
nll)l}_loo /w A, (Vun — Z &qun) . (Vun — Z &-qun) dx = 0. (3.10)

=1 i=1

Theorems 3.4 and 3.6 are consequences of the following lemma:

Lemma 3.7. Assume that there exist g € Q, § > 0, w', w? in H'(B(xo,8))NC*(B(z0,9))
and two sequences wl, w2 in H'(B(xo,6)), n € N, which satisfy (3.7).

Then, there exists € € (0,0), a nonnegative bounded Radon measure p on B(xg,0) and a
nonnegative matriz-valued function A in Lff(B(mo, £))2*2, such that for any open subset w
of Q, with B(xg,e) Nw # O, the sequence F,(-,w) defined by (3.6) I'-converges for the
strong topology of L?(w) (up to a subsequence of n, still denoted by n, which depends on w)
to the Dirichlet form F(-,w) which satisfies the following properties:

(i) The space C}(B(zg,€) Nw)) is contained in D(F(-,w)), and

F(u,w) :/ AV -Vudy, Yu€ CHB(xg,e)Nw). (3.11)
B(zg,e)Nw

(ii) For any u € D(F(.,w))NC¢(w), and any sequence u,, in Hg(w), which strongly con-
verges to u in L*(w) and such that Fy,(un,w) tends to F(u,w), the sequence A,Vuy, -
Vu, converges to AVu - Vudp in the weak * sense of the measures in B(xg,e) Nw.

Theorem 3.4 refers to the case where D(F) contains C}(£2). In the general case
we obtain a characterization of the I'-limit of F,(-,w) (3.6) but not explicit like the
representation formula (3.9). In fact, we have the following abstract result:

Theorem 3.8. Let R be the equivalence relation defined in € by
xRy & u(zr)=uly), Yue DF)nCyHQ),

and note that any function u € D(F)NCy(QY) defines a function in Q/R, still denoted by u.
The set Q/R is endowed with the smallest topology T such that the functions in D(F) N
Co(Q) are continuous for T. Then, Q/R is a Hausdorff, separable and compact topological
space.

We denote by Q* the set Q/R without the class containing the elements of 0. Then,
Q" is locally compact and the set D(F)NCy(S2) is a dense separating subalgebra of Cy(2*),
which allows us to define a bounded Radon measure m on * by

/ udm:/udx, Vu € D(F)NCy(N).
Q* Q

Then, the restriction of the T'-limit F' to D(F) N Cy(Q) is a closable Markovian form
in L2,(SY%), which is strongly local. Its closure F* is a strongly local Dirichlet form.
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Remark 3.9. By Theorem 3.8 the Dirichlet form F™* is a diffusion. Denote by M* the
space of the Radon measures on Q*. Then, following Mosco [18] there exists a bilinear
form v : D(F*) x D(F*) — M*, such that

F*(u) = / dv(u,u), Yue D(F*).

For any u € D(F*), the measure v(u,u) is nonnegative and depends locally on u. That
is, if uj,up € D(F*) agree in an open subset G of Q*, then v(ui,u1) = v(uz,u2) on G.
Moreover, the measure v satisfies several properties which are detailed in [18], such as the
Leibnitz rule, the chain rule and the truncation principle.

On the other hand, by the Stone-Weierstrass theorem, D(F)NCy(12) is dense in Cy(2)
if and only if, for any = € €, the class of = by the relation R reduces to {x}. In this case,
the sets 2 and Q* may be identified. However, even under the assumption 2 = Q*, we
cannot express F* more precisely, since we do not know the exact composition of the
domain D(F'). We also refer to [18] (p. 192) for an explicit treatment of the diffusion part
of a Dirichlet form.

3.3 Proof of the results
Proof of Lemma 3.7. First, since by Properties 3.2 a) the sequence F)' defined by

/ A, Vu-Vudz if u € HY(B(zo,9))
E (u, B(x0,9)) := B(x0,0)

+00 if u € L?(B(x,6)) \ H(B(wo,0)),
I'-converges, up a subsequence, for the strong topology of L?(B(zg,d)), we may choose w,.,
w? which satisfy (3.7) with limits w!, w?, as recovery sequences for F*. Then, thanks to
Properties 3.2 ¢) the sequence w, for i € {1,2}, satisfies

lim / AV, - Vo, de =0, Yu, € H (B(z0,6)),
B(z0,0)

n—-+00

vp, — 0 strongly in L2(B(w0,0)), A,V - Vv, bounded in L!(B(xo,§)),

(3.12)

and by Theorem 2.1 w!, strongly converges to w' in L{° (B(zo,d)).
On the other hand, we define the Radon measure p on B(zg, d) and the matrix-valued A
in LZO(Q)2X2 by the following weak * convergences which hold true up to a subsequence,

{ AnNVwy, - Vg + AnVwp - Vg = - in M (B(wo,9)) #, (3.13)
3.13

AVl - V), de — AVw' -Vl du in M (B(x0,6)) *, 1,5 € {1,2}.

Since Vw!(xg), Vw?(xo) are linearly independent, there exists ¢ € (0,5) and an open
subset O of R?, such that Vw!, Vw? are linearly independent in B(zg, <) and the function
w = (wy,ws) is one-to-one from B(zg,¢) onto O, with C! inverse.

Proof of (i). Let us consider an open subset w of Q, with w N B(xp,&) # @, and a new
subsequence of n (which depends on w), still denoted by n, such that F,,(-,w) I'-converges
to F(-,w) for the strong topology of L?(w).

Then, for a given function u € C}(B(xg,e) Nw), we may define the function

R:=u(w™) € C! (w(B(zo,€) Nw)),

so that u = R(w) in B(zo,¢) Nw. Set w, := (w},w?). Due to the uniform convergence of

w?, and to the compactness of supp (R) in w(B(wg,e) Nw), the function R(w,) belongs

ns

11


https://www.researchgate.net/publication/244456260_Composite_Media_and_Asymptotic_Dirichlet_Forms?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/244456260_Composite_Media_and_Asymptotic_Dirichlet_Forms?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==
https://www.researchgate.net/publication/244456260_Composite_Media_and_Asymptotic_Dirichlet_Forms?el=1_x_8&enrichId=rgreq-75e6497bfc8baacf0d10ee515f10d5b2-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1OTYwMjtBUzoxMDIwNzc4ODM3NDgzNjBAMTQwMTM0ODY3MjQ1Nw==

to Hg(B(z0,e) Nw). Thus, denoting by u, the extension of R(w,) by zero outside of
B(mg, ) Nw, uy, is a sequence in H}(w), which strongly converges to u in L>(w). On the
other hand, using that

(U, w Z / Ay (0;R(wn)Vwl) - (8 R(wy)Vud,) da (3.14)

3,j=1

is bounded, we deduce that u belongs to D(F(.,w)). Moreover, formula (3.14) combined
with (3.13) and the uniform convergence of 0; R(wy,), yields

lim  Fy(up,w ):/ AVu - Vudp.
B(zo,e)Nw

n—-—+00
Therefore, it remains to prove that

Fu,w) = lim Fy,(up,w), (3.15)

n—-+00

in order to obtain the desired formula (3.11).

First, note that Remark 2.2 implies that the T'-limit of F},(-,w) for the strong topology
of L%(w) agrees with the I'-limit for the strong topology of L>®(w) over Hi(w) N Co(w).
Therefore, thanks to Properties 3.2 ¢), to prove (3.15) it is enough to check that for any
sequence vy, in Hg (w), which strongly converges to zero in L>(w) and such that A, Vv, -
Vo, is bounded in L!(w),

2
lim A, Vu, - Vu,dr = lim Z/ A, (&'R(wn)wam) -Vup,dz =0. (3.16)
1 ¥ B(zo,e)Nw

n—+o0 Jy, noteo i=
For such a sequence v, we consider, for p > 0, R, € C? (w(B(xg,c) Nw)) such that
1R = Rollct (w(B(wo.e)nw)) < P-

For i € {1,2}, we start from the equality

/ Ap (i R(wyp)Vwt) - Vo, de = / A (0iRy(wy)Vwh) - Voy, da
B(zg,e)Nw B(zo,e)Nw (3 17)

AR~ By ) V) - Ve
B(zo,e)Nw

The second term of the right-hand side of (3.17) clearly satisfies

lim sup
n—-+0o00

/ Ap (0;(R(wy) — Ry(wy))Vwh) - Vu, dz| < Cp.
B(zo,e)Nw

For the first term, defining r, € H}() as the extension of 9;R,(w,) by zero out-
side B(xg,€) Nw, we have

/ Ap(0;Ry(wy)Vwh) - Vo, do
B(zo,e)Nw

= / A,V -V (rpvy) do — / AVl - V(0;Ry(wy)) vy da,
w B(zo,e)Nw

where by (3.12) and the uniform convergence of v, to zero, the right-hand side tends to
zero. Therefore, we obtain, for any p > 0 and ¢ € {1,2},

lim sup
n—-+o0o

/ Ay (&R(wn)waL) - Vo, dz| < Cp,
Q
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which proves (3.16) and thus (3.15).

Proof of (ii). Let us consider u € D(F(.,w)) N C}(w) and a sequence u,, in Hg (w), which
strongly converges to u in L?(w) and such that F},(u,,w) tends to F(u,w). Thanks to
Remark 2.2 there exists another sequence 4, satisfying the same properties but which
also strongly converges to uw in L*°(w). Since u, and 4, are recovery sequences (3.2)
for F,(-,w), with the same limit u, Properties 3.2 ¢) implies that

lim ApV (U, — Up) - V(U — Up) dz =0,
n—+oo J ,
hence the weak x limits of A, Vu,, - Vu, and A,Vi, - Vi, in the sense of the measures
in w coincide. So, replacing u, by 4, we can assume that u, strongly converges to u
in L®(w).

For ¢ € CL(B(xo,e)Nw), we take v € CL(B(x¢,¢)) such that v = u in supp (). Then,
we consider two sequences @y, v, in H} (w), which strongly converge in L>(w) respectively
to ¢, v and satisfy

lim F,(pp,w)=F(p,w) and lim F,(v,,w)= F(v,w). (3.18)
n——+0o00 n—-—+00
Using the second result of Theorem 2.1 we may also choose ¢, such that supp (y,) is
contained in supp (¢). We have

/ ApnVuy, - Vuy, pdr = / ApNVuy, - Vuy, (¢ — o) dx

+/ ApV (U, — vp) - Vuy, o dz + / ApNVoy, - V(uy — vp) op dx (3.19)
1

+/ ApVoy - V(vppn) de — 3 / AanfL -V, dz.

The first term of the right-hand side of (3.19) tends to zero thanks to the uniform con-
vergence of ,,. For the second term, we use

/ ApV (up, — vp) - Vup opde = / ANV ((un, — vp)@n) - Vuy, d
Y Y (3.20)
—/ ApNVon - Vuy, (uy, — vy) d.

Combining the convergence of Fy,(un,w) to F(u,w), the strong convergence of (u, —vy)en
to zero in L?(w) and the boundedness of A,V ((un — vp)¢n) - V((un — vn)en) in L' (w),
we obtain by (3.3) that the first term of the right-hand side of (3.20) tends to zero. The
second term also tends to zero thanks to the uniform convergence of w, — v, to zero in
supp (@) D supp (¢n). Therefore, the second term of the right-hand side of (3.19) tends
to zero. Similarly, the third term of the right-hand side of (3.19) converges to zero.

For the fourth term of the right-hand side of (3.19) we apply Properties 3.2 ¢) to v, which
is a recovery sequence by (3.18). Then, since v and ¢ have support in B(zg,c) Nw and
v = u in supp ¢, the part (i) of Lemma 3.7 implies that

lim / ApVuy - V(vppy) de = / AVu - V(up) dp.

—
n—-+00 w

Similarly, since ¢, is a recovery sequence by (3.18), we have

n—-400

lim [ A,Vv2 -V, dr = / AVY? - Vodpu.
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Finally, passing to the limit in the right-hand side of (3.19) thanks to the previous con-
vergences, yields

lim AnVun'Vungodx:/AVu-Vugod,u, Vo e CL(B(zg,¢) Nw),

—
n+oow w

which concludes the proof of Lemma 3.7. O

Proof of Theorem 3.4. If C1(Q) is contained in D(F), then it is clear that for any
zo € Q, there exists § > 0, two functions w!, w? in C1(B(x,§)) and two sequences w, w2
in H'(B(z0,d)) which satisfy (3.7).

Inversely, if condition (3.7) is satisfied, Lemma 3.7 proves that for any xg € €2, there
exist € > 0, a nonnegative bounded Radon measure i and a nonnegative matrix-valued
function A in LEO(B(wo,E))2X2 such that (3.11) holds true for any open subset w of 2
and for the I-limit F(-,w) of any convergent I-subsequence of F,(-,w) in L?(w), with
CY(B(z0,¢€)) C D(F(-,w)). ;From the covering of Q by the disks B(zg,¢), we can deduce
the existence of z; € Q, ¢; > 0 and ¢; € C°(B(x,¢;)), ¢ € N*, such that any compact
subset of  only intersects a finite number of B(z;,¢;) and ) ;- wi(2) = 1 in Q. Then,
considering the Radon measure p; and the matrix-valued function A; associated with
each disk B(z;,¢;), for i € N*| according to the procedure of Lemma 3.7 combined with
a diagonal extraction, we define the measure u by

n

u(B) = ZW (B(xi,e;) N B), VB Borel subset of €,
i=1

and, using the Radon-Nikodym theorem we define the matrix-valued measure A du by

/ Adp =Y / Alp;dp; VB Borel set, with B C Q.
B JEN* B(l‘i,az‘)ﬂB

Now, let us consider an open subset w of  and u € C}(w). We have

00
U = E UL,
i=1

where the sum carries on a finite set of indexes i. Since by Lemma 3.7 each function uy; is
in D(F(-,w)), the function u also belongs to D(F(-,w)). Let u, be a sequence in H}(w),
which strongly converges to u in L?(w) and such that F},(u,,w) tends to F(u,w). By the
part (i) of Lemma 3.7 the sequence A, Vu,-Vu, converges to A*Vu-Vudu; in the weak *
sense of the measures in B(z;,&;) Nw, for each i € N*. Then, since for any ¢ € C}(w),
supp (@) Nsupp (¢;) # O only for a finite set of indexes i, we have

lim /AnVun'Vungodx: lim Z/gpiAnVun'Vungodm
w i—1 YW

n—-+00 n—-+00

o (3.21)
= Z/ 0 AV Vupdu; = / AVu - Vuedp.
i=1"7v w

This proves that A, Vu, - Vu, weakly converges to AVu - Vudp in M(w) . Thanks to
second result of Theorem 2.1 we can choose w, such that supp (u,) C supp (u). Then,
taking in (3.21) ¢ € Cl(w) such that ¢ = 1 in supp (u), we get

F(u,w) = lim F,(up,w)= lim A, NVu, - Vu,dr = lim / ApVuy, - Vuy, pdz

n—-+400o n—-4o00 w n—-4o00

—/AVu-Vugodu—/AVu-Vucpdu—/AVu-Vudu,

w
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which proves (3.9). Moreover, by (2.1) the sequence u,, converges weakly to u in H3(f2),
and for any u € Cl(w), we have

a/ |Vu\2d:v<aliminf/ V| dz < lim  Fy(un,w) = F(u,w) :/AVU-Vud,u.
Q n—+o0o Jo n—-+0o00 Q

This implies (3.8) (see e.g. [13] Lemma 22.5 p. 234) and concludes the proof. O

Proof of Theorem 3.6. Similarly to the proof of Theorem 3.4 we consider ¢/ € C}(Q),
for j € N, which gives a partition of the unity associated with a locally finite covering
of Q. For any i € {1,2} and any j € N, we consider P HE(Q), with zy b =0 q.e.
outside supp (¢7), such that 249 strongly converges to z;¢7 in L>®(Q) and F,(z’) tends
to F(x;p?). Then, for i € {1,2}, we define

wh = Z 249 where J, = {j e N : supp (pj) N{z € Q: dist (z,00) < %} = @}.
J€Jn

The sequences w!, clearly satisfy the conditions (3.7) of Theorem 3.6.

Now, consider an open subset w of €2, a function u € C(w), and assume that F,,(-,w)
[-converges to F(-,w) for the strong topology of L?(w). Since the sequence w, := (w}, w?2)
strongly converges to the identity in L{% (€2), the argument used in the proof of Lemma 3.7
shows that the sequence F,(u(wy,),w) converges to F(u,w). So, for any recovery se-
quence u, in H}(w), which strongly converges to u in L?(w) and such that F,(up,w)

tends to F'(u,w), Properties 3.2 ¢) implies that

lim AV (uy — u(wy,)) - V(u, — u(wy,)) de = 0. (3.22)
n—-+00 w
On the other hand, since w,, uniformly converges to the identity and u € C}(w), we also
have

2 2
ngrfoo A, (V[u(wn)} — Z@me%) . (V[u(wn)] - Z &-qufL) dx
“ i=1 i=1

2
= lim Z AVl - Vuk (9;u(w,) — du) (Opu(w,) — pu) dz = 0,

n_)+ooi,k:1 w
which combined with (3.22) yields the desired limit (3.10). O

Proof of Theorem 3.8. For x € Q, we denote by [z] its class in Q/R. The class
containing the elements of 9§ (note that all the elements of 92 are in relation by R) is
denoted by [0]. A basis for the topology T is given by the subsets of /R of the form

m U;l ((Sz — &, 8 + 51'))7 (323)

with uy,...,u, € D(F)NCo(2), $1,...,8, € R, e1,...,6, > 0 and n € N*. Then, by
definition of R, for any x,y € Q with [x] # [y], there exists u € D(F) N Co(2) such that
u(x) # u(y). Therefore, T is Hausdorff.

Let x €  and let V be a neighbourhood of [z] of type (3.23). By the density of Q2
in R? and the continuity of the functions wu; in (3.23), there exists z € Q% N Q such that
[2] € V. Therefore, the classes of the elements in Q* N2 are dense in /R, which implies
the separability of 7.

By the definition of T, for any open set O of Q/R, the set {x € Q : [x] € O} is an
open subset of Q. By considering the complementary the same property holds true for
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the closed sets. Using the compactness of 2, the characterization of the open sets implies
that Q/R is compact and thus, the set Q* := Q/R \ {[d]} is locally compact.

Using that the T-limit F of F,, (3.6) is closed for the strong topology of L?(f2) and
the definition of the measure m, the restriction of F' to D(F') N Cp(£2) is a closable form
in L2, (Q*), whose closure is denoted by F*. Let us prove that F* is a regular Dirichlet
form according to Definition 3.3.

Set H(s) := (sV0)A1, for s € R. Then, for any u € D(F) and any recovery sequence
u, € Hi(Q) associated with u and F), by (3.2), we have

In particular, this holds for any w € D(F') N Cy(€2), hence the restriction of F' to D(F') N
Co(9) is Markovian.

Since D(F') N Cp(R2) is an algebra which separates points, the Stone-Weierstrass the-
orem shows that the functions of the form u + ¢, with u € D(F) N Cy(Q2) and ¢ € R, are
dense in C(Q/R). Now, consider v € C.(*), v, € D(F) N Cy(Q) and ¢, € R, such that
v + ¢, converges to v in C(Q/R). Since v and v, vanish in [9], the sequence ¢, converges
to zero and thus v, converges to v in C'(Q/R). This proves that D(F) N Cp(£2) is dense
in Cp(2*), which implies that F* is regular. Therefore, F** is a regular Dirichlet form.

It remains to prove that F™* is strongly local, i.e., the polar form ® of F satisfies (3.4).
Let u,v € D(F)NCp(R2) and ¢ € R, such that u = ¢ constant in supp (v). First, we assume
that ¢ > 0. Taking into account Remark 2.2, we consider two recovery sequences iy, Uy
which strongly converge respectively to u,v in L*°(€Q2) and such that F,(uy,), Fy,(v,) tend
respectively to F(u), F(v). We also choose v, such that supp (v,) C supp (v). Let H.,
for € > 0, be the function defined in R by

s ifs<c—e¢
H.(s):=( ¢ ifec—e<s<c+e ife<e,
s+e if s>c+e,

(note that H.(0) = 0), and H.(s) = (s —esgn(s)) xyjs|>e} if ¢ = 0. The sequence
en = ||un — ul|p(q) converges to zero. Then, the sequence H., (un) satisfies the same
properties than u,, but we also have H., (u,) = ¢ in supp (v) D supp (v,), for &, small
enough. Therefore, the Properties 3.2 ¢) of the recovery sequence v,, yields

®(u,v) = lim A,V (He, (uy)) - Vop dz = 0.
Q

n—-+o00

In the case ¢ < 0, we simply use the equality ®(u,v) = —®(—u,v) = 0. O

4 Application to the periodic case

4.1 Statement of the results

In this section we consider a sequence B,, of symmetric matrix-valued functions in L (R?)?*2,
which satisfies the following assumptions:

B,, is Y-periodic, where Y := (0,1)2, i.e.,

VneN, Ve € Z®, B,(-+k)=B,(-) ae. in R% (4.1)

B,, is equicoercive in R?, i.e.,

Ja>0 suchthat VneN,VECR? Bt -€>al¢]* ae inR% (4.2)
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Let €, be a sequence of positive numbers which tends to 0. From the sequences B,, and ¢,
we define the highly oscillating sequence of matrix-valued functions A,, by

x

Ay (z) == By, <> , ae x€R (4.3)
En

In virtue of (4.1) and (4.2) A, is an equicoercive sequence of &,-periodic matrix-valued

functions in L>°(R?)2*2. Let A* be the constant matrix defined by

JﬁXk:mm{ABde+VﬂwfQ+Vﬂ@ﬂy:@GH%W},AGR{M@

where H;%(Y) denotes the set of Y-periodic functions in H} (R?). The matrix A% is
symmetric and positive definite with A’ > a Is. By the classical result of periodic ho-
mogenization (see e.g. [1]) A}, for fixed n, is the homogenized matrix associated with the
oscillating sequence A, (%) as € tends to zero. Note that in the definition (4.3) of A,, the
oscillations period €, depends on the sequence n.

In this periodic framework we are interested in the asymptotic behaviour of the diffu-
sion energy F;, defined by

/ ApVu-Vudzr if u € HHQ)
F,(u) := Q (4.5)
+00 if ue L2(Q)\ H}(Q),
as well as the conduction problem
—div(4,Vu,) = f inQ (4.6)
u, = 0 on 99,

for a given f in H~1(Q).
The following result shows that the asymptotic behaviour of the diffusion energy F), (4.5)
only depends on the limit of the spectral radius p(A}) of the matrix A} (4.4).

Theorem 4.1. Let Q be a bounded open set of R?. Consider a highly oscillating sequence
of matriz-valued functions A, satisfying (4.1), (4.2) and (4.3). Then, we have the following
alternative:

If p(A}) is bounded, there exists a subsequence, still denoted by n, and a positive definite
matriz A* such that A% (4.4) converges to A* in R**? and F,, (4.5) T-converges for
the strong topology of L*(Q) to the quadratic form F associated with A* by

* . - 1
Flu) = /QA Vu-Vudz if ue Hy(Q) (47)

+00 if u € L2(Q) \ Hi(Q).
If p(AY) tends to +oo, the sequence F,, T'-converges for the strong topology of L*(Q) to

the quadratic form F whose domain is

D(F) = {0}. (4.8)

In term of the conduction problem (4.6) Theorem 4.1 implies the following result:

Corollary 4.2. Let Q be a bounded open set of R?. Consider a highly oscillating sequence
of matriz-valued functions A, satisfying (4.1), (4.2) and (4.3). Then, we have the following
alternative:
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If p(A2) is bounded, there exists a subsequence, still denoted by n, and a positive definite
matriz A* such that A% (4.4) converges to A* in R**2 and, for any f in H=1(2), the
solution u,, of (4.6) weakly converges in H} () to the solution u of the conduction
problem

(4.9)

—div(A*Vu) = f inQ
u = 0 on0N.

If p(A}) tends to +oo, the sequence uy, strongly converges to 0 in H}(€2).

Proof. Corollary 4.2 is a immediate consequence of Theorem 4.1 using the fact that the
solution w,, of (4.6) is the minimizer of the functional

1
L*(Q) — = Fp(u) — dx,
u € L*(Q) 5 (u) /qux

and the minimizers convergence property of the I'-convergence (see e.g. Corollory 7.24
p. 84 of [13]). O

Remark 4.3. Corollary 4.2 is an extension of the similar homogenization result obtained
in [4] (by a complete different approach) under the assumption that the sequence of
periodic matrix-valued B,, (4.3) is bounded in L!(Y)?*2. This condition is more restrictive
since it is easy to check that the boundedness of By, in L!(Y)?*2 implies the boundedness
of p(A}). We can also build a periodic two-dimensional microstructure such that p(A?) is
bounded while || By[[1(yy2x2 is not. Therefore, Corollary 4.2 provides a complete answer
to the periodic homogenization of the conduction problems with equicoercive sequences
of symmetric conductivities.

4.2 Proof of Theorem 4.1
The case where p(A}) is bounded

Let X!, i = 1,2, be the unique function in H;E (Y), with zero Y-average value, solution of
Ve Hy(Y), / B,VW! -Vody =0, where W.(y):=y; + X.(y), (4.10)
Y

or equivalently, '
div (By (e; + VX)) =0 in D'(R?), (4.11)

where (e1, e2) denotes the canonic basis of R2. Let w?, be the highly oscillating sequence
defined by

wh () := e, W (:) =x; +en X. (:) , forx e (4.12)

By (4.11) and the definition (4.3) of A,, the function w?, is clearly A,-harmonic. Moreover,
by the Y-periodicity of B, VW - VW; by (4.10) and the definition (4.4) of A%, we have
for any bounded open subset w of R?,

/ AanfL . waz do < cw/ BnVW,i . VWZ dy =cy, Aye;-e; < ¢ < +00.
w Y

This combined with the equicoerciveness of A, implies that the sequence w!, is bounded
in HL_(R?) and thus weakly converges to z; in H\L (R?). Then, thanks to Corollary 2.3 the
sequence w, strongly converges to z; in L°(£2). On the other hand, by the boundedness
assumption on p(AY) the sequence A converges, up to a subsequence, to some constant
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matrix A* in the space R2*2. Moreover, the &,-periodicity of Vw? implies that, for any
i,j=1,2,
AV, - Vuwl = (B,VW, - VW) <> — A*e;-e; weakly in M(R?) *.
En

So, as the gradients of the functions x;, i € {1,2}, are independent at each point of ,
the sequences w!, satisfy (3.12) for any open disk contained in 2. Therefore, since w,
are A,-harmonic and converge uniformly in €2, the construction of Lemma 3.7 yields the
measure p and the matrix-valued A by

dp= (A%er-e1 + A%ep-ex)dx and  Ae;-ejdu= A'e; - ejdx,

hence A* = (A*e; - e; + A*ey - e2) A. Then, in virtue of Theorem 3.4 the I'-limit F' of the
sequence F,, (4.5) satisfies

CHQ) c D(F)  and F(u):/A*Vu-Vudaz, Vue CHQ). (4.13)
Q

Let us conclude. On the one side, the equicoerciveness of A, and the lower semi-
continuity of the H{ (Q)-norm give D(F) C H}(Q2). On the other side, the density of C}(Q)
in H}(Q), combined with the fact that D(F) is a Hilbert space and that from (4.13) a
sequence of C}(Q) which strongly converges in Hg () also strongly converges in D(F),
we get D(F) = H} () and equality (4.13) holds true in HJ(£2). Note that F,, T-converges
to I’ for the whole sequence such that A* converges to A* in R?*2,

The case where p(A}) tends to +oo

We proceed by contradiction. We assume that the domain D(F') of the I'-limit F' does
not reduce to {0}. Then, we prove that p(A}) is necessarily bounded. To this end, we

proceed in two steps. In the first step, we prove that there exists a continuous function
in D(F)\ {0}. The second step is devoted to the proof of the boundedness of p(A}).

First step : D(F) N C(Q) # {0}.
Up to an extraction of a subsequence we can assume that the sequence F), defined by (4.5)
I'-converges to some quadratic functional F' : L?(Q) — [0, +00]. The starting assumption
is that D(F) # {0}. Let uw € D(F) \ {0}. By the equicoerciveness of A,, the function u
belongs to H}(€2). There exists a sequence u,, in H}(2) which strongly converges to u in
L?(Q) and such that F,(uy,) tends to F(u). Up to enlarge the domain Q and to extend
the functions of Hg(Q) by 0 outside 2, we may assume that the supports of u,u, are
contained in a fixed compact K of (.

Firstly, let us prove that, for any 7 € R? of small enough norm, the translated function
u(- 4+ 7) belongs to D(F') and F(u(- + 7)) = F(u). We follow the procedure given in the
proof of Theorem 24.1 of [13]. Let 7 € R? and let k, be a sequence in Z? such that
Tn ‘= Enkpn tends to 7. If 7 has a small enough norm, then we have K — 7, C Q for
any n € N. Then, using successively the fact that w, (- + 7,) is equal to 0 in Q\ (K —7,,),
the change of variable y = x + 73, and the e,-periodicity of A,,, we obtain

Flun(- + 7)) :/K_ A (2)Vtn (@ + 72) - Vin(x + 72) da

_ /K An(Y)Vaun(y) - Vi (y) dy = Fo(uy,).

Moreover, the sequence u, (- + 7,,) strongly converges to u(- 4+ 7). Therefore, the I'-liminf
inequality implies that

F(u(-+ 7)) < liminf F,(un(- + 7)) = liminf F,(up) = F(u),

n—-+o0o n—-+o00
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which also yields F(u) < F(u(-+7— 7)) < F(u(- + 7)), and thus F(u(- + 7)) = F(u).
Secondly, let 6 be a small enough positive number and let vs be the function defined

on €2 by
1
vs(z) == 2 /6Y u(z +y)dy, forxzeq,

which is continuous on Q. Let (Qi)lgjfka for £ € N*, be a covering of the set JY
by k squares of side ik and let yi be the center of ch. Then, the sequence of convex
combinations of translated of u defined by

k
1 . :
v5 = 53 > Q1 ul + u)

J=1

strongly converges to vs in L?(Q) as k — oo, for fixed §. Then, the lower semi-continuity
and the convexity of F' yield

k
1 . .
F(vs) < lim inf F(vf) < lim inf =5 ; QL F(ul(- +4l)) = F(u) < +oo.

Therefore, vs belongs to D(F) N C(Q). Since vs strongly converges to u # 0 in L%(Q), vs
is a non-zero function in D(F)NC(Q2) for 6 small enough, which concludes the first step.

Second step : Boundedness of p(A;,).
Let v be a non-zero function in D(F) N C(Q) and let v, be a sequence in H}(£2) which
strongly converges to v in L?(Q) and such that F;,(v,) tends to F(v). By Theorem 2.1 the
sequence v, uniformly converges to v in €2. Since v is a non-zero continuous function on €2,
the uniform convergence of v, to v implies that there exists a non-empty open subset wq
of ) and a constant ¢y > 0 such that

|on(z)] > ¢ a.e. x € wp. (4.14)

Let A, be a unit norm vector in R? such that A%\, -\, = p(A%). Let w, be the highly
oscillating sequence defined by

€n

wp(x) = A\ x+en X, (a:) r € R%,  where X, := ()\n-el)Xrlb—i—()\n-eg)Xg (4.15)

and X!, i = 1,2, are the Y-periodic solutions of (4.11). Set ¥ := (— ,%)2. Since the

1

:
function W, (y) := An -y + Xn(y) is By-harmonic in R2, by Corollary 2.5 there exists a
constant C' > 0 such that for any n € N,

Then, using the periodicity and the zero Y-average value of X, as well as the Poincaré-
Wirtinger inequality yields

[ Xnllzooyy <14 [[Walleoyv)
<1+ ||)‘n ’ ?J”Loo(f/) +C HXnHHl(f/) <1+ % +4C ||Xn”H1(Y)
S C, + C/ HVXTLHLQ(Y) S 2C/ + C/ HVWTLHLQ(Y)

Moreover, the coerciveness of B, and the definition (4.4) of A% imply that

[ VWl 323y < / BoVW, - VW, dy = A* Ay - A = p(AY),
Y
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which combined with the previous estimates gives

!/

C
[ Xl poo vy < C'+ ﬁ Vp(45).

Therefore, by the Y-periodicity of X,, and the definition (4.15) of w,, there exists a con-
stant ¢ > 0 such that for any n € N,

lwallZoe () < ¢+ cen p(47). (4.16)

On the other hand, using the A,-harmonicity of w, (4.15) and the Cauchy-Schwarz
inequality yields

/ A, Vw, - Vw, v?L dr = —2/ A, NVwy, - Vo, vy wy, dx
Q Q

1 1
3 2
<2 </ A, NVw, - Vw, v,zb dac) (/ A, Vv, - Vo, w,% dx) ,
Q Q

hence the inequality
/ ApVwy, - Vw, v2 d < 4 / AV, - Vo, w? d. (4.17)
Q Q

Let us conclude. On the one side, thanks to the uniform estimate (4.14) and the
en-periodicity of A,Vw, - Vw, the left hand-side of (4.17) is bounded from below by a
positive constant times

A Vwy, - Vwy, dx > ¢y, / B,NW,, - VW, dy = ¢y, p(4}),
Y

wo

where ¢, is a positive constant only depending on wy. On the other side, thanks to the
uniform estimate (4.16) combined with the boundedness of F,(v,) the right hand-side
of (4.17) is bounded from above by

c+ce? p(AX).
Therefore, there exists a constant ¢ > 0 such that for any n € N,
p(A) < c+ce? p(A), withe, — 0,
which implies that p(A}) is bounded. The proof of Theorem 4.1 is done.

Acknowledgment. The authors thank the referee for the improvement of Lemma 2.8.
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