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CONTROLLING LINEAR AND SEMILINEAR SYSTEMS FORMED BY ONE
ELLIPTIC AND TWO PARABOLIC PDES WITH ONE SCALAR CONTROL ∗

E. Fernández-Cara1, J. Limaco2 and S.B. de Menezes3

Abstract. In this paper, we prove controllability results for some linear and semilinear systems where
we find two parabolic PDEs and one elliptic PDE and we act through one locally supported in space
scalar control. The arguments rely on a careful analysis of the linear case and an application of an
inverse function theorem. The facts that we act through a single scalar control and one of the PDEs
has no time derivative are the main novelties and introduce several nontrivial difficulties.
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1. Introduction and statement of the problem

Let Ω be a bounded domain of R
N , with boundary ∂Ω of class C2 (N ≥ 1 is an integer). We fix T > 0 and

we set Q := Ω × (0, T ) and Σ := Γ × (0, T ). We also consider a non-empty (small) open set ω ⊂ Ω; as usual,
1ω denotes the characteristic function of ω.

In this paper, we will analyze the null controllability of the parabolic-elliptic coupled systems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎣ y1y2
0

⎤⎥⎦
t

−Δy = Ay +Bv1ω in Q,

y = 0 on Σ,

y1(x, 0) = y0
1(x), y2(x, 0) = y0

2(x) in Ω

(1.1)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎣ y1y2
0

⎤⎥⎦
t

−Δy = F (y) +Bv1ω in Q,

y = 0 on Σ,

y1(x, 0) = y0
1(x), y2(x, 0) = y0

2(x) in Ω.

(1.2)
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Here, y = (y1, y2, y3)T and we have B = e1 := (1, 0, 0)T or B = e2 := (0, 1, 0)T or B = e3 := (0, 0, 1)T .
In (1.1), we assume that

A =

⎡⎢⎣A1 A2 A3

B1 B2 B3

C1 C2 C3

⎤⎥⎦ , with Aj , Bj , Cj ∈ R, C3 �∈ σ(−Δ), (1.3)

where σ(−Δ) is the set of the eigenvalues of the Dirichlet Laplacian in Ω. On the other hand, in (1.2), the
assumptions on F are the following:

F = (F1(y), F2(y), F3(y))T with Fj ∈ W 2,∞(R3), Fj(0) = 0 (1 ≤ j ≤ 3). (1.4)

Sometimes (but not always), we will also impose that

∂F3

∂y3
(y) ≤ a < λ1 for all y ∈ R

3, (1.5)

where λ1 is the first eigenvalue of the Dirichlet Laplacian in Ω.
If (y0

1 , y
0
2) ∈ L2(Ω) × L2(Ω), v ∈ L2(ω × (0, T )) and A (resp. the function F ) satisfies (1.3) (resp. (1.4)

and (1.5)), then (1.1) (resp. (1.2)) possesses exactly one weak solution y = (y1, y2, y3)T , with⎧⎪⎨⎪⎩
y1, y2 ∈ L2(0, T ;H1

0 (Ω)) ∩C0([0, T ];L2(Ω)),

y1,t, y2,t ∈ L2(0, T ;H−1(Ω)),

y3 ∈ L2(0, T ;D(−Δ)), y3 ∈ C0([0, T ];D(−Δ)) if B �= e3

(1.6)

and appropriate estimates. If we additionally have (y0
1 , y

0
2) ∈ H1

0 (Ω)×H1
0 (Ω), the following can also be affirmed:

y1, y2 ∈ L2(0, T ;D(−Δ)) ∩C0([0, T ];H1
0 (Ω)), y1,t, y2,t ∈ L2(Q), (1.7)

again with appropriate estimates. The proofs of these assertions are sketched in Appendix A (see Sect. A).
Throughout this paper, C denotes a generic positive constant depending on Ω, ω and maybe other data.

Sometimes, we will emphasize the fact that C depends on (say) T by writing C(T ). For all m ≥ 1, the inner
product and norm in L2(Ω)m will be respectively denoted by (· , ·) and ‖ · ‖; on the other hand, | · | will stand
for the Euclidean norm in R

m.

Definition 1.1. It will be said that (1.1) is null-controllable at time T if, for any (y0
1 , y

0
2) ∈ L2(Ω) × L2(Ω),

there exist controls v ∈ L2(ω × (0, T )) such that the associated states satisfy

y1(x, T ) = y2(x, T ) = 0 in Ω. (1.8)

A completely similar definition can be given for (1.2). Finally, it will be said that (1.2) is locally null-controllable
at time T if there exists ε > 0 such that, for any (y0

1 , y
0
2) ∈ L2(Ω) × L2(Ω) with

‖(y0
1 , y

0
2)‖ ≤ ε,

there exist controls v ∈ L2(ω × (0, T )) such that the associated states satisfy (1.8).

It will be seen later that, under the assumptions (1.3) or (1.4), we can also get information from (1.8) on the
behavior of y3(· , t) as t→ T ; but, for the moment, we will forget this (see Rems. 2.10 and 3.4 below).

The analysis of the controllability of (1.2) is motivated by many relevant applications: reaction-diffusion
systems, semiconductors modelling, chemotaxis phenomena in biology, etc. Roughly speaking, any non-scalar
system of the parabolic kind for which the individual variables evolve at very different speeds may be concerned.
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However, to our best knowledge, very few results are available. See [9] and [15], where other similar parabolic-
elliptic systems are considered; see [18, 19] for Keller–Segal systems; finally, see [7, 8] for degenerating reaction-
diffusion systems.

Recall that, in the finite-dimensional context, a linear system with constant coefficients is controllable if and
only if the so called algebraic Kalman rank condition is satisfied. Accordingly, when a system is controllable at
some time, it is controllable at any time.

The first goal of the present paper is to extend the Kalman rank criterion to the framework of (1.1). This
will be achieved in our first main result (see Thm. 2.1).

For the proof, as usual, the null controllability of (1.1) is reformulated in terms of the observability of the
adjoint system, that is given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−

⎡⎢⎣ϕ1

ϕ2

0

⎤⎥⎦
t

−Δϕ = A∗ϕ in Q,

ϕ = 0 on Σ,

ϕ1(x, T ) = ϕT
1 (x), ϕ2(x, T ) = ϕT

2 (x) in Ω.

(1.9)

Of course, the main difficulty found to establish this property is that only one scalar control is used in (1.1).
In our second main result, we will prove that, under some conditions, the nonlinear system (1.2) is locally

null-controllable, see Theorem 2.7. Specifically, we will see that, if N ≤ 4 and B = e1 or B = e2, the Kalman
rank condition for a linearized version of (1.2) is a sufficient condition for the local controllability of (1.2). As
commented below, for the remaining cases (N ≥ 5 or B = e3), some maybe technical difficulties are found.

For the proof, we will employ a technique relying on the so called Liusternik’s Inverse Function Theorem in
Banach spaces, see [1]. The arguments are inspired by the work of Fursikov and Imanuvilov [17]. Thus, in a first
step, we will consider linearized systems of the form

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣ y1y2
0

⎤⎥⎦
t

−Δy = Ay +Bv1ω + k in Q,

y = 0 on Σ,

y1(x, 0) = y0
1(x), y2(x, 0) = y0

2(x) in Ω,

(1.10)

where the components of A are obtained from the partial derivatives of the functions Fj at 0 and the function
k decays fast enough to zero as t → T . Using Theorem 2.1 and some arguments from [20], it will be seen
that (1.10) is null-controllable and, moreover, one can find state-control pairs in a space Y of sufficiently regular
and rapidly decaying functions.

In a second step, we will rewrite the null controllability property of (1.2) as an equation for (y, v) in Y .
In fact, the choice of this space is nontrivial, motivates some preliminary estimates of the null controls and
associated solutions to (1.10) and deserves some work. Then, we will apply Liusternik’s theorem and we will
deduce the (local) desired result.

The paper is organized as follows. Section 2 deals with the linear case; more precisely, we analyze there the null
controllability of systems of the kind (1.1). In Section 3, we consider the nonhomogeneous linear system (1.10)
and, then, the nonlinear system (1.2). As already explained, we establish a local null controllability result. Some
additional comments and open questions are indicated in Section 4. Finally, Sections A, B and C contain the
proofs of several technical results.
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2. The linear case

2.1. The first main result

We will consider the linear parabolic-elliptic coupled system (1.1), where B = e1 or B = e2 or B = e3. We
assume that A is given by (1.3).

Recall that, for any (y0
1 , y

0
2) ∈ L2(Ω)× L2(Ω) (resp. (y0

1 , y
0
2) ∈ H1

0 (Ω) ×H1
0 (Ω)) and any v ∈ L2(ω × (0, T )),

there exists exactly one weak solution to (1.1) satisfying (1.6) (resp. (1.7)).
Let us denote by L the operator given by{

L = ΔI +A : D(L) ⊂ L2(Ω)3 
→ L2(Ω)3, with

D(L) := D(−Δ)3 = [H2(Ω) ∩H1
0 (Ω)]3.

Then, the Kalman operator associated with L and B is by definition⎧⎪⎨⎪⎩
K : D(K) ⊂ L2(Ω)3 
→ L2(Ω)3, with

D(K) := {w ∈ L2(Ω)3 : [L2B LB B]w ∈ L2(Ω)3 },
Kw = [L|B]w := [L2B LB B]w ∀w ∈ D(K)

and the (formal) adjoint of K is given by⎧⎪⎨⎪⎩
K∗ : D(K∗) ⊂ L2(Ω)3 
→ L2(Ω)3, with

D(K∗) := {ϕ ∈ L2(Ω)3 : ∃Cϕ > 0 with |(Kv, ϕ)| ≤ Cϕ‖v‖ ∀v ∈ D(K) },
K∗ϕ := [B∗(L∗)2 B∗L∗ B∗]tϕ ∀ϕ ∈ D(K∗).

The first main result in this paper is the following:

Theorem 2.1. The linear system (1.1) is null-controllable, with controls depending continuously on the initial
data in L2(Ω) × L2(Ω), if and only if the Kalman operator K satisfies

N(K∗) ∩ U = {0}, (2.1)

where K∗ is the formal adjoint of K and

U := {ϕ = (ϕ1, ϕ2, ϕ3)T : ϕ3 = (−Δ− C3I)−1(A3ϕ1 +B3ϕ2) }.
The proof is given in Section 2.4.
Let 0 < λ1 < λ2 ≤ · · · be the eigenvalues of the Laplace–Dirichlet operator in Ω, with associated eigenfunc-

tions φp. For each p ≥ 1, let us introduce the matrices

Lp = −λpI +A, Kp = [L2
pB|LpB|B].

Also, let us denote by Pp : L2(Ω)3 
→ R
3 the orthogonal projector associated to φp:

Ppψ = ((ψ1, φp), (ψ2, φp), (ψ3, φp))T ∀ψ ∈ L2(Ω)3.

Then it is known that
N(K∗) = {ψ ∈ L2(Ω)3 : K∗

pPpψ = 0 ∀p ≥ 1 }
and, consequently,

N(K∗) = {0} ⇔ detKp �= 0 ∀p ≥ 1,

which is equivalent to the so called Kalman condition

rank [A2B|AB|B] = 3. (2.2)

For detailed proofs of these assertions, see [2].
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Remark 2.2. In [2], it is proved that (2.2) is a necessary and sufficient condition for the null controllability of
the parabolic system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎣ y1y2
y3

⎤⎦
t

−Δy = Ay +Bv1ω in Q,

y = 0 on Σ,
y1(x, 0) = y0

1(x), y2(x, 0) = y0
2(x), y3(x, 0) = y0

3(x) in Ω.

(2.3)

Consequently, if (2.3) is null controllable, this is also the case for (1.1). Furthermore, some simple computations
show that, if B = e1, then

rank [A2B|AB|B] = 3 ⇔ B2
1C2 +B1C1(C3 −B2) −B3C

2
1 �= 0.

On the other hand, if B = e2,

rank [A2B|AB||B] = 3 ⇔ A2
2C1 +A2C2(C3 −A1) −A3C

2
2 �= 0.

Finally, if B = e3,
rank [A2B|AB||B] = 3 ⇔ A2

3B1 +A3B3(B2 −A1) −A2B
2
3 �= 0.

From the practical viewpoint, the following result is interesting. It is an easy consequence of Theorem 2.1
and the arguments in the proof of Lemma 2.4, see Section 2.2.

Corollary 2.3.

(a) If B = e1, (1.1) is null controllable if and only if, for all p ≥ 1, one has B1λp +B3C1 −B1C3 �= 0 or

B3 �= 0 and C1 + (B1C2 + C1C3 −B2C1)
1

λp − C3
�= 0.

(b) If B = e2, (1.1) is null controllable if and only if, for all p ≥ 1, one has A2λp +A3C2 −A2C3 �= 0 or

A3 �= 0 and C2 + (A2C1 + C2C3 −A1C2)
1

λp − C3
�= 0.

(c) Finally, if B = e3, (1.1) is null controllable if and only if

A2
3B1 +A3B3(B2 −A1) −A2B

2
3 �= 0.

Notice in particular that, if B = e3, the null controllability of (1.1) and (2.3) are equivalent properties.
However, the situation is different for B = e1 and B = e2. In these cases, it may happen that (1.1) but not (2.3)
be null-controllable: for example, the system (1.1) with N = 1, Ω = (0, 1), B = e1 and

A =

⎡⎢⎣A1 A2 A3

1 −2 1

1 1 −2

⎤⎥⎦
is null-controllable, while the corresponding parabolic system (2.3) is not.
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2.2. Some technical results (I): Properties of K and K∗

Before giving the proof of Theorem 2.1, we will recall and/or establish and prove some preliminary lemmas.
The first one contains several crucial properties of the Kalman operator:

Lemma 2.4. There exists C > 0 such that:

‖Kv‖ ≤ C‖Δ2v‖ ∀v ∈ D(K) ∩H4(Ω)3, (2.4)

‖K∗ϕ‖ ≤ C‖Δ2ϕ‖ ∀ϕ ∈ D(K∗) ∩H4(Ω)3. (2.5)

Furthermore, if condition (2.1) is fulfilled, for any integer m ≥ 2 there exists C > 0 such that

‖Δm−2ϕ‖2≤C‖Δm(K∗ϕ)‖2 ∀ϕ∈U with K∗ϕ∈D((−Δ)m)3. (2.6)

Before giving the proof, let us collect some identities concerning K and K∗.
The following is easy to prove for any b ∈ R

3 and any p ≥ 1:

L(φpb) = φp(Lpb), K(φpb) = φpKpb.

From these identities, taking into account that L and K are closed unbounded operators, a direct computation
gives ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ly =
∑
p≥1

LpPpy φp ∀y ∈ D(L),

Kv =
∑
p≥1

KpPpv φp ∀u ∈ D(K)

and, consequently, we find that

D(K) = { v ∈ L2(Ω)3 :
∑
p≥1

|KpPpv|2 < +∞}.

In a similar way, we also get that⎧⎪⎪⎨⎪⎪⎩
K∗ϕ =

∑
p≥1

K∗
pPpϕφp ∀ϕ ∈ D(K∗),

D(K∗) = {ϕ ∈ L2(Ω)3 :
∑
p≥1

|K∗
pPpϕ|2 < +∞}.

Finally, we introduce the operator⎧⎪⎨⎪⎩
KK∗ : D (KK∗) ⊂ L2(Ω)3 
→ L2(Ω)3, with

D (KK∗) := {ϕ ∈ L2(Ω)3 : ϕ ∈ D (K∗) , K∗ϕ ∈ D(K) },
KK∗ϕ := K(K∗ϕ) ∀ϕ ∈ D (KK∗) .

Note that KK∗ is again a closed unbounded operator. A simple calculation shows that

D(KK∗) = {ϕ∈L2(Ω)3 :
∑
p≥1

|K∗
pPpϕ|2<+∞,

∑
p≥1

|KpK
∗
pPpϕ|2<+∞}

and
KK∗ϕ =

∑
p≥1

KpK
∗
pPpϕφp ∀ϕ ∈ D(KK∗).
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Proof of Lemma 2.4. The estimates (2.4) and (2.5) are proved in [2]. Let us prove (2.6).
We have:

U = {ϕ ∈ L2(Ω)3 : ϕ3 = (Δ− C3)−1(A3ϕ1 +B3ϕ2) }
= {ϕ ∈ L2(Ω)3 : ϕp

3 =
1

λp − C3
(A3ϕ

p
1 +B3ϕ

p
2) ∀p ≥ 1 }, (2.7)

where we have denoted by ϕp
i the pth Fourier coefficient of ϕi.

For instance, let us assume that B = e1. Then ϕ ∈ N(K∗) ∩ U if and only if⎧⎪⎪⎨⎪⎪⎩
ϕ1 = 0, (ϕ3, φp) =

B3

λp − C3
(ϕ2, φp) ∀p ≥ 1,(

Zp
j2 + Zp

j3

B3

λp − C3

)
(ϕ2, φp) = 0 ∀p ≥ 1, j = 1, 2,

(2.8)

where the Zp
j� stand for the components of the matrix K∗

p .
Let us introduce the real numbers

Ap
j := Zp

j2 + Zp
j3

B3

λp − C3
, j = 1, 2.

Then we see that
N(K∗) ∩ U = {0} ⇔ Ap

1 �= 0 or Ap
2 �= 0 ∀p ≥ 1. (2.9)

After a short computation, we deduce that K∗
pϕ = w if and only if

Ap
3ϕ

p
1 +Ap

1ϕ
p
2 = F p

1 , Ap
4ϕ

p
1 +Ap

2ϕ
p
2 = F p

2 , ϕp
1 = F p

3 ,

where the F p
i are the components of w and⎧⎪⎪⎨⎪⎪⎩

Ap
3 :=(A1−λp)2+A2B1+A3C1+

A3

λp−C3
(C1(A1+C3−2λp)+B1C2),

Ap
4 :=−λp +A1 +

A3

λp − C3
C1.

Thus, we see that, if (2.1) holds, the components of ϕ2 must satisfy

ϕp
2 =

F p
2

Ap
2

− Ap
4

Ap
2

F p
3 if Ap

2 �= 0 and ϕp
2 =

F p
1

Ap
1

− Ap
3

Ap
1

F p
3 if Ap

1 �= 0.

Consequently, if ϕ ∈ L2(Ω)3 and K∗ϕ ∈ D((−Δ)m)3, one has

|ϕp
1|2 + |ϕp

2|2 + |ϕp
3|2 ≤ C(λ4

p + 1)
(
(F p

1 )2 + (F p
2 )2 + (F p

3 )2
)

≤ Cλ4
p((F

p
1 )2 + (F p

2 )2 + (F p
3 )2) ∀p ≥ 1

(2.10)

and ∑
p≥1

λ2m−4
p (|ϕp

1|2+|ϕp
2|2+|ϕp

3|2) ≤
∑
p≥1

λ2m
(
(F p

1 )2+(F p
2 )2+(F p

3 )2
)
. (2.11)

Hence, we have (2.6) in this case.
The other two cases B = e2 and B = e3 can be treated similarly and lead to the same conclusion. �

Remark 2.5. This result can also be proved in the more general case where, in (1.1), B is an arbitrary nonzero
vector. The argument is essentially the same, although the computations are a little more involved.
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2.3. Some technical results (II): Properties of the adjoint state

As usual, the null controllability of (1.1) is equivalent to a suitable observability property for the adjoint.
Accordingly, we will be concerned with the system (1.9), where (ϕT

1 , ϕ
T
2 ) ∈ L2(Ω) × L2(Ω).

The null controllability of (1.1), together with the continuity of the control in the space L2(ω × (0, T )) with
respect to the initial data, is equivalent to the observability inequality

‖ϕ(·, 0)‖2 ≤ C(T )
∫∫

ω×(0,T )

|B∗ϕ|2 dxdt, (2.12)

with C(T ) independent of (ϕT
1 , ϕ

T
2 ) ∈ L2(Ω) × L2(Ω).

In order to prove (2.12), we will need some (well-known) results from Fursikov and Imanuvilov [17]; see
also [13]. Thus, let us introduce a new non-empty open set ω′ with ω′ ⊂⊂ ω ⊂ Ω. The following technical result
from [17] is fundamental:

Lemma 2.6. There exists a function α0 ∈ C2(Ω) satisfying:{
α0(x) > 0 ∀x ∈ Ω, α0(x) = 0 ∀x ∈ ∂Ω,

|∇α0(x)| > 0 ∀x ∈ Ω \ ω′.

Let us introduce the auxiliary functions⎧⎨⎩β(t) := t(T − t), ρ(x, t) :=
eλα0(x)

β(t)
,

α(x) := eνλ − eλα0(x), η(x, t) := α(x)/β(t) ,

where ν > ‖α0‖L∞(Ω) + log 2 and λ > 0. For any τ ∈ R and any s > 0, we set

I(τ, s;φ) :=
∫∫

Q

(sρ)τ−1e−2sη(|φt|2+|Δφ|2+(sρ)2|∇φ|2+(sρ)4|φ|2) dxdt.

Then the following global Carleman estimates are satisfied:

Theorem 2.7. Let τ ∈ R be given. There exist σ̃0 and C, only depending on Ω, ω′ and τ , such that any
φ ∈ L2(0, T ;H1

0 (Ω)) with φt +Δφ ∈ L2(Q) satisfies

I(τ, s;φ) ≤ C

(∫∫
Q

(sρ)τ e−2sη |φt +Δφ|2 dxdt

+
∫∫

ω′×(0,T )

(sρ)τ+3e−2sη|φ|2 dxdt

)
(2.13)

for every s ≥ s̃0 := σ̃0(T + T 2).

See [17] for the proof.
Let us set

a∗ :=2 min
Ω

α(x)−max
Ω

α(x), b∗ :=4 min
Ω

α(x)−3 max
Ω

α(x), c∗ :=max(a∗, b∗).

The proof of Theorem 2.1 relies on the following technical result, that is established in Appendix B (see Sect. B):

Lemma 2.8. Assume that (2.1) holds. Then, for any τ ∈ R and any integer m ≥ 2, there exist σ̃, C > 0, only
depending on Ω, ω, A, m and τ , such that, for any s ≥ σ̃(T + T 2) and any (ϕT

1 , ϕ
T
2 ) ∈ L2(Ω) × L2(Ω), the

associated solution to (1.9) satisfies∫∫
Q

(sρ)τ e−2sη|Δm−2ϕ|2 dxdt ≤ C

∫∫
ω×(0,T )

(sρ)τ+10m+26 e−
2sc∗

t(T−t) |B∗ϕ|2 dxdt. (2.14)
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2.4. Proof of Theorem 2.1

We can now achieve the proof of our first main result.
Let us begin with the necessary part. Thus, let us assume that N(K∗) ∩ U �= {0}. Then, in view of (2.9),

Ap
1 = Ap

2 = 0 for some p.
First, let us consider the case B = e1.
There exist final data (ϕT

1 , ϕ
T
2 ) such that the associated solutions to (1.9) satisfy B∗ϕ ≡ 0 and ϕ(x, 0) �≡ 0.

Indeed, let ψ = (ψ1, ψ2, ψ3)T be the solution to the ODE system⎧⎪⎪⎨⎪⎪⎩
−
⎡⎣ψ1

ψ2

0

⎤⎦
t

+ λpψ = A∗ψ in (0, T ),

ψ1(T ) = 0, ψ2(T ) = 1.

(2.15)

and let us set ϕ(x, t) := φp(x)ψ(t). Then ϕ fulfills the required properties:

• Obviously, ψ(0) �= 0, whence ϕ(x, 0) �≡ 0.
• Also, a simple computation shows that

Ap
2 = −B1 − C1

B3

λp − C3
,

whence the first equation in (2.15) reads

−ψ1,t + λpψ1 =
(
A1 +

C1A3

λp − C3

)
ψ1

and, therefore, ψ1(t) ≡ 0. This implies that B∗ϕ ≡ 0.

Consequently, the observability estimate (2.12) is not satisfied and (1.1) is not null-controllable.
The proof in the case B = e2 is similar.
Finally, let us assume that B = e3. If A3 �= 0, we consider the solution to the ODE in (2.15), with final data

ψ1(T ) = −B3/A3, ψ2(T ) = 1 and we set ϕ(x, t) := φp(x)ψ(t). This way, we find again a solution to (1.1) such
that B∗ϕ ≡ 0 and ϕ(x, 0) �≡ 0. A very similar construction can be performed if B3 �= 0.

If A3 = B3 = 0 and N(K∗)∩U �= {0}, there must exist p such that (ϕ1, φp) �= 0 or (ϕ2, φp) �= 0 and, however,

K∗
p

⎡⎣ (ϕ1, φp)
(ϕ2, φp)

0

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .
Let ψ1 and ψ2 solve the ODE problem⎧⎪⎨⎪⎩

−
[
ψ1

ψ2

]
t

+ λpψ =
[
A1 B1

A2 B2

]
ψ in (0, T ),

ψ1(T ) = 1, ψ2(T ) = 0.

(2.16)

and let us set ψ3(t) ≡ 0, ψ = (ψ1, ψ2, ψ3)T and ϕ(x, t) := φp(x)ψ(t). Then, again, ϕ is a solution to (1.9)
satisfying B∗ϕ ≡ 0 and ϕ(x, 0) �≡ 0 and, once more, (1.1) is not null-controllable.

We turn now to the sufficient part. Thus, let us assume that (2.1) is satisfied and let us prove the observability
inequality (2.12) for any solution to (1.9) with (ϕT

1 , ϕ
T
2 ) ∈ L2(Ω) × L2(Ω). Let σ̃ be the constant furnished by

Lemma 2.8, let us fix s = σ̃(T + T 2) and let us introduce the weight

ρ0(t) := (sρ)−23e
sc∗

t(T−t) . (2.17)
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Thanks to (2.1), we can use (2.14) with τ = 0 and m = 2. This gives:∫∫
Q

e−2sη∗ |ϕ|2 dxdt ≤ C

∫∫
ω×(0,T )

ρ−2
0 |B∗ϕ|2 dxdt. (2.18)

In Ω × (T/4, 3T/4), we have 2sη∗ ≤ C(1 + 1
T ). Consequently, if B = ei (1 ≤ i ≤ 3), we get:∫∫

Ω×(T/4,3T/4)

|ϕ|2 dxdt ≤ eC(1+1/T )

∫∫
ω×(0,T )

ρ−2
0 |B∗ϕ|2 dxdt

= eC(1+1/T )

∫∫
ω×(0,T )

ρ−2
0 |ϕi|2 dxdt.

(2.19)

From the standard energy estimates satisfied by the solution ϕ to the adjoint system (1.9), we have that⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

2
d
dt

(‖ϕ1‖2 + ‖ϕ2‖2
)

+ ‖∇ϕ1‖2 + ‖∇ϕ2‖2

≤ C
(‖ϕ1‖2 + ‖ϕ2‖2 + ‖ϕ3‖2

)
,

‖ϕ3‖2 ≤ C
(‖ϕ1‖2 + ‖ϕ2‖2

)
,

(2.20)

whence we deduce that

‖ϕ1(·, 0)‖2 + ‖ϕ2(·, 0)‖2 ≤ eCT
(‖ϕ1(·, t)‖2 + ‖ϕ2(·, t)‖2

)
(2.21)

for all t. From (2.19) and (2.21), we find at once that

‖ϕ1(·, 0)‖2 + ‖ϕ2(·, 0)‖2 ≤ 2
T

eCT

∫ 3T/4

T/4

(‖ϕ1(·, t)‖2 + ‖ϕ2(·, t)‖2
)

dt

≤ eC(1+T+1/T )

∫∫
ω×(0,T )

ρ−2
0 |ϕi|2 dxdt. (2.22)

Also, we have from the second estimate in (2.20) that

‖ϕ3(·, 0)‖2 ≤ C
(‖ϕ1(·, 0)‖2 + ‖ϕ2(·, 0)‖2

)
. (2.23)

Accordingly, (2.12) holds and the proof is achieved.

Remark 2.9. The precise observability estimate that we have found for (1.9) is

‖ϕ(·, 0)‖2 ≤ eC(1+T+1/T )

∫∫
ω×(0,T )

ρ−2
0 |B∗ϕ|2 dxdt (2.24)

(this will be used in Sect. 3). Thus, we see that we can find null controls for (1.1) of the form

v = ρ−1
0 w, with w ∈ L2(ω × (0, T ))

(recall that ρ−1
0 decays exponentially to zero as t→ T ).

Remark 2.10. If B = e1 or B = e2, one has y3(· , t) = (−Δ − C3I)−1(C1y1(· , t) + C1y1(· , t)) for all t.
Consequently, (1.8) implies

y3(x, T ) = 0 in Ω.

The situation is different when B = e3. However, in this case, in view of the previous Remark, we deduce that
there exist controls such that one has (1.8) and

y3 = ρ−1
0 z3, with z3 ∈ L2(0, T ;D(−Δ)).

We can thus also say that y3 vanishes at T in this weak sense.

Remark 2.11. Theorem 2.1 also holds in the more general case where we assume in (1.1) tat B is an arbitrary
nonzero vector. The proof is essentially the same and is left to the reader.



SOME ELLIPTIC-PARABOLIC SYSTEMS WITH ONE CONTROL 11

3. The nonlinear case

3.1. The main result

In this section, we will prove a local null controllability result for the nonlinear system (1.2), where we assume
that the Fi satisfy (1.4). Unfortunately, we cannot consider the case where the control acts on the third (elliptic)
PDE; see Remark 3.5 below.

The following holds:

Theorem 3.1. Let us assume that N ≤ 4 and B = e1 or B = e2. Let K be the Kalman operator associated to
A = F ′(0) and let us assume that A satisfies (1.3) and K satisfies (2.1). Then (1.2) is locally null-controllable.

As mentioned above, we will follow for the proof a nowadays well known argument, introduced by Fursikov
and Imanuvilov in [17], that relies on the following ideas:

(1) The null controllability problem for (1.2) is rewritten as a nonlinear equation of the form

H(y, v) = (0, y0), (y, v) ∈ Y, (3.1)

where Y is an appropriate Hilbert space formed by couples (y, v) that (among other things) satisfy

y(x, T ) = 0 in Ω (3.2)

and H : Y 
→ Z is a C1 mapping (Z is another Hilbert space).
(2) With these (good) definitions of Y , Z and H , we prove that H ′(0, 0) is onto. This amounts to show that

the linearized system (1.1) with A = F ′(0) is null-controllable even if we add a non vanishing right hand
side that goes sufficiently fast to zero as t→ T . At this point, we have to use some ideas from [20].
In these two points, we have to impose the hypotheses N ≤ 4 and B �= e3; for the remaining cases, some
difficulties are found.

(3) Finally, we apply Liusternik’s theorem and solve (3.1) when (y0
1 , y

0
2) is sufficiently small.

3.2. The null controllability of a nonhomogeneous linear system

Let us consider the system (1.10), where A = F ′(0), the initial data (y0
1 , y

0
2) ∈ L2(Ω) × L2(Ω) and the right

hand side k ∈ L2(Q)3. Recall that, by assumption, C3 < λ1.
Our aim in this section is to find conditions on k under which (1.10) is null-controllable and, also, to deduce

appropriate estimates of the null controls and the associated states. The adjoint of (1.10) is given by (1.9).
If (1.1) is null-controllable at time T > 0 and we introduce the family of null controls

CT := { v ∈ L2(ω × (0, T )) : (v, y) solves (1.1) and y(x, T ) ≡ 0 },
then the quantity

E(T ) := sup
‖(y0

1,y0
2)‖=1

(
inf

v∈CT

‖v‖L2(ω×(0,T )

)
is by definition the cost of control at time T .

The following holds:
E : R

+ 
→ R
+ is nonincreasing and lim

T→0+
E(T ) = +∞.

Indeed, if 0 < T < S, any control in CT belongs (after extension by zero) to CS , whence E(T ) ≥ E(S). On the
other hand, it is clear that E(T ) cannot be uniformly bounded as T → 0+.

Let us see that
E(T ) ≤ eC0(1+T+1/T ) ∀T > 0 (3.3)

for some C0 > 0 independent of T .
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To this end, let us consider again the weight ρ0 = ρ0(t) given by (2.17) and, for each ε > 0, the functional Jε

defined by

Jε(ϕT
1 , ϕ

T
2 ) :=

1
2

∫∫
ω×(0,T )

ρ−2
0 |B∗ϕ|2 dxdt

+ ε‖(ϕT
1 , ϕ

T
2 )‖ +

2∑
j=1

(ϕj(· , 0), y0
j ),

(3.4)

where ϕ denotes the solution to (1.9) associated to (ϕT
1 , ϕ

T
2 ).

The function Jε : L2(Ω)×L2(Ω) 
→ R is continuous, strictly convex and coercive. Consequently, it possesses
a unique minimizer (ϕT

1,ε, ϕ
T
2,ε). Let us denote by ϕε the associated solution to (1.9). We have

Jε(ϕT
1,ε, ϕ

T
2,ε) ≤ Jε(0, 0) = 0.

Therefore, we see from (2.24) that∫∫
ω×(0,T )

ρ−2
0 |B∗ϕε|2 dxdt ≤ eC(1+T+1/T )‖y0‖2 (3.5)

and, introducing vε := ρ−2
0 B∗ϕε

∣∣∣
ω×(0,T )

, we find that

∫∫
ω×(0,T )

ρ2
0 |vε|2 dxdt ≤ eC(1+T+1/T )‖y0‖2. (3.6)

Letting ε→ 0, we obtain a (sub)sequence of controls vε that converge weakly in the space L2(ρ2
0;ω × (0, T ))

to a null control v again satisfying∫∫
ω×(0,T )

ρ2
0 |v|2 dxdt ≤ eC(1+T+1/T )‖y0‖2.

This proves (3.3).
A fundamental consequence of (3.3) is the following controllability result for (1.10). The proof is given

in Appendix C (Sect. C):

Proposition 3.2. There exists a positive constant R, only depending on Ω, ω and A, such that, for any k
satisfying

sup
t∈[0,T ]

∫
Ω

e
2R
T−t |k|2 dx < +∞, (3.7)

the linear system (1.10) is null-controllable. More precisely, there exists a constant R0, again depending only
on Ω, ω and A, such that R0 < R < 2R0 and, for any (y0

1 , y
0
2) ∈ H1

0 (Ω)×H1
0 (Ω), there exist state-control pairs

(y, v) satisfying (1.10), (1.8) and

sup
t∈[0,T ]

∫
Ω

e
2R0
T−t |∇y|2 dx+

∫∫
Q

e
2R0
T−t |Δy|2 dxdt+

∫∫
ω×(0,T )

e
2R0
T−t |v|2 dxdt

≤ C(T )

(
sup

t∈[0,T ]

∫
Ω

e
2R
T−t |k|2 dx+ ‖(y0

1 , y
0
2)‖2

H1
0 (Ω)2

)
.

(3.8)

In the next section, this result will be used to prove the local null controllability of the nonlinear system (1.2).
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3.3. Proof of Theorem 3.1

First, note that it is not restrictive to assume that (y0
1 , y

0
2) ∈ H1

0 (Ω) ×H1
0 (Ω). Indeed, we can initially take

v ≡ 0 and let the system evolve to a small time t0, with

yj(· , t0) ∈ H1
0 (Ω), ‖yj(· , t0)‖H1

0 (Ω) ≤ C(t0)‖(y0
1 , y

0
2)‖, j = 1, 2.

Let us set ξ ≡ e
R

T−t and ξ0 ≡ e
R0

T−t , where R and R0 are the constants furnished by Proposition 3.2. Let us
introduce the spaces

Y := { (y, v) : v ∈ L2(ω × (0, T )),
∫∫

ω×(0,T )

ξ20 |v|2 dxdt < +∞,

y = (y1, y2, y3)T , y1, y2 ∈ C0([0, T ];H1
0 (Ω)) ∩ L2(0, T ;D(−Δ)),

y3 ∈ L∞(0, T ;H1
0(Ω)) ∩ L2(0, T ;D(−Δ)),

sup
t∈[0,T ]

ξ20

∫
Ω

|∇y|2 dx+
∫∫

Q

ξ20 |Δy|2 dxdt,

+ sup
t∈[0,T ]

ξ2
∫

Ω

∣∣∣∣∣∣
⎡⎣ y1y2

0

⎤⎦
t

−Δy − F ′(0)y −Bv1ω

∣∣∣∣∣∣
2

dx

< +∞},

G := { k ∈ L∞(0, T ;L2(Ω)3) : sup
t∈[0,T ]

ξ2
∫

Ω

|k|2 dx < +∞}

and
Z := G× L2(Ω)2.

We endow Y and Z with the norms ‖ · ‖Y and ‖ · ‖Z , where

‖(y, v)‖2
Y :=

∫∫
ω×(0,T )

ξ20 |v|2 dxdt

+ sup
t∈[0,T ]

ξ20

∫
Ω

|∇y|2 dx+
∫∫

Q

ξ20 |Δy|2 dxdt

+ sup
t∈[0,T ]

ξ2
∫

Ω

∣∣∣∣∣∣
⎡⎣ y1y2

0

⎤⎦
t

−Δy − F ′(0)y −Bv1ω

∣∣∣∣∣∣
2

dx

and
‖(k, (y0

1 , y
0
2))‖2

Z := sup
t∈[0,T ]

ξ2
∫

Ω

|k|2 dx+ ‖(y0
1 , y

0
2)‖2

H1
0 (Ω)2 .

This way, Y and Z become Banach spaces.
Let us consider the mapping H : Y 
→ Z, with

H(y, v) =

⎛⎝⎡⎣y1y2
0

⎤⎦
t

−Δy − F (y) −Bv1ω, (y1(·, 0), y2(·, 0))

⎞⎠ , (3.9)

where B = e1 or B = e2.
We will prove that there exists ε > 0 such that, if (k, (y0

1 , y
0
2)) ∈ Z and ‖(k, (y0

1 , y
0
2))‖Z ≤ ε, then the equation

H(y, v) = (k, (y0
1 , y

0
2)), (y, v) ∈ Y, (3.10)

possesses at least one solution.
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In particular, this will show that (1.2) is locally null-controllable and, furthermore, the state-control pairs
(y, v) can be found in Y .

We will apply the following version of Liusternik’s Inverse Theorem in infinite dimensional spaces (see for
instance [1]):

Theorem 3.3. Let Y and Z be Banach spaces and let H : Br(0) ⊂ Y 
→ Z be a C1 mapping. Let us assume
that H ′(0) is onto and let us set ζ0 = H(0). Then there exist ε > 0, a mapping W : Bε(ζ0) ⊂ Z 
→ Y and a
constant K > 0 satisfying: {

W (z) ∈ Br(0) and H(W (z)) = z ∀z ∈ Bε(ζ0),

‖W (z)‖Y ≤ K‖z −H(0)‖Z ∀z ∈ Bε(ζ0).

Let us prove that the mapping given by (3.9) satisfies the hypotheses in Theorem 3.3:

• H : Y 
→ Z is well defined and C1.
Observe that

H(y, v) = H0(y, v) − (M(y, v), (0, 0)) ∀(y, v) ∈ Y, (3.11)

where we have introduced

H0(y, v) :=

⎛⎝⎡⎣y1y2
0

⎤⎦
t

−Δy − F ′(0)y −Bv1ω, (y1(·, 0), y2(·, 0))

⎞⎠
and

M(y, v) := F (y) − F ′(0)y.

Accordingly, it will suffice to show that the mapping M : Y 
→ G is well defined and C1.
First, since the Fj belong to W 2,∞(R3), we have

|F (y) − F ′(0)y| ≤
(

sup
s∈[0,1]

|F ′(sy) − F ′(0)|
)
|y| ≤ C|y|2, (3.12)

whence

‖M(y, v)‖2
G = sup

t∈[0,T ]

ξ2
∫

Ω

|F (y) − F ′(0)y|2 dxdt

≤ C sup
t∈[0,T ]

ξ2‖y(· , t)‖4
L4(Ω).

(3.13)

Since N ≤ 4, the space H1
0 (Ω) is continuously embedded in L4(Ω) and, therefore, we have

‖M(y, v)‖2
G ≤ C sup

t∈[0,T ]

ξ2‖∇y(· , t)‖4

= C sup
t∈[0,T ]

e
2R−4R0

T−t · ξ40‖∇y(· , t)‖4

≤ C ‖(y, v)‖4
Y .

Here, we have used that R < 2R0.
This proves that M : Y 
→ G is well defined.
That M is continuous can be easily deduced in a similar way; see for instance some related arguments
in [14, 16].
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Let us now prove that M is G-differentiable at any (y, v) ∈ Y and let us compute the G-derivative M ′(y, v).
We suppose, for instance, that B = e1.
For each (y, v) ∈ Y , let us introduce the linear mapping DM(y, v), with

(DM(y, v))(y′, v′) = (F ′(y) − F ′(0))y′ ∀(y′, v′) ∈ Y. (3.14)

Then, DM(y, v) ∈ L (Y ;G), since

‖DM(y, v)(y′v′)‖2
G = sup

t∈[0,T ]

ξ2
∫

Ω

|(F ′(y) − F ′(0))y′|2 dx

≤ C sup
t∈[0,T ]

ξ2‖y(· , t)‖2
L4(Ω)‖y′(· , t)‖2

L4(Ω)

≤ C

(
sup

t∈[0,T ]

ξ20‖∇y(· , t)‖2

)(
sup

t∈[0,T ]

ξ20‖∇y′(· , t)‖2

)
≤ C ‖(y, v)‖2

Y ‖(y′, v′)‖2
Y .

Also,

lim
σ→0

1
σ

[
M ((y, v) + σ(y′, v′)) −M(y, v)

]
= (DM(y, v))(y′, v′) in G (3.15)

for all (y′, v′) ∈ Y . Indeed,

‖ 1
σ

[M ((y, v)+σ(y′, v′))−M(y, v)]−(DM(y, v))(y′, v′)‖2
G

= sup
t∈[0,T ]

ξ2
∫

Ω

| 1
σ

[F (y + σy′) − F (y)] − F ′(y)y′|2 dx

≤ C sup
t∈[0,T ]

ξ2
∫

Ω

|(F ′(y + θσy′) − F ′(y))y′|2 dx

for some measurable θ = θ(x, t) with 0 ≤ θ ≤ 1. But this goes to zero as σ → 0, in view of the estimates

ξ2|(F ′(y + θσy′) − F ′(y))y′|2 ≤ Cξ2|y′|4σ ≤ Cξ40 |y′|4σ.
We deduce that M is G-differentiable at any (y, v) ∈ Y , with a G-derivative given by DM(y, v).
As usual, let us denote by M ′(y, v) the linear mapping defined by (3.14). Now, we shall prove that the
mapping (y, v) 
→ M ′(y, v) is continuous from Y into L(Y ;G). In other words, it will be shown that,
whenever (yn, vn) → (y, v) in Y , one has

‖ (DM(yn, vn) −DM(y, v)) (y′, v′)‖G ≤ εn‖(y′, v′)‖|Y , (3.16)

with εn → 0.
The following holds:

‖(DM(yn,vn)−DM(y,v))(y′,v′)‖2
G = sup

t∈[0,T ]

ξ2
∫

Ω

|(F ′(yn)−F ′(y))y′|2 dx

≤ C sup
t∈[0,T ]

ξ2
∫

Ω

|yn − y|2 |y′|2 dx

≤ C sup
t∈[0,T ]

ξ2‖yn(· , t) − y(· , t)‖2
L4(Ω)‖y′(· , t)‖2

L4(Ω)

≤ C

(
sup

t∈[0,T ]

ξ20‖∇yn(· , t) −∇y(· , t)‖2

)(
sup

t∈[0,T ]

ξ20‖∇y′(· , t)‖2

)
≤ C ‖(yn, vn) − (y, v)‖2

Y ‖(y′, v′)‖2
Y .

Consequently, we certainly have (3.16) with εn = C‖(yn, vn) − (y, v)‖2
Y → 0.
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Obviously, this implies that M is continuously differentiable and, therefore, the same is also true for H .
• H ′(0, 0) : Y 
→ Z is onto.

This is obvious, thanks to the facts that that A = F ′(0) satisfies (1.3) and the associated Kalman operator K
satisfies (2.1).

Indeed, note that

H ′(0, 0)(y, v) = (

⎡⎣ y1y2
0

⎤⎦
t

−Δy − F ′(0)y −Bv1ω, (y1(·, 0), y2(·, 0))) ∀(y, v) ∈ Y.

Let (k, (y0
1 , y

0
2)) ∈ Z be given. In view of Proposition 3.2, there exist couples (y, v) satisfying (1.10) and (3.8).

But this means that (y, v) ∈ Y and H ′(0, 0)(y, v) = (k, (y0
1 , y

0
2)).

The conclusion is that the equation (3.10) can be locally solved in Y and, in particular, (1.2) is locally
null-controllable. This ends the proof of Theorem 2.7.

Remark 3.4. We have found a couple (y, v) such that y3 ∈ C0([0, T ];H1
0 (Ω)) and

y3(x, T ) = 0 in Ω.

Indeed, recall that B �= e3 and one has (1.8). Therefore, in the framework of Theorem 2.7, all the components
of the state vanish at t = T .

Remark 3.5. It does not seem easy to extend the argument in the proof of Theorem 2.7 to the cases where
N ≥ 5 or B = e3. Let us try to explain this:

• In order to be able to apply Liusternik’s theorem, we must find solutions to the linear problems

H ′(0, 0)(y, v) = (k, (y0
1 , y

0
2)), (y, v) ∈ Y

such that M(y, v) belongs to the same space where k lives; in other words, if ξk ∈ Lr(0, T ;L2(Ω)3), we must
be able to bound ξM(y, v) in Lr(0, T ;L2(Ω)3). In view of (3.13), we would have to prove an estimate of
t 
→ ξ‖y(· , t)‖2

L4(Ω) in Lr(0, T ). But it is not clear at all how to get this unless ξa
0y belongs to L2r(0, T ;L4(Ω)3)

for some a > 0, which can be ensured only if ξa
0y ∈ L2r(0, T ;H1

0 (Ω)3) and H1
0 (Ω) ↪→ L4(Ω). From the

structure of the (elliptic) PDE satisfied by y3, it becomes clear that we need r = +∞.
• If N ≥ 5, the embedding H1

0 (Ω) ↪→ L4(Ω) is not satisfied and the argument fails.
• On the other hand, if B = e3, the right hand side of the equation satisfied by y3 is (only) in L2(Q),

independently of the regularity of k3. Consequently, the desired property ξa
0y ∈ L∞(0, T ;H1

0 (Ω)3) does not
necessarily hold and again we cannot achieve the proof.

4. Some additional comments and questions

The controllability result in Theorem 2.1 is completely satisfactory: a necessary and sufficient criterion for
the null controllability of (1.1), relatively easy to check, is given. Furthermore, Theorem 2.1 can be generalized
to cover, at least, the following two situations:

• The system (1.1) with a general nonzero vector B; see Remark 2.11.
• The linear system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎣ y1y2
0

⎤⎦
t

−DΔy = Ay +Bv1ω in Q,

y = 0 on Σ,
y1(x, 0) = y0

1(x), y2(x, 0) = y0
2(x) in Ω,

(4.1)
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where D = diag (D̃, 1), D̃ is a 2 × 2 diagonalizable matrix satisfying

D̃ξ · ξ ≥ α|ξ|2 ∀ξ ∈ R
2, α > 0,

the matrixA satisfies (1.3) andB is a general nonzero vector. Indeed, after a standard change of variable, (4.1)
can be equivalently rewritten as a system of the form (1.1) with a new matrix A that again satisfies (1.3)
and a new nonzero vector B.

On the other hand, we do not know at present what happens if, in (4.1), D is a general 3 × 3 diagonalizable
matrix.

Unlike Theorem 2.1, Theorem 2.7 only furnishes a partial solution to the controllability problem for (1.2):
we are only able to prove a local result and, moreover, several cases are excluded. This is in contrast with the
situation found in the scalar case; see [11, 12].

We have explained in Remark 3.5 (and also at the beginning of Sect. 3.3) that, in the argument used in the
proof of Theorem 3.1, the restriction N ≤ 4 is needed: we have to estimate the spatial L4-norm uniformly in
time and we only have estimates of this kind in the Sobolev space H1

0 ; consequently, in order to conclude we
need the previous restriction on N .

Unfortunately, we do not know how to avoid this. Perhaps, more regular controls give better estimates of the
time derivative and Laplacian of the state in an appropriate weighted space, but this does not seem easy. Or
maybe a different formulation of the null controllability problem should be investigated.

Note that, if (1.4) and (2.2) are respectively satisfied by F and A = F ′(0), arguing as in the proof of
Theorem 2.7, it is possible to prove that the parabolic system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎣ y1y2
y3

⎤⎥⎦
t

−Δy = F (y) +Bv1ω in Q,

y = 0 on Σ,
y1(x, 0) = y0

1(x), y2(x, 0) = y0
2(x), y3(x, 0) = y0

3(x) in Ω.

(4.2)

is locally null-controllable without any restriction on N and B.
In order to establish global results in the nonlinear case, it would be very convenient to prove before a result

like Theorem 2.1 for a system of the kind (1.1) with A depending on x and t. But this does not seem a simple
task; see however some related ideas in [3, 5, 10].

Also, it is natural to consider controllability problems similar to those above with controls acting on (a part
of) the boundary. This is a complex question; however, something can be said, at least when N = 1. This will
be the goal of a forthcoming paper (see [4, 6] for some related results).

Appendix A. Well-posedness of (1.1) and (1.2)

For brevity, we will only sketch the proof of existence, uniqueness and regularity of the solution to (1.2).
First, let us check that appropriate energy estimates hold. Indeed, we easily get from (1.2) that

1
2

d
dt

(‖y1‖2 + ‖y2‖2
)

+
3∑

i=1

‖∇yi‖2 =
3∑

i=1

(Fi(y), yi) + (Bv1ω , y)

≤ C‖y‖(‖y1‖ + ‖y2‖) + (F3(y), y3) + ε‖y3‖2 + Cε‖Bv1ω‖2

≤ C‖y‖(‖y1‖ + ‖y2‖) + (a+ ε)‖y3‖2 + Cε‖Bv1ω‖2

≤ Cε

2∑
i=1

‖yi‖2 + (a+ 2ε)‖y3‖2 + Cε‖Bv1ω‖2
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for all ε > 0, where a < λ1. Consequently, if we take ε small enough, we see that

d
dt

(‖y1‖2 + ‖y2‖2
)

+
3∑

i=1

‖∇yi‖2 ≤ C

2∑
i=1

‖yi‖2 + C‖Bv1ω‖2

and, from Gronwall’s lemma, we deduce that y1, y2 and y3 are bounded in L2(0, T ;H1
0 (Ω)) and y3 is bounded

in L∞(0, T ;L2(Ω)). From the PDEs satisfied by the yi, we also deduce that y1,t and y2,t are bounded
in L2(0, T ;H−1(Ω)).

As usual, these estimates suffice to get the existence of a solution satisfying (1.6).
The uniqueness of solution can be proved as follows. Let y = (y1, y2, y3) and z = (z1, z2, z3) be two solutions

to (1.2) and let us set w := y − z. Then

1
2

d
dt

(‖w1‖2 + ‖w2‖2
)

+
3∑

i=1

‖∇wi‖2 =
3∑

i=1

(Fi(y) − Fi(z), wi)

≤ C‖w‖(‖w1‖ + ‖w2‖) + (F3(y) − F3(z), w3)

≤ C‖w‖(‖w1‖ + ‖w2‖) + a‖w3‖2

≤ Cε

2∑
i=1

‖wi‖2 + (a+ ε)‖w3‖2,

whence
d
dt

(‖w1‖2 + ‖w2‖2
)

+
3∑

i=1

‖∇wi‖2 ≤ Cε

2∑
i=1

‖wi‖2.

Again, we can use Gronwall’s lemma here. This time, the conclusion is that w1 ≡ w2 ≡ 0 and, therefore, we
also have w3 ≡ 0.

Finally, if (y0
1 , y

0
2) ∈ H1

0 (Ω) ×H1
0 (Ω), the usual parabolic regularity results yield (1.7).

Appendix B. Proof of Lemma 2.8

The proof of Lemma 2.8 relies on the following result:

Lemma B.1. For any τ ∈ R and any integer m ≥ 2, there exist constants σ̃, C > 0, only depending on Ω, ω, m
and τ , with the following property: for any s ≥ σ̃(T +T 2) and any (ϕT

1 , ϕ
T
2 ) ∈ L2(Ω)×L2(Ω), the corresponding

solution to (1.9) satisfies∫ T

0

(sρ)τ e−2sη |Δm(K∗ϕ)|2[L2(Ω)]3 dt ≤ C

∫∫
ω×(0,T )

(sρ)τ+10m+26e−
2sc∗

t(T−t) |B∗ϕ|2 dxdt. (B.1)

Indeed, Lemma 2.8 is an immediate consequence of Lemmas 2.4 and B.1.
Our task is thus to prove Lemma B.1. Before this, let us consider the auxiliary system{

P (∂t,∇)φ = 0 in Ω × (0, T ),

Δmφ = 0 on Σ ∀m ≥ 0,
(B.2)

where P (∂t,∇) is the partial differential operator given by

P (∂t,∇) = det(∂tĨ2 + λI +A∗), with Ĩ2 = diag (1, 1, 0).



SOME ELLIPTIC-PARABOLIC SYSTEMS WITH ONE CONTROL 19

Notice that ⎧⎨⎩P (∂t,∇) = P3P2P1 +
∑

1≤i1≤i2<3

αi1i2Pi1Pi2 +
3∑

i=1

αiPi + α,

P1 = P2 = ∂t +Δ, P3 = Δ.

(B.3)

We will use the following Carleman estimate for the solutions to (B.2):

Lemma B.2. Let τ0 ∈ R and the integers k1, k2 ≥ 1 be given. There exist σ0, C > 0, only depending of Ω, ω,
A, τ0, k1 and k2, such that

k1∑
�=0

k2∑
j=0

F
(
τ0 − 10(�+ j), Δ�∂j

t φ
)
≤ C

∫∫
ω×(0,T )

(sρ)τ0+15e−
2sc∗

t(T−t) |φ|2 dxdt, (B.4)

for any s ≥ σ0(T + T 2) and any solution φ to (B.2) satisfying

(−Δ)�∂j
t φ ∈ L2(0, T ;D(−Δ)) ∀�, j ≥ 1.

In (B.4), F (τ, φ) is given by

F (τ, φ) := I(τ + 6, φ) +
3∑

q=1

I(τ + 3, Pqφ) +
∑

1≤q≤n≤3

I(τ, PqPnφ). (B.5)

The proof is given in [2] for a very similar (and in some sense more complicate) system. For brevity, we will
not give the details.

Now, let D be the linear space
D :=

⋂
p≥0

D((−Δ)p)

(a dense subspace of L2(Ω)). We have the following.

Proposition B.3. Assume that (ϕT
1 , ϕ

T
2 ) ∈ D × D and ϕ is the associated solution to (1.9). Then ϕ ∈

C�
(
[0, T ];D((−Δ)p)3

)
for every �, p ≥ 0. Furthermore, ϕj solves (B.2) for j = 1, 2, 3.

Proof. The change of variable ψ(x, t) = ϕ(x, T − t) transforms (1.9) into⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ1t −Δψ1 = A1ψ1 +B1ψ2 + C1ψ3 in Q,
ψ2t −Δψ2 = A2ψ1 +B2ψ2 + C2ψ3 in Q,
−Δψ3 = A3ψ1 +B3ψ2 + C3ψ3 in Q,
ψ1 = ψ2 = ψ3 = 0 on Σ,
ψ1(0) = ϕ01, ψ2(0) = ϕ02, ψ3(0) = ϕ03 in Ω.

(B.6)

From (B.6)3, we have ψ3 = (−Δ − C3I)−1(A3ψ1 + B3ψ2). Let us set I2 = diag (1, 1) and let us introduce the
linear mapping A : L2(Ω)2 
→ L2(Ω)2, with{

A1(ψ1, ψ2) := A1ψ1 +B1ψ2 + C1(−Δ− C3I)−1(A3ψ1 +B3ψ2),
A2(ψ1, ψ2) := A2ψ1 +B2ψ2 + C2(−Δ− C3I)−1(A3ψ1 +B3ψ2).

Then, A is a bounded linear operator on L2(Ω)2.
Since the operator ΔI2 is dissipative self-adjoint in L2(Ω)2, it is the generator of an analytic semigroup. From

the perturbation theory of analytic semigroups, we deduce that ΔI2 + A is also the generator of an analytic
semigroup. Since D ((ΔI + A)p) = D((−Δ)p)2, we find that ψ1, ψ2 ∈ C�

(
[0, T ];D((−Δ)p)2

)
and consequently

also ψ3 ∈ C� ([0, T ];D((−Δ)p)) for all �, p ≥ 1.
On the other hand, it is not difficult to check that the three components of ϕ solve (B.2). �



20 E. FERNÁNDEZ-CARA ET AL.

Proof of Lemma B.1. We will first suppose that (ϕT
1 , ϕ

T
2 ) ∈ D ×D.

Let ϕ be the solution to (1.9) corresponding to these data. We can then apply Proposition B.3 and deduce
that ϕ ∈ C�([0, T ];D((−Δ)p)3), for every �, p ≥ 0, and ϕj satisfies (B.2) for 1 ≤ j ≤ 3. Accordingly, Lemma B.2
can be applied to φ = (B∗ϕ)i with k1 = m, k2 = 2 and τ0 ∈ R, which ensures the existence of two positive
constants σ̃ and C such that

m∑
�=0

2∑
j=0

F
(
τ0 − 10(�+ j), Δ�∂j

t (B∗ϕ)i

)
≤ C

∫∫
ω×(0,T )

(sρ)τ0+15e−
2sc∗

t(T−t) |(B∗ϕ)i|2 dxdt (B.7)

for any s ≥ σ̃(T + T 2).
We observe that � + j ≤ m + 2 and thus τ := τ0 − 10m − 11 ≤ τ0 − 10(� + j) + 9. This implies that

(sρ)τ = (sρ)τ0−10m−11 ≤ (sρ)τ0−10(�+j)+9 and also∫∫
Q

(sρ)τ e−2sη|Δ�∂j
t (B∗ϕ)i|2 dxdt ≤

∫∫
Q

(sρ)τ0−10(�+j)+9e−2sη|Δ�∂j
t (B∗ϕ)i|2 dxdt

≤ I(τ0 − 10(�+ j) + 6, Δ�∂j
t (B∗ϕ)i)

≤ F (τ0 − 4(�+ j), Δ�∂j
t (B∗ϕ)i). (B.8)

Combining (B.4) and (B.8), we get the following for all s ≥ σ̃(T + T 2):

2∑
j=0

∫∫
Q

(sρ)τ e−2sη|Δm∂j
t (B∗ϕ)i|2 dxdt ≤ C

∫∫
ω×(0,T )

(sρ)τ0+15e−
2sc∗

t(T−t) |B∗ϕ|2 dxdt

≤ C

∫∫
ω×(0,T )

(sρ)τ+10m+26e−
2sc∗

t(T−t) |B∗ϕ|2 dxdt. (B.9)

On the other hand, using (1.9) and the expression of K∗, after some computations, we see that

K∗ϕ =

⎧⎪⎨⎪⎩
(ϕ1,tt,−ϕ1,t, ϕ1) if B = e1,

(ϕ2,tt,−ϕ2,t, ϕ2) if B = e2,

(0, 0, ϕ3) if B = e3.

(B.10)

Hence, replacing in (B.9), the desired inequality (B.1) is found. This concludes the proof in the case (ϕT
1 , ϕ

T
2 ) ∈

D ×D.
The general case can be easily deduced from the previous one through a standard density argument. �

Appendix C. proof of Proposition 3.2

We will follow an argument inspired in the proof of Proposition 2.3 in [20]. In fact, our statement and the
related estimates are more complete, but the structure of the proof is very similar.

Let q > 1 be a real number (to be fixed below) and let us introduce the intermediate times

Tj =
(

1 − 1
qj

)
T, with j ≥ 0

and the functions γ, ζ and ζ0, with

γ(t) :=eC1(1+T+1/t), ζ(t) :=γ((q−1)q−2(T−t))1+p, ζ0(t) :=γ((q−1)(T−t))p,

where C1 > C0 (C0 is the constant in (3.3)) and p > 1.
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Note that γ is decreasing and goes to +∞ as t → 0. Contrarily, ζ and ζ0 are increasing and go to +∞ as
t→ T . Furthermore, one has

γ(Tj+2 − Tj+1)ζ(Tj)−1 = ζ0(Tj+2)−1 ∀j ≥ 0.

Let k = (k1, k2, k3)T be given, with k ∈ L∞(0, T ;L2(Ω)3). For each j ≥ 0, let us consider the nonhomogeneous
system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎣ z1z2
0

⎤⎦
t

−Δz = Az + k in ω × (Tj , Tj+1),

z = 0 on Σ,
z1(x, Tj) = 0, z2(x, Tj) = 0 in Ω

(C.1)

and let us denote by z = (z1, z2, z3)T the associated solution. Let us set aj+1 := (z1(· , T−
j+1), z2(· , T−

j+1)) for
each j ≥ 0 and a0 := (y0

1 , y
0
2).

On the other hand, let us introduce for each j ≥ 0 the homogeneous controlled system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎣w1

w2

0

⎤⎦
t

−Δw = Aw +Bu1ω in ω × (Tj , Tj+1),

w = 0 on Σ,
(w1, w2)(x, Tj) = aj(x) in Ω

(C.2)

and let us denote by uj ∈ L2(ω × (Tj , Tj+1)) an associated null control satisfying

‖uj‖L2(ω×(Tj ,Tj+1)) ≤ γ(Tj+1 − Tj)‖aj‖.

That the controls uj exist is implied by the definition of γ.
It is clear that the couple (y, v) defined by y = z+w in each Ω× (Tj, Tj+1) and v = uj in each ω× (Tj, Tj+1)

is a state-control pair satisfying (1.10). Let us prove that

sup
t∈[0,T ]

ζ2
0

∫
Ω

|∇y|2 dx+
∫∫

Q

ζ2
0 |Δy|2 dxdt+

∫∫
ω×(0,T )

ζ2
0 |v|2 dxdt

≤ C

(
sup

t∈[0,T ]

ζ2

∫
Ω

|k|2 dx+ ‖(y0
1 , y

0
2)‖2

H1
0 (Ω)×H1

0 (Ω)

)
. (C.3)

Note that the solution to (C.1) satisfies

z1, z2 ∈ C0([Tj , Tj+1];H1
0 (Ω)3) ∩ L2(Tj , Tj+1;D(−Δ)3),

z3 ∈ L∞(Tj , Tj+1;H1
0 (Ω)3) ∩ L2(Tj, Tj+1;D(−Δ)3)

and

sup
t∈[0,T ]

∫
Ω

|∇z|2 dx+
∫∫

Q

|Δz|2 dxdt ≤ C sup
t∈[Tj ,Tj+1]

∫
Ω

|k|2 dx.

In particular,

‖aj+1‖2
H1

0 (Ω)2 ≤ C sup
t∈[Tj ,Tj+1]

∫
Ω

|k|2 dx,
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whence we get the following estimates for uj+1:

‖uj+1‖2
L2(ω×(Tj+1,Tj+2)) ≤ γ(Tj+2 − Tj+1)2 ‖aj+1‖2

≤ C γ(Tj+2 − Tj+1)2 sup
t∈[Tj,Tj+1]

∫
Ω

|k|2 dx

≤ C γ(Tj+2 − Tj+1)2ζ(Tj)−2 sup
t∈[Tj ,Tj+1]

∫
Ω

ζ2|k|2 dx

= C ζ0(Tj+1)−2 sup
t∈[Tj ,Tj+1]

∫
Ω

ζ2|k|2 dx

and then

‖ζ0uj+1‖L2(ω×(Tj+1,Tj+2)) ≤ ζ0(Tj+1)‖uj+1‖L2(ω×(Tj+1,Tj+2))

≤ C‖ζk‖L∞(Tj ,Tj+1;L2(Ω)3).

Obviously, we also have
‖ζ0u0‖L2(ω×(0,T1)) ≤ γ(T1)‖(y0

1 , y
0
2)‖.

Taking into account all this, we deduce that

‖ζ0u0‖L2(ω×(0,T )) ≤ C
(‖ζk‖L∞(0,T ;L2(Ω)3) + ‖(y0

1 , y
0
2)‖

)
.

We can argue similarly with y = z + w in each (Tj , Tj+1). Indeed, for any j ≥ 1 we have

sup
t∈[Tj ,Tj+1]

∫
Ω

|∇y|2 dx+
∫∫

Ω×(Tj ,Tj+1)

|Δy|2 dxdt

≤ C
(
‖uj+1‖2

L2(ω×(Tj,Tj+1)) + ‖k‖2
L∞(Tj ,Tj+1;L2(Ω)3) + ‖aj‖2

H1
0 (Ω)2

)
≤ Cγ(Tj+1 − Tj)2‖k‖2

L∞(Tj−1,Tj+1;L2(Ω)3)

≤ Cγ(Tj+1 − Tj)2ζ(Tj−1)−2‖ζk‖2
L∞(Tj−1,Tj+1;L2(Ω)3)

= Cζ0(Tj+1)−2‖ζk‖2
L∞(Tj−1,Tj+1;L2(Ω)3)

and

sup
t∈[Tj ,Tj+1]

ζ2
0

∫
Ω

|∇y|2 dx+
∫∫

Ω×(Tj ,Tj+1)

ζ2
0 |Δy|2 dxdt≤C‖ζk‖2

L∞(Tj−1,Tj+1;L2(Ω)3).

For j = 0, we have

sup
t∈[0,T1]

∫
Ω

|∇y|2 dx+
∫∫

Ω×(0,T1)

|Δy|2 dxdt ≤ C
(
‖k‖2

L∞(0,T1;L2(Ω)3) + ‖(y0
1 , y

0
2)‖2

H1
0 (Ω)2

)
.

From these estimates, we immediately obtain (C.3).
Now, taking into account the definitions of ζ and ζ0, we easily see that (C.3) can be rewritten in the form (3.8),

with

R =
C1(1 + p)q2

q − 1
, R0 =

C1p

q − 1
·

Obviously, R0 < R; moreover, if q is chosen satisfying 1 < q2 < 2p/(1 + p) (which is possible, since p > 1), we
also have R < 2R0.

This ends the proof.
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