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Fdo.: Óscar Jesús Falcón Ganfornina.

Vo. Bo. LOS DIRECTORES
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Universidad de Sevilla. Universidad de Sevilla.

Sevilla, Junio de 2016





“It is possible, you know, to drift off to an unknown world and find happiness

there. Maybe even more happiness than you’ve ever known before”.
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Introduction

In Mathematics, the definition of isotopism differs depending on whether one deals

with a topological or an algebraic problem. In both cases, however, isotopisms

are used to classify objects with some common properties in a more general way

than isomorphisms can do. From a chronological point of view, the first time that

appeared the term isotopy was related to the concept of homotopy in Topology at

the beginning of 1900’s. It was not until 1942, however, that Abraham Adrian

Albert [13] introduced the concept of isotopy for the study and classification of non-

associative algebras. Shortly after, Richard Bruck [60] generalized this concept from

algebras to quasigroups.

Since the original manuscripts of Albert and Bruck, a widely range of mathemati-

cians has dealt with isotopisms in order to study the classification of distinct types

of algebraic and combinatorial structures, some of them with applications in other

fields as Quantum Mechanics and Cryptography, amongst others. Nevertheless, in

spite of its importance, there does not exist any survey in the literature that gathers

together the origin and development of the theory of isotopisms. This constitutes

the first goal of the current manuscript, which is conveniently developed in its first

chapter. Our main goal consists, however, in dealing with isotopisms of distinct

types of non-associative algebras, such as Lie, Malcev and evolution algebras, with

special importance not only in terms of Mathematics, but also for their multiple

applications in Natural Sciences and Engineering [215, 261]. Unlike of the distinct

results that there exist on isotopisms of division, alternative or Jordan algebras,

amongst others, there barely exists any result about isotopisms of the algebras on

which this manuscript focuses. Particularly, there does not exist any result about

their explicit distribution into isotopism classes. Throughout the manuscript, the

determination of these distributions gives rise to common algebraic properties that

enable us to gather together algebras of distinct isomorphism classes, which, at first

sight, they seemed to be completely different. Particularly, we focus the majority of

ix



x INTRODUCTION

our results on algebras defined over finite fields.

The structure of the manuscript is the following

• In Chapter 1, we expose a brief survey that gathers together the origin and

development of the theory of isotopisms of algebras, quasigroups and related

structures.

• Chapter 2 consists of those basic concepts and results in Computational Al-

gebraic Geometry and Graph Theory that we use throughout the manuscript

in order to determine the distribution of distinct types of algebras into iso-

topism classes. Particularly, we describe a pair of graphs that enable us to

define faithful functors between finite-dimensional algebras over finite fields

and these types of graphs. Depending on the functor, we map isomorphic

or isotopic algebras to isomorphic graphs. Reciprocally, any pair of isomor-

phic graphs is uniquely related to a pair of algebras so that there exists a

multiplicative map between them.

• Chapter 3 deals with the distribution into isomorphism and isotopism classes

of the set Pn,q of n-dimensional pre-filiform Lie algebras over the finite field

Fq, with q a power prime, and the set Fn(K) of n-dimensional filiform Lie

algebras over a field K. We prove in particular the existence of n isotopism

classes over Pn,q and five isotopism classes in F6(K), whatever the base field

K is. We also determine the distribution of the set F7(K) into isotopism and

isomorphism classes.

• In Chapter 4, the setMn(K) of n-dimensional Malcev magma algebras over a

finite field K is identified with algebraic sets defined by zero-dimensional rad-

ical ideals for which the computation of their reduced Gröbner bases makes

feasible their enumeration and distribution into isomorphism and isotopism

classes. Based on this computation and the classification of Lie algebras over

finite fields given by De Graaf [149] and Strade [289], we determine the men-

tioned distribution for Malcev magma algebras of dimension n ≤ 4. We also

prove that every 3-dimensional Malcev algebra is isotopic to a Lie magma al-

gebra. For n = 4, this assertion only holds when the characteristic of the base

field K is not two.

• Chapter 5 deals with the distribution of the set En(K) of n-dimensional evo-

lution algebras over a field K into isomorphism and isotopism classes. These
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algebras constitute a type of genetic algebras whose description has a certain

similarity with that of pre-filiform Lie algebras, which are introduced in Chap-

ter 3, and whose distribution into isotopism classes is uniquely related with

mutations in non-Mendelian Genetics. We focus in particular on the two-

dimensional case, which is related to the asexual reproduction processes of

diploid organisms. Specifically, we determine the distribution of the set E2(K)

into four isotopism classes, whatever the base field K is, and we characterize

its isomorphism classes.

At the end of the manuscript, after the bibliographic references, we expose an

index with the main terms and a glossary with the main notations that we use

throughout our study. Finally, let us remark that this manuscript is largely based

upon the following papers

• [122] Falcón OJ., Falcón RM., Núñez J. Isotopism and isomorphism classes

of certain Lie algebras over finite fields. Results Math. 2015. In press. DOI:

10.1007/s00025 -015-0502-y.

• [123] Falcón OJ., Falcón RM., Núñez J., Pacheco A., Villar MT. Classification

of Filiform Lie Algebras up to dimension 7 Over Finite Fields, An. Sti. U.

Ovid. Co. Mat., 2016; 2: In press.

• [124] Falcón OJ., Falcón RM., Núñez J. A computational algebraic geometry

approach to enumerate Malcev magma algebras over finite fields. Math. Meth.

Appl. Sci. In press, 2016.

• [125] Falcón OJ., Falcón RM., Núñez J. Isomorphism and isotopism classes of

filiform Lie algebras of dimension up to seven. Submitted. Available on ArXiv

1510.07066.

• Falcón OJ., Falcón RM., Núñez J., Pacheco A., Villar MT. Computation of

isotopisms of algebras over finite fields by means of graph invariants. Submit-

ted.

• Falcón OJ., Falcón RM., Núñez J. Classification of diploid asexual organisms

by means of strongly isotopic evolution algebras defined over any field. Sub-

mitted.

Further, the results here exposed have already been pointed out in the following

national and international conferences
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• Falcón OJ., Falcón RM., Núñez J., Pacheco A., Villar MT. A faithful functor

among algebras and graphs. 16th International Conference Computational and

Mathematical Methods in Science and Engineering CMMSE 2016. Rota, 2016.

• Falcón OJ., Falcón RM., Núñez J. Gene mutations in evolution algebras by

means of strong isotopisms. 5th European Seminar on Computing. Pilsen,

Czech Republic, 2016.

• Falcón OJ., Falcón RM., Núñez J. Classifications of evolution algebras over fi-

nite fields. III International School On Computer Algebra and its Applications.

Sevilla, 2016.

• Falcón OJ., Falcón RM., Núñez J. Distribution of low-dimensional Malcev

algebras over finite fields into isomorphism and isotopism classess. 15th In-

ternational Conference Computational and Mathematical Methods in Science

and Engineering CMMSE 2015. Rota, 2015.

• Falcón OJ., Falcón RM. and Núñez J. Isotopisms of Lie algebras. Congreso

de la RSME 2015. Granada, 2015.

• Falcón OJ., Falcón RM. and Núñez J. Isotopismos de álgebras de Lie filiformes
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2013.
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Chapter 1

A brief survey on isotopisms

Since the original manuscript of Albert [13] in 1942, a widely range of mathemati-

cians has dealt with isotopisms of algebras in order to classify and enumerate distinct

types of algebraic and combinatorial structures, some of them with applications in

other fields as Quantum Mechanics and Cryptography, amongst others. In spite of

its importance, there does not exist in the literature any survey that gathers together

the origin and development of this theory. This chapter constitutes, therefore, a first

approach in this regard.

1.1 The origin of the concept

The concept of isotopy of algebras was introduced by Albert [13] as a generalization

of the concept of isomorphism that makes possible to gather together non-isomorphic

algebras. He realized that the set of linear transformations generated by the right

and left multiplication spaces of a non-associative algebra satisfies certain properties

that are equivalent to many of the already known properties of associative algebras.

Keeping this in mind, Albert generalized the concept of isomorphism of algebras in

the next way1.

Definition 1.1.1. Two algebras (A, ·) and (A′, ◦) over the same base field K are

said to be isotopic if there exist three nonsingular linear maps f , g and h between A

1Remark that, throughout the chapter, we follow the usual notation that is currently used and

hence, this can differ from those to which we refer.

1



2 CHAPTER 1. A BRIEF SURVEY ON ISOTOPISMS

and A′ such that

f(u) ◦ g(v) = h(u · v), for all u, v ∈ A. (1.1)

The triple (f, g, h) is called an isotopy or isotopism between both algebras A and

A′. It is an autotopy or autotopism if both algebras coincide. It is also said that

A is an isotope of A′ or that both algebras are isotopic. If f = g = h, then this

constitutes an isomorphism (an automorphism if both algebras coincide).

The set of isotopisms between two algebras is endowed of group structure with the

componentwise composition of linear maps. This gives rise to the so-called isotopism

groups , isomorphism groups, autotopism groups and automorphism groups between

algebras.

This notion of isotopy of algebras was conceptually based on that of isotopy in

Topology. Albert himself indicated that the concept of isotopy was suggested by the

work of Norman Steenrod who, in his study of homotopy groups in Topology, was

led to study isotopy of division algebras. Both of them, Albert and Steenrod, were

appointed as assistant professors at the University of Chicago, where they coincided

in the period 1939-1942 at the Department of Mathematics. Both had Salomon

Lefschetz as common mentor: Lefschetz had introduced Albert to the theory of Rie-

mann matrices during his postdoctoral year at Princenton in 1928-29 and had been

the Ph.D. advisor of Steenrod, who defended his dissertation “Universal Homology

Groups” in 1936. The relation between Homology Theory and division algebras,

which had been during ten years one of the main goals of Albert, contributed even

more to put his attention on the results of Steenrod in Topology. Let us review

briefly this history.

1.1.1 Antecedents in Topology

The term Analysis Situs, firstly used by Gottfried Leibniz in the 18th century, was

the expression chosen by Henri Poincaré [252] in 1895 to entitle the article in which

he would establish the fundamentals of Topology. Even if the term topology was in-

troduced by Johann Benedict Listing in the 19th century, it was Solomon Lefschetz

in 1934 who introduced the current use of this term. In his original manuscript,

Poincaré introduced in particular the term homology to deal with the relations

and identities that exist among the manifolds that compose the boundary of a
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higher-dimensional manifold.2 Based on this idea, he introduced the concept of

simplicial complex by considering manifolds as generalized polyhedra consisting in

n-dimensional cells. Besides, he defined the fundamental group of a manifold in a

base point as the set of contours or paths that start and end in that base point. The

product of two contours was just defined as the contour constituted by the former

followed by the latter. As a consequence, the fundamental group was not commu-

tative, unlike the algebraic relation that he defined to deal with the homologies of a

manifold. Even a first tentative to establish an equivalence relation among contours

was then exposed, it was in his Fifth supplement to Analysis Situs [253], published in

1904, when Poincaré indicated that two such contours are equivalent if there exists

a continuous deformation between them without leaving the manifold. Although

he did not expose the idea with a formal terminology, it was a first step towards

the current concept of homotopy.3 There were, however, Max Dehn and Poul Hee-

gaard who introduced in Topology the terms homotopy and isotopy in their article

Analysis Situs [97] of 1907, published in the Enzyklopädie der Mathematischen Wis-

senschaften. Nevertheless, the meanings that they gave to both concepts differ from

the current ones and it is not until 1908 and 1911-12 that Heinrich Tietze [302] and

Luitzen Brouwer [57, 58] introduced the ideas on which are based, respectively, the

current definitions of isotopy and homotopy, which we expose in the following

Definition 1.1.2. Two continuous maps f and g between two topological spaces X

and Y are said to be homotopic if there exists a continuous map H : X× [0, 1]→ Y ,

such that H(x, 0) = f(x) and H(x, 1) = g(x), for all x ∈ X. The map H is then

called a homotopy from f to g. It is said to be an isotopy if Ht(x) = H(x, t) is an

embedding for all t ∈ [0, 1].

It was also Brouwer [58] who introduced in 1912 the notion of homotopy class

by indicating that “two transformations belong to the same class if they can be

transformed continuously into each other”. Immediately after, he proved that two

continuous maps of the two-dimensional sphere S2 into itself belongs to the same

class if and only if both maps have the same degree. Nowadays, it is equivalent to

say that both maps are homologically equivalent. It was indeed the first time that

homotopy and homology theories were explicitly connected.

2For a further analysis on the origin and development of the concept of manifold, we refer to

the comprehensive survey of Scholz [279].
3The origin and development of the concept of homotopy is perfectly analyzed in the compre-

hensive survey of Ria Vanden Eyden [121].
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The next stage of the history is reached in 1916, when the American Mathemat-

ical Society invited Oswald Veblen to give the Cambridge Colloquium Lectures of

that year. Interested in topological questions since his paper of 1905 on the Jordan

curve theorem [305], Veblen chose to lecture on Analysis Situs, as an “introduction

to the problem of discovering n-dimensional manifolds and characterizing them by

means of invariants”. The publication of these lectures in 1922 [306] constituted a

“systematic treatise on the elements of Analysis Situs”, where the author revised,

summarized and presented in a formal and comprehensive way all the concepts and

results that were known on the subject. In particular, “following the nomenclature

introduced in the Dehn-Heegaard article”, he gave in the fifth chapter a formal defi-

nition of the isotopy and homotopy of two continuous maps on a polyhedron, where

one can already observe the fundamentals of Definition 1.1.2. Further, he exposed

how homotopic 1-cells in a polyhedron determine the elements of the fundamental

group, analyzed the homologies of a polyhedron and mentioned the term homology

group as the commutative group whose identities correspond to these homologies.

It was, however, Noether who realized in 1926 the importance of Group Theory in

homology [167, 221]. Her ideas on the subject constituted the beginning of the the-

ory on homology groups, whose fundamentals were developed by Leopold Vietoris

[310], Heinz Hopf [169], Walther Mayer [220], Pável Alexandroff [23] and Eduard

Čech [84].

In the International Congress of Mathematicians that was held in 1932, in Zürich,

Čech introduced the concept of nth homotopy group as the set of homotopy classes

from the n-sphere Sn to a given topological space. That set could be endowed with

group structure and coincided with the fundamental group when n = 1. Neverthe-

less, Alexandroff and Hopf observed that the group was Abelian for all n > 1 and

thought that the concept did not provide any advantage with respect to that of ho-

mology group. Due to it, the work of Čech was only published as a paragraph of six

lines [83] in the Proceedings of the Congress. Three years later, however, Hurewicz

published four notes [177, 178, 179, 180] in which he rediscovered the concept of

higher homotopy group and exposed the main properties, which would constitute in

the future the base of a fundamental tool in Topology and Geometry. In the second

note, he mentioned the independent work of Čech. Hurewicz also introduced [177]

the notation πn(Y ) to denote the nth homotopy group of a given topological space Y .

For each homotopy class of πn(Y ), he indicated the existence of a base point x0 ∈ Sn

and a base point y0 ∈ Y such that f(x0) = y0, for all map f in the class. The set

πn(Y ) could be then endowed with group structure in the following way: Given two
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maps f, g ∈ πn(Y ), the product fg is defined by mapping the equator of Sn to the

base point y0. The northern (respectively, southern) hemisphere is then mapped to

Sn by collapsing the equator to a point and then using f (respectively, g) to map

Sn to Y . In 1940, Hopf [172] proved that if there exists a continuous odd map of

Sn−1 × Sn−1 into Sn−1, then n is a power of 2. As a consequence, he proved that

the dimension of any real division algebra must be a power of 2. Moreover, every

finite-dimensional real commutative division algebra is either 1- or 2-dimensional.

1.1.2 Antecedents in Algebra

The first time that Albert focused his attention on non-associative algebras was in

1934, when he studied the algebra M8
3 of all three rowed Hermitian matrices with

elements in the real non-associative algebra of Cayley numbers. That algebra was a

singular case of the family of non-associative algebras used by Pascual Jordan, John

Von Neumann and Eugene Wigner [192] in order to generalize quantum mechanics.

In any case, the interest of Albert to classify algebras dates from 1927-28, when

he defended his Master’s Thesis “A Determination of All Associative Algebras in

Two, Three, and Four Units” and his Ph. D. Thesis “Algebras and their Radicals

and Division Algebras”. In the latter, under the supervision of Leonard Dickson

as advisor, Albert obtained in the second half of his dissertation a classification of

16-dimensional associative division algebras on which he also based his first major

paper [5]. Recall that a division algebra is an algebra where every nonzero element

has a multiplicative inverse. In particular, the only one-dimensional division algebra

over a given field is the field itself. The classification of associative division algebras

was a main problem at that moment, because, according to the structure theorems

established by Joseph H. M. Wedderburn [314], the structure of linear associative

algebras is based on this classification. In order to better understand the origin

of the theory of isotopisms of algebras, it is interesting to outline some remarkable

aspects about the history of the classification of division algebras and the research

of Albert on this topic. For a more comprehensive study on subject, we refer to the

recent survey of Fenster [142] and the reference therein exposed.

Already in 1878, Ferdinand Frobenius [144] showed that quaternions and its

subalgebras of reals and complex numbers constitute the only associative division

algebras in the field of real numbers. Twenty years later, Hurwitz [181] proved that

every real division algebra endowed with a non-degenerate quadratic form must

be one-, two-, four- or eight-dimensional. At that moment, the only known non-
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associative division algebra was the Cayley algebra. However, it would not be until

1923 that it was published a paper of Hurwitz [182] where he proved that every

real division algebra endowed with a non-degenerate quadratic is associative or the

Cayley algebra.

In 1905, Wedderburn [313] proved that any finite associative division algebra is

commutative and hence, a field. Some months later, in 1906, Dickson presented in

the nineteenth regular meeting of the Chicago Section of the American Mathematical

Society a contribution ([284], p. 442) where he constructed the first known family of

associative division algebras of dimension a perfect square greater than one, which

would subsequently become called cyclic due to the fact that any such an algebra

over a field F contains a maximal commutative subfield S such that the Galois group

G(S/F ) is cyclic. It was also Dickson [99, 100, 101] who constructed in the period

1906-08 the first known non-associative division algebras apart from the Cayley

algebra. Apart from the mentioned result of Hurtwitz [182], during the next thirty

years, the research community would mainly focused on associative division algebras

and it would not be until 1935 that Dickson [105] resumed a methodological study

of non-associative division algebras.

In 1914, Dickson [102] published a extended paper related to the previously

mentioned contribution [284] where he studied the necessary conditions to construct

these cyclic division algebras and focused on those ones of dimension 4 and 9. His

theoretical results were immediately generalized for any dimension by Wedderburn

[315], who also defined a normal division algebra as that one such that its only

commutative elements are those of the ground field. This is equivalent to say that the

algebra coincides with its center and hence, that the algebra is central. He observed

that the dimension of a normal division algebra is a perfect square and that every

cyclic division algebra is normal. Later, in 1921, Wedderburn [316] proved that any

division algebra is the direct product of a field and a normal division algebra and that

every nine-dimensional division algebra is cyclic. These results would be reviewed

and extended by Dickson in the second appendix of his recognised book Algebras and

their Arithmetics [103], published in 1923, where he determined all nine-dimensional

associative division algebras. Four years later, Dickson, supported by Wedderburn,

published the book Algebren und ihre Zahlentheorie [104], a revised and extended

translation of his previously mentioned book, where he also determined all four-

dimensional associative division algebras and proved that all of them are cyclic.

Once one-, four- and nine-dimensional associative division algebras were determined,

the next goal was to study those ones of dimension 16. It was achieved by Albert
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in his Ph. D. Thesis, where he classified all normal division algebras of such a

dimension. Shortly after, he proved [5] that all these algebras belong to a family of

division algebras, constructed by Francesco Cecioni [85], that are based on a non-

cyclic abelian equation of degree four. Further, in 1930, Albert [6] proved that every

16-dimensional normal division algebra is cyclic and thus, the search of non-cyclic

division algebras continued. In fact, it was not until 1932 that Albert [9] constructed,

for the first time, non-cyclic normal division algebras. These algebras were based on

the more general family of 16-dimensional associative algebras over a function field

that had been previously studied by Richard Brauer [54] in 1930. After that, Albert

would focus on the classification of normal division algebras over infinite modular

fields. Specifically, he determined [10, 11] all normal division algebras of degree two,

three and four over a field of characteristic two, three and two, respectively.

Brauer together with Herman Hasse and Emmy Noether constituted the Ger-

man triumvirate that encouraged representation theory to deal with the arithmetics

of linear algebras developed by Wedderburn and Dickson. Already in 1925, even

before of the publication of the mentioned Algebren und ihre Zahlentheorie, which

was a main first contact of many German mathematicians with the theory of the

two American authors, Noether had exposed, for the first time, the possible use of

representation theory to explain the structure theorems of Wedderburn [258]. With

respect to the classification of division algebras, Brauer [53] reduced in 1929 the

problem of determining all normal division algebras of order n2 to the case where

n is a power of a prime, and Hasse, who had began to investigate the structure of

division algebras over p-adic fields in 1929-30, proved [162] in 1931 that every nor-

mal division algebra over a p-adic number field is cyclic. Further, in 1932, Brauer,

Hasse and Noether [55] proved a result that had been conjectured by Dickson [103]

in 1923 and had become a primordial goal for all the researchers on the subject.

This was that every normal division algebra over an algebraic number field is cyclic.

This result would be fundamental not only in the study and classification of asso-

ciative (division) algebras, but also in that of non-associative ones. In this regard,

Dickson [105] indicated in 1935 about that result that this perfection of the theory

of associative algebras justifies attention to non-associative algebras. In his article,

Dickson [105] defined new four-dimensional non-associative division algebras.

In the same year 1932, an alternative proof of Dickson’s conjecture was pub-

lished [22] by Albert together with Hasse, with whom Albert had started to keep

correspondence since 1931. The controversial around both proofs [141, 258] would

mark the character of Albert with respect to the representation theory. Although
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he recognized its importance and indicated [8] that that theory should be better

known in America4, it is also true that he always would explicitly expose in his sub-

sequent work the advantages of using the methodology developed by Wedderburn,

Dickson and himself in comparison of that of German authors. This fact can be

clearly observed in distinct footnotes and comments of his articles [7, 22] and books

[12]. In any case, what is important for the origin of the theory of isotopisms of

algebras is the fact that, from that moment on, Albert would keep an eye on the

theories developed by German mathematicians, who were indeed who introduced

the concept of isotopy in Topology and who would apply Homology Theory in order

to deal with the problem of the classification of division algebras.

1.2 The fundamentals of the theory

The fundamentals of the theory of isotopisms was originally developed not only by

Albert, but also by the American mathematician Richard Bruck, who generalized in

[60] the concept of isotopism from algebras to quasigroups. We review here some of

the basic concepts and results that both authors exposed in their respective works.

An isotopism (f, g, h) between two algebras that are based on the same under-

lying set A of vectors is called principal if its third component h is the identity

map on A. These two algebras are then said to be principal isotopic. To be (prin-

cipal) isotopic constitutes an equivalence relation among algebras that enables us

to distribute any set of algebras into (principal) isotopism classes. Albert proved

that every isotope of an algebra is isomorphic to a principal isotope of the algebra.

Principal isotopisms become, therefore, a useful way to distribute algebras according

to their isotopism classes in those cases in which isomorphism implies equivalence.

They also constitute a source for the study of possible isotopism invariants. Thus,

for instance, Albert proved that isotopisms preserve right divisors of zero, zero al-

gebras and simple algebras, whereas principal isotopisms preserve ideals. He also

proposed necessary and sufficient conditions under which commutativity and alter-

nativity of algebras are preserved by principal isotopisms. Albert focused then on

isotopisms of algebras with unit elements (unital algebras), division algebras and Lie

algebras. Thus, he proved that

4It was not until 1932 that Hasse [163] published the first paper in English where he reviewed

the main results related to representation theory and its application in the theory of arithmetics

of algebras.
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• Every finite-dimensional unital algebra has a principal isotope which is simple

and has neither left nor right ideals.

• A unital algebra A is associative if and only if all its isotopic unital algebras

are associative and isomorphic to A.

Albert himself observed that this last result is not true in general if the algebras do

not have unit elements. Thus, for instance, the three-dimensional algebra of basis

{e1, e2, e3} that is linearly described by its non-zero products e1e2 = −e2e1 = e3 is

isotopic but not isomorphic to the algebra with the same basis such that e1e1 = e3.

With respect to division algebras, Albert proved that

• Every division algebra is isotopic to a unital division algebra.

• Every real division algebra of order n > 1 is isotopic to a division algebra with

unit element e and containing an element b such that b2 = −e.

• Every real division algebra of order n > 2 is central simple.

• Every absolute-valued real finite-dimensional algebra has dimension 1, 2, 4 or

8 over the real field R and is either R, the complex field C, the real quaternion

algebra H, the real Cayley algebra O, or a principal isotope of H and O

defined by the product xy = f(x)g(y), where f and g are orthogonal linear

transformations and either f−1 is not a right multiplication or g−1 is not a left

multiplication.

Finally, Albert also considered in his original manuscript the question as to

whether principal isotopisms preserve Lie algebras. In this regard, he proved that

Lemma 1.2.1 ([13]). A principal isotope A of a Lie algebra A′ with respect to an

isotopism (f, g, ǫ) is a Lie algebra if and only if the following two conditions hold

for all u, v, w ∈ A.

i. f(u)g(v) = −f(v)g(u).

ii. f(f(u)g(v))g(w)− f(f(u)g(w))g(v)− f(u)g(f(v)g(w)) = 0. �
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Shortly after, Bruck [61] introduced the concept of isotopically simple algebra as

a simple algebra such that all their isotopic algebras are simple. He delved further

into the study of isotopisms of division algebras, simple algebras and Lie algebras.

With respect to the latter, he proved the next result.

Theorem 1.2.2. [61] The following assertions hold.

i. The Lie algebra of order n(n− 1)/2, consisting of all skew-symmetric matrices,

over any subfield of the field of all reals, under the multiplication A ◦ B =

AB −BA, is isotopically simple.

ii. The Lie algebra of order n(n − 1), consisting of all skew-hermitian matrices

in any field R(i) (where R is a subfield of the reals and i2 = −1), under the

multiplication A ◦B = AB −BA, is an isotopically simple algebra over R. �

1.2.1 Isotopisms of quasigroups

In 1943-44, Albert [14, 16] together with Bruck [60] extended the concept of iso-

topism from algebras to quasigroups. The term quasigroup was introduced in 1937

by Bernard Haussmann and Øystein Ore [164] to denote a nonempty set Q endowed

with a product ·, such that if any two of the three symbols u, v and w in the equa-

tion u · v = w are given as elements of Q, then the third is uniquely determined

as an element of Q. Every associative quasigroup is a group and every quasigroup

endowed with unit element is a loop.

It was Bruck [61] who put together both theories on isotopisms of algebras and

quasigroups. He introduced the concept of quasigroup algebra related to a quasigroup

(Q, ·) as an algebra of basis {eu | u ∈ Q} over a base field K such that euev =

hu,veuv, for all u, v ∈ Q, where hu,v is a non-zero element of K. If hu,v = 1, for

all u, v ∈ Q, then the algebra was called a quasigroup ring. This was the starting

point to generalize the concept of isotopism from algebras to quasigroups. In fact,

the definition is completely similar: Two quasigroups (Q, ·) and (Q′, ◦) are said to

be isotopic if there exist three bijections f , g and h between Q and Q′ such that

f(u) ◦ g(v) = h(u · v), for all u, v ∈ Q.

Unlike Albert, who focused on the study of isotopisms of algebras, Bruck dealt

with isotopisms of distinct types of quasigroups like those ones endowed with the
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inverse property, totally symmetric quasigroups, Moufang loops or abelian quasi-

groups, amongst others. He focused on particular on isotopisms of loops [62, 63, 64,

65, 66], which were also considered by Albert himself [14, 16]. The next assertions

hold in this regard.

• Every quasigroup is isotopic to a loop.

• A loop is isotopic to a group if and only they are isomorphic.

• Two groups are isotopic if and only if they are isomorphic.

• Every loop isotopic to a simple loop is simple.

• Isotopic loops have isomorphic centers.

• Every loop isotopic to a loop Q is isomorphic to a loop having precisely the

same normal divisors as Q.

• Every loop isotopic to a loop with the inverse property is a Moufang quasi-

group.

• Every abelian quasigroup is isotopic to an abelian group.

Before of the original works of Albert and Bruck, the underlying idea of iso-

topisms of quasigroups was already known for Latin squares. A Latin square of

order n is an n × n array with elements chosen from a set of n symbols, such that

each symbol occurs precisely once in each row and each column. This constitutes,

therefore, the multiplication table of a finite quasigroup of n elements. In practice,

the set of symbols of any Latin square L = (lij) of order n is usually considered to be

the set [n] = {1, . . . , n}. The orthogonal array representation of L is defined as the

set O(L) = {(i, j, lij) ∈ [n]3}. Isotopisms of quasigroups are, therefore, equivalent to

permutations of rows, columns and symbols of Latin squares. These permutations

give rise to new Latin squares (and thus, to new quasigroups), which are said to be

isotopic to the initial one. Specifically, if Sn denotes the symmetric group on the set

[n], then the isotopic Latin square of L according to Θ = (α, β, γ) ∈ S3
n is denoted

by LΘ and satisfies that O(LΘ) = {(α(i), β(j), γ(pi,j)) | (i, j, pij) ∈ O(L)}. Fisher

and Yates [143] and Norton [239] called them transformations of a Latin square.

Another concept that was inherited from the theory of Latin squares to that

of isotopisms of algebras and quasigroups was derived from the notion of adjugate:
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Let π be a permutation in S3 and let L be a Latin square of order n. Fisher and

Yates [143] and Norton [239] defined the adjugate Lπ as the Latin square of order

n whose orthogonal array representation is the set O(Lπ) = {(lπ(1), lπ(2), lπ(3)) |

(l1, l2, l3) ∈ O(L)}. Thus, there exist six adjugates related to each Latin square:

LId = L, L(12) = Lt, L(13), L(23), L(123) and L(132). Norton [239] called specie to

any transformation of an adjugate of a Latin square. Nowadays, the adjugates of

a Latin square are called conjugates or parastrophes. The permutation π is called

parastrophism and the composition of an isotopism and a parastrophism of Latin

squares is called a paratopism. Hence, species of Latin squares are currently called

paratopes. To be isotopic, parastrophic or paratopic are equivalence relations among

Latin squares.

The concept of conjugacy of algebras was already considered by Shaw [282] in

1915: Let A be an algebra over a base field K of basis {e1, . . . , en}, which is described

by the non-zero products eiej =
∑n

k=1 aijkek, for all i, j ≤ n and some numbers

aijk ∈ K that are called the structure constants of the algebra A. If these structure

constants are interchanged by a common permutation of their indices, that is, if

each structure constant aijk is replaced by aijk, ajik, aikj, akij, ajki or akji, then the

resulting algebra was called parastrophic or conjugate of the algebra A. Each one of

the six possible changes of indices determines a parastrophism of algebras. It was

Bruck [61] who introduced the problem of whether these six parastrophic algebras

are isotopic or not. The same problem was proposed almost simultaneously by

Etherington [118], who illustrated it with several types of algebras and quasigroups.

1.3 The development of the theory

Since the manuscripts of Albert and Bruck, a wide amount of authors have dealt

with the distribution into isotopism classes of distinct types of algebras, quasigroups

and related combinatorial structures. Let us finish this section by pointing out some

of the references in this regard.

1.3.1 Division algebras

Recall that a division algebra is an algebra in which left- and right- division is possi-

ble. We have already exposed the interest that Albert had on division algebras and

the fact that he introduced the concept of isotopisms in order to deal with the prob-
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lem of classifying division algebras. This interest was further extended to the rest

of the scientific community once Albert [19] proved in 1960 that two division alge-

bras are isotopic if and only if their corresponding projective planes are isomorphic.

Thus, for instance, at the beginning of the 1960s, Albert himself [18, 19, 20, 21] and

Hughes [174, 175] studied the autotopism groups of certain types of non-associative

division algebras that coordinatize finite projective planes. Shortly after, Sandler

[275, 276] generalized these algebras and discussed the question of distributing them

into isotopism classes. Particularly, he indicated that two such division algebras

are related to isomorphic projective planes if and only if the algebras are isotopic.

Together with Oehmke, Sandler [243] focused in particular on the study of the au-

totopism group of Jordan division algebras. In 1975, Kaplansky [193] conjectured

that every three-dimensional non-associative division algebra is isotopic to gener-

alized twisted field. This was shortly after proved by Menichetti [234]. In 1981,

Benkart et al. [36, 45] gathered together some results and possible applications in

Physics on isotopisms of real division algebras. More recently, Darpö and Dieterich

[93] in 2007 used the isotopes of C to define an isotopism among real commutative

division algebras that becomes an equivalence of categories. Schwarz [280] in 2010

classified small, non-associative division algebras up to isotopy. He reduced the clas-

sification problem to a case study solved by means of computation. In 2011, Deajim

and Grant [95] dealt with the distribution of three-dimensional non-associative divi-

sion algebras over p-adic fields under isotopism classes. Finally, in 2015, Darpö and

Pérez Izquierdo [94] have imposed certain conditions to the group of autotopisms of

a non-associative division algebra under which this algebra is isotopic to a classical

real division algebra. This gives rise to a distribution into isomorphism classes of

this type of algebras.

1.3.2 Semifields

An algebraic structure whose isotopisms have widely been analyzed and whose defi-

nition is similar to that of division algebra is the so-called (pre)semifield. Specifically,

a presemifield is a set endowed with an abelian addition with unit element 0 and a

distributive multiplication for which the left- and right-division are always possible.

If the multiplication has unit element, then this is a semifield. Two (pre)semifields

(S,+, ·) and (S ′,+, ◦) are isotopic if and only if their multiplicative structures (S, ·)

and (S ′, ◦) are isotopic. The existence of both additive and multiplicative units, to-

gether with the distributive property, makes possible to consider any semifield as a

planar ternary ring in the sense introduced by Hall [155, 156]. In 1965, Knuth [194]
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generalized the concept of isotopism from seminets to ternary rings. Specifically,

given two ternary rings T and T ′, a triple (F,G,H) of one-one mappings between

them is called an isotopism if H(0) = 0 and (F (a) +G(b))×H(c) = H((a+ b)× c),

for all a, b, c ∈ T . A generalization of this definition was exposed by Zotov [320]

in 1976. Knuth described a simple method to construct all ternary rings that are

isotopic to a given one. He also described a method to generate 24 semifields from

any given one. In 1974, Soubeyran [290] described some derivable semifields that

are not isotopic to any of the derivable semifields of Knuth. Besides, this result has

been recently taken into account by Ball and Lavrauw [35], who have proved that

there are at most five non-isotopic semifields among the 24 semifields described by

Knuth. This last author also obtained the upper bound of (n− 1)2 elements as the

number of non-isomorphic ternary rings that are isotopic to a given ternary ring of n

elements. Besides, Knuth obtained necessary and sufficient conditions under which

the isotopic ternary rings are related to isomorphic projective planes. Finally, he

dealt with the possibility of considering non-linear isotopisms for constructing semi-

fields. In 2008, Lavrauw gave a one-to-one correspondence between the isotopism

classes of a finite semifield and the orbits of the action a subgroup of index two of

the automorphism group of a Segre variety on subspaces of maximum dimension

skew to a determinantal hypersurface.

In 1972, Ganley [145] gave a characterization of finite semifields that are iso-

topic to a commutative semifield. This was generalized for quasifields5 by Jha [190]

in 2005. In 1998, Spille and Pieper-Seier [291] dealt with the distribution of com-

mutative semifields into strongly isotopism classes6. Coulter and Henderson [88]

continued with the topic and obtained certain conditions under which two commu-

tative presemifield are strongly isotopic. They also proved that every commutative

presemifield of odd order can be uniquely described by a planar polynomial. This

enables them to classify all planar functions describing presemifields isotopic to a

finite field or to Albert’s commutative twisted fields. This line of research continues

currently active, as we can observe in the references [68, 229, 319].

We finish this part by indicating several works about the explicit construction

and distribution of finite semifields into isotopism classes on which distinct authors

have been focusing in the last years. Some references in this regard are [34, 207,

5Quasifields are defined in a similar way to semifields, but only the left- or right-distributive

property is imposed.
6A strong isotopism consists of an isotopism of the form (f, f, h), where the first and second

component coincide.
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208, 209, 210, 211, 227, 228, 259, 260, 317].

1.3.3 Alternative algebras

An algebra (A, ·) is said to be alternative if it holds the identities (u, u, v) = 0 =

(u, v, v), where (u, v, w) denotes the associator product (u · v) ·w− u · (v ·w), for all

u, v, w ∈ A. In general, isotopisms do not preseve alternativity. In 1966, Schaffer

[277] proved that this assertion is, however, true whenever the algebras are unitary.

A similar result had been already proved by Bruck [63] for loops. In 1971, Mc-

Crimmon [230] defined the u, v-homotope of (A, ·) as the algebra (A, ·u,v) such that

x ·u,v y = (x · u) · (v · y), for all x, y ∈ A. This constitutes a generalization of the

notion of isotopism, which had been in fact already considered by Albert himself

[13] for general linear algebras, by Bruck [63] for loops and, indeed, by Schaffer

[277] for alternative algebras. In the particular case in which the algebra (A, ·) is

unitary and the two elements u and v are regular, the algebra (A, ·u,v) is isotopic to

(A, ·). McCrimmon [230] proved that the u, v-homotope of an alternative algebra is

also alternative and that every isotopism of an unitary alternative algebra (A, ·) can

be reduced to an u, v-homotopism. The isotopic alternative algebra is also unitary

in this case and its unit is the inverse of u · v. More recent works on this topic

have been developed by Allison [24], Babikov [33] and Pchelintsev [246]. The first

author focused on isotopisms of alternative algebras with involution. Particularly,

it is proved that simple alternative algebras are isomorphic if and only if they are

isotopic. The second one analyzed some conditions under which two u, 1-isotopic

alternative algebras are isomorphic, whereas the latter proved that u, 1-isotopisms

of unitary alternative algebras preserve primality.

1.3.4 Jordan algebras

A Jordan algebra is a commutative algebra A that holds the identity u(u2v) =

u2(uv), for all u, v ∈ A. Even if there exist distinct manuscripts that refer to iso-

topisms of Jordan algebras, it is Petersson [247] the only author who, based on

the previously mentioned works of Oehmke and Sandler [243], has dealt with iso-

topisms of Jordan algebras by following the classical notion introduced by Albert.

Specifically, Petersson proved that two isotopic finite-dimensional Jordan algebras

of characteristic distinct from two, at least one of which is semisimple, are always

isomorphic. The rest of references dealing with isotopisms of Jordan algebras refers
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to a slightly different notion of isotopism that was introduced by Jacobson [185] in

1962. This last author characterized unitary Jordan algebras by means of standard

involutions based on what he called a-isotopies. As we have just mentioned, this

notion of isotopism differs from that introduced by Albert. Specifically, given a reg-

ular element u of an unitary Jordan algebra (A, ·), Jacobson defined the u-isotopic

Jordan algebra (A, ·u) from the product x ·u y = (x · u) · y + (u · y) · x − (x · y) · u,

for all x, y ∈ A. He called this isotopy because the conceptual idea derives from

that described by Albert himself [13]. Observe in this regard the similarity between

this product and the previously mentioned homotopic product ·u,1 described by Mc-

Crimmon [230] for unitary alternative algebras. In this last reference, McCrimmon

himself studied the relation among the use of this homotopic product in the study

of quadratic Jordan algebras. The same relation has been dealt with much more

recently by Petersson [250], who has related both notions of isotopisms of Albert and

Jacobson by means of what he has defined as the structure group of an alternative

algebra.

In 1963, Jacobson studied the way in which u-isotopisms act on the generic norm

of an unitary Jordan algebra. This last aspect was also considered by McCrimmon

[232] and much more recently by Loos [216], who considered a similar question

for generically algebraic Jordan algebras in order to compute the generic minimum

polynomial of an u-isotope. McCrimmon [231] also proved that this type of isotopism

preserves inner ideals of unitary Jordan algebras. In 1978, Petersson [249] gave

sufficient conditions for two reduced exceptional simple Jordan algebras to be u-

isotopic. Shortly after, Petersson together with Racine [251] proved that all u-

isotopes of a first construction exceptional Jordan division algebra are isomorphic.

They also asked for the question of whether two Albert algebras (a specific type of

exceptional central simple Jordan algebras) are u-isotopic under certain invariants.

This question was affirmatively answered by Thakur [299] in 1999.

1.3.5 Lie algebras

A Lie algebra is an anti-commutative algebra A that holds the so-called Jacobi iden-

tity u(vw) + v(wu) + w(uv) = 0, for all u, v, w ∈ A. There barely exists any result

about isotopisms of Lie algebras apart from the results of Albert and Bruck that

we have previously cited as Lemma 1.2.1 and Theorem 1.2.2. Thus, for instance,

Jiménez-Gestal and Pérez-Iquierdo [191] have recently studied the underlying rela-

tion that exists among the isotopisms of a finite-dimensional real division algebra
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and the Lie algebra of its ternary derivations. More recently, Allison et al. [28, 29]

have studied isotopisms of a type of graded Lie algebras called Lie tori, but their

notion of isotopism differ from the classical notion of Albert.

1.3.6 Genetic algebras

In 1966, Bertrand [46] exposed some basic concepts and results that make possible

to endow Genetics with an algebraic structure theory. Particularly, she dealt with

the possibility of using isotopisms of distinct types of algebras. The same year,

Holgate [168] dealt with special train algebras that can be used to describe certain

modes of inheritance in terms of mixture of chromosome and chromatid segregation.

He studied in particular the distribution of these algebras into isotopism classes. In

1985, Ringwood [254] exposed an outline with the distinct non-associative algebras

that arise in Genetics. He indicated in particular how to use isotopisms of algebras

in order to treat selection. Shortly after, in 1987, Campos and Holgate [73] realized

the important role that isotopisms play in the study of genetic algebras. They

proved in particular that those algebras related to a polyploidy and chromosome

segregation which correspond to distinct mutation rates are related by principal

isotopisms. Besides, algebras reflecting varying degrees of double reduction are

special isotopisms, which preserve the powers of their corresponding nilideals. As a

consequence, the analysis of evolutionary operators can be reduced to the study of

one algebra of each isotopism class.

1.3.7 Other algebras

Other algebras whose isotopisms have been analyzed since the original manuscript

of Albert are quasi-composition algebras [248, 288], absolute valued algebras [17, 91,

226, 257] and structural algebras [27, 25, 26], amongst others.

1.3.8 Quasigroups and related structures

Apart from Albert and Bruck, a pair of authors that were specially prolific in the

initial stage of the theory of isotopisms of quasigroups were Sade and Belousov. The

former exposed distinct results on isotopisms [263, 269], autotopisms [262, 267, 268,

270] and paratopisms [264, 265, 266, 271, 272] of quasigroups, whereas the latter
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adapted the concept of isotopism for quasifields [37], proved that all quasigroups

with balanced identity are isotopic to groups, defined the concept of orthogonal and

crossed isotopism [43] and focused on isotopisms and paratopisms of several types

of quasigroups [38, 39, 40, 41, 42, 44].

Some other authors who contributed to the consolidation of this theory were

Evans [119, 120], Stein [292, 293], Artzy [31, 32], Aczél [1, 2, 3], Osborn [245],

Robinson [255, 256], Falconer [136, 137] and Lindner [213]. At the same time, the

theory of isotopisms of quasigroups was being extended to other algebraic structures

like semifields [194], semigroups of functions [217] or projective planes and ternary

rings [69, 219, 294]. The theory has continued being matured until nowadays with

new results on isotopisms of quasigroups [47, 184, 188, 237, 238, 281, 283, 287],

Hadamard cocycles [86] or alternating forms [173]. An application of isotopic quasi-

groups in Cryptography has also been developed [151, 285, 307] to evaluate security

of cryptographic systems.

Isotopism and paratopisms have also been used to study and classify distinct

combinatorial structures like frequency squares [51], frequency cubes [52], William

designs [298], Moufang nets [157] or hypercubes [224]. However, without any doubt,

Latin squares continue being the combinatorial structures par excellence in the the-

ory of isotopisms. In 1977, Dénes and Keedwell [98] gathered together all the known

theory about Latin squares, in particular, those results related to isotopisms. Since

then, isotopisms and paratopisms have been used to study parities [109, 189, 196],

critical sets [4, 108], cycle switches [311], transversals [222] and symmetries [183,

295, 312] of Latin squares. The number of isotopism and conjugate classes of Latin

squares has been obtained for order up to 11 [176, 195, 223]. The set of autotopisms

of Latin squares have also been analyzed [59, 79, 128, 129, 130, 133, 134, 233, 286,

296], with possible applications in the study of secret sharing schemes in Cryptog-

raphy [126, 127, 297]. More recently, it has been studied the set of autotopisms of

partial Latin squares [131] and partial Latin rectangles [132, 135].



Chapter 2

Computing isotopisms of algebras

We expose in this chapter those results in Computational Algebraic Geometry and

Graph Theory that we use throughout the manuscript in order to compute the

isotopism classes of each type of algebra under consideration in the subsequent

chapters. We describe in particular a pair of graphs that enable us to define faithful

functors between finite-dimensional algebras over finite fields and these types of

graphs. These functors map isomorphic and isotopic algebras to isomorphic graphs.

Reciprocally, any pair of isomorphic graphs is uniquely related to a pair of algebras

so that there exists a multiplicative map between them. Previously, we recall some

basic concepts and expose some preliminary results on isotopisms of algebras.

2.1 Isotopisms of algebras

Let us gather together here some basic concepts and results on the theory of iso-

topisms of algebras that we use throughout the manuscript. We refer to the original

paper of Albert [13] for more details about this topic.

Two n-dimensional algebras (A, ·) and (A′, ◦) defined over the same field K are

said to be isotopic if there exist three non-singular linear transformations f , g and

h from A to A′ such that

f(u) ◦ g(v) = h(u · v), for all u, v ∈ A. (2.1)

Hereafter, in order to simplify the notation and whenever no confusion arises, we

do not write explicitly the products · and ◦. That is, we write the previous identity

19



20 CHAPTER 2. COMPUTING ISOTOPISMS OF ALGEBRAS

as f(u)g(v) = h(uv), for all u, v ∈ A. The triple (f, g, h) is an isotopism between the

algebras A and A′. If h is the identity transformation Id, then the isotopism is called

principal. If f = g, then this is called a strong isotopism and the algebras are said to

be strongly isotopic. If f = g = h, then the isotopism constitutes an isomorphism,

which is denoted by f instead of (f, f, f). To be isotopic, strongly isotopic or

isomorphic are equivalence relations among algebras. Hereafter, we denote these

three relations, respectively, as ∼, ≃ and ∼=. Further, throughout the manuscript,

any non-singular linear transformation between two n-dimensional algebras that is

linearly defined from a permutation in the symmetric group Sn of the indices of their

corresponding basis vectors is identified with this permutation. Thus, for instance,

given two three-dimensional algebras of respective bases {e1, e2, e3} and {e
′
1, e

′
2, e

′
3},

the isomorphism (23) ∈ S3 is linearly defined from mapping e1 to e′1, e2 to e′3 and e3
to e′2.

Let A be an n-dimensional algebra over a field K and let {e1, . . . , en} be a basis

of this algebra. The structure constants of A are the numbers ckij ∈ K such that

eiej =

n
∑

k=1

ckijek, for 1 ≤ i, j ≤ n. (2.2)

Let A and A′ be two n-dimensional isotopic algebras over the same field K and

let {e1, . . . , en} and {e′1, . . . , e
′
n} be their respective bases. Any isotopism (f, g, h)

between both algebras is uniquely determined by their respective sets of structure

constants ckij and c′kij and the corresponding entries of the nonsingular matrices

F = (fij), G = (gij) and H = (hij) that are respectively related to the maps f ,

g and h. Here, α(ei) =
∑n

j=1 αije
′
j , for each α ∈ {f, g, h}. The next equalities

follow in particular from the coefficients of each basis vector em in the expression

f(ei)g(ej) = h(eiej).

n
∑

k,l=1

c′
m
klfikgjl =

n
∑

s=1

csijhsm, for all i, j ≤ n. (2.3)

If the structure constants of an algebra are all of them zeros, then this algebra

is called abelian.

Lemma 2.1.1. The n-dimensional abelian algebra is not isotopic to any other n-

dimensional algebra.
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Proof. Let (f, g, h) be an isotopism between an n-dimensional non-abelian algebra

of basis {e1, . . . , en} and the n-dimensional abelian algebra. Let i, j ≤ n be such

that eiej 6= 0. Then, 0 = f(ei)g(ej) = h(eiej) 6= 0, which is a contradiction.

Proposition 2.1.2. There exists two isomorphism and isotopism classes of one-

dimensional algebras: the abelian and that described by the product of basis vectors

e1e1 = e1.

Proof. Every one-dimensional non-abelian algebra over a field K is described by a

product of basis vectors e1e1 = ae1, where a ∈ K \ {0}. The linear transformation f

that maps e1 to ae1 is an isomorphism between this algebra and that described by

the product e1e1 = e1. The result follows then from Lemma 2.1.1.

Let S be a vector subspace of an algebra A. The left and right annihilators of S

in A are respectively defined as the sets

AnnA−(S) = {u ∈ A | uv = 0, for all v ∈ S}. (2.4)

AnnA+(S) = {u ∈ A | vu = 0, for all v ∈ S}. (2.5)

The intersection of both sets is called the annihilator of S in A. It is defined as

AnnA(S) = {u ∈ A | uv = vu = 0, for all v ∈ S}. (2.6)

Lemma 2.1.3. Let (f, g, h) be an isotopism between two n-dimensional algebras A

and A′. Let S be a vector subspace of A. Then,

a) f(AnnA−(S)) = AnnA′−(g(S)). Hence, dimAnnA−(S) = dimAnnA′−(g(S)).

b) g(AnnA+(S)) = AnnA′+(f(S)). Hence, dimAnnA+(S) = dimAnnA′+(f(S)).

c) f(AnnA−(S)) ∩ g(AnnA+(S)) = AnnA′(f(S) ∩ g(S)).

Proof. Let us prove assertion (a). Assertion (b) follows similarly and assertion (c)

is an immediate consequence of (a) and (b). Let u ∈ g(S) and v ∈ f(AnnA−(S)).

Then, vu = f(f−1(v))g(g−1(u)) = h(f−1(v)g−1(u)) = h(0) = 0, because g−1(u) ∈ S

and f−1(v) ∈ AnnA−(S). Hence, f(AnnA−(S)) ⊆ AnnA′−(g(S)). Now, let u ∈
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AnnA′−(g(S)) and v ∈ S. From the regularity of f , we have that h(f−1(u)v) =

ug(v) = 0. The regularity of h involves that f−1(u)v = 0. Thus, u ∈ f(AnnA−(S))

and hence, AnnA′−(g(S)) ⊆ f(AnnA−(S)). Finally, the dimension of AnnA′−(g(S))

and that of AnnA−(S) coincide from the regularity of f .

Proposition 2.1.4. Let (f, g, h) be an isotopism between two n-dimensional algebras

A and A′. Then,

a) f(AnnA−(A)) = AnnA′−(A′). Hence, dimAnnA−(A) = dimAnnA′−(A′).

b) g(AnnA+(A)) = AnnA′+(A′). Hence, dimAnnA+(A) = dimAnnA′+(A′).

c) f(AnnA−(A)) ∩ g(AnnA+(A)) = AnnA′(A′).

Proof. The result follows straightforward from Lemma 2.1.3 and the regularity of f

and g.

Hereafter, given a vector subspace S of an algebra A, we define the vector sub-

space SA = {uv | u ∈ S and v ∈ A}. The derived algebra of the algebra A is then

defined as the subalgebra

A2 = AA = {uv | u, v ∈ A} ⊆ A. (2.7)

Let u ∈ A. The adjoint action of u in A is the map adu : A → A2 such that

adu(v) = uv, for all v ∈ A. Further, the derived series of the algebra A is defined as

C1(A) = A ⊇ C2(A) = A2 ⊇ . . . ⊇ Ck(A) = (Ck−1(A))
2 ⊇ . . . (2.8)

The algebra A is said to be solvable if there exists a positive integer m such that

Cm+1(A) ≡ 0. The smallest such an integer is called the solvability index of the

algebra.

Similarly, the lower central series of the algebra A is defined as

C1(A) = A ⊇ C2(A) = A2 ⊇ . . . ⊇ Ck(A) = (Ck−1(A))A ⊇ . . . (2.9)
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The algebra A is said to be nilpotent if there exists a positive integer m such that

Cm+1(A) ≡ 0. The smallest such an integer is called the nil-index of the algebra.

The solvability index, the nil-index together and the dimensions of each vector

subspace Ck(A) and C
k(A) are all of them preserved by isomorphisms. Particularly,

the type of an algebra A of nil-index m is defined as the sequence

{dimA/C2(A), dim C2(A)/C3(A), . . . , dim Cm−1(A)/Cm(A)}. (2.10)

This is also preserved by isomorphisms of algebras. Nevertheless, for isotopisms

we can only assure the next result.

Lemma 2.1.5. Let (f, g, h) be an isotopism between two n-dimensional algebras A

and A′. Then, h(A2) = A′2 and dim(A2) = dim(A′2).

Proof. The regularity of f and g involves that f(A) = g(A) = A′. Hence, A′2 =

f(A)g(A) = h(A2) and the result follows then from the regularity of h.

Let us finish the section with the description of partial-magma algebras, a type

of algebras whose distribution into isotopism and isomorphism classes is dealt with

in distinct parts of this manuscript.

A partial magma is a finite set endowed with a partial binary operation. Through-

out the manuscript we suppose this set to be [n] = {1, . . . , n} and we denote the

operation as ·. In this case, n is the order of the partial magma. If the operation ·

is defined in all [n] × [n], then the pair ([n], ·) is a magma. Two (partial) magmas

([n], ·) and ([n], ◦) are said to be isotopic if there exist three permutations α, β and

γ in the symmetric group Sn such that

α(i) ◦ β(j) = γ(i · j), for all i, j ≤ n such that i · j exists. (2.11)

If α = β = γ, then the (partial) magmas are said to be isomorphic. The triple

(α, β, γ) constitute an isotopism of (partial) magmas (an isomorphism if α = β = γ).

Similarly to the concepts of quasigroup algebra and quasigroup ring that was

introduced by Bruck [60], and which we have already exposed in Chapter 1, we
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say that an n-dimensional algebra over a field K is a partial-magma algebra if there

exists a basis {e1, . . . , en} of the algebra and a partial magma ([n], ·) such that

eiej =







cijei·j , if i · j exists,

0, otherwise,
(2.12)

for each pair of elements i, j ≤ n and some non-zero structure constant cij ∈ K\{0}.

If all these non-zero structure constant are equal to 1, then the algebraic structure

is called a partial-magma ring. We denote this algebra as A· and we say that such

an algebra is based on the partial magma ([n], ·). If the pair ([n], ·) is a magma,

then the algebra is said to be a magma algebra (a magma ring if all the non-zero

structure constants are 1). Partial-magma algebras constitute, therefore, a natural

generalization of the concept of quasigroup algebra, once the condition of being

based on a quasigroup is replaced by that of being based on a partial magma. In

this regard, a partial quasigroup is defined as a partial magma such that, if the

equations ix = j and yi = j, with i, j ∈ [n], have solutions for x and y in [n],

then these solutions are unique. This is a quasigroup if both equations have always

unique solutions.

We prove in the next result that isotopic (isomorphic, respectively) partial mag-

mas give rise to isotopic (isomorphic, respectively) partial-magma rings.

Lemma 2.1.6. Two partial-magma rings are isotopic (isomorphic, respectively) if

their respective partial magmas on which they are based are isotopic (isomorphic,

respectively).

Proof. Let A· and A◦ be two partial-magma rings based, respectively, on two iso-

topic partial magmas ([n], ·) and ([n], ◦). Let {e1, . . . , en} and {e′1, . . . , e
′
n} be the

respective bases of the algebras A· and A◦ and let (f, g, h) be an isotopism between

the partial magmas ([n], ·) and ([n], ◦). For each α ∈ {f, g, h}, let us define the map

α(ei) = e′α(i). Then,

f(ei)g(ej) = e′f(i)e
′
g(j) = e′f(i)◦g(j) = e′h(i·j) = h(ei·j) = h(eiej).

From linearity, the triple (f, g, h) determines, therefore, an isotopism between the

algebras A· and A◦. If f = g = h, then this constitutes an isomorphism.

The reciprocal of Lemma 2.1.6 is not true in general. Thus, for instance, the two

partial magmas ([2], ·) and ([2], ◦) that are respectively described by the non-zero
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products 1 · 1 = 1 and 1 ◦ 1 = 1 = 2 ◦ 1 are not isotopic. Nevertheless, the partial-

magma rings A· and A◦, with respective bases {e1, e2} and {e
′
1, e

′
2}, are isotopic by

means of the isotopism (f, Id, Id), where the linear transformation f is described by

f(e2) = e′2 − e′1.

The previous remark gives rise to the open problem of distributing certain types

of partial-magma rings into isotopism and isomorphism classes for which the corre-

sponding classification of partial magmas on which they are based is known. This

is the case, for instance, of partial quasigroups, which we deal with throughout this

chapter. Specifically, every partial quasigroup of order n constitutes the multiplica-

tion table of a partial Latin square of order n. That is, an n×n array in which each

cell is either empty or contains one element chosen from the set [n], such that each

symbol occurs at most once in each row and in each column. If there are not empty

cells, then this is a Latin square, which constitutes in turn the multiplication table

of a quasigroup of order n. Every isotopism of a (partial) quasigroup is uniquely

related to a permutation of the rows, columns and symbols of the corresponding

(partial) Latin square. At the end of Chapter 1 we have already indicated that the

distribution of Latin squares into isomorphism and isotopism classes is known for

order up to 11 [176, 195, 223]. Nevertheless, it is only known the distribution of

partial Latin squares into isotopism classes for order up to 6 [131, 135]. Throughout

the next sections we study which ones of the known non-isotopic classes of partial

Latin squares of a given order give rise to isotopic classes of partial-quasigroup rings.

In this regard, observe that, for order 1, it is straightforward verified that there ex-

ists only two one-dimensional partial-quasigroup rings: the abelian and that one

described by the product e1e1 = e1. From Lemma 2.1.1, they constitute distinct

isotopism classes.

2.2 Computational Algebraic Geometry

We expose here some basic concepts and results on Computational Algebraic Geom-

etry that we use throughout the manuscript to deal with the distribution of algebras

into isotopism and isomorphism classes. For more detail about this topic we refer

to the monographs of Cox, Little and O’Shea [89, 90].
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2.2.1 Preliminaries

Let X and K[X ] be, respectively, the set of n variables {x1, . . . , xn} and the related

multivariate polynomial ring over a field K, endowed with the standard grading

induced by the degree of polynomials, that is, K[X ] =
⊕

0≤dKd[X ], where each

Kd[X ] is the set of homogeneous polynomials in K[X ] of degree d. Any monomial

of K[X ] has the form xa = xa1
1 . . . xan

n and can be identified with the lattice point

a = (a1, . . . , an) ∈ Nn.

A total order ≤ on K[X ] is a binary relation among the polynomials of K[X ]

such that, given three polynomials p, q, r ∈ K[X ], it is verified that

• If p ≤ q and q ≤ p, then p = q.

• If p ≤ q and q ≤ r, then p ≤ r.

• p ≤ q or q ≤ p.

A monomial term order ≺ on K[X ] is a total order on the set of monomials in

K[X ] such that

• 1 ≺ xa, for all a ∈ Nn \ {0}.

• If xa ≺ xb for some a, b ∈ Nn, then xa+c ≺ xb+c, for all c ∈ Nn.

Thus, for instance, the lexicographic order ≺lex is a monomial term order defined

on K[X ] such that, given two monomials xa = xa1
1 . . . xan

n and xb = xb1
1 . . . xbn

n in

K[X ], we have that xa ≺lex xb if there exists a positive integer m ≤ n such that

ai = bi, for all i ≤ m and am < bm.

A subset I of K[X ] is called an ideal of K[X ] if

• 0 ∈ I.

• Given two polynomials p, q ∈ I, it is verified that p+ q ∈ I.

• Given two polynomials p ∈ I and q ∈ R, it is p · q ∈ I.

The ideal I is said to be prime if the next two conditions hold.
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• I is a proper subset of K[X ].

• If pq ∈ I, then p ∈ I or q ∈ I.

The height of a prime ideal I is defined as the supremum of all positive integer

n ∈ N so that there is a chain I0 ⊂ . . . In = I of distinct prime ideals. The Krull

dimension of K[X ] is the supremum of all the heights of all its prime ideals.

The ideal generated by a finite set of polynomials p1, . . . , pm ∈ K[X ] is defined as

〈 p1, . . . , pm〉 = {p ∈ K[X ] | p =

m
∑

i=1

qi·pi, where qi ∈ K[X ], for all i ≤ m}. (2.13)

Two polynomials p, q ∈ K[X ] are congruent modulo an ideal I ofK[X ] if p−q ∈ I.

This is an equivalence relation. The polynomial quotient ring K[X ]/I is then defined

as the set of equivalence classes of K[X ] with respect to this relation.

The algebraic set defined by an ideal I of K[X ] is the set V(I) of common zeros

of all the polynomials in I, that is,

V(I) = {(a1, . . . , an) ∈ Kn | p(a1, . . . , an) = 0, for all p ∈ I}. (2.14)

The ideal I is zero-dimensional if V(I) is finite. It is radical if every polynomial

p ∈ K[X ] belongs to I whenever there exists a positive integer m ∈ N such that

pm ∈ I. Let ≺ be a monomial term order on the set of monomials in K[X ]. The

largest monomial of a polynomial in I with respect to ≺ is its leading monomial

LM(f), whose coefficient in f is the leading coefficient LC(f). The leading term of

f is the product LT(f) = LC(f) · LM(f). The ideal generated by all the leading

monomials of I is the initial ideal I≺. Those monomials that are not in I≺ are called

standard monomials of I. Regardless of the monomial term order, if the ideal I is

zero-dimensional, then the Krull dimension of the polynomial quotient ring K[X ]/I

coincides with the number of standard monomials of I. This number is always

greater than or equal to the number of points of V(I). The equality holds whenever

I is radical.

The Krull dimension of K[X ]/I and the points of V(I) can be completely de-

termined by means of Gröbner bases. A Gröbner basis of I with respect to ≺ is

any subset G of polynomials in I whose leading monomials generate the initial ideal
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I≺. This is reduced if all its polynomials are monic and no monomial of a polyno-

mial in G is generated by the leading monomials of the rest of polynomials in the

basis. There exists only one reduced Gröbner basis of the ideal I, which becomes

an optimal way to count their number of standard monomials. Its decomposition

into finitely many disjoint subsets, each of them being formed by the polynomials

of a triangular system of polynomial equations makes also possible to enumerate

the elements of the algebraic set V(I) [166, 212, 235]. The reduced Gröbner basis

of an ideal I can always be computed from Buchberger’s algorithm [67]. Similar

to the Gaussian elimination on linear systems of equations, this consists of a se-

quential multivariate division of polynomials, also called reduction or normal form

computation, which is based on the construction of the so-called S-polynomials

S(f, g) = lcm(LM(f),LM(g))(f/LT(f) − g/LT(g)), for all f, g ∈ I, where lcm de-

notes the least common multiple. In particular, a subset G of polynomials in I is

a Gröbner basis if S(f, g) reduces to zero after division by the polynomials in G,

for all f, g ∈ G. Buchberger’s algorithm can be implemented on ideals defined over

any field, but its involved exact arithmetic becomes faster on finite fields. It is due

to the large numbers that appear in general as intermediate coefficients during the

computation of the reduced Gröbner basis and which constitute a major factor in

the computational cost of the algorithm. Derived from Buchberger’s algorithm, a

pair of more efficient direct methods are the algorithms F4 and F5 [138, 139] and the

algorithm slimgb [56]. The latter is based on F4 and reduces the computation time

and the memory usage by keeping small coefficients and short polynomials during

the sequential division of polynomials. All these algorithms are more efficient over

the rational field or a finite field.

In any case, the computation of a reduced Gröbner basis is always extremely

sensitive to the number of variables [160, 161, 204, 205, 206]. Particularly, Lakshman

described a radical basis algorithm that enables us to ensure the next result that

follows straightforward from Theorem 3 in [204].

Theorem 2.2.1. The reduced Gröbner basis of any radical zero-dimensional ideal

defined over the rational field Q under any monomial term order can be computed

in polynomial time dO(n), where d is the maximal degree of the polynomials of the

ideal and n is the number of variables. �

With respect to the complexity time that is required to compute a reduced

Gröbner basis over a finite field Fq, with q a prime power, the next result was

proved by Gao [146].
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Theorem 2.2.2 ([146], Proposition 4.1.1). The complexity time that is required

by the Buchberger’s algorithm in order to compute the reduced Gröbner bases of an

ideal 〈 p1, . . . , pm, p
q
1−p1, . . . , pm−pm 〉 defined over a polynomial ring Fq[x1, . . . , xn],

where p1, . . . , pm are polynomials given in sparse form and have longest length l, is

qO(n) + O(m2l). Here, sparsity refers to the number of monomials. �

2.2.2 Enumeration of algebras

The concepts and results on Computational Algebraic Geometry that we have just

exposed can be straightforward implemented to enumerate n-dimensional algebras

over a field K and distribute them into isotopism and isomorphism classes. In order

to deal with the problem of enumerating n-dimensional algebras, let us define the

set of variables

Cn = {ckij | i, j, k ≤ n}, (2.15)

These variables play the role of the structure constants of an n-dimensional

algebra A over K[Cn], with basis {e1, . . . , en}, such that

eiej =

n
∑

k=1

ckijek, for all i, j ≤ n. (2.16)

The algebraic structure related to any ideal I of K[Cn] is then uniquely related

to a set of n-dimensional algebras over K whose structure constants constitute zeros

of any polynomial of such an ideal. Specifically, each zero (c111, . . . , c
n
nn) ∈ V(I) con-

stitutes the structure constants of an n-dimensional algebra, with basis {e1, . . . , en},

such that eiej =
∑n

k=1 c
k
ijek, for all i, j ≤ n. Keeping this in mind, distinct ideals

of the polynomial ring K[Cn] can be described in order to determine the set of n-

dimensional algebras with a given property. In the subsequent chapters, we describe

distinct ideals in this regard in order to deal with finite-dimensional Lie algebras,

Malcev algebras and evolution algebras. In case of dealing with finite fields, the

computation of the reduced Gröbner basis of each one of these ideals enables us to

enumerate explicitly the corresponding algebras. In order to illustrate this fact with

an example, we focus now on the particular case of dealing with finite-dimensional

partial-magma algebras over a finite field.

Theorem 2.2.3. The set of n-dimensional partial-magma algebras over the finite

field Fq, with q a prime power, is identified with the algebraic set defined by the next
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ideal of Fq[Cn]

I = 〈 ckijc
k′

ij | i, j, k, k
′ ≤ n; k < k′ 〉.

Besides,

|V(I)| = dimFq
(Fq[Cn]/I).

Proof. The generators of the ideal I involve each zero (c111, . . . , c
n
nn) ∈ V(I) to con-

stitute the structure constants of an n-dimensional partial-magma algebra. Further,

since the field Fq is finite, the ideal I is zero-dimensional and the algebraic set V(I)

is a finite subset of Fn3

q . From Proposition 2.7 of [89], the ideal I is also radical, be-

cause, for each i, j, k ≤ n, the unique monic generator of I ∩Fq[c
k
ij] is the polynomial

(ckij)
q − ckij , which is intrinsically included in each ideal of Fq[Cn] and is square-free.

As a consequence, the number of zeros in the algebraic set V(I) coincides with the

Krull dimension of the quotient ring Fq[Cn]/In over Fq.

Corollary 2.2.4. Let Fq be a finite field, with q a prime power. The time complex-

ity that is required by the Buchberger’s algorithm in order to compute the reduced

Gröbner basis of the ideal in Theorem 2.2.3 is qO(n3) +O(n8).

Proof. The result follows straightforward from Theorem 2.2.2, once we observe that

all the generators of the ideal in Theorem 2.2.3 are sparse in Fq[Cn]. More specically,

here, the number of variables is n3, the number of generators of the ideal under

consideration that are not of the form (ckij)
q − ckij is

n3(n−1)
2

and the maximal length

of these generators is 1.

In the development of this manuscript, computations of reduced Gröbner bases,

algebraic sets and Krull dimensions are done by means of the open computer algebra

system for polynomial computations Singular [96]. All the procedures that are

described throughout the manuscript in this regard have been included in the library

isotopism.lib, which is available online at

http://personales.us.es/raufalgan/LS/isotopism.lib.

Their correctness and termination are based on those of the algorithm slimgb [56]

for the computation of reduced Gröbner bases and hence, on those of Buchberguer’s

algorithm [67]. All the computations that are exposed throughout the manuscript
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are implemented in a system with an Intel Core i7-2600, with a 3.4 GHz processor

and 16 GB of RAM. Particularly, the enumeration of distinct types of n-dimensional

algebras over a given finite field has been implemented in the procedure algebra,

whose pseudocode is described in Algorithm 1.

Algorithm 1 Enumeration of finite-dimensional algebras of a certain type and given

structure constants.
1: procedure algebra(n, q, C, alg, opt))

2: The base ideal I is initialized depending on the argument alg.

3: for i← 1, size(C) do

4: I = I + (cCi3
Ci1Ci2

− Ci4);

5: end for

6: I = slimgb(I);

7: if opt = 1 then

8: return |V(I)|

9: else

10: if opt = 2 then

11: return A ∈ V(I)

12: else

13: if opt = 3 then

14: return V(I)

15: end if

16: end if

17: end if

18: end procedure

This procedure algebra receives as input

• The dimension n of the required algebras.

• The order q of the finite field.

• A list C formed by tuples (i, j, k, ckij) that indicates some non-zero structure

constants that must contain the required algebras.

• A list alg of positive integers that enables us to select the type of algebra in

which we are interested. Particularly, the types that have been implemented

are
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1. Partial-magma algebras.

2. Lie algebras.

3. Malcev algebras.

4. Evolution algebras.

• A positive integer opt that enables us to select the output that generates the

procedure. Particularly, the procedure indicates

– the number of algebras that satisfy the imposed conditions, whenever opt

= 1.

– the structure constants of an algebra verifying the imposed conditions,

whenever opt = 2.

– the complete list of algebras verifying the imposed conditions, whenever

opt = 3.

In order to check the efficiency of the procedure algebra and Algorithm 1, we deal

with the computation of the number of n-dimensional partial-magma algebras over

the finite field Fq. The description of this type of algebra involves this cardinality

to be equal to (n(q − 1))n
2
. Table 2.1 expose the run time and memory usage that

are required to deal with small orders. Both measures of computation efficiency fit

positive exponential models even for dimension n = 4. Nevertheless, the main goal

of any study of algebras is not the computation of all these algebras, but only their

distribution into isomorphism and isotopism classes. The next subsection indicates

how to use Computational Algebraic Geometry in this regard.

2.2.3 Classification of algebras

The distribution of finite-dimensional algebras over finite fields into isotopism and

isomorphism classes can also be analyzed by making use of Computational Algebraic

Geometry. To this end, we define the next three set of variables

Fn = {fij | i, j ≤ n}, (2.17)

Gn = {gij | i, j ≤ n}, (2.18)

Hn = {hij | i, j ≤ n}. (2.19)
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n q
Number of

partial-magma algebras
Run time Used memory

2 2 81 0 s 0 MB

3 625 0 s 0 MB
...

...
...

...

101 1632240801 0 s 0 MB

3 2 262144 0 s 0 MB

3 40353607 0 s 0 MB
...

...
...

...

101 20281424743202871242701 0 s 0 MB

4 2 152587890625 823 s 0 MB

3 - > 2 hours -

Table 2.1: Computation of n-dimensional partial-magma algebras over the finite

field Fq.

The variables of these three sets play the respective role of the entries in the

nonsingular matrices related to a possible isotopism between two n-dimensional

algebras over K of respective structure constants ckij and c′kij. Specifically, similarly

to (2.3), we have that

n
∑

k,l=1

fikgjlc
′m
kl =

n
∑

s=1

csijhsm, for all i, j,m ≤ n. (2.20)

The next results follow similarly to Theorem 2.2.3 and constitute the fundamen-

tals on which we base the distribution of finite-dimensional algebras over finite fields

into isotopism and isomorphism classes that are exposed in the subsequent chapters.

Theorem 2.2.5. The isomorphism group between two n-dimensional algebras A

and A′ over a finite field Fq, with q a prime power, respective basis {e1, . . . , en}

and {e′1, . . . , e
′
n} and respective structure constants ckij and c′kij, is identified with the

algebraic set defined by the next ideal of Fq[Fn]

I IsomA,A′ = 〈
n
∑

k,l=1

fikfjlc
′m
kl −

n
∑

s=1

csijfsm | i, j,m ≤ n 〉+ 〈 det(F )q−1 − 1 〉,
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where F denotes the matrix of entries {fij | i, j ≤ n}. Besides,

|V(I IsomA,A′ )| = dimFq
(Fq[Fn]/I

Isom
A,A′ ).

�

Corollary 2.2.6. The complexity time that is required by the Buchberger’s algorithm

in order to compute the reduced Gröbner basis of the ideal in Theorem 2.2.5 is

qO(n2) +O(n6n!). �

Theorem 2.2.7. The isotopism group between the two algebras of Theorem 2.2.5 is

identified with the algebraic set defined by the next ideal of Fq[Fn ∪Gn ∪ Hn]

IIsotA,A′ = 〈
n
∑

k,l=1

fikgjlc
′m
kl −

n
∑

s=1

csijhsm | i, j,m ≤ n 〉+ 〈det(M)q−1 − 1 | M ∈ {F,G,H} 〉,

where F , G and H denote, respectively, the matrices of entries {fij | i, j ≤ n},

{gij | i, j ≤ n} and {hij | i, j ≤ n}. Besides,

|V(I IsotA,A′)| = dimFq
(Fq[Fn ∪Gn ∪ Hn]/I

Isot
A,A′).

�

Corollary 2.2.8. The complexity time that is required by the Buchberger’s algorithm

in order to compute the reduced Gröbner basis of the ideal in Theorem 2.2.7 is

qO(3n2) +O(n6n!). �

We have implemented Theorems 2.2.5 and 2.2.7 in the procedure isoAlg, which

has been included in the previously mentioned library isotopism.lib. Having as

output the number of isomorphisms or that of isotopisms between two given n-

dimensional algebras A and A′ over the finite field Fq, with q a prime power, this

procedure receives as input

1. The dimension n of both algebras.

2. The order q of the finite field.
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3. A list C1 formed by tuples (i, j, k, ckij) that indicates the non-zero structure

constants of the algebra A.

4. A list C2 formed by tuples (i, j, k, c′kij) that indicates the non-zero structure

constants of the algebra A′.

5. A positive integer opt ≤ 2 that enables us to use the ideal I IsotA,A′ if opt = 1, or

the ideal I IsomA,A′ if opt = 2.

Example 2.2.9. We have made use of the procedure isoAlg to determine the distri-

bution of two-dimensional partial quasigroup rings over the finite field F2 into iso-

topism and isomorphism classes. In this example we focus in particular on the pair

of partial quasigroup rings that are respectively related to the partial Latin squares

1 2

2
and

1 2

2 1

These two partial Latin squares are not isotopic because isotopisms preserve the

number of filled cells. Nevertheless, their related partial quasigroup rings over F2,

with respective bases {e1, e2} and {e
′
1, e

′
2} and which are respectively described by the

products






e1e1 = e1,

e1e2 = e2 = e2e1.
and







e′1e
′
1 = e′1 = e′2e

′
2,

e′1e
′
2 = e′2 = e′2e

′
1.

are isotopic. To see it, we made use of the procedure isoAlg with the parameters

n = 2, q = 2, C1 = {(1, 1, 1, 1), (1, 2, 2, 1), (2, 1, 2, 1)},

C2 = {(1, 1, 1, 1), (1, 2, 2, 1), (2, 1, 2, 1), (2, 2, 1, 1)}, opt = 1.

In 0 seconds, our system computes the existence of four isotopisms between these two

partial quasigroup rings. One of this isotopisms is, for instance, the isomorphism f

related to the matrix

F =

(

1 0

1 1

)

,

that is, such that f(e1) = e′1 and f(e2) = e′1+e′2. In fact, if we consider the parameter

opt = 2, the procedure isoAlg ensures us the existence of f as the unique possible

isomorphism. ⊳



36 CHAPTER 2. COMPUTING ISOTOPISMS OF ALGEBRAS

In practice, in those cases in which the run time required for the computations

involved in Theorems 2.2.5 and 2.2.7 becomes excessive, it is recommendable to elim-

inate the generators of the corresponding ideal that are referred to the determinants

of the matrices F , G and H . This reduces the complexity time to qO(n2)+O(n8) and

qO(3n2) + O(n8), respectively, and gives enough information to analyze a case study

on which base the possible isomorphisms and isotopisms between two given algebras.

The next example illustrates this fact by focusing on the possible isotopisms that

there exist over any field between the two partial-quasigroup rings that appear in

Example 2.2.9.

Example 2.2.10. The implementation of the procedure isoAlg enables us to ensure

that, whatever the base field is, the reduced Gröbner basis of the ideal in Theorem

2.2.7 related to the isotopism group between the two partial-quasigroup rings of Ex-

ample 2.2.9 holds in particular that







2h322 = 0,

h221 + h222 = 0.

If the characteristic of the base field is not two, then h21 = h22 = 0. This involves H

to be singular and hence, these two partial-quasigroup rings are not isotopic. Other-

wise, it is straightforward verified that the linear transformation f that is indicated

in Example 2.2.9 constitutes an isomorphism between both rings for every base field

of characteristic two. ⊳

Theorem 2.2.11. The set of two-dimensional non-abelian partial-quasigroup rings

is distributed into six isotopism classes.

Proof. A case study based on a similar reasoning to that exposed in the previous

example enables us to ensure the result. In particular, if the characteristic of the

base field is not two, then the six isotopism classes under consideration are those

related to the next partial Latin squares of order 2

1 1

1

1

2

1 2 1 2

2

1 2

2 1

Otherwise, if the characteristic of the base field is two, then the isotopism classes

related to the last two partial Latin squares coincide. In this case, the next partial
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Latin square corresponds to the sixth isotopism class

1

2

If the characteristic of the base field is not two, the partial-quasigroup ring related

to this partial Latin square is isotopic to that related to the unique Latin square of

the previous list.

Theorems 2.2.5 and 2.2.7 can also be used to determine the distribution into

isotopism and isomorphism classes of a given set of finite-dimensional algebras over

a finite field. Algorithm 2 is introduced in this regard.

Algorithm 2 Computation of the isomorphism (isotopism, respectively) classes of

a set of finite-dimensional algebras over a finite field.

Require: A set S of n-dimensional algebras over a finite field.

Ensure: C, the set of isomorphism (isotopism, respectively) classes of S.

1: C = ∅.

2: while S 6= ∅ do

3: Take A ∈ S.

4: S := S \ {A}.

5: C := C ∪ {A}.

6: for A′ ∈ S do

7: if |V(I IsomA,A′ )| > 0 (|V(I IsotA,A′)| > 0, respectively) then

8: S := S \ {A′}.

9: end if

10: end for

11: end while

12: return C.

Example 2.2.12. It is known [131] that there are 2, 8 and 81 distinct isotopism

classes of partial Latin squares of respective orders 1 to 3. We have made use of the

procedure isoAlg to determine in particular those distinct isotopism classes that give

rise to isotopic partial-quasigroup rings over the finite field F2. The run time has

been 761 seconds in our system. Specifically, we have obtained that there exist 2, 7

and 72 distinct isotopism classes of partial-quasigroup rings of respective dimensions

1 to 3. The implementation of Algorithm 2 enables us to determine those isotopism
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classes of partial Latin squares that give rise to the same isotopism class of partial-

quasigroup rings. Order 1 is immediate. The only isotopism class that disappears

from partial Latin squares of order 2 to two-dimensional partial-quasigroup rings is

that exposed in Example 2.2.9. Finally, for order 3, the next nine pairs of non-

isotopic partial Latin squares give rise to isotopic partial-quasigroup rings

1 2

2 and

1 2

2 1 ,

1 2

2

1

and

1 2

2 1

1

1 2

2

3

and

1 2

2 1

3

,

1 2

1

3

and

1 2

2 1

3

1 2

1 3 and

1 2 3

2 1 ,

1 2

1

3 2

and

1 2

2 1

3 1

1 2

2 3

1

and

1 2

2 1 3

1

,

1 2

1 3

3

and

1 2

2 1 3

3

1 2

1 3

3 2

and

1 2 3

2 1

3 1

⊳

In practice, it is interesting to introduce some isomorphism and isotopism in-

variants of algebras that enable us to reduce the number of reduced Gröbner bases

to be computed in the development of Algorithm 2. To this end, we describe in the

next section a pair of graphs, whose isomorphism invariants give rise to isotopism

and isomorphism invariants of algebras.
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2.3 Faithful functors among algebras and graphs

Graph Theory has revealed to be an interesting tool to deal with distinct aspects

on the study of algebras. Thus, for instance, we can mention the so-called Dynkin

diagrams for simple finite dimensional Lie algebras [75, 158]. More recently, Carriazo

et al. [74] proposed to use weighted digraphs that can be identified with certain

families of Lie algebras (see also [80]). There also exist some studies in which

Lie algebras are associated with distinct types of graphs. For example, Dani and

Mainkar [92] defined a class of nilpotent Lie algebras related to a type of graph

for which it has resulted that two such Lie algebras are isomorphic if and only if

their associated graphs are equivalent [218]. Graph Theory has also been used to

study and classify other types of algebras as Leibniz algebras [81], finitely generated

algebras [82] or evolution algebras [114, 241, 242]

Nevertheless, to the best of the author knowledge, the problem of identifying a

faithful functor that relates the category of algebras with that of graphs remains still

open. Both categories are referred with respect to their corresponding isomorphisms

among algebras and graphs. Based on a proposal of McKay et al. [223] for iden-

tifying isomorphisms of Latin squares1 with isomorphism of vertex-colored graphs,

we describe here a pair of families of graphs that enable us to find a faithful functor

between finite-dimensional algebras over finite fields and these graphs. Previously,

let us recall some basic concepts on Graph Theory.

A graph is a pair G = (V,E) formed by a set V of points or vertices and a set

E of lines or edges formed by subsets of two vertices of V . The degree of a vertex

v ∈ V is the number d(v) of edges containing this vertex. A graph is said to be

vertex-colored if there exists a partition into color sets of its set of vertices. The color

of a vertex v is denoted as color(v). An isomorphism between two vertex-colored

graphs G = (V,E) and G′ = (V ′, E ′) is any bijective map f between the set of

vertices V and V ′ that preserves collinearity and such that color(f(v)) = color(v),

for all v ∈ V .

Let L = (lij) be a Latin square of order n that is the multiplication table of a

quasigroup ([n], ·). McKay et al. [223] defined the vertex-colored graph G2(L) with

1Recall that a Latin square of order n is an n × n array with elements chosen from a set of n

symbols, such that each symbol occurs precisely once in each row and each column.
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n2 + 3n vertices

{ri | i ≤ n} ∪ {ci | i ≤ n} ∪ {si | i ≤ n} ∪ {tij | i, j ≤ n},

where each of the four subsets (related to the rows (ri), columns (ci), symbols (si)

and cells (tij) of the Latin square L) has a different color, and 3n2 edges

{ritij , cjtij , si·jtij | i, j ≤ n}}.

They also defined the vertex-colored graph G1(L) from the graph G2(L) by adding 3

additional vertices {R,C, S} and 3n additional edges {Rri, Cci, Ssi | i ≤ n}. Here,

there are three colors: one for {R,C, S}, one for {ri, ci, si | i ≤ n} and one for the

rest of vertices. Finally, they defined the vertex-colored graph G3(L) from the graph

G2(L) by adding 3n additional edges {rici, cisi, risi | i ≤ n}. Here, the color of the

vertices coincides with those of G1(L). These authors proved (Theorem 6 in [223])

that two Latin squares L1 and L2 of the same order are paratopic (respectively,

isotopic or isomorphic) if and only if the graphs G1(L1) and G1(L2) (respectively,

G2(L1) and G2(L2), and G3(L1) and G3(L2)) are isomorphic. Figure 2.1 shows an

example of the three graphs related to the next Latin square of order 2.

L =

(

1 2

2 1

)

.

We have used distinct styles (◦, N, ◮, ◭ and •) in the vertices of the graphs to

represent their colors.

G1(L) G2(L) G3(L)

Figure 2.1: Graphs related to a Latin square of order 2.

Based on the proposal of McKay et al. for Latin squares, we describe now a

pair of graphs that are uniquely related to a finite-dimensional algebra over a finite

field that enable us to ensure that any two isotopic or isomorphic algebras map
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to two isomorphic graphs. To this end, let A be an n-dimensional algebra over a

finite field K. Firstly, we define the vertex-colored graph G1(A) with four maximal

monochromatic subsets


























RA = {ru | u ∈ A \ AnnA−(A)},

CA = {cu | u ∈ A \ AnnA+(A)},

SA = {su | u ∈ A2 \ {0}},

TA = {tu,v | u, v ∈ A, uv 6= 0}.

and edges

{rutu,v, cvtu,v, swtu,v | u, v, w ∈ A, uv = w 6= 0}.

From this graph we also define the vertex-colored graph G2(A) by adding the edges

{rucu, | u ∈ A\AnnA(A)}∪{cusu | u ∈ A2\AnnA+(A)}∪{rusu | u ∈ A2\AnnA−(A)}.

Just as an example, Figure 2.2 shows the two graphs that are related to any

n-dimensional Lie algebra over the finite field F2, with basis {e1, . . . , en}, that is

described by the non-zero product e1e2 = e1.

G1 G2

Figure 2.2: Graphs related to the Lie algebra e1e2 = e1 over F2.

Lemma 2.3.1. Let A be an n-dimensional algebra over a finite field K. Then,

a) If the algebra A is abelian, then both graphs G1(A) and G2(A) are empty.

b) The graph G1(A) does not contain triangles.
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c) In both graphs G1(A) and G2(A),

• The number of vertices is

|A\AnnA−(A)|+ |A\AnnA+(A)|+ |A2|+ |{(u, v) ∈ A×A | uv 6= 0}|−1.

• d(tu,v) = 3, for all u, v ∈ A such that uv 6= 0.

d) In the graph G1(A),

• d(ru) = |A \ AnnA+({u})|, for all u ∈ A \ AnnA−(A).

• d(cu) = |A \ AnnA−({u})|, for all u ∈ A \ AnnA+(A).

• d(su) =
∑

v∈A |ad
−1
v (u)|, for all u ∈ A2 \ {0}.

e) In the graph G2(A),

• d(ru) = |A \ AnnA+({u})| + 1A\Ann
A− (A)(u) + 1A2(u), for all u ∈ A \

AnnA−({u}).

• d(cu) = |A \ AnnA−({u})| + 1A\Ann
A+ (A)(u) + 1A2(u), for all u ∈ A \

AnnA+({u}).

• d(su) = 1A\Ann
A− (A)(u) + 1A\Ann

A+ (A)(u) +
∑

v∈A |ad
−1
v (u)|, for all u ∈ A2 \

{0}.

Here, 1 denotes the characteristic function.

Proof. All the assertions follow straightforward from the definition of the graphs

G1(A) and G2(A).

Proposition 2.3.2. Let A be an n-dimensional Lie algebra over a finite field K.

Then,

a) The number of edges of its related graph G1(A) is

∑

u 6∈Ann
A−(A)

(|A \ AnnA+({u})|+
∑

v∈A2\{0}

|ad−1
u (v)|) +

∑

u 6∈Ann
A+ (A)

|A \ AnnA−({u})|.

b) The number of edges of its related graph G2(A) coincides with those of G1(A)

plus

|A \ AnnA(A)|+ |A
2 \ AnnA−(A)|+ |A2 \ AnnA+(A)|.
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Proof. The result follows straightforward from the First Theorem of Graph Theory

(see [159]) and assertions (b–d) in Lemma 2.3.1.

Theorem 2.3.3. Let A and A′ be two n-dimensional algebras over a finite field K.

Then,

a) If both algebras are isotopic, then their corresponding graphs G1(A) and G1(A
′)

are isomorphic. Reciprocally, if the graphs G1(A) and G1(A
′) are isomorphic,

then there exist three bijective maps f , g and h between A and A′ such that

f(u)g(v) = h(uv).

b) If both algebras are isomorphic, then their corresponding graphs G2(A) and G2(A
′)

are also isomorphic. Reciprocally, if the graphs G2(A) and G2(A
′) are isomor-

phic, then there exists a multiplicative bijective map between the algebras A and

A′, that is, a bijective map f : A→ A′ so that f(u)f(v) = f(uv), for all u, v ∈ A.

Proof. Let (f, g, h) be an isotopism between the algebras A and A′. We define the

map α between G1(A) and G1(A
′) such that



























α(ru) = rf(u), for all u ∈ A \ AnnA−(A),

α(cu) = cg(u), for all u ∈ A \ AnnA+(A),

α(su) = sh(u), for all u ∈ A2 \ {0},

α(tu,v) = tf(u),g(v), for all u, v ∈ A such that uv 6= 0.

The description of both graphs G1(A) and G1(A
′), together with Proposition 2.1.4,

Lemma 2.1.5 and the regularity of f , g and h, involves α to be an isomorphism be-

tween these two vertex-colored graphs, that is, α is a well-defined bijection between

the vertices of G1(A) and G1(A
′) that preserves collinearity and the color of the ver-

tices. The same map α constitutes an isomorphism between the graphs G2(A) and

G2(A
′) in case of being f = g = h, that is, if the algebras A and A′ are isomorphic.

Reciprocally, let α be an isomorphism between the graphs G1(A) and G1(A
′).

Collinearity involves this isomorphism to be uniquely determined by its restriction

to RA ∪ CA ∪ SA. Specifically, the image of each vertex tu,v ∈ TA by means of α is

uniquely determined by the corresponding images of ru, cv and suv. Let β and β ′

the respective bases of the algebras A and A′ and let π : A→ A′ be the natural map

that preserves the components of each vector with respect to the mentioned bases.
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That is, π((u1, . . . , un)β) = (u1, . . . , un)β′ , for all u1, . . . , un ∈ K. Let us define three

maps f , g and h from A to A′ such that

f(u) =







π(u), for all u ∈ AnnA−(A),

v, otherwise, where v ∈ A is such that α(ru) = rv.

g(u) =







π(u), for all u ∈ AnnA+(A),

v, otherwise, where v ∈ A is such that α(cu) = cv.

h(u) =







π(u), for all u ∈ (A \ A2) ∪ {0},

v, otherwise, where v ∈ A is such that α(su) = sv.

From Proposition 2.1.4 and Lemma 2.1.5, these three maps are bijective. Let

u, v ∈ A. If u ∈ AnnA−(A) or v ∈ AnnA+(A), then there does not exist the

vertex tu,v in the graph G1(A). Since α preserves collinearity, there does not exist

the vertex tf(u),g(v) in the graph G1(A
′), which means that f(u) ∈ AnnA′−(A′) or

g(v) ∈ AnnA′+(A′). In any case, we have that f(u)g(v) = 0 = h(uv). Finally,

if u 6∈ AnnA−(A) and v 6∈ AnnA+(A), then the vertex tu,v connects the vertices

ru, cv and suv in the graph G1(A). Now, the isomorphism α maps this vertex tu,v
in G1(A) to a vertex tu′,v′ in G2(A) that is connected to the vertices ru′, cv′ and

su′v′ . Again, since α preserves collinearity, it is f(u) = u′, g(v) = v′ and, finally,

h(uv) = f(u)g(v).

In case of being α an isomorphism between the graphs G2(A) and G2(A
′) it is

enough to consider f = g = h in the previous description. This is well-defined

because of the new edges that are included to the graphs G1(A) and G1(A
′) in order

to define, respectively, the graphs G2(A) and G2(A
′). Similarly to the previous

reasoning, these edges involve the multiplicative character of the bijective map f ,

that is, f(u)g(v) = h(uv), for all u, v ∈ A.

Theorem 2.3.3 enables us to determine non-isomorphic algebras from their cor-

responding non-isomorphic graphs. Thus, for instance, it is known that the n-

dimensional algebra over the finite field F2, with n ≥ 3, described by the product

e1e2 = e3 is not isomorphic to the n-dimensional algebra over F2 described by the

product e1e2 = e1. This follows straightforward from the fact that the correspond-

ing graph G2 related to the former coincides with that associated with the latter,
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which is shown in Figure 2.2 (right), up to the vertex se1 , which becomes se3 , and

the two edges re1se1 and ce1se1 , which disappear. Both graphs are, therefore, non-

isomorphic and hence, the algebras are neither isomorphic. As we see in the next

chapter, these two algebras are, however, isotopic. Even if this does not constitute

a necessary condition, it is straightforward verified that their corresponding graphs

G1 are isomorphic. That graph shown in Figure 2.2 (left) is indeed the graph G1

corresponding to the algebra described by the product e1e2 = e1. In order to com-

pute the graphs G1 and G2 related to a given algebra over a finite field, we have

implemented the procedure isoGraph in the library isotopism.lib. Having as output

a sequence with the number of vertices of each color, the number of edges and that

of triangles of the graph under consideration, this procedure receives as input

1. The dimension n of the algebra.

2. The order q of the finite field.

3. A list C formed by tuples (i, j, k, ckij) that indicates the non-zero structure

constants of the algebra.

4. A positive integer opt ≤ 2 that enables us to deal with the graph G1 of the

algebra if opt = 1, or the graph G2 if opt = 2.

We have also implemented the auxiliary procedure Prod that outputs the list of

polynomials that constitute the coefficient of each basis vector in the product of two

arbitrary vectors of the algebra A. Its pseudocode is described in Algorithm 3.

Algorithm 3 Polynomials related to the product of two vectors in an algebra.

1: procedure Prod(u, v)

2: for k ← 1, n do

3: for i← 1, n do

4: for j ← i, n do

5: Lk ← Lk + uivjc
k
ij;

6: end for

7: end for

8: end for

9: return {L1, . . . , Ln}

10: end procedure

We finish the chapter with the implementation of the previous procedures into

an illustrative example that focuses on those graphs G1 and G2 related to the set of
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non-abelian partial-quasigroup rings over a finite field that are based on the known

distribution of partial Latin squares of order n ≤ 3 into isotopism classes. Thus,

for instance, Tables 2.2 and 2.3 show the isomorphism invariants of graphs that

are related to the bi-dimensional case over the finite fields F2 and F3, respectively.

Partial Latin squares are written row after row in a single line, with empty cells

represented by zeros. For each isotopism class we indicate the sequence with the

number of vertices of each color, the number of edges and that of triangles of the

corresponding graphs G1 and G2. Observe the coherence that exists among both

tables and the remarks exposed in the proof of Theorem 2.2.11.

G1&G2 G1 G2

Partial Latin square Vertices Edges Edges Triangles

10 00 (2,2,1,4) 12 16 7

10 01 (3,3,1,6) 18 23 7

10 02 (3,3,3,7) 21 30 16

10 20 (3,2,3,6) 18 25 12

12 00 (2,3,3,6) 18 25 12

12 20 (3,3,3,8) 24 33 13

12 21 (3,3,3,8) 24 33 13

Table 2.2: Graph invariants for the graphs G1 and G2 related to two-dimensional

non-abelian partial-quasigroup rings over the finite field F2.

G1&G2 G1 G2

Partial Latin square Vertices Edges Edges Triangles

10 00 (6,6,2,36) 108 118 20

10 01 (8,8,2,48) 144 156 22

10 02 (8,8,8,56) 168 192 48

10 20 (8,6,8,48) 144 164 42

12 00 (6,8,8,48) 144 164 42

12 20 (8,8,8,60) 180 204 38

12 21 (8,8,8,56) 168 192 48

Table 2.3: Graph invariants for the graphs G1 and G2 related to two-dimensional

non-abelian partial-quasigroup rings over the finite field F3.

The implementation of the procedure isoGraph enables us to reduce the cost of
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computation that is required for computing all the reduced Gröbner bases involved

in Algorithm 2. Specifically, in the seventh line of that algorithm, it is only required

to compute the Krull dimension of those ideals I isotA,A′ (I isomA,A′ , respectively) for which

the isomorphism invariants of the corresponding graphs G1(A) and G1(A
′) (G2(A)

and G2(A
′), respectively) coincide. This implementation enables us, for instance, to

reduce the run time that is required to determine the distribution of n-dimensional

non-abelian partial-quasigroup rings over the finite field F2 into isotopism classes,

for n ≤ 3, from 761 seconds in Example 2.2.12 to 30 seconds. This last run time

includes the extra 9 seconds of computation that is required for computing the

isotopism invariants that we have just exposed in Table 2.2 and those exposed in

Table 2.4. The latter correspond to the isomorphism invariants of the graph G1

related to each one of the 80 distinct isotopism classes of non-empty partial Latin

squares of order 3.

Partial Latin square Vertices Edges Partial Latin square Vertices Edges Partial Latin square Vertices Edges

100 000 000 (4,4,1,16) 48 100 010 002 (7,7,3,34) 120 031 302 (7,7,7,42) 126

120 000 000 (4,6,3,24) 72 120 001 002 (7,7,3,36) 108 120 210 301 (7,7,7,42) 126

123 000 000 (4,7,7,28) 84 120 200 002 (7,7,3,36) 108 120 213 001 (7,7,7,42) 126

100 200 000 (6,4,3,24) 72 120 200 001 (7,7,3,38) 114 120 213 300 (7,7,7,42) 126

100 010 000 (6,6,1,24) 72 120 210 001 (7,7,3,38) 114 120 001 312 (7,7,7,43) 129

100 020 000 (6,6,3,28) 84 120 201 010 (7,7,3,40) 120 120 201 302 (7,7,7,43) 129

120 200 000 (6,6,3,32) 96 120 201 012 (7,7,3,40) 120 120 231 300 (7,7,7,43) 129

120 210 000 (6,6,3,32) 96 100 020 003 (7,7,7,37) 111 123 231 312 (7,7,7,43) 129

120 000 300 (6,6,6,32) 96 120 002 003 (7,7,7,38) 114 120 003 312 (7,7,7,44) 132

120 000 310 (6,6,6,36) 108 120 002 300 (7,7,7,38) 114 120 013 301 (7,7,7,44) 132

120 001 000 (6,7,3,32) 96 120 003 300 (7,7,7,38) 114 120 013 302 (7,7,7,44) 132

120 012 000 (6,7,3,36) 108 120 001 300 (7,7,7,39) 117 120 200 312 (7,7,7,44) 132

120 003 000 (6,7,7,34) 102 120 200 003 (7,7,7,40) 120 120 203 301 (7,7,7,44) 132

120 000 302 (6,7,7,36) 108 120 200 302 (7,7,7,40) 120 123 210 301 (7,7,7,44) 132

123 200 000 (6,7,7,36) 108 120 210 003 (7,7,7,40) 120 123 031 310 (7,7,7,45) 135

120 013 000 (6,7,7,38) 114 123 010 001 (7,7,7,40) 120 123 200 312 (7,7,7,45) 135

123 210 000 (6,7,7,38) 114 123 200 300 (7,7,7,40) 120 123 230 310 (7,7,7,45) 135

123 230 000 (6,7,7,40) 120 120 001 302 (7,7,7,41) 123 123 012 230 (7,7,7,46) 138

123 231 000 (6,7,7,40) 120 120 001 310 (7,7,7,41) 123 123 210 031 (7,7,7,46) 138

100 200 300 (7,4,7,28) 84 120 201 300 (7,7,7,41) 123 123 201 312 (7,7,7,46) 138

100 200 010 (7,6,3,32) 96 123 200 010 (7,7,7,41) 123

120 200 010 (7,6,3,36) 108 120 003 310 (7,7,7,42) 126

100 200 030 (7,6,7,34) 102 120 010 301 (7,7,7,42) 126

120 030 300 (7,6,7,36) 108 120 010 302 (7,7,7,42) 126

120 200 300 (7,6,7,36) 108 120 012 300 (7,7,7,42) 126

120 010 300 (7,6,7,38) 114 120 013 300 (7,7,7,42) 126

120 210 300 (7,6,7,38) 114 120 200 013 (7,7,7,42) 126

120 230 300 (7,6,7,40) 120 120 203 001 (7,7,7,42) 126

120 230 310 (7,6,7,40) 120 120 203 300 (7,7,7,42) 126

100 010 001 (7,7,1,28) 84 123 010 300 (7,7,7,42) 126

Table 2.4: Graph invariants for the graphs G1 related to three-dimensional non-

abelian partial-quasigroup rings over the finite field F2.
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Chapter 3

Isotopisms of filiform Lie Algebras

Once we have exposed in the previous chapter those results in Computational Al-

gebraic Geometry and Graph Theory that enable us to deal with the distribution

of finite-dimensional algebras into isotopism classes, the rest of the manuscript fo-

cuses on three families of algebras whose distribution into isotopism classes has not

been enough studied in the literature. This chapter deals in particular with the first

family of algebras to be considered in this regard. We step forward in the study of

isotopisms of Lie algebras in general and, more specifically, on that of pre-filiform

and filiform Lie algebras.

3.1 Isotopisms of Lie algebras

We expose here some basic concepts and results on isotopisms of Lie algebras that we

use throughout the chapter. Particularly, we introduce two new series of isotopism

invariants that play an important role not only in the distribution of filiform Lie

algebras, but also in that of Malcev algebras in the next chapter. For more details

about the fundamentals of Lie algebras we refer to the monograph of Varadarajan

[304].

An algebra A is said to be a Lie algebra if

• It is anticommutative, that is, uv = −vu, for all u, v ∈ A.

• It holds the so-called Jacobi identity

J(u, v, w) = u(vw) + v(wu) + w(uv) = 0, for all u, v, w ∈ A. (3.1)

49
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The centralizer of a subset S of a Lie algebra A is the vector subspace

CenA(S) = {u ∈ A | uv = 0, for all v ∈ S} ⊆ A. (3.2)

The center of the Lie algebra A is defined as its own centralizer

Z(A) = CenA(A). (3.3)

Particularly, a Lie algebra A is abelian if and only if Z(A) = A. Observe that

the concept of centralizer of a Lie algebra coincides with that of annihilator of an

algebra. Hence, similarly to Lemma 2.1.3 and Proposition 2.1.4, the next results

hold.

Lemma 3.1.1. Let (f, g, h) be an isotopism between two Lie algebras A and A′. Let

S be a subset of L. Then,

a) f(CenA(S)) = CenA′(g(S)).

b) g(CenA(S)) = CenA′(f(S)).

c) dim(CenA(S)) = dim(CenA′(f(S))) = dim(CenA′(g(S))). �

Proposition 3.1.2. Let A and A′ be two isotopic Lie algebras. Then, f(Z(A)) =

Z(A′) and dim(Z(A)) = dim(Z(A′)). �

These results that we have just exposed enable us to introduce here two new

series of isotopism invariants. Let n be the dimension of the Lie algebra A. For each

positive integer m ≤ n, we define

dm(A) := min{dimCenA(S) | S is an m-dimensional vector subspace of A}. (3.4)

Dm(A) := max{dimCenA(S) | S is an m-dimensional vector subspace of A}. (3.5)

We prove that both values are preserved by isotopisms.

Proposition 3.1.3. Let A and A′ be two isotopic n-dimensional Lie algebras and

let m ≤ n be a positive integer. Then, dm(A) = dm(A
′) and Dm(A) = Dm(A

′).
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Proof. Let (f, g, h) be an isotopism between A and A′ and let S be anm-dimensional

vector subspace of A such that dm(A) = dimCenA(S). The regularity of g involves

the set g(S) to be m-dimensional. Besides, from Lemma 3.1.1, CenA′(g(S)) =

f(CenA(S)). Hence, dm(A) ≥ dm(A
′). The equality follows similarly from the

isotopism (f−1, g−1, h−1) between A′ and A. The invariance ofDm holds analogously.

3.2 Pre-filiform Lie algebras

Let n and p respectively be a positive integer and a prime. This section deals with

the distribution into isomorphism and isotopism classes of the set Pn,q of Lie algebras

over the finite field Fq, where q is a prime power, such that there exists a natural

basis {e1, . . . , en} such that the algebra is described by the non-zero products

eien ∈ 〈 e1, . . . , en−1 〉. (3.6)

Any Lie algebra in Pn,q is uniquely described, therefore, by a tuple T = (t1, . . . ,

tn−1) ∈ 〈 e1, . . . , en−1 〉
n−1 such that ti = e1ei, for all i < n. We call T the structure

tuple of the Lie algebra. We denote this algebra by AT . Besides, from here on, the

set of structure tuples of Lie algebras in Pn,q is denoted as Tn,q. This coincides with

the (n− 1)-dimensional Fq-vector space with components in 〈 e1, . . . , en−1 〉.

The importance of this family of Lie algebras comes from the similarity that

exists among the structure constants of its elements and those of a filiform Lie

algebra, which are described in the next subsection. In this regard, the set Pn,q is

considered as a precursor of the set of n-dimensional filiform Lie algebras over the

finite field Fq. Due to it, we call them pre-filiform Lie algebras. These algebras were

introduced by Boza et al. [48], who identified each one of the Lie algebras of Pn,2

with a directed pseudo-graph. This enabled them to determine the distribution of

such Lie algebras into isomorphism classes for n ≤ 5. The case q = 3 and n < 5

was similarly determined in [50, 240]. Both distributions are respectively exposed

in Tables 3.1 and 3.2, where every class is enumerated according to the original

notation that was used in [50, 240]. Its corresponding representative algebra has

been conveniently chosen to agree with the results that are exposed in this section.

In both tables, the algebras are ordered according to the isomorphism invariants of

their corresponding graphs G1 and G2, which were introduced in Chapter 2. Observe

that the majority of these invariants characterizes the corresponding isomorphism
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class. Further, it is remarkable the existence of at least n isotopism classes in each

one of the cases under consideration. In the next subsections we expose distinct

results that enable us to deal with the distribution of pre-filiform Lie algebras of

higher orders, not only into isomorphism classes, but also into isotopism classes. In

this last regard we prove that there exist exactly n isotopism classes of n-dimensional

pre-filiform Lie algebras, whatever the finite field is.

G1&G2 G1 G2 G1&G2 G1 G2

n AT T Vertices Edges Edges Triangles n AT T Vertices Edges Edges Triangles

2 h12 (0) (0,0,0,0) 0 0 0 5 h55 (e2, e1 + e2, 0, 0) (28,28,3,576) 1728 1762 3

h22 (e1) (3,3,1,6) 18 23 5 h45 (e2, e1, 0, 0) (28,28,3,576) 1728 1762 35

3 h13 (0, 0) (0,0,0,0) 0 0 0 h85 (e1, e2, 0, 0) (28,28,3,576) 1728 1762 99

h33 (e2, 0) (6,6,1,24) 72 78 0 h185 (e2, e1 + e2, e4, 0) (30,30,7,672) 2016 2058 6

h23 (e1, 0) (6,6,1,24) 72 80 9 h195 (e2, e3, e4, 0) (30,30,7,672) 2016 2058 6

h53 (e2, e1 + e2) (7,7,3,36) 108 121 3 h135 (e2, e4, e3, 0) (30,30,7,672) 2016 2058 38

h43 (e2, e1) (7,7,3,36) 108 121 11 h155 (e2, e1, e4, 0) (30,30,7,672) 2016 2058 38

h63 (e1, e2) (7,7,3,36) 108 121 27 h145 (e1, e2, e4, 0) (30,30,7,672) 2016 2058 102

4 h14 (0, 0, 0) (0,0,0,0) 0 0 0 h165 (e2, e2 + e3, e1, 0) (30,30,7,672) 2016 2060 7

h34 (e2, 0, 0) (12,12,1,96) 288 300 0 h175 (e2, e1 + e3, e1, 0) (30,30,7,672) 2016 2060 7

h24 (e1, 0, 0) (12,12,1,96) 288 302 17 h115 (e2, e3, e1, 0) (30,30,7,672) 2016 2060 39

h64 (e2, e3, 0) (14,14,3,144) 432 450 2 h105 (e2, e1, e3, 0) (30,30,7,672) 2016 2060 103

h74 (e1, e3, 0) (14,14,3,144) 432 450 18 h125 (e2, e1 + e3, e3, 0) (30,30,7,672) 2016 2060 103

h54 (e2, e1 + e2, 0) (14,14,3,144) 432 452 3 h205 (e1, e2, e3, 0) (30,30,7,672) 2016 2060 231

h44 (e2, e1, 0) (14,14,3,144) 432 452 19 h255 (e2, e3, e4, e1 + e3) (31,31,15,720) 2160 2221 15

h84 (e1, e2, 0) (14,14,3,144) 432 452 51 h265 (e2, e2 + e3, e4, e1 + e3) (31,31,15,720) 2160 2221 15

h124 (e2, e2 + e3, e1) (15,15,7,168) 504 533 7 h275 (e2, e4, e1 + e2, e3) (31,31,15,720) 2160 2221 15

h134 (e2, e1 + e3, e1) (15,15,7,168) 504 533 7 h285 (e2, e2 + e4, e1, e3) (31,31,15,720) 2160 2221 15

h104 (e2, e3, e1) (15,15,7,168) 504 533 23 h315 (e2, e1 + e2, e3 + e4, e3) (31,31,15,720) 2160 2221 15

h94 (e2, e1, e3) (15,15,7,168) 504 533 55 h225 (e2, e3 + e4, e3, e1) (31,31,15,720) 2160 2221 47

h114 (e2, e1 + e3, e3) (15,15,7,168) 504 533 23 h235 (e2, e3, e4, e1) (31,31,15,720) 2160 2221 47

h144 (e1, e2, e3) (15,15,7,168) 504 533 119 h295 (e2, e2 + e3, e1, e4) (31,31,15,720) 2160 2221 47

5 h15 (0, 0, 0, 0) (0, 0, 0, 0) 0 0 0 h305 (e2, e3, e1 + e2, e4) (31,31,15,720) 2160 2221 47

h35 (e2, 0, 0, 0) (24,24,1,384) 1152 1176 0 h215 (e2, e1, e4, e3) (31,31,15,720) 2160 2221 111

h25 (e1, 0, 0, 0) (24,24,1,384) 1152 1178 33 h245 (e2, e1 + e3, e3, e4) (31,31,15,720) 2160 2221 111

h95 (e3, e4, 0, 0) (28,28,3,576) 1728 1756 0 h325 (e2, e3, e1, e4) (31,31,15,720) 2160 2221 111

h65 (e2, e3, 0, 0) (28,28,3,576) 1728 1760 2 h335 (e2, e1, e3, e4) (31,31,15,720) 2160 2221 239

h75 (e1, e3, 0, 0) (28,28,3,576) 1728 1760 34 h345 (e1, e2, e3, e4) (31,31,15,720) 2160 2221 495

Table 3.1: Graph invariants for the graphs G1 and G2 related to Lie algebras in

Pn,2, for n ≤ 5.

3.2.1 Isotopisms classes of Pn,q.

In order to determine the distribution of Pn,q into isotopism classes, we focus on the

structure tuples of this kind of Lie algebras.

Lemma 3.2.1. Let T and T ′ be two structure tuples in Tn,q that are equal up to

permutation of their components and relabeling of the sub-indices of the basis vectors

of Pn,q. The Lie algebras AT and AT ′ are strongly isotopic.

Proof. Suppose T = (
∑n−1

j=1 t1jej , . . . ,
∑n−1

j=1 t(n−1)jej) and T ′ = (
∑n−1

j=1 t
′
1jej, . . . ,

∑n−1
j=1 t

′
(n−1)jej). From the hypothesis, there exist two permutations α, β ∈ Sn−1
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G1&G2 G1 G2 G1&G2 G1 G2

n AT T Vertices Edges Edges Triangles n AT T Vertices Edges Edges Triangles

2 g12 (0) (0,0,0,0) 0 0 0 4 g54 (e2, e1 + e2, 0) (78,78,8,5184) 15552 15646 8

g22 (e1) (8,8,2,48) 144 156 18 g64 (e2, 2e1, 0) (78,78,8,5184) 15552 15646 8

3 g13 (0, 0) (0,0,0,0) 0 0 0 g74 (e2, 2e1 + e2, 0) (78,78,8,5184) 15552 15646 116

g33 (e2, 0) (24,24,2,432) 1296 1320 0 g104 (e1, e2, 0) (78,78,8,5184) 15552 15646 440

g23 (e1, 0) (24,24,2,432) 1296 1324 38 g184 (e3, e2 + e3, e1 + e2) (80,80,26,5616) 16848 16980 26

g63 (e2, 2e1) (26,26,8,576) 1728 1770 8 g194 (e3, e2 + e3, e1 + e2 + e3) (80,80,26,5616) 16848 16980 26

g53 (e2, e1 + e2) (26,26,8,576) 1728 1770 8 g204 (e3, e2 + e3, e1 + 2e2) (80,80,26,5616) 16848 16980 26

g73 (e2, 2e1 + e2) (26,26,8,576) 1728 1770 44 g214 (e3, e2 + e3, e1 + 2e2 + 2e3) (80,80,26,5616) 16848 16980 26

g43 (e2, e1) (26,26,8,576) 1728 1770 80 g124 (e2, e1 + e2, e3) (80,80,26,5616) 16848 16980 134

g83 (e1, e2) (26,26,8,576) 1728 1770 152 g134 (e3, e2, e1 + 2e3) (80,80,26,5616) 16848 16980 134

4 g14 (0, 0, 0) (0,0,0,0) 0 0 0 g154 (e2, 2e1, e3) (80,80,26,5616) 16848 16980 134

g34 (e2, 0, 0) (72,72,2,3888) 11664 11736 0 g174 (e3, e2, 2e1 + e2 + 2e3) (80,80,26,5616) 16848 16980 134

g24 (e1, 0, 0) (72,72,2,3888) 11664 11740 110 g144 (e3, e2, e1 + e2) (80,80,26,5616) 16848 16980 242

g84 (e2, e3, 0) (78,78,8,5184) 15552 15642 6 g164 (e3, e2, 2e1 + 2e3) (80,80,26,5616) 16848 16980 458

g94 (e1, e3, 0) (78,78,8,5184) 15552 15642 114 g114 (e2, e1, e3) (80,80,26,5616) 16848 16980 566

g44 (e2, e1, 0) (78,78,8,5184) 15552 15646 8 g224 (e1, e2, 2e3) (80,80,26,5616) 16848 16980 566

Table 3.2: Graph invariants for the graphs G1 and G2 related to Lie algebras in

Pn,3, for n ≤ 4.

such that t′α(i)β(j) = tij , for all i, j < n. It is then enough to define by linearity the

strong isotopism (f, f, h) from AT to AT ′ such that f(en) = h(en) = en, f(ei) = eα(i)
and h(ei) = eβ(i), for all i < n. Then,

f(ei)f(en) = eα(i)en =

n−1
∑

j=1

t′α(i)jej =

n−1
∑

j=1

t′α(i)β(j)eβ(j) =

n−1
∑

j=1

tijeβ(j) = h(eien),

for all i < n.

Example 3.2.2. From Lemma 3.2.1, we have, for instance, that the non-isomorphic

Lie algebras h44, h
6
4, h

7
4 and h84 in P4,2 (see Table 3.1) are pairwise strongly isotopic.

Similarly, the non-isomorphic Lie algebras h114 and h134 are also strongly isotopic. ⊳

Proposition 3.2.3. Let T be a structure tuple in Tn,q. There always exists a struc-

ture tuple T ′ = (
∑n−1

j=1 t
′
1jej, . . . ,

∑n−1
j=1 t

′
(n−1)jej) ∈ Tn,q such that AT ′ is strongly

isotopic to AT and the next two conditions hold

a) If t′ii = 0 for some i ≥ 1, then t′jk = 0, for all j, k ≥ i.

b) If t′ii 6= 0 for some i ≥ 1, then t′ij = 0, for all j 6= i.

Proof. Let T = (
∑n−1

j=1 t1jej, . . . ,
∑n−1

j=1 t(n−1)jej) ∈ Tn,q. As a first step in the con-

struction of the required structure tuple T ′, let us consider T ′ = T . From Lemma

3.2.1, any permutation of the components of T ′ and any relabeling of the indices of
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the basis vectors of Pn,q give rise to a new structure tuple of a Lie algebra in Pn,q

that is strongly isotopic to AT . Keeping this in mind, we can modify T ′ so that, if

t′ii = 0, for some i < n, then

• t′ji = 0, for all j > i. Otherwise, we rearrange conveniently from the ith to the

(n− 1)th components of T ′.

• t′ij = 0, for all j > i. Otherwise, we permute conveniently the indices of the

basis vectors ei, . . . , en−1.

Condition (a) in the statement holds then from the combination of these two

assumptions. Now, in order to obtain condition (b), we modify T ′ so that, for each

i < n such that t′ii 6= 0, we define by linearity the strong isotopism (Id, Id, h) from

AT ′ in such a way that h(ei) = ei −
1
t′ii

(
∑i−1

j=1 t
′
ijej −

∑n−1
j=i+1 t

′
ijej) and h(ej) = ej,

for all j 6= i. Then,

eien = Id(ei)Id(en) = h(eien) = h(

n−1
∑

j=1

t′ijej) =

i−1
∑

j=1

t′ijej + t′iih(ei) +

n−1
∑

j=i+1

t′ijej = t′iiei

and condition (b) holds.

Example 3.2.4. Proposition 3.2.3 involves that every Lie algebra in Pn,q is strongly

isotopic to a Lie algebra whose structure tuple has triangular form. Thus, for in-

stance, let us consider the Lie algebra in P4,2 with structure tuple (e3, e3 + e4, e2).

From Lemma 3.2.1, this is strongly isotopic to the Lie algebra in P4,2 with struc-

ture tuple (e1, e2 + e3, e2), once we permute the first and the third components in T

and relabel e2, e3 and e4 by e1, e2 and e3, respectively. This is, in turn, strongly

isotopic to the Lie algebra in P4,2 with structure tuple (e1, e2, e2 − e3), once we con-

sider the strong isotopism (Id, Id, h), where h is linearly defined in such a way that

h(e2) = e2 − e3 and h(ei) = ei, for all i ∈ {1, 3}. This structure tuple is already

given in triangular form, because














e1e4 = e1,

e2e4 = e2,

e3e4 = e2 − e3.

In the next results, we see indeed that every Lie algebra in Pn,q is strongly isotopic

to a Lie algebra whose structure tuple has diagonal form. Thus, for instance, our
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last Lie algebra is strongly isotopic to the Lie algebra in P4,2 with structure tuple

(e1, e2, e3), once we consider the strong isotopism (Id, Id, h′), where h′ is linearly

defined in such a way that h(e3) = −e3 + e2 and h(ei) = ei, for all i ∈ {1, 2}. We

have the diagonal form














e1e4 = e1,

e2e4 = e2,

e3e4 = e3.

⊳

Lemma 3.2.5. Let T = (t1, . . . , tn−1) be a structure tuple in Tn,q and let i, j be two

distinct positive integers less than n. Let T ′ = (t1, . . . , ti−1, ati+ btj, ti+1, . . . , tn−1) ∈

Tn,q, for some a, b ∈ Fq such that a 6= 0. Then, AT is strongly isotopic to AT ′.

Proof. It is enough to define by linearity the principal strong isotopism (f, f, Id)

from AT to AT ′ such that f(ei) =
1
a
(ei − bej) and f(ek) = ek, for all k ∈ [n]\{i}. In

particular,

ei ◦en = (ei−bej +bej)◦en = f(aei+bej)◦f(en) = (aei+bej) ·en = aei ·en+bej ·en,

where, in order to avoid confusion, we have denoted by · and ◦ the respective prod-

ucts in AT and AT ′.

Theorem 3.2.6. There exist n isotopism classes in Pn,q.

Proof. Let A be a Lie algebra in Pn,q. From Proposition 3.2.3, we can find a structure

tuple in triangular form T = (t11e1,
∑2

j=1 t2jej, . . . ,
∑n−1

j=1 t(n−1)jej) ∈ Tn,q satisfying

conditions (a) and (b) of that result and so that AT ≃ A. From condition (a), if t11 =

0, then AT is the abelian Lie algebra. Otherwise, we can made use of Lemma 3.2.5 to

determine a second structure tuple T ′ = (e1, t22e2,
∑3

j=2 t3jej , . . . ,
∑n−1

j=2 t(n−1)jej) ∈

Tn,q, where the unique component with a non-zero coefficient in e1 is the first one,

and such that AT ′ ≃ AT ≃ A.

Now, again from condition (a), if t′22 = 0, then T ′ = (e1, 0, . . . , 0). Otherwise,

from a similar reasoning to that which we have just done to define T ′, we find a

structure tuple T ′′ = (e1, e2, t33e3,
∑4

j=3 t4jej, . . . ,
∑n−1

j=3 t(n−1)jej) ∈ Tn,q such that

AT ′′ ≃ A. We repeat this reasoning with the rest of components of our structure
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tuple and hence, we observe that any non-abelian Lie algebra in Pn,q is strongly

isotopic to a Lie algebra with structure tuple Tm = (e1, . . . , em, 0, . . . , 0) ∈ Tn,q, for

some m < n.

Since Z(ATm
) = 〈 em+1, . . . , en−1 〉, for all m < n, Proposition 3.1.2 involves ATm

not to be isotopic to ATl
, for any two distinct positive integers m, l < n. Therefore,

the n-dimensional abelian Lie algebra, together with the n − 1 Lie algebras ATm
,

with m < n, determines the set of (strongly) isotopism classes of Pn,q.

Table 3.3 shows the distribution into isotopism classes of the isomorphism classes

which appear in Tables 3.1 and 3.2.

p n Isotopism classes

2 2 h12 h22
3 h13 h23 ∼ h33 h43 ∼ h53 ∼ h63
4 h14 h24 ∼ h34 h44 ∼ . . . ∼ h8

4 h94 ∼ . . . ∼ h144
5 h15 h25 ∼ h35 h45 ∼ . . . ∼ h95 h105 ∼ . . . ∼ h205 h215 ∼ . . . ∼ h345

3 2 g12 g22
3 g13 g23 ∼ g33 g43 ∼ . . . ∼ g83
4 g14 g24 ∼ g34 g44 ∼ . . . ∼ g104 g114 ∼ . . . ∼ g224

Table 3.3: Isotopism classes of Pn,q.

3.2.2 Isomorphisms classes of Pn,q

We focus now on the distribution of Pn,q into isomorphism classes. Since, from

Lemma 2.1.1, the abelian Lie algebra constitutes itself an isomorphism class, we

analyze here the non-abelian case. For each positive integer m < n, let Pn,q;m be

the set of pre-filiform Lie algebras in Pn,q with an (n−m− 1)-dimensional center.

This set is invariant by isomorphisms due to the fact that centers of Lie algebras

are preserved by isomorphisms. From a convenient change of basis, we can focus,

therefore, on the subset Tn,q;m of structure tuples (
∑n−1

j=1 t1jej , . . . ,
∑n−1

j=1 tmjej , 0, . . . ,

0) ∈ Tn,q so that the m× (n− 1) matrix of coefficients (tij) is regular.

Lemma 3.2.7. Let T = (t1, . . . , tm, 0, . . . , 0) be a structure tuple in Tn,q;m. Given

k ∈ Fq \{0}, let kT be the structure tuple (kt1, . . . , ktm, 0, . . . , 0) ∈ Tn,q;m. Then, the

Lie algebras AkT and A are isomorphic.
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Proof. Let k ∈ Fq \ {0}. In order to prove that AkT
∼= A, it is enough to define by

linearity the isomorphism f such that f(ei) = ei if i < n and f(en) =
1
k
en. Then,

ei ◦ en = (kei) ◦ (
1

k
en) = f(kei) ◦ f(en) = kf(ei · en) = k(ei · en),

for all i < n, where the last equality follows from the fact of being A2 ⊆ Tn,q. In

order to avoid confusion, we have denoted by · and ◦ the respective products in AT

and AT ′.

Example 3.2.8. From Lemma 3.2.7, we have, for instance, that the Lie algebra

g83 ∈ P3,3;2 in Table 3.2, with structure tuple (e1, e2) ∈ T3,3;2 is isomorphic to the Lie

algebra in P3,3;2 of structure tuple (2e1, 2e2) ∈ T3,3;2. ⊳

Lemma 3.2.9. Let T = (
∑n−1

j=1 t1jej , . . . ,
∑n−1

j=1 tmjej , 0, . . . , 0) ∈ Tn,q;m be such that

there exists a positive integer i ≤ m such that tii 6= 0. Then, the Lie algebra (AT , ·)

is isomorphic to a Lie algebra (A′, ◦) in Pn,q;m such that

ej ◦ en =







∑

k≤m tikek, if j = i,

ej · en, otherwise.

Proof. It is enough to define by linearity the isomorphism f from AT to A′ such

that f(ei) = ei −
1
tii

∑

k>m tikek and f(ej) = ej , for all j 6= i. Then, ej ◦ en =

f(ej) ◦ f(en) = ej · en if j 6= i. Otherwise,

ei ◦ en = f(ei +
1

tii

∑

k>m

tikek) ◦ f(en) = f((ei +
1

tii

∑

k>m

tikek) · en) =

= f(ei · en) =
∑

k 6=i

tikek + tiif(ei) =
∑

k≤m

tikek.

Example 3.2.10. From Lemma 3.2.9, we have, for instance, that the Lie algebra

in P4,3;2, with structure tuple (e1 + e3, e2, 0) ∈ T4,3;2, is isomorphic to a Lie algebra

whose structure tuple does not have a non-zero structure constant as coefficient of e3.

Specifically, if we follow the proof of Lemma 3.2.9, we obtain that this is isomorphic

to the Lie algebra g104 ∈ T4,3;2 in Table 3.2, with structure tuple (e1, e2, 0) ∈ T4,3;2. ⊳
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Proposition 3.2.11. Let T = (
∑n−1

j=1 t1jej , . . . ,
∑n−1

j=1 tmjej , 0, . . . , 0) be a structure

tuple in Tn,q;m and let j1 = min{j < n | t1j > 0}. Then, the Lie algebra (AT , ·) is

isomorphic to a Lie algebra (A, ◦) in Pn,q;m such that

e1 ◦ en =















e1, if e1 · en ∈ 〈 e1 〉,

e2, if there exists j ∈ {2, . . . , m} such that t1j 6= 0,

em+1, if j1 > m.

Proof. We can suppose that t1j1 = 1. Otherwise, consider the Lie algebra A 1
t1j1

T ,

which is isomorphic to AT from Lemma 3.2.7. Hence, t11 ∈ {0, 1}. Let us study

each case separately. Firstly, suppose t11 = 1. Then,

• If e1 · en = e1, then it is enough to consider A = AT .

• If j1 = 1 and there exists j > 1 such that t1j 6= 0, then we can suppose, from

Lemma 3.2.9, that j ≤ m. It is then enough to define by linearity the isomor-

phism f such that f(ei) = ei if i 6= j and f(ej) =
1
t1j
(ej−e1−

∑

k>j t1kek). The

Lie algebra (A′, ∗) isomorphic to AT by means of the isomorphism f verifies

that

e1 ∗ en = f(e1) ∗ f(en) = f(e1 · en) = ej .

The Lie algebra (A, ◦) isomorphic to A′ with respect to the isomorphism (2j),

which switches the basis vectors e2 and ej, verifies that e1 ◦ en = e2.

Now, suppose t11 = 0 and hence, j1 6= 1. Let us define by linearity the isomor-

phism f such that f(ei) = ei if i 6= j1 and f(ej1) = ej1 −
∑

k>j1
t1kek. The Lie

algebra (A′, ∗) isomorphic to AT with respect to f verifies that

e1 ∗ en = f(e1) ∗ f(en) = f(e1 · en) = f(ej1) +
∑

k>j1

t1kek = ej1 .

If j1 ∈ {2, . . . , m}, then we can use the isomorphism defined in the previous case in

order to obtain a Lie algebra (A, ◦) isomorphic to AT and such that e1 ◦ en = e2.

Analogously, if j1 > m, then it is enough to consider the isomorphism (j1m) that

switches the basis vectors ej1 and em.

The previous result can be used in particular to determine the distribution of

Pn,q;1 into isomorphism classes, for all positive integer n ≥ 2 and q a power prime.
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Theorem 3.2.12. Let q be a power prime. There exist only one non-abelian iso-

morphism class in P2,q;1. This is determined by the structure tuple (e1) in T2,q;1.

Proof. The result follows straightforward from Proposition 3.2.11.

Theorem 3.2.13. Let n be a positive integer greater than 2 and let q be a power

prime. There exist two isomorphism classes in Pn,q;1. They are determined by the

structure tuples (e1, 0, . . . , 0) and (e2, 0, . . . , 0) in Tn,q;1.

Proof. From Proposition 3.2.11, any element in Pn,q;1 is isomorphic to a Lie alge-

bra with structure tuple T1 = (e1, 0, . . . , 0) or T2 = (e2, 0, . . . , 0) in Tn,q;1. Since

isomorphisms of Lie algebras preserve nilpotency, the algebras AT1 or AT2 are not

isomorphic, because the latter is nilpotent, but the former is not.

Proposition 3.2.11 is also useful to find a representative class in Pn,q;m, form > 1,

with a structure tuple having the number of addends in its first component as small

as possible. Nevertheless, unlike Theorem 3.2.13, we cannot assure that any two

Lie algebras in Pn,q;m, with m > 1 and structure tuples starting with e1 and e2,

respectively, are not isomorphic. Thus, for instance, the Lie algebras A(e1,e1,0) and

A(e2,e2,0) in P3,2;2 are isomorphic by means of the isomorphism (12) that switches

the basis vectors e1 and e2. The next result determines explicitly those isomorphism

classes in Pn,q;m that do not have any representative Lie algebra with a structure

tuple of first component equal to e2. It is the case, for instance, of the isomorphism

class h75 in Table 3.1, with structure tuple (e1, e3, 0, 0).

Theorem 3.2.14. Let T be a structure tuple in Tn,q;m such that AT is not isomorphic

to a Lie algebra in Pn,q;m with product e1en = e2. Then, there exists a non-negative

integer m′ ≤ m with 2m − m′ < n such that AT is isomorphic to a Lie algebra of

structure tuple (e1, t2e2, . . . , tm′em′ , em+1, . . . , e2m−m′ , 0, . . . , 0) ∈ Tn,q;m, where t2 ≤

. . . ≤ tm′ .

Proof. Suppose T = (
∑n−1

j=1 t1jej, . . . ,
∑n−1

j=1 tmjej , 0, . . . , 0) ∈ Tn,q;m. The hypothesis

is only possible if tij = 0, for all i, j ≤ m such that i 6= j. Otherwise, we consider

the isomorphism (1i) ∈ Sn that switches the two basis vectors e1 and ei. This gives

rise to a Lie algebra in Pn,q;m whose structure tuple has a non-zero addend tijej
in its first component. Proposition 3.2.11 involves this algebra to be isomorphic to
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a Lie algebra in Pn,q;m with product e1en = e2, which is a contradiction with the

hypothesis. Hence, we have in AT that

eien = tiiei +
∑

j>m+1

tijej , for all i ≤ m.

Let us define by linearity the isomorphism f such that

f(ei) =







1
tii
(ei −

∑

j>m+1 tijej), if tii 6= 0,

ei, otherwise.

The Lie algebra (A, ·) isomorphic to AT with respect to f verifies that

ei · en =







tiiei, if tii 6= 0,
∑

j>m+1 tijej , otherwise.

Let m′ be the number of positive integers i ≤ m such that tii 6= 0. Since

A ∈ Pn,q;m, there exists (m − m′) distinct positive integers i1, . . . , im−m′ ≤ m and

(m − m′) distinct positive integers j1, . . . , jm−m′ ∈ {m + 1, . . . , n − 1} such that

tikjk 6= 0, for all k ≤ m−m′. Let us define by linearity the isomorphism g such that

g(ei) =







ei, if i 6∈ {i1, . . . , im−m′},
1

tikjk

(ejk −
∑

j 6=jk
tikjej), otherwise.

From Lemma 3.2.7, any relabeling of the basis vectors of the Lie algebra that is

isomorphic to A by means of g gives rise to a new isomorphic Lie algebra. This

relabeling can be done in such a way that we find m − 1 numbers t2, . . . , tm′ ,

tm+1, . . . , t2m−m′ ∈ Fq\{0}, such that t2 ≤ . . . ≤ tm′ so that the Lie algebra of struc-

ture tuple T ′ = (e1, t2e2, . . . , tm′em′ , tm+1em+1, . . . , t2m−m′e2m−m′ , 0, . . . , 0) ∈ Tn,q;m
is isomorphic to A. In particular, it must be 2m−m′ < n. Let us define by linearity

the isomorphism h such that

h(ei) =







1
ti
ei, if i ∈ {m+ 1, . . . , 2m−m′},

ei, otherwise.

The Lie algebra that is isomorphic to AT ′ , and hence to AT , by means of h has the

required structure tuple (e1, t2e2, . . . , tm′em′ , em+1, . . . , e2m−m′ , 0, . . . , 0) ∈ Tn,q;m.
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Once we have identified the isomorphism classes of Pn,q;m of Theorem 3.2.14, we

focus our study on those Lie algebras with structure tuple T = (e2,
∑n−1

j=1 t2jej , . . . ,
∑n−1

j=1 tmjej , 0, . . . , 0) ∈ Tn,q;m. We can suppose that ti2 = 0, for all i > 2. Otherwise,

we define by linearity the isomorphism f such that f(ej) = ej if j 6= i and f(ei) =

ei + ti2e1.

Proposition 3.2.15. Let T = (e2,
∑n−1

j=1 t2jej , . . . ,
∑n−1

j=1 tmjej, 0, . . . , 0) be a struc-

ture tuple in Tn,q;m and let j2 = min{j < n | j 6= 2 and t2j 6= 0}. Then, the Lie

algebra AT is isomorphic to a Lie algebra (A, ·) in Pn,q;m such that e1 · en = e2 and

e2 · en =















e1 + t22e2, if j2 = 1,

t22e2 + e3, if 3 ≤ j2 ≤ m,

t22e2 + em+1, if j2 > m.

Proof. The result follows similarly to Proposition 3.2.11.

Similarly to what happens for e1en, the majority of the isomorphism classes of

Pn,q;m can be rewritten in such a way that the first component of their structure

tuples is e2. To do it, we give a previous definition. Let m′ be a positive integer less

than n−m and let us consider the structure tuples T = (
∑n−1

j=1 t1jej , . . . ,
∑n−1

j=1 tm′jej,

0, . . . , 0) and T ′ = (
∑n−m′−1

j=1 t′1jej , . . . ,
∑n−m′−1

j=1 t′(m−m′)jej, 0, . . . , 0) in Tn,q;m′ and

Tn−m′,q;m−m′, respectively. We define the Lie algebra AT⊕T ′ ∈ Fp
n,m of structure

tuple

T ⊕ T ′ = (

n−1
∑

j=1

t1jej, . . . ,

n−1
∑

j=1

tm′jej ,

n−m′−1
∑

j=1

t′1jem′+j, . . . ,

n−m′−1
∑

j=1

t′m′jem′+j, 0, . . . , 0).

Theorem 3.2.16. Let T be a structure tuple in Tn,q;m of the form (e1,
∑n−1

j=1 t2jej,

. . . ,
∑n−1

j=1 tmjej , 0, . . . , 0). Then, there exists a structure tuple T ′ ∈ Tn−1,q;m−1 such

that AT
∼= AT1 ⊕AT ′, where T1 = (e1, 0, . . . , 0) ∈ Tn,q;1.

Proof. We can suppose that ti1 = 0, for all i > 1. Otherwise, we define by linearity

the isomorphism f such that f(ej) = ej if j 6= i and f(ei) = ei + ti1e1. Hence, it is

enough to consider the structure tuple

T ′ = (
n−2
∑

j=1

t2(j+1)ej , . . . ,
n−2
∑

j=1

tm(j+1)ej , 0, . . . , 0) ∈ Tn−1,q;m−1.
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From Theorem 3.2.16, the isomorphism classes of Pn,q;m having a structure tuple

of the form (e1,
∑n−1

j=1 t2jej , . . . ,
∑n−1

j=1 tmjej , 0, . . . , 0) are uniquely determined by the

structure tuples of Pn−1,q;m−1. We can suppose that ti2 = 0, for all i ≥ 2. Otherwise,

we define by linearity the isomorphism f such that f(ei) = ei + ti2e1 and f(ej) = ej
if j 6= i. It is enough to distinguish the next three cases, from which we would follow

a similar reasoning for subsequent components

• Case 1. ti1 = 0, for all i ≥ 2.

• Case 2. t21 6= 0.

• Case 3. t21 = 0 and there exists i > 2 such that ti1 6= 0.

We have made use of all the precedent results in order to determine the distribu-

tion of P5,3 and Pn,5, for n ≤ 4, into isomorphism classes, which we expose, respec-

tively, in Tables 3.4 and 3.5. The possible isomorphisms among distinct pre-filiform

Lie algebras of both sets have been determined by means of the implementation of

Algorithm 2 and both procedures isoAlg and isoGraph in Singular, which were all

of them introduced in Chapter 2. Besides, in order to compute each distribution, we

have made an exhaustive search in those structure tuples of the corresponding sets

Tn,q;m that satisfy the results that have been exposed throughout this section. More

specifically, the computation focuses on those structure tuples whose first compo-

nent is e1, e2 or em+1. The run time that is required to compute both distributions

is 1457 seconds in our system, with a mean time of 1 second to compute the reduced

Gröbner basis related to the set of isomorphisms between each pair of pre-filiform Lie

algebras under consideration. A random search among pairs of pre-filiform Lie alge-

bras in P5,5 enables us to ensure that the bottleneck of this last computation occurs

when we deal with this set, for which storage memory seems to be a problem for the

required computation. Further work to reduce the cost of computation is, therefore,

required in this regard to determine the exact distribution into isomorphism classes

of pre-filiform Lie algebras of higher orders.

3.3 Filiform Lie algebras over finite fields

This section deals with the distribution of n-dimensional filiform Lie algebras into

isomorphism and isotopism classes. For n ≤ 6, this distribution is explicitly obtained

over any field. For n = 7, this is determined over algebraically closed fields and over
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AT T AT T AT T

g15 (0, 0, 0, 0) g25 (e2, 0, 0, 0) g35 (e1, 0, 0, 0)

g45 (e3, e4, 0, 0) g55 (e2, e3, 0, 0) g65 (e1, e3, 0, 0)

g75 (e2, e1 + e2, 0, 0) g85 (e2, e1, 0, 0) g95 (e2, 2e1, 0, 0)

g105 (e2, 2e1 + e2, 0, 0) g115 (e1, e2, 0, 0) g125 (e1, e3, e2 + e3, 0)

g135 (e1, e3, e2 + 2e3, 0) g145 (e2, e1 + e3, e1 + 2e2, 0) g155 (e1, 2e3, e2, 0)

g165 (e1, 2e3, e2 + 2e3, 0) g175 (e1 + e3, 2e3, e2 + 2e3, 0) g185 (e2, e4, e3, 0)

g195 (e2, e2 + e4, e3, 0) g205 (e2, 2e2 + e4, e3, 0) g215 (e2, e2 + e4, e2 + e3, 0)

g225 (e2, e3, e1 + 2e3, 0) g235 (e2 + e3, e3, e1, 0) g245 (e2 + e3, e3, e1 + e3, 0)

g255 (e2 + 2e3, e3, e1 + 2e3, 0) g265 (e2, e3, e4, 0) g275 (e2, e3 + e4, e2 + e4, 0)

g285 (e2, e3, 2e2 + e4, 0) g295 (e2, e1, e3, 0) g305 (e1, e2, e3, 0)

g315 (e4, e3, e2, e1) g325 (e4, e3, e2, e1 + e4) g335 (e4, e3, e2 + e4, e1)

g345 (e4, e3 + e4, e2 + e4, e1) g355 (e4, e3, e2, 2e1) g365 (e4, e3, e2, 2e1 + e4)

g375 (e4, e3, e2 + 2e4, 2e1 + e4) g385 (e4, e3, e2 + e3, e1 + e4) g395 (e4, e3, e2 + e3, e1 + 2e4)

g405 (e4, e3, e2 + e3 + e4, e1 + e4) g415 (e4, e3, e2 + e3, 2e1) g425 (e4, e3, e2 + e3, 2e1 + e4)

g435 (e4, e3, e2 + e3, 2e1 + 2e4) g445 (e4, 2e3, e2, 2e1) g455 (e4, 2e3, e2, 2e1 + e4)

g465 (e4, 2e3, e2 + 2e4, 2e1) g475 (e4, 2e3, e2 + e3, 2e1 + e4) g485 (e4, 2e3, e2 + e3 + 2e4, 2e1 + e4)

g495 (e4, 2e3 + 2e4, e2 + e3 + 2e4, 2e1 + e4) g505 (e2, e4, e1, e3 + e4) g515 (e2, e4, e1 + e2, e3)

g525 (e2, 2e4, e1, e3 + e4) g535 (e2, e4, e1 + e2, 2e3) g545 (e2, 2e2 + e4, e1 + e2, 2e3)

g555 (e2, e4, e1 + e4, e3) g565 (e2, e4, e1 + e4, e3 + e4) g575 (e2, e2 + e4, e1 + e2, e2 + e3)

g585 (e2, 2e2 + e4, e1 + e2, e2 + e3) g595 (e2, 2e4, e1 + e4, e3 + e4) g605 (2e2, e4, e1 + e2, e2 + e3)

g615 (e2, e4, e1 + 2e4, e3) g625 (e2, e4, e1 + e2, 2e2 + e3) g635 (e2, e2 + e4, e1 + e2, 2e2 + e3)

g645 (e2, 2e2 + e4, e1 + e2, 2e2 + e3) g655 (e2, e2 + 2e4, e1, e2 + e3) g665 (e2, 2e4, e1 + 2e2, e2 + e3)

g675 (e2, e2 + 2e4, e1 + 2e2, e2 + e3) g685 (e4, e2, e3, e1) g695 (e4, e2, e3, e1 + e4)

g705 (e4, e2, e3, e1 + 2e4) g715 (e4, e2, e3, 2e1) g725 (e4, e2, e3, 2e1 + 2e4)

g735 (e1, e2, e3, e4)

Table 3.4: Distribution of P5,3 into isomorphism classes.

finite fields. Previously, let us recall some preliminary results on this family of Lie

algebras.

3.3.1 Preliminaries on filiform Lie algebras

An n-dimensional nilpotent Lie algebra A with maximum nil-index n is called fil-

iform. In this case, dim Ck(A) = n − k, for all k ∈ {2, . . . , n}. Filiform Lie al-

gebras constitute the most structured subset of nilpotent Lie algebras and have

a large number of applications in Applied Mathematics, Engineering and Physics

[147, 148]. They were introduced formally by Vergne [308, 309] in the late 1960s,

although Umlauf had already used them as an example in his thesis [303].

The distribution into isomorphism classes of n-dimensional filiform Lie algebras

over the complex field is known for n ≤ 12 [49, 140], whereas it is only known

for nilpotent Lie algebras over the complex field of dimension n ≤ 7 [30]. More

recently, some authors have dealt with the classification of n-dimensional nilpotent
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AT T AT T AT T

2 f12 (0) f22 (e1) 3 f13 (0, 0)

f23 (e2, 0) f33 (e1, 0) f43 (e2, e1)

f53 (e2, 2e1) f63 (e2, e1 + e2) f73 (e2, 2e1 + e2)

f83 (e2, e1 + 2e2) f93 (e2, 2e1 + 2e2) f103 (e1, e2)

4 f14 (0, 0, 0) f24 (e2, 0, 0) f34 (e1, 0, 0)

f44 (e2, e1, 0) f54 (e2, 2e1, 0) f64 (e2, e1 + e2, 0)

f74 (e2, 2e1 + e2, 0) f84 (e2, e1 + 2e2, 0) f94 (e2, 2e1 + 2e2, 0)

f104 (e2, e3, 0) f114 (e2, e2 + e3, 0) f124 (e1, e2, 0)

f134 (e2, e3, e1) f144 (e1, e3, e2 + e3) f154 (e1, e3, e2 + 2e3)

f164 (e1, e3, e2 + 3e3) f174 (e1, e3, e2 + 4e3) f184 (e2, e1, e2 + e3)

f194 (e2, 2e3, 2e1) f204 (e1, 2e3, e2 + e3) f214 (e1, 2e3, e2 + 2e3)

f224 (e1, 2e3, e2 + 3e3) f234 (e1, 2e3, e2 + 4e3) f244 (e2, 3e3, 3e1)

f254 (e1, 3e3, e2 + e3) f264 (e1, 3e3, e2 + 3e3) f274 (e1, 3e3, e2 + 4e3)

f284 (e1, 4e3, e2 + e3) f294 (e1, 4e3, e2 + 2e3) f304 (e1, 4e3, e2 + 4e3)

f314 (e2, 4e1 + 2e2, 4e2 + e3) f324 (e2, e3, e1 + e3) f334 (e2, e3, e1 + 2e3)

f344 (e2, e2 + e3, e1 + e2) f354 (e2, 3e2 + e3, e1 + e2) f364 (e2, 2e3, e1 + 3e2)

f374 (e2, 2e2 + 2e3, e1 + 3e2) f384 (e2, 4e2 + 2e3, e1 + 3e2) f394 (e2, e2 + e3, e1 + 2e2)

f404 (e2, 4e2 + e3, e1 + 2e2) f414 (e2, 2e3, e1 + e2) f424 (e1, e2, e3)

Table 3.5: Distribution of Pn,5 into isomorphism classes, for n ≤ 4.

Lie algebras over finite fields Fq, with q a power prime. Specifically, Schneider [278]

obtained the number of isomorphism classes over the finite field F2, for n ≤ 9, and

over F3 and F5, for n ≤ 7. The classification of six-dimensional nilpotent Lie algebras

over a field of characteristic distinct from two was determined by de Graaf [150] and

over any arbitrary field by Cicalò et al. [87]. With respect to the classification of

filiform Lie algebras over Fq, Schneider obtained in particular that there exist six

six-dimensional filiform Lie algebras over F2 and five over F3 and F5; whereas there

exist 15 seven-dimensional filiform Lie algebras over F2, 11 over F3 and 13 over F5.

Hereafter, we denote by Fn(K) the set of n-dimensional filiform Lie algebras over

a base field K. The only algebra in F2(K) is the abelian. Let n > 2 and let A be

a filiform Lie algebra in Fn(K). Its type is {2, 1, . . . , 1}. Besides, D1(A) = n and

dn(A) = 1, where dn and D1 refer to the isotopism invariants that were respectively

described in (3.4) and (3.5). The next two numbers are isomorphism invariants in

Fn(K) [112, 113]

z1(A) := max{k ∈ N | CenA(C
n−k+2(A)) ⊃ A2}. (3.7)

z2(A) := max{k ∈ N | Cn−k+1(A) is abelian}. (3.8)

It is always possible to find a basis {e1, . . . , en} of the algebra A that is compatible
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with respect to its lower central series, that is, such that

C2(A) = 〈e2, . . . , en−1〉, C
3(A) = 〈e2, . . . , en−2〉, . . . , C

n−1(A) = 〈e2〉, C
n(A) = 0.

Vergne [308, 309] proved the existence of an adapted basis of A whenever the

characteristic of the base field K is zero. This is a compatible basis of A with

respect to its lower central series such that







e1ei = ei−1, for all i ∈ {3, . . . , n},

e3en = 0.
(3.9)

It is not always possible, however, to find an adapted basis if the characteristic

of the base field is not zero. An alternative basis is required in this case in order

to facilitate the distribution of filiform Lie algebras into isomorphism and isotopism

classes. Let {e1, . . . , en} be a compatible basis with respect to the lower central

series of A. The set {e1, ad
n−1
e1

(en), . . . , ade1(en)} also constitutes a basis of A. For

each positive integer i < n, let us relabel the vector adi
e1
(en) as en−i+1. We can then

suppose that e3en = 0. Otherwise, it must be e3en = ae2, for some a ∈ K \ {0} and

then, it is enough to replace the vector en by −ae1 + en. We call the new basis a

filiform basis of A. Unlike adapted bases, a filiform basis can not be compatible with

respect to the lower central series of the algebra. In fact, this compatibility would

involve the filiform basis to be an adapted basis. To prove this, observe assertion

(a) in the next result.

Lemma 3.3.1. Let {e1, . . . , en} be a filiform basis of an algebra A ∈ Fn(K). Then,

a) e1ei = ei−1, for all i ∈ {3, . . . , n}.

b) Z(A) = 〈e2〉.

c) eiej ∈ 〈e2, . . . , en−1〉, whenever 3 ≤ i, j ≤ n.

d) e3u = 0, for all u ∈ A2.

e) Dn−1(A) = dim(Cen(〈 e2, . . . , en 〉).

Proof. (a)-(c) follow straightforward from the definition of the basis. Now, the

compatibility with respect to the lower central series of A of the basis from which our

filiform basis is derived involves that e3u ∈ 〈 e2 〉, for all u ∈ A2. (d) follows then from
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(a) and (b), and the fact of being J(e1, e3, u) = 0, for all u ∈ A. Finally, (e) follows

from the description of the filiform basis and the fact of being Cen(〈 e1 〉) = 〈 e2 〉,

due to assertions (a) and (b).

A filiform Lie algebra A is said to be model if the only nonzero products between

the elements of a compatible basis with respect to its lower central series are

e1ei = ei−1 for all i ∈ {3, . . . , n}. (3.10)

Observe that the n-dimensional model algebra is not isomorphic to any other

algebra of the same dimension, because it is the only filiform Lie algebra for which

the isomorphism invariant z1 does not exist. This result also holds for isotopisms.

Proposition 3.3.2. The n-dimensional model algebra is not isotopic to any other

filiform Lie algebra of the same dimension.

Proof. Let A be the n-dimensional model algebra of filiform basis {e1, . . . , en}. Then,

Dm(A
′) = n − 1, for all m ∈ {2, . . . , n − 1}, because the centralizer of the m-

dimensional vector subspace that is generated by the m basis vectors e2, . . . , e2+m−1

is the (n − 1)-dimensional vector subspace generated by e2, . . . , en. Besides, the

centralizer cannot be n-dimensional because of the non-zero structure constants

related to the basis vector e1. Now, let A
′ be a non-model n-dimensional filiform Lie

algebra of filiform basis {e′1, . . . , e
′
n}. From assertion (e) in Lemma 3.3.1, the value

of Dn−1(A
′) coincides with the dimension of the centralizer of the vector subspace

generated by the basis vectors e′2, . . . , e
′
n. This dimension is less than n− 1 because

e′1 cannot be in this centralizer and there exists a pair of positive integers i, j ≤ n,

with i 6= 1 6= j, such that e′ie
′
j is not zero. Hence, Dn−1(A

′) < n − 1. The result

follows then from Proposition 3.1.3.

The only isotopism (isomorphism) class of the set of filiform Lie algebras of di-

mension n ≤ 4 corresponds to the model algebra of such a dimension. For n = 5,

there exist two isomorphism classes of filiform Lie algebras: the model algebra and

that having an adapted basis satisfying the product e4e5 = e2. Both classes deter-

mine indeed distinct isotopism classes, because the isotopism invariant D4 is equal

to 4 for the model algebra, but it is equal to 2 for the second exposed algebra. For

higher dimensions, the distribution into isomorphism and isotopism classes requires

a more detailed study of the corresponding structure constants. The cases n ∈ {6, 7}



3.3. FILIFORM LIE ALGEBRAS OVER FINITE FIELDS 67

are analyzed in the next two subsections. The next results on adapted bases of a

filiform Lie algebra are useful in our study.

Lemma 3.3.3. Let f be an isomorphism between two isomorphic n-dimensional

filiform Lie algebras A and A′. If {e1, . . . , en} is an adapted basis of A with respect

to its lower central series, then f(ei) ∈ A′n−i+1, for all i ∈ {2, . . . , n− 1}.

Proof. This result follows straightforward from the compatibility of any adapted

basis with respect to the lower central series of the algebra.

Proposition 3.3.4. Under the hypothesis of Lemma 3.3.3, let F = (fij) be the

regular matrix related to the isomorphism f between the filiform Lie algebras A and

A′. Then,

a) fij = 0, for all i, j < n such that 1 < i < j.

b) f21 = f23 = . . . = f2n = 0.

c) fn1 = 0.

d) f22 = f11f33.

e) f(n−1)(n−1) = f11fnn.

Proof. Let {e′1, . . . , e
′
n} be an adapted basis of the algebra A′. Let us prove each

assertion separately.

a) This follows straightforward from Lemma 3.3.3.

b) From Proposition 3.1.2, since Z(A) = 〈 e2 〉, it must be f(e2) ∈ Z(A′) = 〈 e′2 〉

and hence, (b) holds.

c) From Proposition 3.1.2, f(e3) ∈ 〈 e2, e3 〉. Then, 0 = f(0) = f(e3en) = f(e3)f(en)

= −f33fn1e
′
2. The result follows, therefore, from the regularity of the matrix F

and assertion (a).

The other two assertions follow, respectively, from the fact of being f(ei) =

f(e1ei+1) = f(e1)f(ei+1), for i ∈ {2, n− 1}.
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Since A2 = 〈e2, . . . , en−1〉, the numbers f12 and fn2 do not have any influence

on the isomorphism f . We can suppose, therefore, that f12 = fn2 = 0. This fact,

together with Lemma 3.3.3 and Proposition 3.3.4, involve that

F =













f11 0 f13 . . . f1(n−1) f1n
0 f11f33 0 . . . 0 0

0 f32 f33 . . . 0 0

..

.
..
.

..

.
. . .

..

.
..
.

0 f(n−1)2 f(n−1)3 . . . f(n−1)(n−1) 0

0 0 fn3 . . . fn(n−1) fnn













(3.11)

3.3.2 Classification of six-dimensional filiform Lie algebras.

The distribution of the set F6(K) into isomorphism classes is already known [87,

150, 278]. It is interesting, however, to deal again with this distribution in order

to expose in detail the algebraic methodology related to the new isotopism invari-

ants. Higher dimensions are similarly dealt with, but they require more extensive

and tedious computation. The next result is fundamental in our study and follows

straightforward from a case study based on the Jacobi identity in F6(K).

Lemma 3.3.5. Let A ∈ F6(K). Then, there exist three numbers a, b, c ∈ K and a

filiform basis of A such that

A ∼= Aabc :=



























e1ei = ei−1, for all i ∈ {3, 4, 5, 6},

e4e5 = ae2,

e4e6 = be2 + ae3,

e5e6 = ce2 + be3 + ae4.

�

The filiform basis of Aabc constitutes indeed an adapted basis, because it is

compatible with respect to the lower central series of the algebra.

Hereafter, given an algebra A and a positive integer i ∈ N, we denote by A(i) the

quotient algebra A(i−1)/Z(A(i−1)), where we consider A(0) = A. Particularly, two

algebras A and A′ are isomorphic only if the algebras A(i) and A′(i) are isomorphic.
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Our filiform Lie algebra Aabc holds then the next isotopism invariants



























D5(A000) = 5,

If c 6= 0, then D5(A00c) = 3,

If b 6= 0, then D5(A0bc) = 2 = D4(A0bc
(1)),

If a 6= 0, then D5(Aabc) = 2 > 1 = D4(Aabc
(1)).

(3.12)

Proposition 3.1.3 involves, therefore, the existence of at least four isotopism (and

hence, isomorphism) classes in F6(K). Since the model algebra A000 constitutes an

isomorphism class by itself, we focus on the rest of cases.

Proposition 3.3.6. Let c, γ ∈ K\{0}. Then, A00c
∼= A00γ.

Proof. It is enough to consider the isomorphism f that is linearly defined from

f(e1) = e1 and f(ei) =
c
γ
ei, for all i > 1.

The remaining cases require an analysis of the entries of the matrix F = (fij)

of an isomorphism between two algebras Aabc and Aαβγ in F6(K), with respective

adapted bases {e1, . . . , e6} and {e′1, . . . , e
′
6}. Its form has been exposed in (3.11).

The central rows of F are determined by using the entries of their first and last

rows.

Lemma 3.3.7. The entries of the matrix F hold the next equalities.

a) f44 = (f11 − αf16)f55.

b) f33 = (f11 − αf16)f44.

c) f54 = (f11 − αf16)f65 + αf15f66.

d) f43 = (f11 − αf16)f54 − βf55f16.

e) f32 = f11f43 − (αf15 + βf16)f44.

f) f53 = (f11 − αf16)f64 + αf14f66 + β(f15f66 − f65f16).

g) f42 = f11f53 − (αf15 + βf16)f54 + (αf14 − γf16)f55.

h) f52 = f11f63 + α(f14f65 − f64f15) + β(f14f66 − f64f16) + γ(f15f66 − f65f16).
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Proof. All the equalities follow from the fact that f(ei) = f(e1ei+1) = f(e1) f(ei+1),

for all i ∈ {2, . . . , n− 1}.

Since F is a regular matrix, its determinant is distinct from zero. Lemma 3.3.7

involves then that

f11f66(f11 − αf16) 6= 0. (3.13)

This condition, together with the fact of being f an isomorphism, involves the

rest of constraints for the entries of F . We have used the procedure isoAlg in

Singular, which was described in Chapter 2, in order to determine the reduced

Gröbner basis related to the ideal of polynomials generated by all these constraints.

This enables us to ensure the next conditions

af11 = α(f66 + af16), (3.14)

b(f11 − αf16)
2 = β(f66 + af16) = 0, (3.15)

f11f66(cf11(f11 − αf16)
2 + bβ(αf16 − 2f11)f16 + 2aαf14 − aγf16

+2αf64 − γf66)− αf 2
65(f11 − αf16)− α2(af15 + 2f65)f15f66 = 0.

(3.16)

Proposition 3.3.8. Let A0bc and A0βγ be two algebras in F6(K) such that b 6= 0 6= β.

They are isomorphic whenever the characteristic of the base field K is not two.

Otherwise, A0bc
∼= A011 if and only if c 6= 0. If c = 0, then A0b0

∼= A010.

Proof. Impose a = A = 0 in Equations (3.13 – 3.16). Then,







bf 2
11 = βf66,

cf 4
11 − 2β2f16f66 = γf11f66.

Take f66 = bf 2
11/β. If the characteristic of the base field K is not two, then it

is enough to consider f16 = (βcf 2
11 − bγf11)/2β

2b in order to define the required

isomorphism. If the characteristic of K is two, then cf11 = bγ/β and hence, c = 0

if and only if γ = 0. As a consequence, A010 is not isomorphic to A011. Further, if

c 6= 0 6= C, then we take f11 = bγ/βc in order to define the isomorphism between

A0bc and A0βγ.
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Equation (3.16) can be used to fix an entry in F that does not appear in Equa-

tions (3.13 – 3.15). If a 6= 0 6= α, then the variable f64 can be isolated in Equation

(3.16) whenever the characteristic of the base field K is not two, or the variable

f65, otherwise. The following result holds from Condition (3.13) and the isotopism

invariants (3.12).

Theorem 3.3.9. The next assertions hold in F6(K).

a) If a 6= 0 6= α, then Aa0c
∼= Aα0γ.

b) If a 6= 0 6= α and b 6= 0 6= β, then Aabc
∼= Aαβγ.

c) None of the algebras of (a) is isomorphic to one of (b). �

The previous results establish the following distribution of the set F6(K) into

isomorphism and isotopism classes.

Theorem 3.3.10. If the characteristic of the base field K is two, then the set F6(K)

is distributed into six isomorphism classes, which are described by the filiform alge-

bras

A000, A001, A010, A011, A100 and A110.

Otherwise, if the characteristic of K is not two, then the distribution of the set

F6(K) into isomorphism classes coincides with the previous list up to the algebra

A011, which is isomorphic to A010. �

Proposition 3.3.11. The set F6(K) is distributed into five isotopism classes, which

are described by the filiform algebras

A000, A001, A010, A100 and A110.

Proof. From Theorem 3.3.10 and the isotopism invariants (3.12), there exist at least

four isotopism classes in F6(K). We observe that A011 ∼ A010 by the strong isotopism

(f, f, h), where f and h are linearly defined from

f(e4) = e4 − e3 and f(ei) = ei, if i 6= 4,

h(e3) = e3 − e2 and h(ei) = ei, if i 6= 3.

On the other hand, a simple case study on possible isotopisms between the Lie

algebras A100 and A110 determines that these two algebras are not isotopic, whatever

the ground field is. Therefore, there exist exactly five isotopism classes in F6(K).
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3.3.3 Classification of seven-dimensional filiform Lie alge-

bras.

The study of the Jacobi identity related to seven-dimensional filiform bases enables

us to ensure the next result.

Lemma 3.3.12. Let A ∈ F7(K). Then, there exist a tuple (α, β, γ, δ, ǫ, ϕ) ∈ K6 and

a filiform basis {e1, . . . , e7} of A such that



























































e1ei = ei−1, for all i ∈ {3, 4, 5, 6, 7},

e4e5 = αe2,

e4e6 = βe2 + αe3,

e4e7 = γe2 + βe3 + αe4,

e5e6 = δe2 + βe3 + αe4,

e5e7 = ǫe2 + (γ + δ)e3 + 2βe4 + 2αe5,

e6e7 = ϕe2 + ǫe3 + (γ + δ)e4 + 2βe5 + 2αe6,

where 3α2 = 0, 5αβ = 0 and 2β2 + 3αδ − 2αγ = 0. �

We distinguish three cases depending on the characteristic of the base field.

Characteristic distinct from two and three

Let K be a field whose characteristic is distinct from two and three. From Lemma

3.3.12, any algebra A ∈ F7(K) has an adapted basis {e1, . . . , e7} such that

A ∼= Aabcd :=







































e1ei = ei−1, for all i ∈ {3, 4, 5, 6, 7},

e4e7 = ae2,

e5e6 = be2,

e5e7 = ce2 + (a+ b)e3,

e6e7 = de2 + ce3 + (a+ b)e4,
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for some tuple (a, b, c, d) ∈ K4. The next isotopism invariants hold



























































D6(A0000) = 6,

If d 6= 0, then D6(A000d) = 4,

If c 6= 0, then D6(A00cd) = 3 = D5(A00cd
(1)),

If b 6= 0, then D6(A0bcd) = 3 > 2 = D5(A0bcd
(1)),

If 0 6= a 6= −b, then D6(Aabcd) = 2 = D5(Aabcd
(1)),

If a 6= 0, then D6(Aa(−a)0d) = 2 < 5 = D5(Aa(−a)0d
(1)),

If a 6= 0 6= c, then D6(Aa(−a)cd) = 2 < 3 = D5(Aa(−a)cd
(1)).

(3.17)

Proposition 3.1.3 involves the existence of at least seven isotopism (and hence, iso-

morphism) classes in F7(K). Let Aabcd and Aαβγδ be two isomorphic algebras in

F7(K) and let F = (fij) be the matrix related to an isomorphism f between them.

Since the bases of both algebras are adapted, the form of the matrix F is that

exposed in (3.11). Its central rows are determined by its first and last rows. In

particular,

fii = f 7−i
11 f77, for all i ∈ {2, . . . , 6}.

Since F is a regular matrix, its determinant is distinct from zero and hence,

f11f77 6= 0. (3.18)

Then, from the definition of isomorphism,

af 2
11 = αf77, (3.19)

bf 2
11 = βf77, (3.20)

cf 4
11 = 2(α + β)2f17f77 + γf11f77, (3.21)

df 5
11f77 − (3α + 2β)cf 3

11f17f77 + aα2f11f
2
17f77+

(bA2 + aαβ + bαβ)f11f
2
17f77 − 2(αγ + βγ)f27f

2
77−

βf11f
2
76 + 2βf11f75f77 = δf11f

2
77.

(3.22)

Proposition 3.3.13. Let K be a field whose characteristic is distinct from two and

three. Two non-model algebras A00cd and A00γδ in F7(K) are isomorphic if and only

if one of the following conditions holds

a) c = γ = 0 and d 6= 0 6= δ.
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b) d = δ = 0 and c 6= 0 6= γ.

c) The numbers c, γ, d and δ are all of them distinct from zero.

Proof. Impose a = α = b = β = 0 in Equations (3.18 – 3.22). Then, cf 3
11 = γf77

and df 4
11 = δf77. It is then enough to impose f77 = df 4

11/δ if the first condition holds

or f77 = cf 3
11 if the second one holds. In the third case, f77 = df 4

11/δ = cf 3
11/γ and

we impose f11 = cδ/γd.

Proposition 3.3.14. Let K be a field whose characteristic is distinct from two and

three. Let A0bcd and A0βγδ be two non-model algebras in F7(K). If b 6= 0 6= β, then

both algebras are isomorphic.

Proof. Impose a = α = 0 in Equations (3.18 – 3.22). Then,















bf 2
11 = βf77,

cf 4
11 = 2β2f17f77 + γf11f77,

df 5
11f77 = 2β(cf 3

11f17f77 + γf17f
2
77 − f11f75f77) + βf11f

2
76 + δf11f

2
77.

Take f77 = bf 2
11/β. It is enough to isolate f17 and f75 in the second and third

equations, respectively, in order to obtain our isomorphism.

Proposition 3.3.15. Let K be a field whose characteristic is distinct from two and

three. Let a, c, d ∈ K be such that a 6= 0. The next assertions hold in F7(K).

a) If 4ad = 5c2, then Aa0cd
∼= A1000.

b) If 4ad 6= 5c2 and 4ad− 5c2 is a perfect square in K, then Aa0cd
∼= A1001.

c) Let q be a non-perfect square in K. If K is finite, 4ad 6= 5c2 and 4ad − 5c2 is a

non-perfect square in K, then Aa0cd
∼= A100q.

Proof. Let Aa0cd and Aα0γδ be two algebras in F7(K) such that a 6= 0 6= A. Impose

b = β = 0 in Equations (3.18 – 3.22). Then,















af 2
11 = αf77,

cf 4
11 = 2α2f17f77 + γf11f77,

df 5
11 = 3αcf 3

11f17 − aα2f11f
2
17 + 2αγf17f77 + δf11f77
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Hence, f77 = af 2
11/α. Then, f17 = (cf 4

11 − γf11f77)/2α
2f77 = (αcf 2

11 − aγf11)/2aα
2

and thus,

(4ad− 5c2)α2f 2
11 = (4αδ − 5γ2)a2.

The algebras Aa0cd and Aα0γδ are, therefore, isomorphic if and only if one of the

following conditions is satisfied

i. 4ad = 5c2 and 4αδ = 5γ2.

ii. 4ad 6= 5c2, 4αδ 6= 5γ2 and (4αδ − 5γ2)/(4ad− 5c2) is a perfect square in K.

Assertions (a) and (b) follow then immediately from (i) and (ii). Finally, let us

suppose that K is a finite field Fq and let q be a non-perfect square in Fq. Every

perfect square r in Fq is uniquely related to a non-perfect square s in Fq such that

r = q/s. Such a relation is 1-1, because Fq is a finite field that contains exactly

(p−1)/2 perfect squares distinct from zero. Assertion (c) follows then from (ii).

Proposition 3.3.16. Let K be a field whose characteristic is distinct from two and

three. Let Aabcd and Aαβγδ be two algebras in F7(K) such that a, b, α and β are all

of them distinct from zero. They are isomorphic if and only aβ = αb and one of the

following assertion is verified

1. a+ b 6= 0.

2. If a + b = 0, then c = 0 = γ or c 6= 0 6= γ.

Proof. Isolate f75 from Equation (3.22). Since α 6= 0, we have from (3.19) that

f77 = af 2
11/α = bf 2

11/β and hence, aβ = αb. From Equation (3.21),

aαcf 2
11 − a2γf11 = 2(a+ b)2α2f17.

If a + b 6= 0, then a possible isomorphism can be determined once f17 is isolated

from the previous equation. Otherwise, it is αcf11 = aγ and hence, there exists an

isomorphism between Aabcd and Aα(αb/a)γδ if and only if c = γ = 0 or c 6= 0 6= γ. In

the last case, it is enough to consider f11 = aγ/αc.

The previous results establish the next distribution of F7(K) into isomorphism

and isotopism classes.
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Theorem 3.3.17. Let K be a field whose characteristic is distinct from two and

three. Then,

a) If K is algebraically closed, then the isomorphism classes of F7(K) are

{A0000, A0001, A0010, A0011, A0100, A1001, A1(−1)10} ∪ {A1b00 | b ∈ K}.

b) If K = Fq, then the isomorphism classes of F7(K) are

{A0000, A0001, A0010, A0011, A0100, A1001, A1(−1)10, A100q} ∪ {A1b00 | b ∈ K},

where q is a non-perfect square of Fq. �

Theorem 3.3.18. Let K be a field whose characteristic is distinct from two and

three. If K is algebraically closed or K = Fq, then there exist eight isotopism classes

in F7(K)

{A0000, A0001, A0010, A0100, A1000, A1100, A1(−1)00, A1(−1)10}.

Proof. In order to prove the result, we establish distinct strong isotopisms (f, f, h)

among the isomorphism classes in F7(K). Each isotopism is described by means of

those basis vectors that are not preserved by the transformations f and h.

a) A0011 ≃ A0010 by means of the strong isotopism (f, f, h) such that

f(e4) = e4 − e3 and h(e3) = e3 − e2.

b) A10cd ≃ A1000, for all c, d ∈ K, by means of the strong isotopism (f, f, h) such

that

f(e5) = e5 + (c2 − d)e3, h(e3) = e3 − ce2,

h(e4) = e4 − ce3 + (c2 − d)e2 and h(e5) = e5 − ce4.

c) A1b00 ≃ A1100, for all b ∈ {2, . . . , q−2}, by means of the strong isotopism (f, f, h)

such that

f(e3) = f44e3, f(e4) = f44e4, f(e5) = f55e5, f(e6) = f66e6,

h(e2) = f44e2, h(e3) = f44e3, h(e4) = f55e4, h(e5) = f66e5,

with

f44 =
4

(b+ 1)2
f66, f55 =

2

b+ 1
f66, f66 =

2b

b+ 1
.

A simple analysis on possible isotopisms among the Lie algebras A1100, A1(−1)00

and A1(−1)10 indicates that they determine distinct isotopism classes. The result

holds then from the isotopism invariants (3.17).
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Characteristic two

Let K be a field of characteristic two. From Lemma 3.3.12, every algebra A ∈ F7(K)

has an adapted basis {e1, . . . , e7} such that

A ∼= Aabcde :=















































e1ei = ei−1, for all i ∈ {3, 4, 5, 6, 7},

e4e6 = ee2,

e4e7 = ae2 + ee3,

e5e6 = be2 + ee3,

e5e7 = ce2 + (a+ b)e3,

e6e7 = de2 + ce3 + (a+ b)e4,

for some tuple (a, b, c, d, e) ∈ K5. The structure constants of Aabcd0 coincide with

those of Aabcd in the previous case and hence, their isotopism invariants coincide.

The next isotopism invariants correspond to the case e 6= 0:


























D6(Aabcde) = 2,

D5(Aabcde
(1)) = 1,

D4(Aa(−a)cde
(2)) = 4,

If a 6= −b, then D4(Aabcde
(2)) = 2.

(3.23)

The first two isotopism invariants, together with (3.17), involve that two algebras

Aabcde and AABCD0 in F7(K) are not isotopic if e 6= 0. Hence, we can focus on the

distribution into isotopism and isomorphism classes of Aabcde with e 6= 0. A similar

reasoning to that exposed for fields of characteristic distinct from two and three

enables us to ensure the next result.

Theorem 3.3.19. Let K be a field of characteristic two. If K is algebraically closed

or finite, then

a) There exist 15 isomorphism classes in F7(K):

{A00000, A00001, A00010, A00100, A00110, A01000, A01001, A01100,

A10000, A10001, A10100, A10110, A11000, A11001, A11100}.

b) There exist 10 isotopism classes in F7(K):

{A00000, A00001, A00010, A00100, A01000, A01001, A10000, A11000, A11001, A11100}.

�
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Characteristic three

Let K be a field of characteristic three. From Lemma 3.3.12, any algebra A in F7(K)

has a filiform basis {e1, . . . , e7} such that

A ∼= Aabcd :=







































e1ei = ei−1, for all i ∈ {3, 4, 5, 6, 7},

e4e7 = ae2,

e5e6 = be2,

e5e7 = ce2 + (a+ b)e3,

e6e7 = de2 + ce3 + (a+ b)e4,

or

A ∼= A′
abcd :=



























































e1ei = ei−1, for all i ∈ {3, 4, 5, 6, 7},

e4e5 = ae2,

e4e6 = ae3,

e4e7 = ae4,

e5e6 = be2 + ae4,

e5e7 = ce2 + be3 + 2ae5,

e6e7 = de2 + ce3 + be4 + 2ae6,

for some tuple (a, b, c, d) ∈ K4. Observe that, if a = 0, then A′
0bcd = A0bcd and

hence, we suppose a 6= 0 in A′
abcd. The structure constants and isotopism invariants

of Aabcd coincide with those of the homonym algebra exposed in case of being K a

field with characteristic distinct from two and three. Further, D6(A
′
abcd) = 2 > 1 =

D5(A
′
abcd

(1)) and hence, none pair of distinct algebras Aabcd and A′
αβγδ are isotopic

if a 6= 0 6= α. Similarly to the previous cases, the next result holds.

Theorem 3.3.20. Let K be a field of characteristic three. Then,

a) If K is algebraically closed, then the isomorphism classes of F7(K) are

{A0000, A0001, A0010, A0011, A0100, A1001, A1(−1)10, A
′
1000} ∪ {A1b00 | b ∈ K}.

b) If K = Fq, then the isomorphism classes of F7(K) are

{A0000, A0001, A0010, A0011, A0100, A1001, A1002, A1(−1)10, A
′
1000} ∪ {A1b00 | b ∈ K}.

c) If K is algebraically closed or finite, then the isotopism classes of F7(K) are

{A0000, A0001, A0010, A0100, A1000, A1100, A1(−1)00, A1(−1)10, A
′
1000}.

�



Chapter 4

Isotopisms of Malcev

partial-magma algebras

Partial-magma algebras were introduced in Chapter 2, where we focused in par-

ticular on the distribution of finite-dimensional partial-quasigroup rings over finite

fields. This chapter deals with the distribution into isotopism classes of the so-called

Malcev partial-magma algebras, which are partial-magma algebras that also are Mal-

cev algebras. The latter constitute a generalization of Lie algebras. This chapter

is established, therefore, as a natural meeting point among the distinct results that

we have exposed until now.

4.1 Preliminaries

We expose here some basic concepts and results on Malcev algebras that we use

throughout the chapter. For more details about this topic we refer to the original

articles of Malcev [225] and Sagle [274].

In 1955, Malcev [225] introduced the concept of Malcev algebra as the tangent

algebra of a local analytic Moufang loop. It was Sagle [274] who, shortly after, pre-

sented Malcev algebras in a formal way as a generalization of Lie algebras. Specif-

ically, a Malcev algebra A over a field K is an anticommutative algebra such that

u2 = 0, for all u ∈ A, and

((uv)w)u+ ((vw)u)u+ ((wu)u)v = (uv)(uw), for all u, v, w ∈ A. (4.1)

79
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This is equivalent to the so-called Malcev identity

M(u, v, w) = J(u, v, w)u− J(u, v, uw) = 0, for all u, v, w ∈ A, (4.2)

where J denotes the Jacobian. If the base field is the finite field Fq, with q a power

prime and characteristic distinct from two, then both identities (4.1) and (4.2) are

equivalent to the Sagle identity

S(u, v, w, y) = ((uv)w)y+((vw)y)u+((wy)u)v+((yu)v)w− (uw)(vy) = 0, (4.3)

for all u, v, w, y ∈ A. Unlike Malcev identity, which is not linear in its first argument

u ∈ A, Sagle identity is linear in the four arguments u, v, w, y ∈ A and invariant

under cyclic permutations of the variables.

Every Lie algebra is, therefore, a Malcev algebra. If the Jacobi identity does not

hold, then the Malcev algebra is said to have a Jacobi anomaly. In quantum me-

chanics, the existence of Jacobi anomalies in the underlying non-associative algebraic

structure related to the coordinates and momenta of a quantum non-Hamiltonian

dissipative system was already claimed by Dirac [107] in the process of taking Pois-

son brackets. In String Theory, for instance, one such an anomaly is involved by

the non-associative algebraic structure that is defined by coordinates (x) and ve-

locities or momenta (v) of an electron moving in the field of a constant magnetic

charge distribution, at the position of the location of the magnetic monopole [214].

In particular, J(v1, v2, v3) = −
−→
∇ ·
−→
B (x), where

−→
∇ ·
−→
B (x) denotes the divergence of

the magnetic field
−→
B (x). The underlying algebraic structure constitutes a non-Lie

Malcev algebra [152], with the commutation relations [xa, xb] = 0, [xa, vb] = iδab
and [va, vb] = iǫabcBc(x), where a, b, c ∈ {1, 2, 3}, δab denotes the Kronecker delta

and ǫabc denotes the Levi-Civita symbol. If the magnetic field is proportional to

the coordinates, the latter can be normalized and Bc(x) can then be supposed to

coincide with xc. The resulting algebra is then called magnetic [153]. A generaliza-

tion to electric charges has recently been considered [154] by defining the products

[xa, xb] = −iǫabcEc(x, v), where the electric field E as well as the magnetic field

B must depend not only on coordinates but also on velocities. Remark that both

magnetic and electric algebras constitute partial-magma algebras.

A main open problem in the theory of Malcev algebras is their enumeration and

distribution into isomorphism classes [198, 199, 273]. Over finite fields, this problem

has already been dealt with for Lie algebras of dimension up to six. Particularly,

De Graaf [149] made use of Gröbner bases and Computational Algebraic Geometry
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in order to determine the distribution of solvable Lie algebras of dimension up to

four over any field, whereas Strade [289] obtained that of nonsolvable Lie algebras

of dimension up to six over a finite field. The classification of nilpotent Lie algebras

of dimension up to six over any field is also known [87]. The authors in this last

reference indicated explicitly that some of their results were inspired by Gröbner

basis computations.

4.2 Malcev partial-magma algebras

From here on, we denote by Mn,q the set of n-dimensional Malcev partial-magma

algebras over the finite field Fq, with q a power prime. Every algebra in this set

is described by means of a basis of vectors satisfying the conditions exposed in the

next result.

Lemma 4.2.1. Let n ≥ 3. Every n-dimensional non-abelian Malcev partial-magma

algebra based on a partial-magma ([n], ·) holds, up to isomorphism, one of the next

two non-isomorphic possibilities

a) e1e2 = e2, or

b) e1e2 = e3 and there does not exist a non-zero structure constant cij such that

i · j ∈ {i, j}.

Proof. Since the algebra is not abelian, there exists at least one non-zero structure

constant. If there exist two distinct positive integers i, j ≤ n such that cij 6= 0

and i · j = j, then we consider the isomorphism that maps ei and ej to cije1 and

e2, respectively, and preserves the rest of basis vectors. We get in this way the

product e1e2 = e2. Otherwise, we take a non-zero structure constant cuv and the

isomorphism that maps eu, ev and eu·v to cuve1, e2 and e3, respectively, in order to

get the product e1e2 = e3.

Every Malcev algebra is binary-Lie, that is, any two of its elements generate a

Lie subalgebra. As a consequence, every Malcev algebra of dimension n ≤ 3 is a Lie

algebra. Particularly, the only one-dimensional Malcev algebra is the abelian and

the only two-dimensional non-abelian Malcev algebra is, up to isomorphism, the

partial-magma algebra determined by the product of basis vectors e1e2 = e2. The
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next theorem deals with the distribution of three-dimensional Malcev partial-magma

algebras over a finite field into isomorphism classes. In the statement of the result,

each isomorphism class is labeled according to the notation given by De Graaf [149]

and Strade [289] in their respective classifications of solvable and non-solvable Lie

algebras, but we have chosen for its description a basis that follows the conditions

exposed in Lemma 4.2.1.

Theorem 4.2.2. Every three-dimensional Malcev partial-magma algebra over the

finite field Fq, with q = pm a power prime, is isomorphic to exactly one of the next

algebras

a) The three-dimensional abelian Lie algebra L1.

b) The solvable Lie algebras

• L2 : e1e2 = e2 and e1e3 = e3.

• L3
0 : e1e2 = e2.

• L4
a : e1e2 = e3 and e1e3 = ae2, for all a ∈ Fq.

Here, L4
a
∼= L4

b if and only if there exists α ∈ Fq \ {0} such that a = α2b.

c) The non-solvable Lie algebras

• W (1; 2)(1) : e1e2 = e2, e1e3 = e3 and e2e3 = e1, whenever p = 2.

• sl(2,Fq) : e1e2 = e2, e1e3 = −e3 and e2e3 = e1, whenever p 6= 2.

Proof. The mentioned classifications of Lie algebras obtained by De Graaf and

Strade enable us to ensure that each Lie algebra of the list constitutes an iso-

morphism class in M3,q. In order to ensure that there does not exist any other

isomorphism class, it is required to prove that none of the next three-dimensional

solvable Lie algebras is a partial-magma algebra

L3
a : e1e2 = e2 + ae3 and e1e3 = e2, with a ∈ Fq \ {0}. (4.4)

We prove this fact in Proposition 4.3.1.

For dimension n = 4, there exists, up to isomorphism, a unique non-Lie Malcev

algebra [200] over Fq, with q = pm a power prime, whenever p 6∈ {2, 3}. This

coincides with the next solvable partial-magma algebra
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M0 : e1e2 = e2, e1e3 = −e3, e1e4 = −e4 and e3e4 = −e2.

The distribution of M4,q into isomorphism classes is exposed in the next result,

which is again based on the classifications given by De Graaf and Strade.

Theorem 4.2.3. Let Fq be a finite field, with q = pm a power prime. Every Malcev

partial-magma algebra A ∈M4,q is isomorphic to exactly one of the next algebras

a) The non-Lie Malcev algebra M0.

b) The four-dimensional abelian Lie algebra M1.

c) The solvable Lie algebras

• M2 : e1e2 = e2, e1e3 = e3 and e1e4 = e4.

• M3
−1 : e1e2 = e2, e1e3 = e4 and e1e4 = e3.

• M3
0 : e1e2 = e2, e1e3 = e4 and e1e4 = e4.

• M4 : e1e2 = e2 and e1e3 = e2.

• M5 : e1e2 = e3.

• M6
0,0 : e1e2 = e2, e1e3 = e4 and e1e4 = e2.

• M7
0,0 : e1e2 = e3 and e1e3 = e4.

• M7
a,0 : e1e2 = e3, e1e3 = e4 and e1e4 = ae2, for all a ∈ Fq \ {0}.

Here, M7
a,0
∼= M7

b,0 if and only if there exists α ∈ Fq \ {0} such that a = α3b.

• M7
0,a : e1e2 = e3, e1e3 = e4 and e1e4 = ae3, for all a ∈ Fq \ {0}.

Here, M7
0,a
∼= M7

0,b if and only if there exits α ∈ Fq \ {0} such that a = α2b.

• M8 : e1e2 = e2 and e3e4 = e4.

• M11
1,0 : e1e2 = e2, e1e4 = 1e4, e2e4 = e3 and e3e4 = e2, whenever p = 2.

• M12 : e1e2 = e2, e1e3 = 2e3, e1e4 = e4 and e2e4 = −e3, whenever p 6= 2.

• M13
0 : e1e2 = e2, e1e3 = e3, e1e4 = e2 and e2e4 = −e3.

• M14
a : e1e2 = e3, e1e3 = ae2 and e2e3 = e4, for all a ∈ Fq \ {0}.

Here, M14
a
∼= M14

b if and only if there exists α ∈ Fq \ {0} such that a = α2b.

d) The non-solvable Lie algebras over a field of characteristic two

• W (1; 2) : e1e2 = e2, e1e3 = e3, e2e3 = e1 and e3e4 = e2.
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• W (1; 2)(1) ⊕ Z(A) : e1e2 = e2, e1e3 = e3 and e2e3 = e1.

e) The non-solvable Lie algebra over a field of characteristic distinct from two

• gl(2,Fq) : e1e2 = e2, e1e3 = −e3, e2e3 = e1, e2e4 = e2 and e3e4 = −e3.

Proof. The classification given by De Graaf and Strade for solvable and non-solvable

four-dimensional Lie algebras over finite fields implies that all these algebras con-

stitute distinct isomorphism classes. In order to ensure that the distribution is

exhaustive, it is required to prove that none of the next four-dimensional solvable

Lie algebras is isomorphic to a partial-magma algebra

M3
a : e1e2 = e2, e1e3 = e4 and e1e4 = −ae3 + (a+ 1)e4, with a 6∈ {0,−1}. (4.5)

M6
a,b : e1e2 = e2+ae3+be4, e1e3 = e4 and e1e4 = e2, for all (a, b) ∈ F2

q\(0, 0). (4.6)

M7
a,a : e1e2 = e3, e1e3 = e4 and e1e4 = ae2 + ae3, for all a ∈ Fq \ {0}. (4.7)

M9
a0

: e1e2 = e2 + a0e3, e1e3 = e2, e2e4 = e2 and e3e4 = e3,

whenever p=2 and a0 ∈ Fq is such that T 2 − T − a0
has no root in Fq.

(4.8)

M13
a : e1e2 = e2+ae4, e1e3 = e3, e1e4 = e2 and e2e4 = −e3, for all a ∈ Fq\{0}. (4.9)

We prove this fact in Proposition 4.3.4.

In order to finish the proofs of Theorems 4.2.2 and 4.2.3, we are going to identify

the sets Ln,q and Mn,q of n-dimensional Lie and Malcev partial-magma algebras

over the finite field Fq, where q = pm is a power prime, with the algebraic set of

an ideal of polynomials. Let X and Fq[X ] respectively be the set of n3 variables

{ckij | i, j, k ≤ n} and its related multivariate polynomial ring over Fq. Let A be the

n-dimensional algebra over Fq[X ] with basis {e1, . . . , en} so that

eiej =
n
∑

k=1

ckijek, (4.10)

for all i, j ≤ n. Let us also consider

i. The coefficient lijkl ∈ Fq[X ] of el in the Jacobi identity J(ei, ej , ek) = 0, for all

i, j, k ≤ n.
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ii. The coefficient muijk ∈ Fq[X ] of ek in the Malcev identity M(u, ei, ej) = 0, for

all u ∈ A and i, j ≤ n.

iii. The coefficient sijklm ∈ Fq[X ] of em in the Sagle identity S(ei, ej , ek, el) = 0, for

all i, j, k, l ≤ n, whenever p 6= 2.

Finally, let us define the ideal in Fq[X ]

I = 〈 cjii | i, j ≤ n 〉+〈 ckij−c
k
ji | i, j, k ≤ n 〉+〈 ckijc

k′

ij | i, j, k, k
′ ≤ n; k < k′ 〉. (4.11)

The next results follow similarly to Theorem 2.2.3 and Corollary 2.2.4.

Theorem 4.2.4. The sets Ln,q andMn,q are respectively identified with the algebraic

sets defined by the zero-dimensional radical ideals in Fq[X ]

IL = 〈 lijkl | i, j, k, l ≤ n 〉+ I and IM = 〈muijk | u ∈ A, i, j, k ≤ n 〉+ I.

If the characteristic p of the base field is not two, then the setMn,q is also identified

with the algebraic set defined by the zero-dimensional radical ideal in Fq[X ]

IS = 〈 sijklm | i, j, k, l,m ≤ n 〉+ I.

Besides, |Ln,q| = dimFq
(Fq[X ]/IL) and |Mn,q| = dimFq

(Fq[X ]/IM). The latter coin-

cides with dimFq
(Fq[X ]/IS) if p 6= 2. �

Corollary 4.2.5. Let Fq be a finite field, with q a prime power. The run time that

is required by the Buchberger’s algorithm in order to compute the reduced Gröbner

bases of the ideals IL, IM and IS in Theorem 4.2.4 are, respectively, qO(n3) +O(n8),

max{3, q}O(n3) +O(q2n) and qO(n3) +O(n10). �

The previous result discards the use of the ideal IM whenever the characteristic of

the base field is not two. In order to compute the reduced Gröbner bases of the ideals

in Theorem 4.2.4 and hence, their respective algebraic sets and Krull dimensions, we

have implemented in the library isotopism.lib three subprocedures called JacobiId,

MalcevId and SagleId and a main procedure called MalcevAlg. The subprocedure

JacobiId outputs the list of polynomials corresponding to the coefficient of each basis

vector in the Jacobi identity related to any three arbitrary vectors of the algebra A.

Similar lists of polynomials are output by the rest of subprocedures. Their respective

pseudocodes are described in Algorithms 4-6.
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Algorithm 4 Polynomials related to the Jacobi identity in A.

1: procedure JacobiId(u, v, w)

2: L1← Prod(Prod(u, v), w);

3: L2← Prod(Prod(v, w), u);

4: L3← Prod(Prod(w, u), v);

5: for i← 1, n do

6: L1i ← L1i + L2i + L3i;

7: end for

8: return L1

9: end procedure

Algorithm 5 Polynomials related to the Malcev identity in A.

1: procedure MalcevId(u, v, w)

2: L1← Prod(JacobiId(u, v, w), u);

3: L2← JacobiId(u, v, P rod(u, w));

4: for i← 1, n do

5: L1i ← L1i − L2i;

6: end for

7: return L1

8: end procedure

Algorithm 6 Polynomials related to the Sagle identity in A.

1: procedure SagleId(u, v, w, y)

2: L1← Prod(Prod(Prod(u, v), w), y);

3: L2← Prod(Prod(Prod(v, w), y), u);

4: L3← Prod(Prod(Prod(w, y), u), v);

5: L4← Prod(Prod(Prod(y, u), v), w);

6: L5← Prod(Prod(u, w), P rod(v, y));

7: for i← 1, n do

8: L1i ← L1i + L2i + L3i + L4i − L5i;

9: end for

10: return L1

11: end procedure
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The effectiveness of all these procedures has been checked by computing the

cardinalities that are exposed in Tables 4.1 and 4.2. The run time and memory usage

are explicitly indicated in both tables. Both measures of computation efficiency fit

positive exponential models even for dimension n = 4.

Run time Used memory

q |M3,q| IL IM/S IL IM/S

2 32 0 s 0 s 0 MB 0 MB

3 123 0 s 0 s 0 MB 0 MB

5 581 0 s 0 s 0 MB 0 MB

7 1,567 0 s 0 s 0 MB 0 MB

11 5,891 0 s 0 s 0 MB 0 MB

13 9,613 0 s 0 s 0 MB 0 MB

17 21,137 0 s 0 s 0 MB 0 MB
...

...
...

...
...

...

499 498,492,523 0 s 0 s 0 MB 0 MB

Table 4.1: Computation of |M3,q|.

q |L4,q| Run time Used memory |M4,q| Run time Used memory

2 853 0 s 0 MB 897 6 s 0 MB

3 7,073 1 s 0 MB 7,073 8 s 0 MB

5 89,185 11 s 0 MB 89,377 41 s 0 MB

7 445,537 20 s 3 MB 445,969 55 s 2 MB

11 3,803,041 91 s 17 MB 3,804,241 154 s 427 MB

13 8,412,193 183 s 676 MB 8,413,921 258 s 859 MB

17 30,247,297 595 s 1,2 GB 30,250,369 752 s 1,5 GB

Table 4.2: Computation of |L4,q| and |M4,q|.

4.3 Malcev partial-magma algebras of small di-

mensions

We have implemented the procedures described in the previous section to determine

the distribution of three- and four-dimensional Malcev partial-magma algebras into

isomorphism and isotopism classes.
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4.3.1 Three-dimensional Malcev partial-magma algebras

The next result finishes the proof of Theorem 4.2.2 about the distribution ofM3,q

into isomorphism classes.

Proposition 4.3.1. None of the algebras that are described in (4.4) is isomorphic

to a Lie partial-magma algebra.

Proof. Let a ∈ Fq \ {0}. Let f be an isomorphism between the algebra L3
a and

a Malcev partial-magma algebra A and let F = (fij) be the nonsingular matrix

related to f . This algebra A should have a two-dimensional derived algebra and

its solvability index should be 2. The implementation of Algorithm 1 into a case

study that takes into account Lemma 4.2.1 and the Jacobi identity involves A to be

isomorphic to one of the next two partial-magma algebras

a) e1e2 = e3 and e1e3 = αe2.

b) e1e2 = e2 and e1e3 = αe3.

In both cases, α ∈ Fq \{0}. The implementation of the procedure isoMalcev enables

us to compute for each case the corresponding reduced Gröbner basis in Theorem

4.2.4. In (a), the normal form of the polynomial that is related to the determinant

of the corresponding matrix F modulo this reduced Gröbner basis is zero whatever

the number α and the characteristic of the base field are. This means that F is a

singular matrix, which is a contradiction with being f an isomorphism. Hence, L3
a is

not isomorphic to a Malcev partial-magma algebra of type (a). On the other hand,

in (b), the previous normal form is the polynomial (1− α)f11f32f33. The regularity

of the matrix F involves that α 6= 1. Besides, the reduced Gröbner basis involves

the identity aα = a. Since α 6= 1, it must be a = 0, what is a contradiction with the

hypothesis. Hence, L3
a is not isomorphic either to a Malcev partial-magma algebra

of type (b).

Even if no every three-dimensional Malcev algebra is isomorphic to a Lie partial-

magma algebra, the next result shows that this statement is true in the case of

dealing with isotopisms instead of isomorphisms.

Proposition 4.3.2. Every three-dimensional Malcev algebra is isotopic to a Lie

partial-magma algebra.
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Proof. The result holds from the fact that, for all a ∈ Fq \ {0}, the Lie algebras L3
a

and L2 are isotopic by means of the strong isotopism (Id, Id, h), where h(e1) = e1,

h(e2) = e3 and h(e3) = −
1
a
(e3 − e2).

The next result indicates the distribution of three-dimensional Malcev partial-

magma algebras over a finite field into isotopism classes.

Theorem 4.3.3. Let Fq be a finite field, with q = pm a prime power. There exist

four isotopism classes of M3,q. They correspond to the abelian algebra and the

algebras L2, L3
0 and

• W (1; 2)(1), if p = 2.

• sl(2,Fq), otherwise.

Proof. From Proposition 4.3.2, it is enough to study the distribution into isotopism

classes of the Lie algebras in Theorem 4.2.2. Particularly, from Lemma 2.1.5, the

algebras W (1; 2)(1) and sl(2,Fq), with a three-dimensional derived algebra, are not

isotopic to any other Malcev partial-magma algebra of a distinct isomorphism class.

Similarly, the algebra L2, with a two-dimensional derived algebra, can only be iso-

topic to L4
a, with a ∈ Fq \ {0}; whereas the algebra L3

0, with an one-dimensional

derived algebra, can only be isotopic to L4
0. Specifically, it is straightforward verified

that the triple (Id, Id, h) such that h(e2) = e3 and h(e3) = ae2 is a strong isotopism

between L2 and L4
a, whereas the triple (Id, Id, (23)) is a strong isotopism between

L3
0 and L4

0.

Tables 4.3 and 4.4 show, respectively, some graph invariants for the graphs G1

and G2 that were described in Chapter 2 and that are related to the distribution of

three-dimensional Lie partial-magma algebras over the finite fields F2 and F3 into

isotopism classes. The classification that is shown in both Tables is based on the

articles of De Graaf [149] and Strade [289] about the distribution of solvable and

non-solvable Lie algebras into isomorphism classes. Observe that the four isotopism

classes that are exposed in Theorem 4.3.3 coincide exactly with the distinct sets of

invariants that are exposed in Table 4.3.
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F2 F3

A Vertices Edges Vertices Edges

Abelian (0,0,0,0) 0 (0,0,0,0) 0

e1e2 = e3 (6,6,1,24) 72 (24,24,2,432) 1296

e1e2 = e2 (6,6,1,24) 72 (24,24,2,432) 1296

e1e2 = e3, e1e3 = −e2 - - (26,26,8,576) 1728

e1e2 = e3, e1e3 = e2 (7,7,3,36) 108 (26,26,8,576) 1728

e1e2 = e2, e1e3 = e3 (7,7,3,36) 108 (26,26,8,576) 1728

e1e2 = e2, e1e3 = −e3, e2e3 = −e1 (7,7,7,42) 126 - -

e1e2 = e2, e1e3 = −e3, e2e3 = 2e1 - - (26,26,26,624) 1872

Table 4.3: Graph invariants for the graph G1 related to each isomorphism class of

three-dimensional Lie partial-magma algebras over the finite fields F2 and F3.

F2 F3

A Vertices Edges Triangles Vertices Edges Triangles

Abelian (0,0,0,0) 0 0 (0,0,0,0) 0 0

e1e2 = e3 (6,6,1,24) 78 0 (24,24,2,432) 1320 0

e1e2 = e2 (6,6,1,24) 80 9 (24,24,2,432) 1324 38

e1e2 = e3, e1e3 = −e2 - - - (26,26,8,576) 1770 8

e1e2 = e3, e1e3 = e2 (7,7,3,36) 121 11 (26,26,8,576) 1770 80

e1e2 = e2, e1e3 = e3 (7,7,3,36) 121 27 (26,26,8,576) 1770 152

e1e2 = e2, e1e3 = −e3, e2e3 = −e1 (7,7,7,42) 147 19 - - -

e1e2 = e2, e1e3 = −e3, e2e3 = 2e1 - - - (26,26,26,624) 1950 74

Table 4.4: Graph invariants for the graph G2 related to each isomorphism class of

three-dimensional partial-magma algebras over the finite fields F2 and F3.

4.3.2 Four-dimensional Malcev partial-magma algebras

The next result concludes the proof of Theorem 4.2.3 about the distribution of

four-dimensional Malcev partial-magma algebras into isomorphism classes.

Proposition 4.3.4. None of the four-dimensional Lie algebras that are described

in (4.5)–(4.9) is isomorphic to a Malcev partial-magma algebra.

Proof. The implementation of Algorithm 1 into a case study that takes into account

the derived series and centers of a Malcev algebra, together with the Jacobi identity,

enables us to ensure that any possible four-dimensional Malcev partial-magma al-

gebra with a two-dimensional derived algebra and solvability index 2 is isomorphic

to exactly one of the algebras M3
0 , M

6
0,0, M

7
0,a (with a ∈ Fq) or M13

0 . Hence, the
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Lie algebras M6
0,b (with b ∈ Fq \ {0}) and M9

a0
are not isomorphic to any Malcev

partial-magma algebra. Further, a similar case study enables us to ensure that none

of the algebras M3
a , M

6
a,b, M

7
a,a and M13

a , with a, b ∈ Fq such that a 6= 0, is isomor-

phic to a Malcev partial-magma algebra. This is due to the fact that any possible

four-dimensional Malcev partial-magma algebra with a three-dimensional derived

algebra is isomorphic to one of the algebras M2, M3
−1 or M

7
a,0 if its solvability index

is 2 or toM11
1,0, M

12 orM14
a if its solvability index is 3. In both cases, a ∈ Fq\{0}.

We finish our study by focusing on the distribution of four-dimensional Malcev

partial-magma algebras into isotopism classes.

Proposition 4.3.5. Let Fq be a finite field, with q = pm a prime power. If p 6= 2,

then every four-dimensional Malcev algebra over Fq is isotopic to a Malcev partial-

magma algebra. Otherwise, this assertion holds except for those Malcev algebras that

are isomorphic to the Malcev algebra M9
a0
.

Proof. Let Fq be a finite field. The implementation of the procedure isoMalcev in

Algorithm 2 gives us the next isotopisms among the Malcev partial-magma alge-

bras described in Theorem 4.2.3 and those in (4.5)–(4.9). For each pair of isotopic

algebras we show a strong isotopism (f, f, h), which is described by means of those

basis vectors that are not preserved by the transformations f and h.

a) M2 ≃M3
a ≃M6

b,c, for all a, b, c ∈ Fq such that a 6∈ {0,−1} and b 6= 0. Here,

• The triple (Id, Id, h) such that h(e3) = e4 and h(e4) = −ae3 + (a+ 1)e4 is a

strong isotopism between M2 and M3
a , for all a ∈ Fq \ {0,−1}.

• The triple (Id, Id, h) such that h(e2) = e2 + be3 + ce4, h(e3) = e4 and

h(e4) = e2 is a strong isotopism between M2 and M6
b,c, for all b, c ∈ Fq such

that b 6= 0.

b) M0 ≃ M13
a , for all a ∈ Fq \ {0}. Here, the triple (f, f, h) such that f(e2) =

h(e2) = e3, f(e3) = −e4, f(e4) = e2−e4, h(e3) = e2 and h(e4) = −ae4 is a strong

isotopism between M0 and M13
a , for all a ∈ Fq \ {0}.

A case study based on the same implementation of the procedure isoMalcev also

enables us to ensure that, if the characteristic of the base field is two, then the

Malcev algebra M9
a0

is not isotopic to any Malcev partial-magma algebra with a

two-dimensional derived algebra and solvability index 3.
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The proof of Proposition 4.3.5 enables us to ensure that isotopisms do not pre-

serve Jacobi anomalies. Specifically, we have proved that the non-Lie Malcev algebra

M0 is isotopic to any Lie algebra M13
a , with a ∈ Fq \ {0}. The next result holds

straightforward.

Theorem 4.3.6. Any four-dimensional Malcev algebra is isotopic to a Lie algebra.

�

The distribution of four-dimensional Malcev algebras over finite fields into iso-

topism classes is exposed in the next final result.

Theorem 4.3.7. Let Fq be a finite field, with q a power prime. There exist eight

isotopism classes of M4,q. They correspond to the abelian algebra and the algebras

M0, M2, M3
0 , M

4, M8, M13
0 and M14

1 .

Proof. From Proposition 4.3.5, it is enough to study the distribution into isotopism

classes of the Lie partial-magma algebras in Theorem 4.2.3. This distribution has

been obtained again from the implementation of the procedure isoMalcev in Algo-

rithm 2. For each pair of isotopic algebras we show a strong isotopism (f, f, h),

which is described by means of those basis vectors that are not preserved by the

transformations f and h. Besides, each class is described according to the dimension

of their derived algebras and centers and the isotopism invariants described in (3.4)

and (3.5). Hereafter, we suppose q = pm to be a prime power.

a) dim(C2(M)) = 1: M4 ≃M5. Here, the triple (f, f, (23)) such that f(e3) = e2+e3
is a strong isotopism between both algebras.

b) dim(C2(M)) = 2:

• dim(Z(M)) = 0:

– d3(M) = 0: M13
0 .

– d3(M) = 1: M8.

• dim(Z(M)) = 1: M3
0 ≃M6

0,a ≃M7
0,b, for all a, b ∈ Fq such that b 6= 0. Here,

– The triple (f, f, h) such that f(e4) = −e2+ e3+ e4 and h(e2) = e2−ae4
is a strong isotopism between M3

0 and M6
0,a, for all a ∈ Fq.

– The triple (f, f, (23)) such that f(e4) = e3 + e4 is a strong isotopism

between M3
0 and M7

0,b, for all b ∈ Fq \ {0}.
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c) dim(C2(M)) = 3:

• dim(Z(M)) = 0:

– D3(M) = 1: If p = 2, then M0 ≃ M11
1,0 ≃ W (1; 2). Otherwise, M0 ≃

M12. Here,

∗ If p = 2, then the triple ((14)(23), (14)(23), Id) is a strong isotopism

between M0 and M11
1,0, whereas the triple ((1324), (1324), (143)) is

a strong isotopism between M0 and W (1; 2).

∗ If p 6= 2, then the triple (f, f, h) such that f(e2) = e3, f(e3) = −2e4,

f(e4) = e2 + e4, h(e2) = 2e3, h(e3) = 2e4 and h(e4) = −e2 − e4 is a

strong isotopism between M0 and M12.

– D3(M) = 3: M2 ≃M3
−1 ≃M7

a,a ≃M7
c,0, for all a, c ∈ Fq \ {0}. Here,

∗ The triple (Id, Id, (34)) is a strong isotopism between M2 and M3
−1.

∗ The triple (Id, Id, h) such that h(e2) = e3, h(e3) = e4 and h(e4) =

ae2 + ae3 is a strong isotopism between M2 and M7
a,a, for all a ∈

Fq \ {0}.

∗ The triple (Id, Id, h) such that h(e2) = e3, h(e3) = e4 and h(e4) =

ce2 is a strong isotopism between M2 and M7
c,0, for all c ∈ Fq \ {0}.

• dim(Z(M)) = 1: M14
1 ≃ M14

a , for all a ∈ Fq \ {0}. If p = 2, then M14
1 ≃

W (1; 2)(1) ⊕ Z(L). Otherwise, M14
1 ≃ gl(2,Fq). Here,

– The triple (Id, Id, h) such that h(e2) = ae2 is a strong isotopism between

M14
1 and M14

a , for all ∈ Fq \ {0}.

– If p = 2, then the triple (Id, Id, (1432)) is a strong isotopism between

M14
1 and W (1; 2)(1) ⊕ Z(L).

– If p 6= 2, then the triple (f, f, h) such that f(e4) = e1 + e4, h(e1) = e4,

h(e2) = −e3, h(e3) = e2 and h(e4) = e1 is a strong isotopism between

M14
1 and gl(2,Fq).
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Chapter 5

Isotopisms of evolution algebras

The implementation of results, procedures and algorithms that have been described

throughout this manuscript enables us to show the importance that isotopisms can

have in other fields. In this regard, the final chapter of the manuscript deals with

the set En(K) of n-dimensional evolution algebras over a field K, whose description

has a certain similarity with that of pre-filiform Lie algebras, which were introduced

in Chapter 3, and whose distribution into isotopism classes is uniquely related with

mutations in non-Mendelian Genetics. We focus on the two-dimensional case, which

is related to the asexual reproduction processes of diploid organisms. We prove in

particular the distribution of two-dimensional evolution algebras into four isotopism

classes, whatever the base field is. After that, we deal with the distribution of

two-dimensional evolution algebras over any base field into isomorphism classes.

5.1 Preliminaries

In this section we expose some basic concepts and results on Genetics and evolution

algebras that are used throughout the chapter. For more details about these topics

we refer, respectively, to the manuscripts of Wörz-Busekros [318] and Tian [300].

Let us start with some preliminary concepts in Genetics. A gene is the molecular

unit of hereditary information. This consists of deoxyribonucleic acid (DNA), which

contains in turn the code to synthesize proteins and determines each one of the

attributes that characterize and distinguish each organism. Genes related to a given

attribute can have alternative forms, which are called alleles. Thus, for instance,

95
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color of eyes are related to brown, green and blue alleles. Genes are disposed in

chromosomes, which constitute long strands of DNA formed by ordered sequences

of genes. The location of alleles related to a given attribute in a chromosome is its

locus, which is preserved by inheritance. Chromosomes carry, therefore, the genetic

code of any organism.

Chromosomes also play a main role in the process of reproduction, because the

attributes that characterize the offspring are inherited from the alleles that are

contained in the chromosomes of the parents. This inheritance depends on the type

of organisms under consideration. Thus, for instance, diploid organisms carry a

double set of chromosomes (one of each parent). They reproduce by means of sex

cells or gametes, each of them carrying a single set of chromosomes. The fusion of

two gametes of opposite sex gives rise to a zygote, which contains a double set of

chromosomes. Each one of the attributes that characterize the new diploid organism

is uniquely determined by the pair of alleles having the same loci in these two

chromosomes. If A and a denote these two alleles, it is said that the new individual

is of zygotic type Aa. If A = a, then the zygote is called homozygous. Otherwise, it

is called heterozygous. There exist distinct laws that regulate, from a probabilistic

point of view, the theoretical influence of each one of these two alleles in the final

attribute inherited by the offspring. Thus, for instance, the laws of simple Mendelian

inheritance indicate that for each pair of alleles related to a given attribute, the next

generation will inherit with equal frequency both alleles.

Nonassociative algebras were introduced into Genetics by Etherington [115, 116,

117] in order to endow Mendel’s laws with a mathematical formulation that enables

us to deal with the sexual reproduction and the mechanism of inheritance of an

organism by considering the fusion of gametes into a zygote as an algebraic mul-

tiplication whose structure constants determine the probability distribution of the

gametic output. Specifically, if β = {e1, . . . , en} constitutes the set of genetically

distinct alleles that are related to a given attribute of a population, then a genetic

algebra over a field K that is based on the set β is an n-dimensional algebra of

basis β whose structure constants in each product eiej =
∑n

k=1 cijkek refer to the

probability that an arbitrary gamete produced by an individual of zygotic type eiej
contains the allele ek. Hence,

∑n
k=1 cijk = 1, for all i, j ≤ n. Here, all zygotes

have the same fertility and there is an absence of selection. Observe that nilpotency

and solvability of genetic algebras characterize the disappearance of population in

evolution processes [117].
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Depending on some possible variations in the initial conditions, distinct types

of genetic algebras can be defined. Thus, for instance, a gametic algebra is a finite-

dimensional real genetic algebra, where each element
∑n

i=1 aiei that satisfies that 0 ≤

ai ≤ 1, for all i ≤ n, and
∑n

i=1 ai = 1, can represent a population, a single individual

or a single gamete. For each i ≤ n, the coefficient ai constitutes, respectively, the

percentage of frequency of the allele ei in the corresponding population, individual or

gamete. In simple Mendelian inheritance, for instance, we have that eiej =
1
2
(ei+ej),

for any pair of alleles ei and ej . Observe that, if two gametes carry the same allele,

then the offspring will inherit it. Particularly, in case of dealing with a diploid

organism, the multiplication table of the corresponding two-dimensional gametic

algebra of basis {e1, e2} is, therefore,

e1 e2

e1 e1
1
2
(e1 + e2)

e2
1
2
(e1 + e2) e2

Holgate and Campos [73, 168] showed that certain known families of genetic

algebras are isotopic. Particularly, they considered isotopisms of genetic algebras as

a way to formulate mathematically the mutation of alleles in the inheritance process.

In this regard, a second type of genetic algebra that is interesting to be considered

here is that formed by mutation algebras. In these algebras, before of participating

in the formation of a zygote, each allele ei mutates to an allele ej with probability

mij . Hence, 0 ≤ mij ≤ 1 and
∑n

j=1mij = 1. Specifically, if (A, ·) is a genetic

algebra over a field K of basis β = {e1, . . . , en} and M = (mij) is an n × n matrix

with entries in K, then we can define the mutation algebra (A, ◦) of basis β such

that ei ◦ ej =
∑n

k=1mikek ·
∑n

l=1mjlel =
∑n

k,l=1mikmjlei · ek. Mutation algebras

constitute, therefore, principal isotopes of genetic algebras.

A third type of genetic algebras, whose study constitutes in fact the main goal

of this chapter, is that formed by evolution algebras. In order to deal with asexual

reproduction processes, Tian and Vojtechovsky [300, 301] introduced these algebras

as a type of genetic algebra that makes possible to deal algebraically with the self-

reproduction of alleles in non-Mendelian Genetics. Nowadays, these algebras also

constitute a fundamental connection between algebra, dynamic systems, Markov

processes, Knot Theory, Graph Theory and Group Theory (see [197, 300]). Specifi-

cally, an n-dimensional algebra over a field K is said to be an evolution algebra if it

admits a natural basis {e1, . . . , en} such that the next two conditions hold
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• eiej = 0, if i 6= j.

• eiei =
∑n

j=1 tijej , for some structure constants ti1, . . . , tin ∈ K.

An evolution algebra is said to be nondegenerate if there does not exist any

zero row in the quadratic matrix (tij) formed by its structure constants, that is, if

eiei 6= 0, for all i ≤ n. Otherwise, this is said to be degenerate. Hereafter, the set of

n-dimensional evolution algebras over a field K is denoted as En(K).

As a genetic algebra, each basis vector of an evolution algebra constitutes an

allele; the product eiej = 0, for i 6= j, represents uniparental inheritance; the

product eiei represents self-replication; and each structure constant tij constitutes

the probability that the allele ei becomes the allele ej in the next generation. In

any case, the theory of evolution algebras has been being developed in the last years

with no probabilistic restrictions on the structure constants [70, 72, 76, 77, 110, 111,

201, 202, 203, 244]. An exhaustive list of papers related to this theory is exposed

online in https://www.math.nmsu.edu/∼jtian/e- algebra/e-alg-index.htm,

which is currently maintained by Tian himself.

A main problem in the theory of n-dimensional evolution algebras is their distri-

bution into isomorphism and isotopism classes. The former has already been dealt

with for two-dimensional evolution algebras over the complex field. Thus, for in-

stance, Camacho et al. [71] and Casas et al. [78] studied those evolution algebras in

E2(C) whose quadratic matrices are, respectively, Jordan matrices and upper trian-

gular matrices. With respect to arbitrary fields, Hegazi and Abdelwahab [165] have

recently classified nilpotent evolution algebras of dimension up to four. Particularly,

the next result is known.

Theorem 5.1.1 ([78]). Every two-dimensional non-abelian complex evolution alge-

bra A ∈ E2(C) is isomorphic to exactly one of the next algebras

• dimA2 = 1:

– E1 : e1e1 = e1.

– E2 : e1e1 = e2e2 = e1.

– E3 : e1e1 = e1 + e2 and e2e2 = −e1 − e2.

– E4 : e1e1 = e2.

• dimA2 = 2:
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– E5a,b : e1e1 = e1 + ae2 and e2e2 = be1 + e2, where a, b ∈ C are such that

ab 6= 1. Here, E5a,b
∼= E5b,a , for all a, b ∈ C.

– E6a : e1e1 = e2 and e2e2 = e1 + ae2, where a ∈ C. If a, b ∈ C \ {0}, then

E6a
∼= E6b if and only if a

b
= cos 2kπ

3
+ i sin 2kπ

3
, for some k ∈ {0, 1, 2}. �

To the best of the author knowledge, even if isotopisms have emerged as an

interesting tool to simulate mutations in genetic algebras, they have not yet been

considered in case of dealing with evolution algebras. The main goal of this chapter

is to delve into this aspect. Particularly, the next section deals with the distribution

of finite-dimensional evolution algebras over any base field into isotopism classes

according to their structure tuples and to the dimension of their annihilators. Af-

ter that, we focus on the corresponding distribution of two-dimensional evolution

algebras over any base field into isomorphism classes.

5.2 Structure tuples and annihilators

In this section we analyze two aspects of evolution algebras that can be used in

order to determine their distribution into isotopism and isomorphism classes: their

structure tuples and their annihilators. Let us study each aspect separately.

5.2.1 Structure tuples of evolution algebras

Evolution algebras have a certain similarity with pre-filiform Lie algebras, which

were introduced in Chapter 3. Particularly, the non-zero products of the basis

vectors of an n-dimensional pre-filiform Lie algebra are of the form eien, with i ≤ n,

whereas those of an n-dimensional evolution algebra are of the form eiei, with i ≤ n.

In this regard and similarly to what was exposed in the mentioned chapter, we

introduce the concept of structure tuple of an evolution algebra in En(K) as the

tuple T = (t1, . . . , tn) such that ti = eiei, for all i ≤ n. We denote this evolution

algebra by AT . Besides, from here on, the set of structure tuples of evolution algebras

in En(K) is denoted as Tn(K). This coincides with the n-dimensional K-vector space

with components in 〈 e1, . . . , en 〉. The next results follow analogously to Lemma

3.2.1 and Proposition 3.2.3, which were exposed in Chapter 3.
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Lemma 5.2.1. Let T and T ′ be two structure tuples in Tn(K) that are equal up to

permutation of their components and basis vectors. The evolution algebras AT and

AT ′ are strongly isotopic. �

Example 5.2.2. From Lemma 5.2.1, we have, for instance, that the evolution al-

gebras E1 and E4 in Theorem 5.1.1 are strongly isotopic. Specifically, the triple

(Id, Id, (12)) is a strong isotopism between both algebras. ⊳

Proposition 5.2.3. Let T be a structure tuple in Tn(K). There always exists a

structure tuple T ′ = (
∑n

j=1 t
′
1jej , . . . ,

∑n
j=1 t

′
njej) ∈ Tn(K) such that AT ′ is strongly

isotopic to AT and the next two conditions hold

a) If t′ii = 0 for some i ≥ 1, then t′jk = 0, for all j, k ≥ i.

b) If t′ii 6= 0 for some i ≥ 1, then t′ij = 0, for all j 6= i. �

Example 5.2.4. The proof of Proposition 5.2.3 follows similarly to that of Propo-

sition 3.2.3, which was referred to pre-filiform algebras. By following the steps of

that proof, we obtain, for instance, that the evolution algebra E3 in Theorem 5.1.1

is strongly isotopic to the evolution algebra A(e1,−e1) ∈ E2(C) by means of the strong

isotopism (Id, Id, h), where h(e1) = e1 − e2 and h(e2) = e2.

Similarly, any evolution algebra E5a,b in Theorem 5.1.1 is strongly isotopic to the

algebra E50,0 . Specifically, if a and b are two complexes numbers such that ab 6= 1,

then the triple (Id, Id, h) such that h(e1) = e1 − ae2 and h(e2) = e2 is a strong

isotopism between the evolution algebra E5a,b and the evolution algebra AT of struc-

ture tuple T = (e1, be1 + (1 − ab)e2) ∈ T2(C). Now, the triple (Id, Id, h′) such that

h′(e2) =
1

1−ab
(e2 − be1) and h′(e1) = e1 is a strong isotopism between the evolution

algebras AT and E50,0 .

Finally, we can prove that any evolution algebra E6a in Theorem 5.1.1 is also

strongly isotopic to the algebra E50,0 . Specifically, if a is a complex number distinct

of zero, then the triple ((12), (12), h′′) such that h′′(e1) = e1 − ae2 and h′′(e2) = e2
is a strong isotopism between the evolution algebras E6a and E50,0. ⊳
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We have mentioned that Lemma 5.2.1 and Proposition 5.2.3 follow similarly

to Lemma 3.2.1 and Proposition 3.2.3. Nevertheless, evolution algebras do not

hold a similar result to that exposed in Lemma 3.2.5, which is referred to the

fact that structure tuples that are equal up to addition of their components give

rise to strongly isotopic pre-filiform Lie algebras. Moreover, this result is not true

even for isotopisms of evolution algebras. Thus, for instance, the evolution alge-

bra E3 = A(e1+e2,−e1−e2) in Theorem 5.1.1 is not isotopic to the evolution algebra

A(e1+e2,0) ∈ E2(C), whose structure tuple results from that of E3 after adding its

first component to its second one. This follows from Proposition 2.1.4 and the fact

of being dimAnnE3(E3) = 0 6= 1 = dimAnnA(e1+e2,0)
(A(e1+e2,0)).

Let us finish this subsection by determining explicitly the distribution of the set

E2(C) into isotopism classes.

Proposition 5.2.5. There exist four isotopism classes of two-dimensional complex

evolution algebras. They correspond to the abelian algebra and the evolution algebras

E1, E2 and E50,0 in Theorem 5.1.1.

Proof. In Examples 5.2.2 and 5.2.4 we have already seen that

• E1 ≃ E4.

• E3 ≃ A(e1,−e1).

• E5a,b ≃ E6c , for all a, b, c ∈ C such that ab 6= 1 and c 6= 0.

Observe now that the triple (f, f, Id) such that f(e1) = −ie2 and f(e2) = e1
is a strong isotopism between the algebras E2 and A(e1,−e1). Hence, E2 ≃ E3. It

is enough to prove, therefore, that the four evolution algebras of the statement are

not isotopic. From Lemma 2.1.1, we can focus on the three algebras E1, E2 and

E50,0 . From Proposition 2.1.4, the former is not isotopic to E2 or E50,0 , because

dimAnnE1(E1) = 1 6= 0 = dimAnnE2(E2) = dimAnnE50,0
(E50,0). Finally, from

Lemma 2.1.5, the evolution algebras E2 and E50,0 are not isotopic, because E2
2 =

〈 e1 〉 ⊂ 〈 e1, e2 〉 = E2
50,0

.

The proof of Proposition 5.2.5 involves the fact that the existence of nilpotent

elements of evolution algebras is not preserved by isotopisms. Thus, for instance,

we have just seen that the evolution algebras E2 and E3 are isotopic. Nevertheless,
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even if the basis vector e2 is nilpotent in E2 (specifically, e32 = 0), the evolution

algebra E3 does not have nilpotent elements.

5.2.2 Annihilators of evolution algebras

Let n be a positive integer and let m be a non-negative integer such that m ≤ n. Let

En;m(K) denote the subset of n-dimensional evolution algebras over a field K having

an (n − m)-dimensional annihilator. The set {En;m(K) | 0 ≤ m ≤ n} constitutes,

therefore, a partition of the set En(K). The next results hold.

Lemma 5.2.6. Every evolution algebra in En;m(K) is isomorphic to an n-dimensional

evolution algebra with a natural basis {e1, . . . , en} such that eiei 6= 0 if and only if

i ≤ m.

Proof. Let A ∈ En;m(K) be an evolution algebra of natural basis {e1, . . . , en}. From

the description of the set En;m(K), there exists a subset S = {i1, . . . , im} ⊆ [n] such

that eiei 6= 0 if and only if i ∈ S. It is then enough to consider the isomorphism

that maps, respectively, the basis vectors ei1 , . . . , eim to e1, . . . , em and preserves the

rest of basis vectors.

Proposition 5.2.7. Let m and m′ be two distinct non-negative integers less than

or equal to n. Then, none evolution algebra in En;m(K) is isotopic to an evolution

algebra in En;m′(K).

Proof. The result follows straightforward from Proposition 2.1.4 and the fact that

AnnA−(A) = AnnA+(A) = AnnA(A), for all A ∈ En(K).

The next result deals with the distribution of the set En;m(K) into isomorphism

and isotopism classes, for all positive integer n ∈ N and m ∈ {0, 1, 2}. In the

statement of the result we make use of the description of the algebras that were

exposed in Theorem 5.1.1 with the exception of dealing here with n-dimensional

evolution algebras over the field K instead of two-dimensional complex evolution

algebras. Similar abuse of notation is done from here on in order to get a simple

and coherent labeling of the evolution algebras that are exposed in this chapter.
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Proposition 5.2.8. The next assertions hold.

a) The set En;0(K) is only formed by the n-dimensional abelian algebra.

b) Any evolution algebra in E1;1(K) is isomorphic to the algebra E1.

c) If n > 1, then any evolution algebra in En;1(K) is isomorphic to the algebra E1

or to the algebra E4.

d) Any evolution algebra in En;1(K) is isotopic to the algebra E1.

e) Any evolution algebra in E2;2(K) is isomorphic to an evolution algebra in E2;2(K)

with natural basis {e1, e2} such that e1e1 ∈ {e1, e2, e1 + e2}.

f) Any evolution algebra in En;2(K) is isotopic to E2 or E50,0 .

Proof. Let us prove each assertion separately.

a) This assertion follows straightforward from the definition of En;0(K).

b) This results follows from Proposition 2.1.2.

c) Let A be an n-dimensional evolution algebra in En;1(K) with a natural basis

{e1, . . . , en}, which is described by its quadratic matrix of structure constants

(tij). From Lemma 5.2.6, we can suppose that tij = 0, for all i > 1. Let j0 ≤ n

denote the minimum positive integer such that t1j0 6= 0. This exists because A is

non-abelian. Besides, we can suppose that j0 ∈ {1, 2}. Otherwise, it is enough

to consider the isomorphism (2j0) that switches the basis vectors e2 and ej0 . Let

us study both cases.

• If j0 = 1, then the linear transformation f that is defined such that f(e1) =

t11e1−
1
t11

∑n
j=2 t1jej and f(ei) = ei, for all i > 1, is an isomorphism between

A and the evolution algebra E1.

• If j0 = 2, then the linear transformation f that is defined such that f(e2) =
1
t12

(e2−
∑n

j=3 t1jej) and f(ei) = ei, for all i 6= 2, is an isomorphism between

A and the evolution algebra E4.

d) If n = 1, then the result follows immediately from Proposition 2.1.2. Otherwise,

it is enough to observe that the triple (Id, Id, (12)) is a strong isotopism between

the evolution algebras E1 and E4 in assertion (c).
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e) Let A be an evolution algebra in E2;2(K) with natural basis {e1, e2}. From Lemma

5.2.6, we can suppose the existence of a pair (a, b) ∈ K2 \ {(0, 0)} such that

e1e1 = ae1 + be2. If a 6= 0, then the algebra A is isomorphic to the evolution

algebra with the same natural basis such that e1e1 = e1, whenever b = 0, and

e1e1 = e1 + e2, whenever b 6= 0. To this end, it is enough to consider the

isomorphism f such that f(e1) = ae1 and

f(e2) =







e2, if b = 0,

a2

b
e2, otherwise.

If a = 0, then b 6= 0 and the algebra A is isomorphic to the evolution algebra

with the same natural basis such that e1e1 = e2 by means of the isomorphism

that maps e2 to be2 and preserves the basis vector e1.

f) Let A be an evolution algebra in En;2(K). From Proposition 5.2.3 and Lemma

5.2.6, we can suppose the existence of two elements a, b ∈ K \ {0} such that A

is strongly isotopic to the evolution algebra in En;2(K) with structure tuple T1 =

(ae1, be1, 0, . . . , 0) or T2 = (ae1, be2, 0, . . . , 0) in Tn(K). The evolution algebra

AT1 is isotopic to E2 by means of the triple (f, Id, Id) such that f(e1) = ae1,

f(e2) = be2 and f(ei) = ei, for all i > 2, whereas the evolution algebra AT2 is

strongly isotopic to E50,0 by means of the triple (Id, Id, h) such that h(e1) =
1
a
e1,

h(e2) =
1
b
e2 and h(ei) = ei, for all i > 2. �

The next theorem, which follows straightforward from Proposition 5.2.8, general-

izes Proposition 5.2.5 and determines explicitly the distribution of two-dimensional

evolution algebras into isotopism classes, whatever the base field is.

Theorem 5.2.9. There exist four isotopism classes of two-dimensional evolution

algebras over any field. They correspond to the abelian algebra and the evolution

algebras E1, E2 and E50,0 . �

The distribution of two-dimensional evolution algebras over any base field into

isomorphism classes requires, however, a further study, which constitutes the final

part of this manuscript.
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5.3 Isomorphism classes of the set E2(K)

Firstly, as a preliminary study, we focus on the finite field K = Fq, with q a prime

power. Particularly, we have implemented the procedure isoAlg into Algorithm

2, both of them introduced in Chapter 2, in order to show in Tables 5.1–5.3 the

distribution of the set E2(Fq) into isomorphism classes, for q ∈ {2, 3, 5, 7}. In the

first two tables we indicate for each class the isomorphism invariants of the graphs

G1 and G2 that were also described in Chapter 2. Observe that the distribution of

all these evolution algebras into the four isotopism classes that have been exposed in

Theorem 5.2.9 are clearly identified by means of these invariants. In order to expose

the efficiency of our procedure, we also expose in Table 5.4 the run time and usage

memory that are required to compute each distribution.

The next result follows straightforward from the previous computation.

Theorem 5.3.1. The sets E2(Fq), with q ∈ {2, 3, 5, 7}, are respectively distributed

into 9, 13, 23 and 38 isomorphism classes. �

Observe in Table 5.1 that the distribution of the set E2(F2) into nine isomor-

phism classes agrees with that corresponding to the set E2(C), which was exposed

in Theorem 5.1.1. Nevertheless, this does not hold for finite fields of higher orders.

Thus, for instance, the evolution algebra A(e1,2e1), which has a one-dimensional de-

rived algebra, is not isomorphic to any of the corresponding four evolution algebras

E1 to E4 in E2(Fq), for q > 2. A further study that generalizes the result of Casas

et al. [78] is then required for a general base field K. Similarly to the results that

have been exposed in previous chapters, we deal with this general case by making

use of Computational Algebraic Geometry. From Proposition 5.2.8, we can focus on

the distribution of the set E2,2(K) into isomorphism classes and, more specifically,

on those two-dimensional evolution algebras with natural basis {e1, e2} such that

e1e1 ∈ {e1, e2, e1 + e2}.

Let A = A(ae1+be2,ce1+de2) and A′ = A(αe′1+βe′2,γe
′

1+δe′2)
be two isomorphic two-

dimensional evolution algebras in E2,2(K) with respective natural bases {e1, e2} and

{e′1, e
′
2}. Let f be an isomorphism between both algebras with a related non-singular

matrix F = (fij) such that f(ei) = fi1e
′
1 + fi2e

′
2, for all i ∈ {1, 2}. The implemen-

tation of the procedure isoAlg enables us to ensure that, whatever the base field is,

the reduced Gröbner basis of the ideal in Theorem 2.2.5 related to the isomorphism
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G1&G2 G1 G2

q Structure tuple Vertices Edges Edges Triangles

2 (0, 0) (0,0,0,0) 0 0 0

(e2, 0) (2,2,1,4) 12 16 2

(e1, 0) (2,2,1,4) 12 18 7

(e1, e1) (3,3,1,6) 18 25 7

(e1 + e2, e1 + e2) (3,3,1,6) 18 25 7

(e2, e1) (3,3,3,7) 21 33 8

(e2, e1 + e2) (3,3,3,7) 21 33 8

(e1, e1 + e2) (3,3,3,7) 21 33 12

(e1, e2) (3,3,3,7) 21 33 16

3 (0, 0) (0,0,0,0) 0 0 0

(e2, 0) (6,6,2,36) 108 120 6

(e1, 0) (6,6,2,36) 108 124 20

(e1, 2e1) (8,8,2,48) 144 160 18

(e1 + e2, 2e1 + 2e2) (8,8,2,48) 144 160 18

(e1, e1) (8,8,2,48) 144 164 22

(e2, e1) (8,8,8,56) 168 200 24

(e2, e1 + e2) (8,8,8,56) 168 200 24

(e2, e1 + 2e2) (8,8,8,56) 168 200 24

(e1 + e2, 2e1 + e2) (8,8,8,56) 168 200 24

(e1, e1 + e2) (8,8,8,56) 168 200 36

(e1, 2e1 + e2) (8,8,8,56) 168 200 36

(e1, e2) (8,8,8,56) 168 200 48

Table 5.1: Graph invariants for the graphs G1 and G2 related to the isomorphism

classes of the set E2(Fq), for q ∈ {2, 3}.
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G1&G2 G1 G2

Structure tuple Vertices Edges Edges Triangles

(0, 0) (0,0,0,0) 0 0 0

(e2, 0) (20,20,4,400) 1200 1240 20

(e1, 0) (20,20,4,400) 1200 1248 64

(e1, e1) (24,24,4,480) 1440 1488 60

(e1 + e2, 4e1 + 4e2) (24,24,4,480) 1440 1488 60

(e1, 2e1) (24,24,4,480) 1440 1496 68

(e2, e1) (24,24,24,544) 1632 1728 80

(e2, e1 + e2) (24,24,24,544) 1632 1728 80

(e2, e1 + 2e2) (24,24,24,544) 1632 1728 80

(e2, e1 + 3e2) (24,24,24,544) 1632 1728 80

(e2, e1 + 4e2) (24,24,24,544) 1632 1728 80

(e1 + e2, e1 + 2e2) (24,24,24,544) 1632 1728 80

(e1 + e2, e1 + 3e2) (24,24,24,544) 1632 1728 80

(e1 + e2, e1 + 4e2) (24,24,24,544) 1632 1728 80

(e1 + e2, 2e1 + e2) (24,24,24,544) 1632 1728 80

(e1 + e2, 3e1 + e2) (24,24,24,544) 1632 1728 80

(e1 + e2, 2e1 + 3e2) (24,24,24,544) 1632 1728 80

(e1 + e2, 3e1 + 2e2) (24,24,24,544) 1632 1728 80

(e1, e1 + e2) (24,24,24,544) 1632 1728 120

(e1, 2e1 + e2) (24,24,24,544) 1632 1728 120

(e1, 3e1 + e2) (24,24,24,544) 1632 1728 120

(e1, 4e1 + e2) (24,24,24,544) 1632 1728 120

(e1, e2) (24,24,24,544) 1632 1728 160

Table 5.2: Graph invariants for the graphs G1 and G2 related to the isomorphism

classes of the set E2(F5).
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Structure tuples

(0, 0) (e2, 2e1 + e2) (e1 + e2, e1 + 2e2) (e1 + e2, 3e1 + 5e2)

(e1, 0) (e2, 2e1 + 3e2) (e1 + e2, e1 + 3e2) (e1 + e2, 3e1 + 6e2)

(e2, 0) (e2, 3e1 + e2) (e1 + e2, e1 + 4e2) (e1 + e2, 4e1 + 3e2)

(e1, e1) (e2, 3e1 + 3e2) (e1 + e2, e1 + 5e2) (e1 + e2, 4e1 + 5e2)

(e1, 2e1) (e1, e1 + e2) (e1 + e2, e1 + 6e2) (e1 + e2, 4e1 + 6e2)

(e1, 3e1) (e1, e1 + 2e2) (e1 + e2, 2e1 + e2) (e1 + e2, 6e1 + 3e2)

(e1, e2) (e1, e1 + 3e2) (e1 + e2, 2e1 + 3e2) (e1 + e2, 6e1 + 5e2)

(e2, e1) (e1, 3e1 + e2) (e1 + e2, 2e1 + 4e2) (e1 + e2, 6e1 + 6e2)

(e2, e1 + e2) (e1, 3e1 + 2e2) (e1 + e2, 2e1 + 5e2)

(e2, e1 + 3e2) (e1, 3e1 + 3e2) (e1 + e2, 2e1 + 6e2)

Table 5.3: Distribution into isomorphism classes of the set E2(F7).

q Run time Usage memory

2 0 seconds 0 MB

3 3 seconds 0 MB

5 38 seconds 80 MB

7 278 seconds 1360 MB

Table 5.4: Run time and memory usage that is required to compute the distribution

of the set E2(Fq) into isomorphism classes, for q ≤ 7.

group between the evolution algebras A and A′ involves in particular that







(ad− bc)f11f21 = 0,

(ad− bc)f12f22 = 0.
(5.1)

From the previous conditions, we can distinguish two cases depending on the

fact of being ad = bc or ad 6= bc. They refer, respectively, to two-dimensional

evolution algebras with a one- or two-dimensional derived algebra. Recall in this

regard that any isomorphism between two algebras preserves the dimension of their

corresponding derived algebras. In the next two subsections we study each one of

the two mentioned cases separately.
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5.3.1 One-dimensional derived algebra (ad = bc)

In this subsection, f is an isomorphism of regular matrix F = (fij) between a pair of

evolution algebras A = A(ae1+be2,ce1+de2) and A′ = A(αe′1+βe′2,γe
′

1+δe′2)
in E2,2(K) such

that ad = bc and αδ = βγ. From assertion (e) in Proposition 5.2.8, we can suppose

that a, b, α, β ∈ {0, 1}. Firstly, suppose A = A(e1,ce1), with c ∈ K \ {0}. Assertion

(e) in Proposition 5.2.8 gives rise to the next case study

• Case 1. A′ = A(e′1,γe
′

1)
, with γ ∈ K \ {0}.

The identification of coefficients of a same basis vector in each one of the equal-

ities f(eiej) = f(ei)f(ej), for all i, j ≤ 2, involves that f is an isomorphism

between the two algebras under consideration if and only if f11f21 = f12f22 = 0.

The regularity of the matrix F involves that f11 = f22 = 0 or f21 = f12 = 0.

In the first case, we obtain that f21 must be zero, what is a contradiction with

the regularity of the matrix F . In the second case, we obtain that c = γf 2
22.

This fact enables us to ensure that A(e1,ce1)
∼= A(e1,cm2e1), for all c,m ∈ K\{0}.

• Case 2. A′ = A(e′2,δe
′

2)
, with δ ∈ K \ {0}.

The computation of the corresponding reduced Gröbner basis, which has pre-

viously been mentioned, related to these assumptions enables us to ensure

that














f11 = f22 = 0,

f12 = 1/δ,

f 2
21 = c/δ.

(5.2)

If we take f21 = 1, then we can ensure in particular that A(e2,ce2)
∼= A(e1,ce1),

for all c ∈ K \ {0}.

• Case 3. A′ = A(e′1+e′2,γ(e
′

1+e′2))
, with γ ∈ K \ {0}.

From the reduced Gröbner basis related to this case, we deduce that


























γ 6= −1,

f11 = f12 = 1/(γ + 1),

f21 = −γf22,

c = γ(γ + 1)2f 2
22.

(5.3)

Particularly, the determinant of the matrix F coincides with f22, which must

be distinct of zero. As a consequence, A(e1+e2,c(e1+e2))
∼= A(e1,c(c+1)2e1), for all

c ∈ K \ {0,−1}.
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From the previous case study, the case A = A(e2,de2), with d ∈ K\{0}, can be re-

ferred to Case 1.2, because A(e2,de2)
∼= A(e1,de1). Besides, the case A = A(e1+e2,c(e1+e2)),

with c ∈ K \ {0}, can be referred to Case 1.3 except for the case c = −1, that is,

except for the evolution algebra A(e1+e2,−(e1+e2)). The next results gather together

what we have just exposed in the previous case study.

Proposition 5.3.2. The next assertions hold in the set E2,2(K).

a) A(e1,ce1)
∼= A(e1,cm2e1) for all c,m ∈ K \ {0}.

b) A(e2,ce2)
∼= A(e1,ce1), for all c ∈ K \ {0}.

c) A(e1+e2,c(e1+e2))
∼= A(e1,c(c+1)2e1), for all c ∈ K \ {0,−1}. �

Theorem 5.3.3. Any two-dimensional evolution algebra in E2,2(K) with a one-

dimensional derived algebra is isomorphic to exactly one of the next algebras

• A(e1,ce1), with c ∈ K \ {0}. Here, A(e1,ce1)
∼= A(e1,γe1) if and only if γ = cm2 for

some m ∈ K \ {0}.

• A(e1+e2,−e1−e2). �

5.3.2 Two-dimensional derived algebra (ad 6= bc)

Let us focus now on the case in which the evolution algebra A = A(ae1+be2,ce1+de2) ∈

E2,2(K) is such that ad 6= bc.

Lemma 5.3.4. Let A = A(ae1+be2,ce1+de2) be a two-dimensional evolution algebra in

E2,2(K) such that ad 6= bc. Then, any isomorphism from A to another evolution

algebra in E2,2(K), with related regular matrix F = (fij), holds that f11 = f22 = 0 or

f12 = f21 = 0.

Proof. The result follows straightforward from both conditions in (5.1) and the

regularity of the matrix F .

Let us study each case in Lemma 5.3.4 separately. Here, f is an isomorphism of

regular matrix F = (fij) between a pair of evolution algebras A = A(ae1+be2,ce1+de2)

and A′ = A(αe′1+βe′2,γe
′

1+δe′2)
in E2,2(K), where ad 6= bc and αδ 6= βγ.



5.3. ISOMORPHISM CLASSES OF THE SET E2(K) 111

1. Case 1. f11 = f22 = 0.

Here, f(e1) = f12e
′
2 and f(e2) = f21e

′
1, where f12 6= 0 6= f21. Similarly

to the reasoning exposed in the case study of the previous subsection, the

identification of coefficients of a same basis vector in the equalities f(eiej) =

f(ei)f(ej), for all i, j ≤ 2, involves that f is an isomorphism between the two

algebras under consideration if and only if


























a = δf12,

bf21 = γf 2
12,

cf12 = βf 2
21,

d = αf21.

(5.4)

The regularity of the matrix F implies that, a coefficient a, b, c or d is zero in

the structure tuple of the algebra A if and only if the respective coefficient δ,

γ, β or α is zero in the structure tuple of A′. Now, assertion (e) in Proposition

5.2.8 enables us to focus on the following cases for the evolution algebras A

and A′ under the conditions of Lemma 5.3.4.

• Case 1.1. A = A(e1,ce1+de2) and A′ = A(e′1,δe
′

2)
, where d 6= 0 6= δ. From

(5.4), we have that














f12 = 1/δ,

f21 = d,

c = 0.

(5.5)

Hence, A(e1,de2)
∼= A(e1,e2), for all d ∈ K \ {0}.

• Case 1.2. A = A(e1,ce1+de2) and A′ = A(e′1+e′2,δe
′

2)
, where d 6= 0 6= δ. From

(5.4), we have that














f12 = 1/δ,

f21 = d,

δ = c/d2.

(5.6)

Hence, A(e1+e2,de2)
∼= A(e1,de1+e2), for all d ∈ K \ {0}.

• Case 1.3. A = A(e2,ce1+de2) and A′ = A(e′2,γe
′

1)
, where c 6= 0 6= γ. From

(5.4), we have that














f21 = γf 2
12,

c = γ2f 3
12,

d = 0.

(5.7)
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Hence, A(e2,c2m3e1)
∼= A(e2,ce1), for all c,m ∈ K \ {0}.

• Case 1.4. A = A(e2,ce1+de2) and A′ = A(e′1+e′2,γe
′

1)
, where c, d and γ are

all of them distinct of zero. From (5.4), we have that














f12 = d2/c,

f21 = d,

c2 = γd3.

(5.8)

Hence, A(e1+e2,ce1)
∼= A(e2,

1
c
(e1+e2))

, for all c ∈ K \ {0}.

• Case 1.5. A = A(e1+e2,ce1+de2) and A′ = A(e′1+e′2,γe
′

1+δe′2)
, where c 6= d and

c, d, γ and δ are all of them distinct of zero. From (5.4), we have that


























f12 = 1/δ,

f21 = d,

γ = c2/d3,

δ = c/d2.

(5.9)

Hence, A(e1+e2,ce1+de2)
∼= A(e1+e2,

c

d2
( c
d
e1+e2)), for all c, d ∈ K\{0} such that

c 6= d.

2. Case 2. f12 = f21 = 0.

Here, f(e1) = f11e
′
1 and f(e2) = f22e

′
2, where f11 6= 0 6= f22. Similarly to the

previous case, the identification of coefficients of a same basis vector in the

equalities f(eiej) = f(ei)f(ej), for all i, j ≤ 2, involves that


























a = αf11,

f22b = βf 2
11,

f11c = γf 2
22,

d = δf22.

(5.10)

Again from the regularity of the matrix F , we have that a, b, c or d is zero if

and only if α, β, γ or δ is zero, respectively. From assertion (e) in Proposition

5.2.8, we consider the following case study.

• Case 2.1. A = A(e1,ce1+de2) and A′ = A(e′1,γe
′

1+δe′2)
, where d 6= 0 6= δ.

From (5.10), we have that














f11 = 1,

f22 = d/δ

cδ2 = d2γ.

(5.11)
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Hence, A(e1,ce1+de2)
∼= A(e1,γe1+δe2) for all c, d, γ, δ ∈ K such that d 6= 0 6= δ

and cδ2 = d2γ.

• Case 2.2. A = A(e2,ce1+de2) and A′ = A(e′2,γe
′

1+δe′2)
, where c 6= 0 6= γ.

From (5.10), we have that















f 3
11 = c/γ,

f22 = f 2
11,

d = δf22.

(5.12)

Hence, A(e2,ce1+de2)
∼= A(e2,

c

m3 e1+
d

m2 e2)
for all c, d,m ∈ K \ {0}.

• Case 2.3. A = A(e1+e2,ce1+de2) and A′ = A(e′1+e′2,γe
′

1+δe′2)
, where c 6=

d. From (5.10), we have that f is the trivial isomorphism and that A′

coincides with A.

The next results gather together what we have just exposed in the previous case

study.

Proposition 5.3.5. The next assertions hold in the set E2,2(K).

a) A(e1,de2)
∼= A(e1,e2), for all d ∈ K \ {0}.

b) A(e1+e2,de2)
∼= A(e1,de1+e2), for all d ∈ K \ {0}.

c) A(e2,c2m3e1)
∼= A(e2,ce1), for all c,m ∈ K \ {0}.

d) A(e1+e2,ce1)
∼= A(e2,

1
c
(e1+e2))

, for all c ∈ K \ {0}.

e) A(e1+e2,ce1+de2)
∼= A(e1+e2,

c

d2
( c
d
e1+e2)), for all c, d ∈ K \ {0} such that c 6= d.

f) A(e1,ce1+de2)
∼= A(e1,γe1+δe2) for all c, d, γ, δ ∈ K such that d 6= 0 6= δ and cδ2 = d2γ.

g) A(e2,ce1+de2)
∼= A(e2,

c

m3 e1+
d

m2 e2)
for all c, d,m ∈ K \ {0}. �

Theorem 5.3.6. Any two-dimensional evolution algebra in E2,2(K) with a two-

dimensional derived algebra is isomorphic to exactly one of the next algebras

• A(e1,ce1+de2), with d ∈ K \ {0}. Here, A(e1,ce1+de2)
∼= A(e1,γe1+δe2) if and only if

cδ2 = d2γ.
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• A(e2,ce1+de2), with c ∈ K \ {0}. Here, A(e2,ce1+de2)
∼= A(e2,γe1+δe2) if and only

if there exists an element m ∈ K \ {0} such that c = γm3 and d = δm2, or,

c = γ2m3 and d = δ = 0.

• A(e1+e2,ce1+de2), with c, d ∈ K \ {0}. Here, A(e1+e2,ce1+de2)
∼= A(e1+e2,γe1+δe2) if

and only if γ = c2/d3 and δ = c/d2. �



Conclusions and further works

This manuscript has dealt with distinct aspects of the theory of isotopisms of alge-

bras. Particularly, we have focused on isotopisms of Lie, Malcev and evolution alge-

bras, for which this theory had not been enough studied in the literature. Let us ex-

pose here some conclusions and further works that are deduced from the manuscript.

In Chapter 1 we have exposed a brief survey about the origin and development of

the theory of isotopisms. A further development of each of the branches into which

this theory subdivides is required as further work. In any case, the exposed survey

constitutes a first attempt in the literature to introduce this theory from a general

point of view.

In Chapter 2 we have exposed those results in Computational Algebraic Geom-

etry and Graph Theory that we have used throughout the manuscript in order to

compute the isotopism classes of each type of algebra under consideration in the

subsequent chapters. We have described in particular a pair of graphs that enable

us to define faithful functors between finite-dimensional algebras over finite fields

and these graphs. The computation of isomorphism invariants of these graphs plays

a remarkable role in the distribution of distinct families of algebras into isotopism

and isomorphism classes. Some preliminary results have been exposed in this regard,

particularly on the distribution of partial-quasigroup rings over finite fields. Based

on the known classification of partial Latin squares into isotopism classes, further

work is required to determine completely this distribution.

In Chapter 3 we have focused on the distribution into isomorphism and isotopism

classes of two families of Lie algebras: the set Pn,q of n-dimensional pre-filiform

Lie algebras over the finite field Fq and the set Fn(K) of n-dimensional filiform

Lie algebras over a base field K. Particularly, we have proved the existence of n

isotopism classes in Pn,q. We have also introduced two new series of isotopism
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invariants that have been used to determine the isotopism classes of the set Fn(K)

for n ≤ 7 over algebraically closed fields and finite fields. Higher dimensions can

similarly be analyzed, although with more extensive case studies. Their computation

is established as further work together with that of the corresponding distribution

into isotopism classes of other families of Lie algebras, distinct from the filiform case.

In Chapter 4 we have defined distinct zero-dimensional radical ideals whose re-

lated algebraic sets are uniquely identified with the set Mn(K) of n-dimensional

Malcev magma algebras over a finite field K. The computation of their reduced

Gröbner bases, together with the classification of Lie algebras over finite fields given

by De Graaf [149] and Strade [289], has enabled us to determine the distribution

of M3(K) and M4(K) not only into isomorphism classes, which is the usual cri-

terion, but also into isotopism classes. Particularly, we have proved the existence

of four isotopism classes inM3(K) and eight isotopism classes inM4(K). Besides,

we have proved that every 3-dimensional Malcev algebra over any finite field and

every 4-dimensional Malcev algebra over a finite field of characteristic distinct from

two is isotopic to a Lie magma algebra. Keeping in mind the obtained results, the

study of magma algebras by means of computational algebraic geometry constitutes

a good first approach to the distribution of Malcev algebras over finite fields into

isomorphism and isotopism classes. In this regard, the study of the sets M5(K)

and M6(K) is established as a further work that complements the already known

classification of 5- and 6-dimensional Malcev algebras in case of non-solvability [289]

and nilpotency [87].

Finally, Chapter 5 has dealt with the set En(K) of n-dimensional evolution al-

gebras over a field K, whose distribution into isotopism classes is uniquely related

with mutations in non-Mendelian Genetics. Particularly, we have focused on the

two-dimensional case, which is related to the asexual reproduction processes of

diploid organisms. We have proved that the set E2(K) is distributed into four iso-

topism classes, whatever the base field is, and we have characterized its isomorphism

classes. Similar case studies to those ones that have been exposed in this chapter

are established as further work in order to deal with evolution algebras of dimension

n > 2.
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[93] Darpö E., Dieterich E. Real commutative division algebras, Algebr. Represent. Theory 2007;

10: 179–196.
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Phys. Kl. 1928; 127–136.
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Glossary

A(i) The quotient algebra A(i−1)/Z(A(i−1)), where A(0) = A.

AT The Lie algebra in Pn,q of structure tuple T ∈ Tn,q.

The evolution algebra in En(K) of structure tuple T ∈ Tn(K).

A· A partial-magma algebra based on a magma ([n], ·).

d(v) The degree of a vertex v in a graph.

En(K) n-dimensional evolution algebras over a field K.

En;m(K) Set of evolution algebras in En(K) with an (n−m)-dimensional

annihilator.

Fn(K) Set of n-dimensional filiform Lie algebras over a field K.

Ln,q Set of n-dimensional Lie partial-magma algebras over the finite field

Fq.

Mn,q Set of n-dimensional Malcev partial-magma algebras over the finite

field Fq.

Pn,q Set of n-dimensional pre-filiform Lie algebras over the finite field Fq.

Pn,q;m Set of Lie algebras in Pn,q with an (n−m− 1)-dimensional center.

Sn Symmetric group of order n.

Tn(K) Set of structure tuples in En(K).

Tn,q Set of structure tuples in Pn,q.

Tn,q;m Set of structure tuples in Pn,q;m.

V(I) Algebraic set of an ideal of polynomials I.
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