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0 Introduction.

The differential geometry of slant submanifolds have shown an increasing devel-
opment since B.-Y. Chen defined slant immersions in complex geometry as a natural
generalization of both holomorphic immersions and totally real immersions (see [6]).
Many authors have studied such slant immersions in almost Hermitian manifolds. In
[8], A. Lotta has introduced the notion of slant immersion of a Riemannian manifold
into an almost contact metric manifold. In [4], we have studied and characterized
slant submanifolds of K–contact and Sasakian manifolds and we have given sev-
eral examples of such immersions. We have also studied other properties of slant
submanifolds in [5]. Moreover, in [3], we have presented existence and uniqueness
theorems for slant immersions into Sasakian-space-forms, which are similar to that
of B.-Y. Chen and L. Vrancken in complex geometry [7].

Recently, in [9] N. Papaghiuc has introduced a class of submanifolds in an almost
Hermitian manifold, called the semi–slant submanifolds, such that the class of proper
CR–submanifolds and the class of slant submanifolds appear as particular cases in
the class of semi–slant submanifolds. The purpose of the present paper is to define
and study a contact version of semi–slant submanifolds, so that both semi–invariant
[1] and contact slant submanifolds to appear as particular cases of the introduced
notion.

In Section 1, we review basic formulas and definitions for almost contact metric
manifolds and their submanifolds, which we shall use later. In Section 2, we recall
the definitions and some properties given in [4, 8, 9]. We also study some relations

1The authors are partially supported by the PAI project (Junta de Andalućıa, Spain 1998).
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between slant submanifolds of an almost contact metric manifold and semi–slant
submanifolds of an almost Hermitian manifold. In Section 3, we introduce the
notion of slant distribution in contact geometry and we present a more general class
of submanifolds: bi–slant submanifolds. Finally, we define and study semi–slant
submanifolds in Section 4.

1 Preliminaries.

Let (M̃, g) be an odd–dimensional Riemannian manifold and denote by TM̃ the
Lie algebra of vector fields in M̃ . Then M̃ is said to be an almost contact metric
manifold [2] if there exist on M̃ a tensor φ of type (1, 1) and a global vector field ξ
(structure vector field) such that, if η is the dual 1–form of ξ, then

φ2X = −X + η(X)ξ, g(X, ξ) = η(X),

g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for any X, Y ∈ TM̃ . Let Φ denote the 2–form in M̃ given by Φ(X, Y ) = g(X, φY )
for all X,Y ∈ TM̃ . The 2–form Φ is called the fundamental 2–form in M̃ and the
manifold is said to be a contact metric manifold if Φ = dη. If ξ is a Killing vector
field with respect to g, the contact metric structure is called a K–contact structure.
It is known that a contact metric manifold is K–contact if and only if ∇̃Xξ = −φX,
for any X ∈ TM̃ , where ∇̃ denotes the Levi–Civita connection of M̃ .

The almost contact structure of M̃ is said to be normal if [φ, φ] + 2dη⊗ ξ = 0,
where [φ, φ] is the Nijenhuis torsion of φ. A Sasakian manifold is a normal contact
metric manifold. Every Sasakian manifold is a K–contact manifold. It is easy to
show that an almost contact metric manifold is a Sasakian manifold if and only if

(∇̃Xφ)Y = g(X,Y )ξ − η(Y )X, (1.1)

for any X, Y ∈ TM̃ .
Now, let M be a submanifold immersed in M̃ . We also denote by g the induced

metric on M . Let TM be the Lie algebra of vector fields in M and T⊥M the set of
all vector fields normal to M . Denote by ∇ the Levi–Civita connection of M . Then,
the Gauss – Weingarten formulas are given by

∇̃XY = ∇XY + σ(X, Y ), ∇̃XV = −AV X + DXV,

for any X,Y ∈ TM and any V ∈ T⊥M , where D is the connection in the normal
bundle, σ is the second fundamental form of M and AV is the Weingarten endomor-
phism associated with V . The second fundamental form σ and the shape operator
A are related by g(AV X,Y ) = g(σ(X, Y ), V ).
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For any X ∈ TM , we write φX = TX + NX, where TX is the tangential
component of φX and NX is the normal component of φX. Similarly, for any
V ∈ T⊥M , we have φV = tV +nV , where tV (resp. nV ) is the tangential component
(resp. normal component) of φV .

The submanifold M is said to be invariant if N is identically zero, that is,
φX ∈ TM , for any X ∈ TM . On the other hand, M is said to be an anti–invariant
submanifold if T is identically zero, that is, φX ∈ T⊥M , for any X ∈ TM .

2 Slant Immersions.

Let M be a Riemannian manifold, isometrically immersed in an almost contact
metric manifold (M̃, φ, ξ, η, g). From now on, we suppose that the structure vector
field ξ is tangent to M . Hence, if we denote by D the orthogonal distribution to ξ
in TM , we can consider the orthogonal direct decomposition TM = D ⊕ < ξ >.

For each nonzero vector X tangent to M at x, such that X is not proportional
to ξx, we denote by θ(X) the angle between φX and TxM .

Then, M is said to be slant ([8]) if the angle θ(X) is a constant, which is inde-
pendent of the choice of x ∈ M and X ∈ TxM− < ξx >. The angle θ of a slant
immersion is called the slant angle of the immersion. Invariant and anti–invariant
immersions are slant immersions with slant angle θ = 0 and θ = π/2 respectively.
A slant immersion which is not invariant nor anti–invariant is called a proper slant
immersion.

An useful characterization of slant submanifolds in almost contact metric mani-
folds is given by the following theorem:

Theorem 2.1.– [4] Let M be a submanifold of an almost contact metric manifold
M̃ such that ξ ∈ TM . Then, M is slant if and only if there exists a constant
λ ∈ [0, 1] such that T 2 = −λI + λη ⊗ ξ. Furthermore, in such case, if θ is the slant
angle of M , then, λ = cos2 θ.

Another important notion about slant immersions is that of semi–slant subman-
ifolds of an almost Hermitian manifold, introduced by N. Papaghiuc in [9]. Given a
submanifold S, isometrically immersed in an almost Hermitian manifold (S̃, J, g1),
Papaghiuc says a differentiable distribution D on S to be a slant distribution if for
any nonzero vector X ∈ Dx; x ∈ S, the angle between JX and the vector space
Dx is constant, i.e., it is independent of the choice of x ∈ S and of X ∈ Dx. This
constant angle is called the slant angle of the slant distribution D.

Now, S is said to be a semi–slant submanifold if there exist on S two differentiable
orthogonal distributions D1 and D2 such that TM = D1 ⊕ D2, D1 is a complex
distribution (i.e. J(D1) = D1) and D2 is a slant distribution with the slant angle
θ 6= 0. In particular, if dim D1 = 0 and θ 6= π/2, then Papaghiuc obtain the proper
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slant submanifolds of almost Hermitian manifolds, introduced by B.Y. Chen (see
[6]).

In fact, by studying two classic examples, we can find some relations between
slant submanifolds of almost contact metric manifolds and semi–slant submanifolds
of almost Hermitian manifolds.

Let (M̃, φ, ξ, η, g) be an almost contact metric manifold. We consider the mani-
fold M̃ ×R. We denote by (X, f d

dt
) a vectorial field of M̃ ×R, where X is tangent

to M̃ , t is the coordinate of R and f is a differentiable function on M̃ × R. We
define on this manifold the almost complex structure J given by:

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
). (2.1)

Then, it is well known that (M̃ ×R, J, g1) is an almost Hermitian manifold [2],
where g1 denotes the product metric:

g1((X, f
d

dt
), (Y, h

d

dt
)) = g(X,Y ) + fh.

The following result show how to obtain semi–slant submanifolds of M̃×R from
slant submanifolds of M̃ .

Theorem 2.2.– Let M be a non-invariant slant submanifold of an almost contact
metric manifold M̃ . Then, M×R is a semi–slant submanifold of M̃×R, with com-
plex distribution D1 =< (ξ, 0), (0, d/dt) > and slant distribution D2 = {(X, 0) / X ∈
D}, respectively.

Proof: It is clear that distributions D1 and D2 are perpendicular and that T (M×
R) = D1 ⊕ D2. Moreover, D1 is a complex distribution, given that, by virtue of
(2.1), J(ξ, 0) = (0, d/dt) and so J(0, d/dt) = −(ξ, 0).

Finally, it is easy to see that D2 is a slant distribution, in the sense of [9]. 2

Remark 2.3.– We have excluded the invariant case in the above theorem since, in
[9], the slant distribution of a semi–slant submanifold must have a non-zero angle.
Nevertheless, it is easy to prove that, if M is an invariant submanifold of M̃ , then
M ×R is an invariant submanifold of M̃ ×R.

Remark 2.4.– In [8, p. 193], Lotta has proved that, if M×R is slant in M̃×R, then
M must be an invariant submanifold of M̃ and so, M ×R is a complex submanifold
of M̃ ×R. Note that there is not a contradiction between this result and Theorem
2.2, because the semi–slant submanifold M ×R is slant if and only if it is a complex
submanifold, since J(ξ, 0) = (0, d/dt).

Note also that, by using the notion of semi–slant submanifold of an almost
Hermitian manifold, we have obtained a more general result.
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The second classic example was given by Tashiro in [10]. Let S̃ be an almost
Hermitian manifold with almost complex structure J . Let M̃ ↪→ S̃ be an orientable
hypersurface, isometrically immersed in S̃. Denote by g both the metric of S̃ and
the induced one in M̃ .

Let C be the unit normal to M̃ . Then, ξ = −JC is tangent to M . We define
φ and η by JX = φX + η(X)C, for any X tangent to M̃ . It is easy to see that
(φ, ξ, η, g) is an almost contact metric structure on M̃ .

Let S ↪→ S̃ be an immersion such that C and ξ are tangent to S. Denote by
D1 the distribution in TS spanned by C and ξ, D1 = < C, ξ >, and by D2, the
orthogonal distribution in TS. Suppose that there are an orientable hypersurface
M ↪→ S, normal to C, and an immersion M ↪→ M̃ such that the following diagram
is conmutative:

M̃ ↪→ S̃
↑ ↑
M ↪→ S

.

We can state the following result:

Theorem 2.5.– In the above conditions, M is a slant submanifold of M̃ , with
slant angle θ 6= 0, if and only if S is a semi–slant submanifold of S̃, with complex
distribution D1 and θ–slant distribution D2.

Proof: Given that ξ = −JC, it is clear that D1 is a complex distribution. Thus,
it is enough to prove that M is slant if and only if D2 is a slant distribution on S,
but this is easy to see since φ and J are equal on D2. 2

Remark 2.6.– It is clear that M is invariant if and only if S is a complex sub-
manifold.

We can easily obtain an example of the above situation:

Example 2.7.– Let R6 be the Euclidean space of dimension 6, with the standard
metric and the almost complex structure given by J(∂/∂xi) = ∂/∂yi, for any i =
1, 2, 3, where (xi, yi) denote the cartesian coordinates.

Let R5 ↪→ R6 be the usual immersion. Then, C = ∂/∂y3 is the unit normal to
R5 and so, ξ = −JC = ∂/∂x3.

Now, for any θ 6= 0, we can consider the immersions:

ϕ1 : R4 → R6 : (u, v, t, s) 7→ (u cos θ, u sin θ, t, v, 0, s),

ϕ2 : R3 → R5 : (u, v, t) 7→ (u cos θ, u sin θ, t, v, 0).

Then, it is easy to show that all conditions of Theorem 2.5 are satisfied, where
the immersion R3 ↪→ R4 is the usual one. In fact, we can directly prove that ϕ1
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is a semi–slant immersion, with complex distribution D1 =< ∂/∂x3, ∂/∂y3 > and
θ–slant distribution D2 =< cos θ ∂/∂x1 + sin θ ∂/∂x2, ∂/∂y1 >. On the other hand,
ϕ2 is a θ–slant immersion, where R5 has the almost contact metric structure induced
by the described almost Hermitian structure on R6.

Hence, it is clear that semi–slant submanifolds are interesting from a geometrical
point of view. In the following sections, we are going to introduce the contact
versions of slant distributions and semi–slant immersions.

3 Slant Distributions.

In this section, we are going to give the notion of slant distribution on a sub-
manifold of an almost contact metric manifold. By using this notion, we will define
bi–slant submanifolds, which appear as a natural generalization of slant submani-
folds.

From now on, let M be a Riemannian manifold, isometrically immersed in an
almost contact metric manifold (M̃, φ, ξ, η, g), such that ξ ∈ TM . We call a dif-
ferentiable distribution V on M a slant distribution if for each x ∈ M and each
nonzero vector X ∈ Vx, the angle θ′(X) between φX and the vectorial subspace Vx

is a constant, which is independent of the choice of x ∈ M and X ∈ Vx. In this
case, the constant angle θ′ is called the slant angle of the distribution V (compare
with the case of almost Hermitian manifolds).

If we consider the distribution D, then we can state the following lemma:

Lemma 3.1.– Let x be a point of M and X ∈ TxM . Then, θ(X) = θ′(X), where
θ′(X) denotes the angle between φX and Dx.

Proof: It is enough to prove that TX = ΠDX, for any X ∈ TM , where ΠD
denotes the orthogonal proyection of φ on D, but this is clear, since φξ = 0. 2

Hence, we can give a new notion of slant submanifold, equivalent to Lotta’s
definition:

Proposition 3.2.– The submanifold M is slant if and only if D is a slant distri-
bution, with the same slant angle.

Proof: By virtue of Lemma 3.1, it is obvious that if M is a slant submanifold,
then D is a slant distribution with the same slant angle. Conversely, given X ∈
TM− < ξ >, the angle θ(X) satisfies:

cos θ(X) =
g(TX, φX)

|TX||φX| =
|TX|√

|X|2 − η2(X)
. (3.1)
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On the other hand, if we consider X − η(X)ξ ∈ D, then we have:

cos θ′(X − η(X)ξ) =
|ΠD(X − η(X)ξ)|
|X − η(X)ξ| . (3.2)

But,
√
|X|2 − η2(X) = |X − η(X)ξ| and TX = ΠD(X − η(X)ξ). Thus, (3.1) is

equal to (3.2), which is a constant since D is a slant distribution. 2

Now, we can define bi–slant submanifolds. We say that M is a bi–slant sub-
manifold of M̃ if there exist two orthogonal distributions D1 and D2 on M such
that:

(i) TM admits the orthogonal direct decomposition: TM = D1 ⊕D2⊕ < ξ >.
(ii) For any i = 1, 2, Di is a slant distribution with slant angle θi.

Given a bi–slant submanifold M , we can write, for any X ∈ TM ,

X = P1X + P2X + η(X)ξ, (3.3)

where PiX denotes the component of X in Di, for any i = 1, 2. In particular, if
X ∈ Di, then we obtain X = PiX. If we define Ti = Pi ◦ T , then we have

φX = T1X + T2X + NX, (3.4)

for any X ∈ TM , given that η(φX) = 0.
Let d1 (resp. d2) denote the dimension of the distribution D1 (resp. D2). By

virtue of Proposition 3.2, if either d1 or d2 vanishes, the bi–slant submanifold is
a slant submanifold. Thus, slant submanifolds (and, therefore, invariant and anti-
invariant submanifolds) are particular cases of bi–slant submanifolds. Moreover, we
easily find examples of non-trivial bi–slant submanifolds.

Example 3.3.– For any θ1, θ2 ∈ [0, π/2],

x(u, v, w, s, t) = 2(u, 0, w, 0, v cos θ1, v sin θ1, s cos θ2, s sin θ2, t)

defines a 5–dimensional bi–slant submanifold M , with slant angles θ1 and θ2, in R9

with its usual Sasakian structure (φ0, ξ, η, g) (see [4]).
In fact, it is easy to see that

e1 = 2(
∂

∂x1
+ y1 ∂

∂z
), e2 = cos θ1(2

∂

∂y1
) + sin θ1(2

∂

∂y2
),

e3 = 2(
∂

∂x3
+ y3 ∂

∂z
), e4 = cos θ2(2

∂

∂y3
) + sin θ2(2

∂

∂y4
), e5 = 2

∂

∂z
= ξ,

(3.5)

form a local orthonormal frame of TM . We define the distributions D1 =< e1, e2 >
and D2 =< e3, e4 >.
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Then, it is clear that TM = D1 ⊕ D2⊕ < ξ >. It can be easily proved that Di

is a slant distribution with slant angle θi, for any i = 1, 2.

In particular, if we consider θ1 = θ2 = θ in Example 3.3, it results that M is a
θ–slant submanifold. Nevertheless, this is not a general fact, as we can see in the
following example:

Example 3.4.– For any θ1 ∈ [0, π/2], we choose θ2 ∈ (0, π/2] such that cos θ2 =
(cos θ1)/

√
2. Then,

x(u, v, w, s, t) = 2(u, 0, w, u, v cos θ1, v sin θ1, s cos θ2, s sin θ2, t)

defines a 5–dimensional bi–slant submanifold M in (R9, φ0, ξ, η, g), with both slant
angles equal to θ2, such that it is not a slant submanifold.

In fact, we can choose a local orthonormal frame {e1, . . . , e5} of TM such that
e1 = 1/

√
2 {2(∂/∂x1 + y1∂/∂z) + 2(∂/∂x4 + y4∂/∂z)} and e2, . . . , e5 are given by

(3.5). We define D1 =< e1, e2 > and D2 =< e3, e4 >. It is easy to see that both D1

and D2 are slant distributions with the same slant angle θ2. Nevertheless, we can
obtain that M is not slant since θ2 6= 0.

However, we can prove, by a direct calculation, the following result:

Proposition 3.5.– Let M be a bi–slant submanifold with angles θ1 = θ2 = θ. If
g(φX, Y ) = 0, for any X ∈ D1 and any Y ∈ D2, then M is slant with angle θ.

Remark 3.6.– Note that Example 3.3 satisfies the aditional condition of Proposi-
tion 3.5.

Bi–slant submanifolds are also a generalization of semi–invariant submanifolds,
introduced by Bejancu and Papaghiuc in [1]. In that paper, M is said to be a semi–
invariant submanifold if there exist two orthogonal distributions D and D⊥ on M ,
such that:

(i) TM = D ⊕D⊥⊕ < ξ >.
(ii) The distribution D is invariant, i.e., φD = D.
(iii) The distribution D⊥ is anti-invariant, i.e., φD⊥ ⊂ T⊥M .
We are now going to show that semi–invariant submanifolds are bi–slant sub-

manifolds, with angles θ1 = 0 and θ2 = π/2. We first need the following two lemmas:

Lemma 3.7.– Suppose that there exist two orthogonal distributions D1 and D2 on
M such that TM = D1⊕D2⊕ < ξ >. Then, D1 is invariant if and only if it is slant
with angle θ1 = 0.

Proof: It is clear that, if D1 is invariant, then it is slant with zero angle. The
converse is easy to prove, by taking into account (3.4) and that, if D1 is a slant
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distribution with zero slant angle, then |T1X| = |X|, for any X ∈ D1. 2

Lemma 3.8.– In the above conditions, if D1 is invariant, then TX = T2X for any
X ∈ D2.

Proof: For any X ∈ D1 and Y ∈ D2, we have g(TX, Y ) = −g(X, φY ) = 0, since
D1 is invariant. Thus, T1X = 0 and the result holds. 2

Proposition 3.9.– The submanifold M is semi–invariant if and only if M is bi–
slant with angles θ1 = 0 and θ2 = π/2.

Proof: The direct implication is immediate. The converse follows directly from
Lemmas 3.7 and 3.8. 2

Remark 3.10.– In Proposition 3.9, we have proved that, if D2 is an anti-invariant
distribution, then it is slant with angle π/2. This is not a general fact, as we can
show by putting θ1 = θ2 = π/2 in Example 3.4. Thus, if we write D1 =< e3, e4 >
and D2 =< e1, e2 >, we obtain a submanifold M endowed with two orthogonal
distributions such that TM = D1⊕D2⊕ < ξ >, D2 is slant with angle π/2 but it is
not anti-invariant, because φ0e1 is not normal to M .

We finish this section by stablishing a general theorem for bi–slant submanifolds,
which we shall use later. Note that this result is an obvious generalization of the
direct implication of Theorem 2.1, and it can be proved by following the same steps.

Theorem 3.11.– Let M be a bi–slant submanifold of an almost contact metric
manifold M̃ . Denote by D1 and D2 the slant distributions of M , with slant angles
θ1 and θ2, respectively. Then, given i = 1, 2, for any X ∈ Di:

T 2
i X = − cos2 θi X. (3.6)

4 Semi–Slant Submanifolds.

Now, we can introduce the notion of semi–slant submanifolds in contact geome-
try. We say that M is a semi–slant submanifold of M̃ if there exist two orthogonal
distribution D1 and D2 on M such that:

(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2⊕ < ξ >.
(ii) The distribution D1 is an invariant distribution, i.e., φ(D1) = D1.
(iii) The distribution D2 is slant with angle θ 6= 0.

In this case, we call the angle θ the slant angle of submanifold M . By virtue of
Lemma 3.7, the invariant distribution of a semi–slant submanifold is a slant distri-
bution with zero angle. Thus, it is obvious that, in fact, semi–slant submanifolds are
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particular cases of bi–slant submanifolds. Moreover, by virtue of Proposition 3.9, it
is clear that, if θ = π/2, then the semi–slant submanifold is a semi–invariant sub-
manifold. On the other hand, if we denote the dimension of Di by di, for i = 1, 2,
then we find the following cases:

(a) If d2 = 0, then M is an invariant submanifold.
(b) If d1 = 0 and θ = π/2, then M is an anti-invariant submanifold.
(c) If d1 = 0 and θ 6= π/2, then M is a proper slant submanifold, with slant

angle θ.
On the other hand, we say that a semi–slant submanifold is proper if d1d2 6= 0

and θ 6= π/2. It is easy to show that there are proper semi–slant submanifolds. For
example, it is enough to put θ1 = 0 and θ2 = θ ∈ (0, π/2) in Example 3.3, in order
to obtain proper semi–slant submanifolds, with slant angle θ, in R9 with its usual
Sasakian structure (φ0, ξ, η, g).

Given a semi–slant submanifold M , we denote by Pi the projection on the dis-
tribution Di, for any i = 1, 2. We also put Ti = Pi ◦ T . Hence, equations (3.3) and
(3.4) are still right. On the other hand, by applying φ on (3.3), we obtain

φX = φP1X + TP2X + NP2X, (4.1)

for any X ∈ TM . By a direct calculation, we can state the following result, which
we shall use later:

Lemma 4.1.– If M is a semi–slant submanifold, then, for any X ∈ TM :
(i) φP1X = TP1X and NP1X = 0.
(ii) TP2X ∈ D2.

In particular, (4.1) and statement (i) of Lemma 4.1 imply, for any X ∈ TM :

TX = φP1X + TP2X. (4.2)

From (3.6) and Lemma 4.1, we obtain the following generalization of [4, Corollary
2.3]:

Lemma 4.2.– Let M be a semi–slant submanifold, with angle θ, of a K–contact
manifold M̃ . Then, for any X,Y ∈ TM :

g(TX, TP2Y ) = cos2 θg(X,P2Y ), g(NX, NP2Y ) = sin2 θg(X,P2Y ). (4.3)

In the following, we are dealing with semi–slant submanifolds of a Sasakian
manifold. Our goal is to study the integrability of distributions D1 and D2, as well
as to find the generalization of some interesting slant submanifolds studied in [4].

Lemma 4.3.– Let M be a semi–slant submanifold of a Sasakian manifold M̃ .
Then, for any X,Y ∈ TM , we have:

P1(∇XφP1Y ) + P1(∇XTP2Y ) = φP1(∇XY ) + P1ANP2Y X − η(Y )P1X, (4.4)
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P2(∇XφP1Y ) + P2(∇XTP2Y ) =

= TP2(∇XY ) + P2ANP2Y X + tσ(X,Y )− η(Y )P2X, (4.5)

η(∇XφP1Y ) + η(∇XTP2Y ) = η(ANP2Y X) + g(φX, φY ), (4.6)

σ(φP1Y,X) + σ(TP2Y,X) + DXNP2Y = NP2(∇XY ) + nσ(X,Y ). (4.7)

Proof: By using Gauss – Weingarten formulas, (1.1), (3.3), (4.1) and Lemma 4.1,
we obtain

∇XφP1Y + σ(φP1Y, X) +∇XTP2Y + σ(TP2Y, X)− ANP2Y X+

+DXNP2Y = φP1∇XY + TP2∇XY + NP2∇XY + tσ(X, Y )+

+nσ(X,Y ) + g(X, Y )ξ − η(Y )P1X − η(Y )P2X − η(Y )η(X)ξ, (4.8)

for any X, Y ∈ TM .
Hence, (4.4)–(4.7) follow from (4.8), by identifying the components on D1, D2,

< ξ > and T⊥M respectively. 2

Remark 4.4.– Note that it is not necessary for D2 to be a slant distribution in
proofs of Lemmas 4.1 and 4.3. Hence, these results hold for a submanifold satisfying
conditions (i) and (ii) of semi–slant submanifold definition.

Note also that, to obtain (4.6), it is not necessary for M̃ to be a Sasakian
manifold. From (4.3), we have the following proposition, in which we do need for
D2 to be a slant distribution.

Proposition 4.5.– Let M be a semi–slant submanifold, with angle θ, of a K–
contact manifold M̃ . Then, for any X, Y ∈ TM , we have:

η(∇XφP1Y ) = g(X,P1Y ), (4.9)

η(∇XTP2Y ) = cos2 θg(X,P2Y ), η(ANP2Y X) = − sin2 θg(X, P2Y ). (4.10)

In particular, (4.6) holds.

Now we can study the integrability conditions of distributions D1 and D2, which
are involved in the definition of a semi–slant submanifold.

Proposition 4.6.– Let M be a semi–slant submanifold of a Sasakian manifold M̃
such that d1 6= 0. Then, the invariant distribution D1 is not integrable.

Proof: It is easy to see that g([X,φX], ξ) = 0, for any X ∈ D1. 2
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Proposition 4.7.– Let M be a semi–slant submanifold of a Sasakian manifold M̃ .
Then the slant distribution D2 is integrable if and only if M is a semi–invariant
submanifold.

Proof: It is easy to see that g([X, Y ], ξ) = 2g(Y, T2X), for any X, Y ∈ D2. Hence,
if D2 is integrable, then T2 ≡ 0 and so, θ = π/2, by virtue of (3.6). In this case, we
know that M is a semi–invariant submanifold. The converse is given by [1, Theorem
2.1]. 2

Remark 4.8.– Note that, in Proposition 4.6, it is enough for M̃ to be a contact
metric manifold, since, in this case, g([X, Y ], ξ) = −2g(X,φY ), for any X,Y ∈ TM .
This fact also works for the necessary condition in Proposition 4.7. Nevertheless,
Theorem 2.1 of [1] uses a Sasakian structure on M̃ .

On the other hand, we can also note that, if d1 = 0 in Proposition 4.7, then we
obtain Proposition 3.2 of [4] in a Sasakian manifold.

It is more interesting to study the integrability of distributions D1⊕ < ξ > and
D2⊕ < ξ >:

Proposition 4.9.– Let M be a semi–slant submanifold of a Sasakian manifold M̃ .
Then, we have:
(i) The distribution D1⊕ < ξ > is integrable if and only if

σ(X,φY ) = σ(Y, φX), (4.11)

for any X, Y ∈ D1.
(ii) The distribution D2⊕ < ξ > is integrable if and only if

P1(∇XTY −∇Y TX) = P1(ANY X − ANXY ), (4.12)

for any X, Y ∈ D2⊕ < ξ >.

Proof: By using (4.7), we see that

σ(X,φY )− σ(Y, φX) = NP2[X, Y ], (4.13)

for any X,Y ∈ D1⊕ < ξ >. Hence, if D1⊕ < ξ > is integrable, then (4.11) holds
directly from (4.13). Conversely, let X, Y ∈ D1⊕ < ξ > be. It is easy to prove that

σ(X, φY )− σ(Y, φX) = σ(P1X, φP1Y )− σ(P1Y, φP1X) = 0,

by virtue of (4.11). Thus, by applying (4.13) it follows NP2[X,Y ] = 0. So, we can
easily deduce that P2[X, Y ] must vanish, since D2 is a slant distribution with non-
zero slant angle. Therefore, [X,Y ] ∈ D1⊕ < ξ >. This ends the proof of statement
(i).
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With regards to statement (ii), we first compute

φP1[X,Y ] = P1(∇XTY −∇Y TX)− P1(ANY X − ANXY ),

for any X, Y ∈ D2⊕ < ξ >, by virtue of (4.4). Hence, (4.12) holds if and only if

φP1[X,Y ] = 0, (4.14)

for any X,Y ∈ D2⊕ < ξ >. But it can be showed that (4.14) is equivalent to
D2⊕ < ξ > being an integrable distribution. 2

Remark 4.10.– Statement (i) of Proposition 4.9 is a clear generalization of The-
orem 2.4 of [1]. It can be easily proved that statement (ii) generalizes Theorem 2.2
of the same paper.

In [4], we have paid special attention to proper θ–slant submanifolds satisfying

(∇XT )Y = cos2 θ(g(X,Y )ξ − η(Y )X), (4.15)

for any X, Y ∈ TM . In fact, in [5] we have pointed out that these submanifolds are
the contact version of Kaehlerian slant submanifolds (see [6]). Now, we want to find
a similar condition for semi–slant submanifolds.

If we compute ∇T in Example 3.3, with θ1 = 0 and θ2 = θ ∈ (0, π/2), then, we
obtain

(∇XT )Y = g(P1X, Y )ξ − η(Y )P1X + cos2 θ(g(P2X, Y )ξ − η(Y )P2X), (4.16)

for any X, Y ∈ TM . If we put X = P2X + η(X)ξ, Y = P2Y + η(Y )ξ ∈ D2⊕ < ξ >,
then (4.16) implies:

(∇XT )Y = cos2 θ(g(X,Y )ξ − η(Y )X).

Thus, with respect to ∇T , the slant distribution D2⊕ < ξ > works as the
tangent bundle of a proper slant submanifold satisfying (4.15). On the other hand,
if X,Y ∈ D1⊕ < ξ >, then it follows from (4.16):

(∇XT )Y = g(X, Y )− η(Y )X.

Invariant submanifolds satisfy this equation. Moreover, we are going to show
that (4.16) is a “natural” condition. We first need the following lemma:

Lemma 4.11.– Let M be a proper semi–slant submanifold, with angle θ, of a
Sasakian manifold M̃ . For any X, Y ∈ TM , we have:

(∇XT )Y = ANP2Y X + tσ(X,Y ) + g(X, Y )ξ − η(Y )X. (4.17)
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Hence, M satisfies (4.16) if and only if

ANP2Y X = ANP2XY − sin2 θ(η(X)P2Y − η(Y )P2X), (4.18)

for any X, Y ∈ TM .

Proof: Equation (4.17) can be obtained by using (3.3), (4.2) and (4.4)–(4.6).
Now, suppose that M is a proper semi–slant submanifold satisfying (4.16). Then,

by applying (3.3), (4.18) follows directly from (4.16) and (4.17).
Conversely, suppose that we have (4.18) for any X,Y ∈ TM . Thus, it is easy to

see that

g(ANP2Y Z,X) = −g(tσ(Y, Z), X)− sin2 θg(g(P2Y, Z)ξ − η(Y )P2Z,X),

for any X, Y, Z ∈ TM . Then, by applying (4.17), this implies

(∇ZT )Y = g(Z, Y )ξ − η(Y )Z − sin2 θ(g(P2Y, Z)ξ − η(Y )P2Z) =

= g(P1Z, Y )ξ − η(Y )P1Z + cos2 θ(g(P2Z, Y )ξ − η(Y )P2Z),

for any Y, Z ∈ TM and the proof concludes. 2

The following Theorem shows that (4.16) must be the expected generalization
of (4.15).

Theorem 4.12.– Let M be a proper semi–slant submanifold, with angle θ, of a
Sasakian manifold M̃ . The following statements are equivalent:

(i) M satisfies (4.16).

(ii) (∇XTP2)Y = cos2 θ(g(P2X,Y )ξ − η(Y )P2X), for any X,Y ∈ TM .

Proof: Suppose that M satisfies (4.16). Then, by proceeding as in Lemma 4.11,
we have

tσ(X,Y ) + ANP2Y X + sin2 θ(g(P2X,Y )ξ − η(Y )P2X) = 0, (4.19)

for any X, Y ∈ TM . By taking P1 in (4.19), it is easy to see that

P1ANP2Y X = 0, (4.20)

for any X, Y ∈ TM .
If we write (4.19) with Y ∈ D1⊕ < ξ >, then we obtain

tσ(X, Y ) = sin2 θη(Y )P2X, (4.21)
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for any X ∈ TM and any Y ∈ D1⊕ < ξ >. On the other hand, if we write (4.7) in
the same case, it results

σ(φY, X) = NP2∇XY + nσ(X, Y ), (4.22)

for any X ∈ TM and any Y ∈ D1⊕ < ξ >. Then, it follows from (4.21) and (4.22):

σ(φY, X) = NP2∇XY + φσ(X,Y )− sin2 θη(Y )P2X. (4.23)

Now then, given X ∈ TM and Y ∈ D1⊕ < ξ >,

g(NP2∇XY, σ(φY, X)) = g(ANP2∇XY X, φY ) = 0, (4.24)

since φY ∈ D1 and P1ANP2∇XY X = 0, by virtue of (4.20). Moreover, by using (4.20)
and Lemma 4.1, it is easy to see that

g(NP2∇XY, φσ(X,Y )) = g(ANP2TP2∇XY X,Y ) = 0, (4.25)

if we put Y ∈ D1. Therefore, from (4.23)–(4.25), it results NP2∇XY = 0, for any
X ∈ TM and any Y ∈ D1. Since M is a proper semi–slant submanifold, it follows
from this equation that P2∇XY must vanish. Hence,

∇XY ∈ D1⊕ < ξ >, (4.26)

for any X ∈ TM and any Y ∈ D1. In particular, this implies ∇XZ ∈ D2⊕ < ξ >,
for any X ∈ TM and any Z ∈ D2. Then, by applying Lemma 4.1,

P1(∇XTP2Y ) = 0, (4.27)

for any X, Y ∈ TM . From (4.4), (4.9), (4.20), (4.26) and (4.27), we have

(∇XφP1)Y = g(P1X, Y )ξ − η(Y )P1X, (4.28)

for any X, Y ∈ TM . Now then, it follows from (4.2) that TP2 = T − φP1. Hence,

(∇XTP2)Y = (∇XT )Y − (∇XφP1)Y,

for any X, Y ∈ TM , and so, by virtue of (4.16) and (4.28), statement (ii) holds.
Conversely, suppose that M satisfies (ii). By virtue of (3.6) and Lemma 4.1, it

is easy to see that
P1(∇XZ) = −η(Z)T1X, (4.29)

for any X ∈ TM and any Z ∈ D2⊕ < ξ >. Hence,

∇XZ ∈ D2⊕ < ξ >, (4.30)
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for any X ∈ TM and any Z ∈ D2. Thus, we can deduce from (4.30) that ∇XY ∈
D1⊕ < ξ >, for any X ∈ TM and any Y ∈ D1. Therefore, by applying Lemma 4.1,
(4.4), (4.9) and (4.29), we can compute

(∇XφP1)Y = P1ANP2Y X + g(P1X, Y )− η(Y )P1X, (4.31)

for any X,Y ∈ TM . On the other hand, condition (ii), (4.5), (4.10) and (4.30)
imply

P1ANP2Y X = 0, (4.32)

for any X, Y ∈ TM . Finally, equation (4.16) follows from (4.2), (4.31), (4.32) and
condition (ii). 2

The following corollary appears directly from equation (4.28):

Corollary 4.13.– If M is a proper semi–slant submanifold of a Sasakian manifold
M̃ , satisfaying (4.16), then, for any X,Y ∈ TM :

(∇XφP1)Y = g(P1X,Y )ξ − η(Y )P1X.

On the other hand, we can also emphasize the integrability conditions obtained
in the proof of Theorem 4.12:

Corollary 4.14.– If M is a proper semi–slant submanifold of a Sasakian manifolf
M̃ satisfaying (4.16), then

∇XY ∈ D1⊕ < ξ >, ∇XZ ∈ D2⊕ < ξ >, (4.33)

for any X ∈ TM , Y ∈ D1 and Z ∈ D2. In particular, distributions D1⊕ < ξ > and
D2⊕ < ξ > are integrable.

Remark 4.15.– Given that distributions D1 and D2 are orthogonal, we can prove
that both equations in (4.33) are equivalent. We have implicitly used this fact in
the proof of Theorem 4.12. Moreover, if dimD2 = 2, these equations are equivalent
to the conditions of above theorem, as we are going to show in Theorem 4.16. This
last theorem is a clear generalization of Theorem 5.1 of [4].

Theorem 4.16.– Let M be a proper semi–slant submanifold, with angle θ, of a
Sasakian manifold M̃ . Suppose dimD2 = 2. Then, the following statements are
equivalent:
(i) M satisfies (4.16).
(ii) (∇XTP2)Y = cos2 θ(g(P2X,Y )ξ − η(Y )P2X), for any X, Y ∈ TM .
(iii) ∇XY ∈ D1⊕ < ξ >, for any X ∈ TM and any Y ∈ D1.
(iv) ∇XY ∈ D2⊕ < ξ >, for any X ∈ TM and any Y ∈ D2.

Proof: By virtue of Theorem 4.12, Corollary 4.14 and Remark 4.15, it is enough
to prove that (iv) implies (ii). This proof is similar to that of [4, Theorem 5.1]. 2

16

https://www.researchgate.net/publication/231840880_Slant_submanifolds_in_Sasakian_manifolds?el=1_x_8&enrichId=rgreq-46bd0f691de1495854eb99ab2fdcaeda-XXX&enrichSource=Y292ZXJQYWdlOzIyNTkxNDA1NDtBUzoxNDUyNTgwMjUzMjg2NDBAMTQxMTY0MzYyMDU2Mw==


References

[1] A. Bejancu and N. Papaghiuc. Semi-invariant submanifolds of a Sasakian man-
ifold. An. st. Univ. Iasi, tom. XXVII, s. I. a (f1) (1981), 163–170.

[2] D. E. Blair. Contact Manifolds in Riemannian Geometry, volume 509 of Lecture
Notes in Mathematics. Springer-Verlag, New York, 1976.

[3] J.L. Cabrerizo, A. Carriazo, L.M. Fernández and M. Fernández. Existence and
uniqueness theorem for slant immersions in Sasakian-space-forms. Submitted.

[4] J.L. Cabrerizo, A. Carriazo, L.M. Fernández and M. Fernández. Slant subman-
ifolds in Sasakian manifolds. Submitted.

[5] J.L. Cabrerizo, A. Carriazo, L.M. Fernández and M. Fernández. Structure on
a slant submanifold of a contact manifold. Submitted.

[6] B. Y. Chen. Geometry of Slant Submanifolds. Katholieke Universiteit Leuven,
Leuven, 1990.

[7] B. Y. Chen and L. Vrancken. Existence and uniqueness theorem for slant
immersions and its applications. Results in Math., 31 (1997), 28–39.

[8] A. Lotta. Slant submanifolds in contact geometry. Bull. Math. Soc. Roumanie,
39 (1996), 183–198.

[9] N. Papaghiuc. Semi-slant submanifolds of a Kaehlerian manifold. An. st. Univ.
Iasi, tom. XL, s. I. a (f1) (1994), 55–61.

[10] Y. Tashiro. On contact structures of hypersurfaces in almost complex manifolds
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