
ISOTROPIC SUBMANIFOLDS OF PSEUDO-RIEMANNIAN SPACES

J. L. Cabrerizoa,1, M. Fernándeza, J. S. Gómeza

aDepartment of Geometry and Topology, University of Seville, Ap. 1160, 41080-Seville, Spain

ABSTRACT

The family of all the submanifolds of a given Riemannian or pseudo-Riemannian
manifold is large enough to classify them into some interesting subfamilies such
as minimal (maximal), totally geodesic, Einstein, etc. Most of these have been
extensively studied by many authors, but as far as we know, no paper has
hitherto been published on the class of isotropic submanifolds. The purpose of
this paper is therefore to gain a better understanding of this interesting class
of submanifolds that arise naturally in mathematics and physics by studying
their relationships with other closely distinguised families.
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1 Introduction

A submanifold Nn
s of a pseudo-Riemannian space Mm

ν is said to be totally geodesic if
the geodesic lines of Nn

s are also geodesic lines in Mm
ν . A totally geodesic submanifold is

characterized by the fact that for every normal vector of the corresponding second funda-
mental form h vanishes: h(X,Y ) = 0 for any vectors fields X, Y. The existence of totally
geodesic submanifolds in a general Riemannian manifold is exceptional. Conversely, the
existence of many such totally-geodesic submanifolds characterize some special manifolds,
e.g. symmetric spaces. The submanifold Nn

s is called totally umbilical if the second funda-
mental form h is proportional to the first, h(X, Y ) = g(X, Y )H, where H = (1/n)trace(h)
is the mean curvature vector, and is pseudo-umbilical if g(h(X, Y ),H) = ρ g(X, Y ). Ob-
viously every totally umbilical submanifold is pseudo-umbilical. An Einstein manifold is
a Riemannian or pseudo-Riemannian manifold whose Ricci tensor is proportional to the
metric.

A minimal submanifold is a submanifold with H ≡ 0, therefore any totally geodesic
submanifold is minimal. The analogous submanifolds in spacetimes are spacelike maximal
submanifolds. They are all pseudo-umbilical, and have been used to prove positivity of
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mass, analyse the space of solutions of Einstein equations and in numerical integration
schemes for Einstein equations ([3], p. 155). In the pseudo-Euclidean space Rm

ν , maximal
submanifolds are the harmonic submanifolds.

In this article we are interested in a distinguised family of submanifolds of a pseudo-
Riemannian manifold: the isotropic submanifolds. Isotropy is a notion that naturally
appear in Particle Physics, Kinetic theory, Electromagnetics, Optics, Cosmology, Materials
science, etc. In the sixties, the fascinating aspect of unexpected features in Einstein’s theory
came to development namely the existence of singularities in solutions. An outside observer
does not perceive the singularity itself but an event horizon. Conversely light cannot
escape the singularity, it becomes infinitely redshifted as the horizon is approached. Then,
modulo some reservations it has been shown that horizons are isotropic hypersurfaces [16].
Hence theoretical physicists have widely used isotropic hypersurfaces with their degenerate
metric induced by the embedding into the Lorentzian spacetime. The concept of isotropic
submanifold of a Riemannian manifold was introduced by B. O’ Neill [20], who studied
the general properties of such a class of submanifold. A pseudo-Riemannian submanifold
is isotropic if, roughly speaking, the geometry of the submanifold is the same regardless
of direction. This notion remind us of the cosmological principle that no matter where we
look in the Universe, we still see the same distribution of objetcs (see [8] p. 835 and Prop.
5.1). The isotropic submanifolds can be considered as a generalization of both, totally
geodesic and totally umbilical submanifolds.

In a previous paper ([10]) we studied spacelike isotropic surfaces in a Lorentzian man-
ifold and, in particular in the standard four-dimensional model spaces: Minkowski, De
Sitter and anti De Sitter spaces. Now, the aim of the present paper is to place the notion
of isotropic submanifold in a wider setting by studying its interrelationships with other
distinguised families of submanifold such as minimal, pseudo-umbilical, Einstein, etc., into
a pseudo-Riemannian manifold Mm

ν . For this end, we shall use the advantageous language
of immersion theory.

Thus, we first introduce in Section 2 the necessary notation and recall some useful
facts concerning an isometric immersion of a pseudo-Riemannian manifold Nn

s (n ≥ 2)
into the pseudo-Riemannian manifold Mm

ν . We develop in Section 3 the notion of isotropic
submanifold. In particular, every totally umbilical submanifold is obviously an isotropic
submanifold. We give some characterizations of isotropic submanifolds and include an
example showing that isotropy in a Riemannian or in a pseudo-Riemannian environment
may have different consequences.

The class of constant discriminant isotropic immersions (for instance, into a sphere)
seems to be too large to classify them. We first show that in such case an isotropic
submanifold is also pseudo-umbilical. We give some examples of isometric embeddings
between Riemannian or pseudo-Riemannian manifolds. As we remarked in Section 3,
every totally umbilical submanifold is isotropic, and now we prove that the converse is
false. Actually we can prove a slightly stronger result. In fact, we give an example of
a submanifold with dimension n ≥ 3 which is isotropic but not pseudo-umbilical. As
a consequence, we shall sometimes assume the submanifold to be isotropic and pseudo-
umbilical.

In Section 5 we consider the Ricci tensor of an isotropic pseudo-Riemannian submani-
fold of a pseudo-Riemanian space form of constant sectional curvature c. An useful formula
is obtained for this tensor which allows us to obtain several applications. Thus, if the sub-
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manifold is also maximal and its dimension is n ≥ 3, then it is an Einstein manifold (when
n = 2 this result is false). We include an example that exhibits how different things may
happen depending on the surronding space being Riemannian or pseudo-Riemannian.

In Section 6 we consider isotropic spacelike submanifolds Nn (n ≥ 3) of a pseudo-
Riemannian space of constant curvature c, Mm

ν (c). When the isotropy function λ is ap-
proppiately bounded above then strong topological conditions are obtained for Nn. In
particular, if the background space is Rm

ν , the hyperbolic space Hm
ν or the pseudo-sphere

Sm
ν , aditional information is derived. Next we use Bochner’s technique to show that when

Nn is compact and admits a nontrivial conformal vector field, the isotropy function is
bounded as desired. On the contrary, when the isotropy function is bounded below by the
same function as before, then Nn is non-compact. We give an example to illustrate this
result.

Finally, in Section 7 we specialize in the case when the index of the submanifold s = 1,
that is, a Lorentzian submanifold Nn

1 of a pseudo-Riemannian space form Mm
ν (c). When

Nn
1 is compact and admits a spatially conformal reference frame (or a projective vector

field), then we prove that the isotropy function λ is bounded below by the same function
as in Section 6. If in addition Nn

1 is a maximal submanifold, then λ is a constant. By
changing the hypothesis on the existence of the spatially conformal reference frame by
the existence of a timelike conformal vector field, we get the same bound for λ. We close
this Section with some further consequences obtained when we assume that λ reaches the
bound.

2 Preliminaries

Let Mm
ν be a m-dimensional pseudo-Riemannian manifold with metric tensor g of

signature (ν, m − ν). Let φ : Nn
s → Mm

ν be an isometric immersion of a connected
pseudo-Riemannian manifold Nn

s of dimension n ≥ 2 and signature (s, n− s). For all local
formulae and computations we may assume φ is an imbedding and thus we shall often
identify p ∈ Nn

s with φ(p) ∈ Mm
ν . The tangent space TpN

n
s is identified with the subspace

φ∗(TpN
n
s ) of TpM

m
ν , and the normal space is denoted by T⊥p Nn

s . We will use letters
X, Y, Z (resp. ξ, η, ζ) to denote vectors fields tangent (resp. normal) to Nn

s . Let ∇̃ and ∇
be the Levi-Civita connections of Mm

ν and Nn
s , respectively. Then, the Gauss-Weingarten

formulas are given by

∇̃XY = ∇XY + h(X,Y ), (1)
∇̃Xξ = −AξX + DXξ, (2)

where h denotes the second fundamental form of φ, Aξ the shape operator, and D is the
normal connection. The shape operator and the second fundamental form are related by
g(AξX, Y ) = g(h(X, Y ), ξ).

A point p ∈ Nn
s is umbilic [21] provided there exists a vector ξp ∈ T⊥p Nn

s such that for
all u, v ∈ TpN

n
s then h(u, v) = g(u, v)ξp. When every point of Nn

s is umbilic the immersion
φ is called totally umbilical. In such case, it is well known that h(X, Y ) = g(X,Y )H where
H = (1/n)traceg (h) is the mean curvature vector of φ. We also recall that a point p ∈ Nn

s

is flat if h = 0 at p, and the immersion φ is said to be totally geodesic provided every point
of Nn

s is flat.
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The immersion φ is called pseudo-umbilical if its second fundamental form satisfies
g(h(X, Y ),H) = ρg(X,Y ) for some function ρ. Necessarily this function ρ is given by
ρ = g(H,H). Clearly, any totally umbilical immersion is pseudo-umbilical.

Denote by R̃ and R the curvature tensor of Mm
ν and Nn

s , respectively. The equation
of Gauss is given by

(R̃(X,Y )Z)> = R(X, Y )Z + Ah(X,Z)Y −Ah(Y,Z)X, , (3)

where (R̃(X,Y )Z)> denotes the tangential component of R̃(X, Y )Z.
The notion of discriminant D of the immersion φ for a non-degenerate plane can be

introduced in a similar way to the case of an immersion between Riemannian manifolds
[20]. In fact, the discriminant Dp of φ at p ∈ Nn

s is Dp(Π) = K(Π) − K̃(Π), where
K(Π) and K̃(Π) denote the sectional curvature of Nn

s and Mm
ν , respectively, on a non-

degenerate plane Π of TpN
n
s . The immersion φ is said to be of constant discriminant at

p ∈ Nn
s if Dp(Π) is a constant for all non-degenerate planes Π of TpN

n
s . Notice that if φ

is of constant discriminant at each point of Nn
s , then the discriminant can be viewed as a

function D : Nn
s → R.

From the view-point of infinitesimal transformations, a vector field X is said to preserve
a certain geometric quantity if the Lie derivative LX of this quantity vanishes. On a pseudo-
Riemannian manifold (M, g) a vector field X is called isometric or Killing if it preserves
the metric in the sense of LXg = 0. The vector field X is called conformal if it preserves
the conformal class of the metric in the sense that LXg = 2ρg holds for some function
ρ : M −→ R.

A projective vector field U is a smooth vector field whose flow preserves the geodesic
structure of M without necessarily preserving the affine parameter of any geodesic. An
affine vector field is a projective vector field preserving geodesics and preserving the affine
parameter. It is known that U is projective if and only if there exists a 1-form ω on M such
that LU∇(X,Y ) = ω(X)Y + ω(Y )X for all X, Y ∈ X(M), and ω = (1/(n + 1))d(div(U))
(see [22, Props. 5.27, 5.28] for instance). Note that U is affine if and only if ω = 0.

Let Rm
ν be the n-dimensional pseudo-Euclidean space with inner product of signature

ν given by

〈x, y〉 = −
ν∑

i=1

xiyi +
m∑

i=ν+1

xiyi

where x = (x1, . . . , xm), y = (y1, . . . , ym). For a positive number c, the standard space form
Sm

ν (c) is the hypersurface Sm
ν (c) = {x ∈ Rm+1

ν : 〈x, x〉 = 1/c} with the induced metric of
signature ν and constat curvature c and it is called a pseudo-sphere. For a negative number
c, the standard space form Hm

ν (c) is the hypersurface Hm
ν (c) = {x ∈ Rm+1

ν+1 : 〈x, x〉 = 1/c}
with the induced metric of signature ν and curvature c < 0. This is called the pseudo-
hyperbolic space. We simply denote Sm

ν (1) and Hm
ν (−1) by Sm

ν and Hm
ν , respectively. For

short we shall write Mm
ν (c) to indicate Sm

ν (c), Rm
ν or Hm

ν (c), according to c > 0, c = 0 or
c < 0, respectively.
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3 Isotropic immersion

We first recall that an isometric immersion φ : Nn
s → Mm

ν is called isotropic at p ∈ Nn
s

([10, 19]) if
g(h(u, u), h(u, u)) = λ(p) ∈ R (4)

does not depends on the choice of the unit tangent vector u ∈ TpN
n
s , and φ is said to

be isotropic if φ is isotropic at each point of Nn
s . In such a case, the smooth function

λ : Nn
s → R defined by equation (4) is called the isotropy function, and the isometric

immersion φ is said to be λ-isotropic. In particular, if λ is a constant function the immersion
is called constant isotropic.

Remark 3.1 (a) It is clear that every totally umbilical immersion φ : Nn
s → Mm

ν is an
isotropic immersion with λ = g(H,H). Notice that the function g(H,H) is constant when
φ is totally umbilical and Mm

ν is of constant sectional curvature c [13, p. 11]. Thus,
pseudo-spheres Sn

s (c) and pseudo-hyperbolic spaces Hn
s (c) into a pseudo-Euclidean space

are constant isotropic submanifolds with λ = g(H,H) = c. (b) Every isotropic immersion
φ : Nn

s → Mm
ν with 0 < s < n and s = ν, or ν− s = m−n, is totally umbilical. In fact, in

both cases T⊥p Nn
s is a defined metric space. Thus, from isotropy condition (4) we obtain

h(x, x) = 0 for any lightlike tangent vector x, and this means that our immersion is totally
umbilical [15]. In particular, every isotropic immersion between Lorentzian manifolds is
totally umbilical. (c) Any isotropic hypersurface φ : Nn

s → Mn+1
ν is totally umbilical.

Notice that necessarily s = ν or s = ν − 1. Thus, if the index s satisfies 0 < s < n, the
hypersurface is totally umbilical as before. It is easy to prove the defined cases s = 0 and
s = n (see [9]). (d) The composition of isotropic immersions is an isotropic immersion, and
the isotropy function of the composition is the sum of the corresponding isotropy functions.

Now we provide a characterization of isotropic immersions [8].

Lemma 3.2 Let φ : Nn
s → Mm

ν be an isometric immersion. Then, the following conditions
are equivalent:

1. φ is isotropic.

2. There exists a smooth function λ : Nn
s → R such that

Ah(X,X)X = λg(X, X)X

for all X ∈ X(Nn
s ).

3. There exists a smooth function λ : Nn
s → R such that

Ah(X,Y )Z + Ah(Y,Z)X + Ah(Z,X)Y = λ{g(X, Y )Z + g(Y,Z)X + g(Z,X)Y }

for all X,Y, Z ∈ X(Nn
s ).

As a consequence of this lemma we have the following.

Theorem 3.3 Let φ : Nn
s → Mm

ν be an isometric immersion. Then, the following condi-
tions are equivalent.
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1. φ is isotropic.

2. There exists a smooth funtion λ : Nn
s → R such that

3Ah(X,Y )Z = λ{g(X, Y )Z + g(Y, Z)X + g(X, Z)Y }
+R(Z, X)Y − (R̃(Z, X)Y )>

+R(Z, Y )X − (R̃(Z, Y )X)> (5)

for any X, Y, Z, W ∈ X(Nn
s ).

Furthermore, the condition 2 holds with λ a constant function if and only if φ is constant
isotropic.

Proof. It follows from Gauss equation (3) that

3Ah(X,Y )Z = Ah(X,Y )Z + Ah(Y,Z)X + Ah(Z,X)Y

+R(Z,X)Y − (R̃(Z,X)Y )>

+R(Z, Y )X − (R̃(Z, Y )X)>.

Now, by statement 3 of Lemma 3.2, we find equation (5). ¤

Remark 3.4 From Theorem 3.3 one can easily prove that every isotropic immersion φ :
Nn

s → Mm
ν satisfies

n2g(H,H) = (n + 2)nλ− 2g(h, h) (6)

where g(h, h) is defined by g(h, h) =
∑n

i,j=1 εiεjg(h(ei, ej), h(ei, ej)) for a local orthonormal
frame {e1, . . . , en} on Nn

s , εi = g(ei, ei). As a consequence of equation (6), a λ-isotropic
immersion between Riemannian manifolds is totally-umbilical if and only if λ = g(H,H).
However, in the indefinite case the corresponding result is false. In fact, let f1, . . . , f` :
Rn

s → R be smooth functions and consider the isometric immersion φ : Rn
s → Rn+2`

s+` defined
by φ(x) = (f1(x), . . . , f`(x), x, f1(x), . . . , f`(x)). It is easy to check that φ is 0-isotropic with
g(H,H) = 0. Notice that φ is totally umbilical if and only if fj is given by (see [8])

fj(x1, . . . , xn) = aj

(
−

s∑

i=1

x2
i +

n∑

i=s+1

x2
i

)
+

n∑

i=1

bi
jxi + cj ,

with aj , b
1
j , . . . , b

n
j , cj ∈ R, j = 1, . . . `.

4 The constant discriminant case

We need the following result for later use.

Lemma 4.1 Let φ : Nn
s → Mm

ν be an isometric immersion. Then, φ is of constant
discriminant at each point of Nn

s if and only if there exists a smooth function D : Nn
s → R

such that
Ah(Y,Z)X −Ah(X,Z)Y = D{g(Y, Z)X − g(X,Z)Y } (7)

for any X, Y, Z ∈ X(Nn
s ).
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Proof. Suppose that φ is of constant discriminant Dp at p ∈ Nn
s . Let T be the 4-covariant

tensor on TpN
n
s defined by

T (x, y, z, w) = g(h(x,w), h(y, z))− g(h(x, z), h(y, w))
−Dp {g(x,w)g(z, y)− g(x, z)g(y, w)} . (8)

Then, T is a curvaturelike function, i. e., T has the following symmetries:

(i) T (x, y, z, w) + T (y, z, x, w) + T (z, x, y, w) = 0,

(ii) T (y, x, z, w) = −T (x, y, z, w),

(iii) T (x, y, w, z) = −T (x, y, z, w),

(iv) T (z, w, x, y) = T (x, y, z, w).

From Gauss equation (3) we have

Dp =
g(h(x, x), h(y, y))− g(h(x, y), h(x, y))

g(x, x)g(y, y)− g(x, y)2
,

for all x, y ∈ TpN
n
s such that g(x, x)g(y, y)− g(x, y)2 6= 0. Therefore T (x, y, y, x) = 0 and

this means that T = 0 [21, p. 79]. This concludes the proof.
¤

Theorem 4.2 Let φ : Nn
s → Mm

ν be a λ-isotropic immersion with constant discriminant
D at each point of Nn

s . Then, φ is pseudo-umbilical and

3ng(H,H) = (n + 2)λ + 2(n− 1)D. (9)

In particular, we have

(a) λ = D if and only if λ = g(H,H).

(b) λ = −{2(n− 1)/(n + 2)}D if and only if g(H,H) = 0.

Proof. From Theorem 5 and equation (7), we have

3Ah(X,Y )Z = (λ−D){g(Y,Z)X + g(X,Z)Y }
+ (λ + 2D)g(X, Y )Z. (10)

Consider an orthonormal reference frame {e1, . . . , en} on Nn
s . From Eq. (10) we obtain

g(H, h(ei, ej)) =

{
εi ρ if i = j,

0 if i 6= j,

where ρ = ((n + 2)λ + (2n − 2)D)/3n, and then the immersion is pseudo-umbilical with
3ng(H,H) = (n + 2)λ + 2(n− 1)D. The other statements are trivial.

¤
As a immediate consequence we have the following.
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Corollary 4.3 Let φ : Nn
s → Mm

ν be a λ-isotropic immersion of a pseudo-Riemannian
manifold Nn

s of constant sectional curvature k into a pseudo-Riemannian manifold Mm
ν of

constant sectional curvature c. Then, φ is pseudo-umbilical and

3ng(H,H) = (n + 2)λ + 2(n− 1)(k − c). (11)

In particular, if k = c then φ is 0-isotropic if and only if g(H,H) = 0.

Remark 4.4 It is well known that an isometric immersion between two Riemannian spaces
of the same constant sectional curvature is totally geodesic. In this case, this result is irrel-
evant when k = c. However, in the following example we obtain an isotropic immersion of
Sn in Sn+2

1 with lightlike mean curvature vector, but the immersion is not totally geodesic.

Example 4.5 Let f : Sn → R be a smooth function. The isometric immersion ψ : Sn →
Sn+2

1 defined by
ψ(x) = (f(x), ι(x), f(x))

is 0-isotropic, where ι : Sn → Rn+1 denotes the canonical inclusion. In fact, a straightfor-
ward computation shows that the second fundamental form h of ψ is given by ([14])

h(X,Y ) =
(
(∇2f)(X, Y ) + fg(X,Y )

)
η,

where η denotes the lightlike vector (1, 0, . . . , 0, 1) ∈ Rn+3
1 and ∇2f is the Hessian of f in

Sn. Thus, the immersion ψ is 0-isotropic with mean curvature vector

H =
1
n

(∆f + nf) η,

where ∆ = traceg(∇2) is the Laplacian operator. On the other hand, an eigenfunction of
−∆ corresponding to the eigenvalue n is the restriction to Sn of a homogeneous polynomial
of degree 1 ([4]), and therefore the immersion ψ is totally umbilical if and only if f is an
affine function. Notice that Sn is compact, Iso(Sn) is finite and the first Betti number of
Sn is zero.

Corollary 4.6 Let φ : N2
s → Mm

ν be a λ-isotropic immersion. Then, φ is pseudo-umbilical
and 3g(H,H) = 2λ +D.

Proof. This follows immediately from Theorem 4.2. Notice that every surface has constant
discriminant.

¤
Recall that we noted in Remark 3.1 (a) in Section 3 that every totally umbilical

immersion φ : Nn
s → Mm

ν is an isotropic immersion. The converse is not true in general
(Remark 3.4). Here we can prove a slightly sharper result: an isotropic immersion φ :
Nn

s → Mm
ν with n ≥ 3 does not need to be even pseudo-umbilical. In fact, we have the

following counterexample.

Example 4.7 Consider the complex Euclidean space Cn, n ≥ 3 and let γ : R→ C be the
smooth complex curve defined by

γ(t) =
√

cosh(2t) exp{i arctan(tanh 2t)}.
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It is easy to prove that φ : R×Sn−1 → Cn, φ(t, x1, . . . , xn) = γ(t)(x1, . . . , xn) is an isometric
immersion when R×Sn−1 is endowed with the induced metric g = cosh 2t (dt2 +g0), where
g0 denotes the standard Euclidean induced metric of Sn−1. Let {ẽ2, . . . , ẽn} be a local
orthonormal basis of Sn−1 with respect to the metric g0. Now we define

e1 =
1
|γ|(∂t, 0), ei =

1
|γ|(0, ẽi), 2 ≤ i ≤ n,

and then we get a local orthonormal basis {ei} of φ and {ei, Jei} a local orthonomal basis
of Cn. We apply Lemma 4.2 in reference [17] and we find that the second fundamental
form h of φ is given by

{
h(e1, e1) = aJe1 h(e2, e2) = · · · = h(en, en) = −aJe1,
h(e1, ej) = −aJej h(ej, ek) = 0, 2 ≤ j 6= k ≤ n,

where a = −(cosh 2t)−3/2. A straightforward computation gives that φ is an isotropic
immersion with isotropy function λ = a2 which satisfies

g(h(e1, e1),H) = −g(h(ej , ej),H) = a(2− n)/n, 2 ≤ j ≤ n.

Thus, as n ≥ 3 we have that φ is non-pseudo-umbilical.

5 The Ricci tensor of an isotropic submanifold

Recall that the Ricci tensor of a pseudo-Riemannian manifold Nn
s with metric tensor

g is defined by Ric(X,Y ) = traceg(Z 7→ R(Z, X)Y ). A pseudo-Riemannian manifold is
an Einstein manifold when the Ricci tensor satisfies Ric = µg for some constant µ ∈
R. Pseudo-Riemannian manifolds Nn

s with constant sectional curvature c are simplest
examples of Einstein manifolds, where µ = c(n− 1). Conversely, for n = 2 or n = 3, every
Einstein manifold has constant sectional curvature. However, there are 4-dimensional
Einstein manifolds with non-constant sectional curvature. It is also well known that a
connected manifold Nn

s with n ≥ 3 and Ric = µg for some function µ : Nn
s → R, is

Einstein.
For a pseudo-Riemannian space form Mm

ν (c) with constant sectional curvature c we
have the following result.

Theorem 5.1 Let φ : Nn
s → Mm

ν (c) be a λ-isotropic immersion. Then,

(a) The Ricci tensor of Nn
s is given by

Ric(X,Y ) = {c(n− 1)− λ(n + 2)/2}g(X,Y )
+3ng(h(X,Y ),H)/2. (12)

(b) If n ≥ 3, φ is pseudo-umbilical if and only if Nn
s is an Einstein manifold.

Proof. (a) Using the Gauss equation (3) we have

Ric(X, Y ) = c(n− 1)g(X,Y ) + ng(h(X, Y ),H)− b(X,Y ), (13)
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where b(X, Y ) is defined by b(X, Y ) =
∑n

i=1 εig(h(X, ei), h(Y, ei)) for a local orthonor-
mal frame {e1, · · · , en} on Nn

s , εi = g(ei, ei). Applying Theorem 3.3, a straightforward
computation leads to

3b(X, Y ) = {c(n− 1) + λ(n + 2)}g(X,Y )− Ric(X, Y ). (14)

Now, equation (12) follows from (13) and (14).
(b) Assume φ is pseudo-umbilical. Then, equation (12) yields

Ric(X, Y ) = {c(n− 1)− λ(n + 2)/2}g(X,Y )
+3ng(h(X,Y ),H)/2,

= {c(n− 1)− λ(n + 2)/2 + 3ng(H,H)/2}g(X, Y ). (15)

As n ≥ 3, then µ = c(n − 1) − λ(n + 2)/2 + 3ng(H,H)/2 is a constant function [5] and,
consequently, Nn

s is a Einstein manifold as desired. The converse can be obtained by a
similar way.

¤
As a consequence of this result we have the following.

Corollary 5.2 Let φ : Nn
s → Mm

ν (c) be an isotropic immersion of an Einstein manifold
Nn

s . Then, φ is constant isotropic if and only if g(H,H) is a constant function.

Corollary 5.3 Let φ : Nn
s → Mm

ν (c) be an isotropic and pseudo-umbilical immersion with
n ≥ 3. Then, φ is constant isotropic if and only if g(H,H) is a constant function.

Corollary 5.4 Let φ : Nn
s → Mm

ν (c) be an isotropic immersion, n ≥ 3 and H = 0. Then,
φ is constant isotropic and Nn

s is Einstein.

Remark 5.5 The last result is not true for n = 2. In fact, every non-planar holomorphic
curve with respect to some orthogonal complex structure on R4 is a minimal isotropic and
non-constant isotropic surface (see [12]).

Corollary 5.6 Let φ : N3
s → Mm

ν (c) be an isotropic immersion with H = 0. Then, φ is
constant isotropic and N3

s has constant sectional curvature.

Now we show a nice application of Theorem 5.1.

Example 5.7 Let Nn a compact Riemannian manifold. Then Nn has a unique kernel of
the heat equation K : Nn × Nn × R+

0 → R. Let d the distance function on Nn. Then
Nn is called a strongly harmonic manifold if there exists a function Ψ : R+ × R+

0 → R
such that K(p, q, t) = Ψ(d(p, q), t) for any p, q ∈ Nn and t ∈ R+

0 . Compact symmetric
spaces of rank one are known examples of strongly harmonic manifolds. Let µk be the
k-th nonzero eigenvalue of the Laplacian ∆. Denote by Vk be the eigenspace of ∆ with
eigenvalue µk. On Vk we define a inner product by 〈〈f, g〉〉 =

∫
Nn fg ∗ 1 for f, g ∈ Vk. The

space Vk endowed with 〈〈·, ·〉〉 is a finite dimensional Euclidean space. Let ϕ1
k, . . . , ϕ

m
k be

a orthonormal basis of Vk. Then the mapping

ϕk : Nn → Rm; p 7→ ck(ϕ1
k(p), . . . , ϕm

k (p))
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defines a constant isotropic immersion for some suitable constant ck [12]. It is known [6]
that ϕk(Nn) is minimal in a certain Euclidean sphere of Rm. Then, by applying Theorem
5.1, we conclude that strongly harmonic manifolds are Einstein manifolds for dimension
n ≥ 3.

Proposition 5.8 Let φ : Nn
s → Mm

ν (c) be an isotropic immersion of an Einstein manifold
Nn

s . Then, if Nn
s admits an umbilical point, φ is constant isotropic with isotropy constant

λ = g(H,H).

Proof. If φ is totally umbilical, from Remark 3.1 the result follows. Assume φ is non-totally
umbilical and define U = {p ∈ Nn

s : p is an umbilical point of φ}. Clearly, U and Nn
s − U

are non-empty subsets of Nn
s . It follows from Gauss equation (3) that Ric = (n−1)(c+λ)g

on U . Consequently, as Nn
s is Einstein, φ is constant isotropic. On the other hand, by

virtue of Eq. (15) we known that Ric = {c(n − 1) − λ(n + 2)/2 + 3ng(H,H)/2}g on
Nn

s − U . Then, as Nn
s is Einstein, (n− 1)(c + λ) = c(n− 1)− λ(n + 2)/2 + 3ng(H,H)/2

and, consequently, λ = g(H,H) on Nn
s .

¤

Remark 5.9 As a consequence of this result and Remark 3.4 we have that an Einstein
manifold isotropically immersed into a Riemannian space form, which admits a umbilical
point, is totally umbilical. But in the indefinite case the corresponding result it not true.
In fact, consider the surface S = {(x, y) ∈ R2 : 1 < x2 + y2 < 4} and let f : S → R be a
smooth function such that f > 0 on

U = {(x, y) ∈ S : 2−
√

1− x2 < y <
√

4− x2}

and on
V = {(x, y) ∈ S : −

√
4− x2 < y < −2 +

√
1− x2},

while f = 0 on S − (U ∪ V ). Let φ : S → R4
1 by the isometric immersion given by

φ(x, y) =

{
(f(x, y), x, y, f(x, y)) if y ≥ 0,

(f(x, y), x, y,−f(x, y)) if y < 0.

Then φ is a non-totally umbilical 0-isotropic immersion with g(H,H) = 0 and admitting
flat points.

Corollary 5.10 Let φ : Nn
s (k) → Mm

ν (c) be an isotropic immersion of a pseudo-Riemannian
manifold Nn

s with constant sectional curvature k and admitting an umbilical point. Then,
φ is constant isotropic with isotropy constant λ = g(H,H) = k − c.

Proof. This follows immediately from Proposition 5.8 and Corollary 4.3.
¤

11

https://www.researchgate.net/publication/243690736_Manifolds_All_of_Whose_Geodesics_are_Closed?el=1_x_8&enrichId=rgreq-df059e7fac15bc79d8aa7412400021f3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzIzMjA1OTtBUzoxMzY1MDI1NTgzMzQ5NzZAMTQwOTU1NjE1NDQyNg==
https://www.researchgate.net/publication/232014841_The_contact_number_of_a_Euclidean_submanifold?el=1_x_8&enrichId=rgreq-df059e7fac15bc79d8aa7412400021f3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzIzMjA1OTtBUzoxMzY1MDI1NTgzMzQ5NzZAMTQwOTU1NjE1NDQyNg==


6 Spacelike isotropic submanifolds in pseudo-Riemannian space
forms

Theorem 6.1 Let φ : Nn → Mm
ν (c) be an isotropic and pseudo-umbilical immersion of

a complete spacelike submanifold Nn with n ≥ 3. Suppose that the isotropic function λ
satisfies

λ <
2(n− 1)
n + 2

c +
3n

n + 2
g(H,H). (16)

Then, Nn is compact, Iso(Nn) is finite and the first Betti number of Nn is zero.

Proof. From Theorem 5.1 we have Ric = µg with µ = c(n−1)−λ(n+2)/2+3ng(H,H)/2.
Now, inequality (16) gives that µ is a constant positive function. The result follows from
the classical Myers’ theorem [21] and Corollary 5.5 in [22].

¤

Remark 6.2 It is well-known [11] that there exist no compact maximal submanifolds
in the pseudo-Euclidean space Rm

ν and the pseudo-hyperbolic space Hm
ν (c). However,

there exist compact maximal submanifolds in pseudo-Riemannian spheres. So, by applying
Corollary 5.4 and Theorem 6.1, we can state the following results.

Corollary 6.3 Let Nn be a complete maximal isotropic submanifold into the pseudo-
Euclidean space Rm

ν , n ≥ 3. Then, Nn is constant isotropic and the isotropy constant
satisfies λ ≥ 0.

Corollary 6.4 Let Nn be a complete maximal isotropic submanifold into the pseudo-
hyperbolic space Hm

ν , n ≥ 3. Then, Nn is constant isotropic and the isotropy constant
satisfies λ ≥ 2(1− n)/(n + 2).

For complete maximal isotropic submanifolds into pseudo-spheres we have the follow-
ing.

Corollary 6.5 Let Nn be a complete maximal isotropic submanifold in the pseudo-sphere
Sm

ν with n ≥ 3. Then, either Nn is totally geodesic, or Nn is constant isotropic with
isotropy constant λ > 0.

Proof. As the dimension n ≥ 3, from Corollary 5.4, Nn is constant isotropic. If ν = 0 or
ν = m − n the results is clear. Suppose that 0 < ν < m − n. If the isotropy constant
λ ≤ 0, Eq. (12) gives

Ric(X,X) = {(n− 1)− λ(n + 2)/2}g(X, X) ≥ (n− 1)g(X,X).

Then, by Theorem 3.1 in [2] Nn is totally geodesic, and this concludes the proof.
¤

Remark 6.6 Notice that the only complete maximal n-submanifolds in Sn+ν
ν are the to-

tally geodesic ones [18]. However, when the normal bundle is not definite, there exists
complete maximal constant isotropic submanifolds in pseudo-spheres which are non-totally
geodesic. In fact, let G be the matrix G = diag[ε1, . . . , εn+1], ε1 = . . . = εs = −1 and
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εs+1 = . . . = εn+1 = 1. Let us denote by so(n + 1, s) the space of selfadjoint operators on
Rn+1

s of trace 0, that is, so(n + 1, s) = {P ∈ gl(n + 1,R) : P tG = GP, trace(P ) = 0}, P t

standing for the transpose of P . Let us consider the map φ : Sn
s (n/2(n+1)) → so(n+1, s)

defined by φ(x) =
√

n/4(n + 1)(xxtG− (2/n)I), where x is regarded as a 1-column matrix
and I denote the unix matrix of degree n+1. It is easy to see that φ is an isometric immer-
sion provided that so(n + 1, s) is endowed with the metric g(P,Q) = trace(PQ), so that
so(n+1, s) ∼= Rm

s(n+1−s) with m = n(n+3)/2. The image of φ is contained in Sm−1
s(n+1−s) as

a constant isotropic submanifold with zero mean curvature vector [7]. Now, by Corollary
4.3, λ = (n − 1)/(n + 1). Take s = 0 in the definition of φ and let ι : Sm−1 → Sm

1 be the
standard totally geodesic inclusion. Then, as the composition of isotropic immersions is
also isotropic, it is easy to see that ι ◦ φ : Sn(n/2(n + 1)) → Sm

1 is a complete maximal
constant isotropic immersion with λ = (n− 1)/(n + 1) > 0.

Proposition 4.7 in [1] proved that there exists no pseudo-umbilical compact spacelike
submanifolds with lightlike parallel mean curvature vector in a pseudo-hyperbolic space.
This result combined with Corollary 5.3 and Theorem 5.1 gives the following.

Corollary 6.7 Let Nn be a compact spacelike isotropic submanifold into the pseudo-hyperbolic
space Hm

ν , n ≥ 3. Suppose that Nn is pseudo-umbilical with lightlike parallel mean cur-
vature vector. Then, Nn is constant isotropic and the isotropy constant satisfies λ ≥
2(1− n)/(n + 2).

On the other hand, appliying the Bochner’ technique we have

Theorem 6.8 Let φ : Nn → Mm
ν (c) be an isotropic and pseudo-umbilical immersion of

a compact spacelike manifold Nn (n ≥ 3) admiting a nontrivial conformal vector field X.
Then, the isotropy function λ satisfies

λ ≤ 2(n− 1)
n + 2

c +
3n

n + 2
g(H,H). (17)

If the equality holds at a point p ∈ Nn, then X is parallel, the first Betti number of Nn is
not zero and Iso(Nn) is finite. Moreover, if Nn is homogeneous, Nn is isometric to a flat
n-dimensional Riemannian torus.

Proof. From Theorem 5.1 Nn is Einstein and Ric = µg with µ = c(n− 1)− λ(n + 2)/2 +
3ng(H,H)/2. By applying Bochner formula [22, Theorem 5.10],

∫

Nn

{µg(X,X) + trace(∇X ◦ ∇X)− (div(X))2} = 0. (18)

Since X is conformal, trace(∇X ◦ ∇X) = −‖∇X‖2 + 2div(X). Thus, using the classical
divergence theorem in Eq. (18) we get

∫

Nn

{µg(X, X)− ‖∇X‖2 − (div(X))2} = 0. (19)

But µ ≥ 0 because X is nontrivial, and inequality (17) is fulfilled. If the equality holds at
a point p ∈ Nn, then µ = 0 and from Eq. (19), X is parallel. In this case Nn is Ricci-flat
and by Theorems 1.84 and 7.61 in [5] the result follows.

¤
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Corollary 6.9 Let φ : Nn → Sm
ν be a maximal isotropic immersion of a compact manifold

Nn (n ≥ 3) admitting a nontrivial conformal vector field X. Then, φ is constant isotropic
with isotropy constant

λ ≤ 2(n− 1)
n + 2

. (20)

If the equality holds, then X is parallel, the first Betti number of Nn is not zero and
Iso(Nn) is finite. Moreover, if Nn is homogeneous, Nn is isometric to a flat n-dimensional
Riemannian torus.

Proof. This follows immediately from Corollary 5.4 and Theorem 6.8.
¤

When the spacelike submanifold Nn is homogeneous we have:

Corollary 6.10 Let φ : Nn → Mm
ν (c) be an isotropic and pseudo-umbilical immersion of

a homogeneous spacelike submanifold Nn with n ≥ 3. Suppose that the isotropic function
λ satisfies

λ >
2(n− 1)
n + 2

c +
3n

n + 2
g(H,H). (21)

Then, Nn is non-compact.

Proof. It is sufficient to observe that a Riemannian homogeneous space admits a nontrivial
Killing field ([21, Corollary 9.38]). Applying Theorem 6.8 the result follows.

¤
Next, we give an example satisfying the assumption of the last corollary.

Example 6.11 We define the isometric immersion ψ : Hn → Hn+2
1 by ψ(x) = (f(x), ι(x), f(x)),

where f : Hn → R is a smooth function and ι : Hn → Rn+1 denotes the canonical inclusion.
The second fundamental h and the mean curvature vector H of φ are given by

h(X, Y ) =
(
(∇2f)(X, Y )− fg(X,Y )

)
η, H =

1
n

(∆f − nf) η,

where η denotes the lightlike vector (1, 0, . . . , 0, 1) ∈ Rn+3
2 , ∇2f is the Hessian of f in

Hn and ∆f = traceg(∇2f) is the Laplacian. Then, ψ is 0-isotropic, pseudo-umbilical and
satisfies (21).

7 Lorentzian isotropic submanifolds in pseudo-Riemannian
space forms

Recall that a reference frame on a Lorentzian manifold Nn
1 is a vector field U on Nn

1

which satisfies g(U,U) = −1. In General Relativity, a reference frame in a spacetime is
seen as a vector field that each of its integral curves is an observer (i.e. a particle of unit
mass). There are remarkable families of reference frames of geometric interest. In fact, a
reference frame U is said to be spatially conformal (resp. spatially stationary or rigid) if
LUg(X, Y ) = 2ρg(X, Y ), where ρ : Nn

1 → R (resp. LUg(X, Y ) = 0) for all X,Y ⊥ U . A
Lorentzian manifold which admits a timelike conformal (resp. Killing) vector field is called
conformally stationary (resp. stationary) [23]. In General Relativity spatially conformal
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vector fields model sets of observers which see a constant metric in the spatial part for
them. Spatially stationary reference frames model observers which see an expansion or
compression along their proper time. The existence of conformal symmetries is a quite
general and useful assumption to study Einstein equations.

Note that if X is a timelike conformal (resp. Killing) vector field on Nn
1 , then the

reference frame U = (1/
√
−g(X, X)))X is spatially conformal (resp. spatially stationary).

However, there exist spatially conformal reference frames which cannot be obtained in
that way. In fact, if n = 2 then every reference frame is indeed spatially conformal. But
a time-orientable incomplete Lorentzian torus does not admit a timelike conformal vector
field [23].

The study of spatially conformal reference frames on a Lorentzian manifold has been
shown to be useful in solving several mathematical problems. In particular, in [23, 24] it
has been proved that if Nn

1 is an n-dimensional (n ≥ 3) compact Lorentzian manifold is
Einstein with Ric = µg, µ ∈ R, and admits a spatially conformal reference frame (or a
timelike projective vector field), then µ ≤ 0. Using this result, Theorem 5.1 allows us to
state the following.

Theorem 7.1 Let φ : Nn
1 → Mm

ν (c) be an isotropic and pseudo-umbilical immersion of a
compact Lorentz manifold Nn

1 (n ≥ 3). Then, if Nn
1 admits a spatially conformal reference

frame (or a timelike projective vector field), the isotropy function λ satisfies

λ ≥ 2(n− 1)
n + 2

c +
3n

n + 2
g(H,H). (22)

Corollary 7.2 Let φ : Nn
1 → Mm

ν (c) be an isotropic immersion with H = 0 of a compact
Lorentz manifold Nn

1 (n ≥ 3). Then, if Nn
1 admits a spatially conformal reference frame

(or a timelike projective vector field), φ is constant isotropic with isotropy constant

λ ≥ 2(n− 1)
n + 2

c. (23)

Proof. This follows immediately from Corollary 5.4 and Theorem 7.1.
¤

Analogously, by using a uniqueness result about compact Ricci-flat Lorentzian mani-
folds admitting a timelike conformal vector field, Corollary 3.9 in [23], we have the following.

Theorem 7.3 Let φ : Nn
1 → Mm

ν (c) be an isotropic and pseudo-umbilical immersion of
a compact Lorentz manifold Nn

1 (n ≥ 3) admitting a timelike conformal vector field X.
Then, the isotropy function λ satisfies

λ ≥ 2(n− 1)
n + 2

c +
3n

n + 2
g(H,H). (24)

If the equality holds at a point, then X is parallel, the first Betti number of Nn
1 is not zero

and the Levi-Civita connection of Nn
1 is Riemannian. Moreover, if any of the following

conditions

(1) Nn
1 is homogeneous,

(2) Nn
1 is flat (in particular if n = 3),
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(3) n = 4,

holds, then Nn
1 is isometric (up to a finite covering in the cases (2) and (3)) to a flat

n-dimensional Lorentzian torus.

Remark 7.4 It is well known that in the Riemannian case a homogeneous Ricci-flat man-
ifold is flat, but in the Lorentzian case the corresponding result is not true. Observe that
in the last theorem the hypothesis of pseudo-umbilicity can be replaced by minimality.
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