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Abstract It is known that alternative links are pseudoalternating. In 1983 Louis Kauff-

man conjectured that both classes are identical. In this paper we prove that Kauffman

Conjecture holds for those links whose first Betti number is at most 2. However, it is not

true in general when this value increases, as we also prove by finding two counterexamples:

a link and a knot whose first Betti numbers equal 3 and 4, respectively.
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1 Introduction

In [7] Louis Kauffman defined the family of alternative links, as an extension of the

class of alternating links which preserves some of the nice properties of this well-known
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class. Previously, in 1976, E.J. Mayland and K. Murasugi introduced the class of pseu-

doalternating links [8]. Alternative links are pseudoalternating, and Kauffman conjectured

that the converse also holds:

Conjecture 1.1. [7] The classes of alternative and pseudoalternating links are identical.

Although this conjecture was stated by Kauffman, Mayland and Murasugi posed a

similar question in [8]. In this paper we prove Conjecture 1.1 for links having their first

Betti number, β, smaller than 3 (this includes the class of knots of genus one), and we

provide counterexamples for links whose first Betti numbers equal 3 and 4, respectively

(recall that β(L) = min{rank(H1(F ))| F is a Seifert surface for L}). Namely, we present

a genus two knot and a genus one two-components link which are pseudoalternating but

not alternative.

The plan of the paper is as follows. In Section 2 we recall the definitions of alternative

and pseudoalternating links; we also recall the definition of homogeneous links, an inter-

mediate family introduced by Peter Cromwell in [3]. In Section 3 we disprove Kauffman

Conjecture by finding a link and a knot being pseudoalternating and non-homogeneous,

hence non-alternative: L9n18{1} and 10145, whose first Betti numbers equal 3 and 4, re-

spectively. Finally, Section 4 is devoted to prove that the Conjecture holds in the case

of links having first Betti number smaller than 3, providing an alternative proof of the

characterization of homogeneous genus one knots given in [6]; we also give an upper bound

for the number of primitive flat surfaces plumbed to construct a generalized one spanning

a given pseudoalternating link.
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2 Alternative, Homogeneous and Pseudoalternating Links

As the alternative, homogeneous and pseudoalternating characters of a link are orien-

tation dependant, from now on all links will be oriented and non-split.

Given an oriented diagram D of a link L, it is possible to smooth every crossing

coherently with the orientation of the diagram. After doing this for all crossings in D, we

obtain a set of topological (Seifert) circles. Following Kauffman, the spaces of the diagram

D are the connected components of the complement of its Seifert circles in S2, as opposed

to the regions of the knot diagram. Draw an edge joining two Seifert circles at the place

where there was a crossing in D, and label the edge with the sign of the corresponding

crossing (+ or −). We will refer to the resulting set of topological circles and labeled edges

as the Seifert diagram of D, because of the analogy of this process to Seifert’s algorithm

for constructing an orientable surface spanning a link.

Definition 2.1. [7] An oriented diagram D is alternative if all the edges in any given

space of D have the same sign. An oriented link is alternative if it admits an alternative

diagram.

An oriented diagram is alternating if and only if it is alternative and the sign of the

edges in its Seifert diagram changes alternatively when passing through adjacent spaces

[7, Lemma 9.2]. There are nevertheless alternative links which are not alternating: for

instance, every positive (hence alternative) non-alternating link, like the knot 819.

We consider now the family of homogeneous links, introduced by Peter Cromwell in

1989 [3]. From the Seifert diagram associated to D, we can construct a graph GD as

follows: associate a vertex to each Seifert circle and draw an edge connecting two vertices

in GD for each edge joining the associated circles in the Seifert diagram; each edge must

be labeled with the sign + or − of its associated crossing in D. The signed graph GD is

called the Seifert graph associated to D. Note that GD can be obtanined from the Seifert

diagram of D by collapsing each circle to a vertex.

Given a connected graph G, a vertex v is a cut vertex if G\{v} is disconnected. A

block of G is a maximal subgraph of G with no cut vertices. Blocks of the graph G can be

thought of in the following way: remove all the cut vertices of G; each remaining connected

component together with its adjacent cut vertices is a block of G.
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Figure 1: Two diagrams D and D′ of the knot 943, their associated Seifert diagrams and Seifert

graphs. A dark edge has a positive label; a light edge a negative one. D shows that 943 is

homogeneous, as the diagram in the figure is so; D is non-alternative, but since D′ is so, 943 is

alternative.

Definition 2.2. [3] A Seifert graph is homogeneous if all the edges of a block have the

same sign, for all blocks in the graph. An oriented diagram D is homogeneous if its

associated Seifert graph GD is homogeneous. An oriented link is homogeneous if it admits

a homogeneous diagram.

Note that the original diagram D can be recovered from its Seifert diagram, as the

sign and position of the crossings in the diagram are preserved (see Figure 1). However, as

the relative position of the circles and the order of the edges is not encoded in the Seifert

graph, D cannot be recovered from GD.

Let us finally introduce pseudoalternating links. Starting from an oriented diagram D

of a link L, the surface SD obtained by applying Seifert’s algorithm [4] is known as the

canonical surface (called projection surface in [4]) of L associated to D. The graph GD

can also be thought as the spine graph of the corresponding canonical surface.

Primitive flat surfaces [8] are those canonical surfaces arising from positive or negative

diagrams whose Seifert diagrams have no nested circles. A generalized flat surface is,
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roughly speaking, an orientable surface obtained by gluing a finite number of primitive

flat surfaces along some of their discs.

More precisely, given two primitive flat surfaces S1 and S2, choose a disc of each one,

d1 and d2. Now, identify both discs in such a way that there exists a sphere S2 ⊂ S3

separating S3 into two non empty 3-balls B1 and B2 such that Si ⊂ Bi and S2 ∩ Si = di,

for i = 1, 2. Bands starting at d1 and d2 are not allowed to overlap when identifying d1

and d2. This special kind of Stallings plumbing (or Murasugi sum) will be noted by ∗
(see Figure 2). Generalized flat surfaces are obtained as a finite iteration of this process,

plumbing a primitive flat surface in each step.

The first Betti number of a surface S, β(S), is the rank of its first homology group. For

a primitive flat surface this is just the number of holes in the surface, or equivalently the

number of connected components of the complement of its spine graph in the plane minus

1. As the Euler characteristic of one of these surfaces can be computed as its number

of discs dS minus its number of bands bS , it follows that β(S) = bS − dS + 1. Notice

that the first Betti number is additive under this special kind of plumbing: each time one

plumbs two surfaces both plumbing discs are identified, so the resulting spine graph can

be thought as gluing the two original graphs along a vertex.

As generalized flat surfaces are orientable, the following definition makes sense:

Definition 2.3. [8] An oriented link is said to be pseudoalternating if it is the boundary

of a generalized flat surface, with the natural inherited orientation.

The following result implies that the first Betti number of a pseudoalternating link L,

β(L), is given by any generalized flat surface spanning it:

Proposition 2.4. Among all the connected Seifert surfaces that span a given pseudoal-

ternating link, those being generalized flat surfaces have maximal Euler characteristic, or

equivalently, minimal genus.

For a proof see [8, Proposition 4.4]. It also follows from a well-known result by Gabai

[5, Corollary 6.7].

Given the Seifert diagram of a link, circles containing other circles in both sides (inside

and outside) become cut vertices in the associated Seifert graph. As a result, an alternative
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Figure 2: S1 and S2 are primitive flat surfaces, with β(S1) = 1 and β(S2) = 4. By an identification

of discs d1 and d2 one obtains the generalized flat surface S = S1 ∗ S2, having β(S) = 5. The link

spanned by S is a pseudoalternating link.

diagram is homogeneous, so an alternative link is homogeneous.

Let D be a homogeneous diagram and SD its projection surface. Let G1, . . . , Gn be

the blocks of the homogeneous Seifert graph GD, Di the subdiagram of D (together with

some arcs) associated to the subgraph Gi ⊂ GD, and SDi ⊂ SD the projection surface

constructed from Di. Then SD = SD1∗. . .∗SDn . Since blocks in a graph do not contain cut

vertices, each SDi is a primitive flat surface: all bands are twisted in the same way and the

discs on the surface are either not nested, or there exists a single disc containing the other

ones (and this situation is isotopic to the previous one). Hence, SD is a generalized flat

surface. This proves that homogeneous links are pseudoalternating, so Conjecture 1.1 can

be restated by saying that the classes of alternative, homogeneous and pseudoalternating

links are equal.

In the two following sections we will present two pseudoalternating links which are not

homogeneous, hence non-alternative; these links are counterexamples to Conjecture 1.1.
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3 Two counterexamples to Kauffman Conjecture

The main problem when trying to deal with Kauffman Conjecture is that identifying

whether a link is alternative or pseudoalternating is not easy. Of course, by finding an

alternative diagram one shows the alternativity of a link, but this does not help when the

link is not alternative. In this sense, working with the family of homogeneous links will

help us.

Cromwell’s paper [3] is devoted to the study of homogeneous links; he provides some

sufficient conditions for determining the non-homogeneous character of a link. In partic-

ular, we will use the following result:

Theorem 3.1. [3, Corollary 5.1] If L is a homogeneous link and the leading coeffi-

cient of its Conway polynomial ∇(L) is ±1, then the crossing number of L is at most

2 ·maxdeg ∇(L).

The Conway polynomial of L is defined as ∇(L) = P (1, z), where P (v, z) is the

HOMFLYPT polynomial defined by the skein relation v−1P (L+) − vP (L−) = zP (L0),

with normalization P (unknot) = 1. Here L+, L− and L0 are links represented by dia-

grams D+, D− and D0 respectively, which only differ in the neighborhood of a point as

shown in Figure 3.

Figure 3: Diagrams D+, D− and D0.

We are ready now to prove the following result:

Theorem 3.2. There exists a pseudoalternating link which is not homogeneous.

Proof. Consider the oriented link L with two components presented by the oriented di-

agram D shown in Figure 4. This link is L9n18{1} in [2], which corresponds to the

two-components link L9n18 in Thistlethwaite table (or 9253 in Rolfsen table). Its Conway
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Figure 4: D and D′ are diagrams of the link L = L9n18{1} in [2]; S is a Seifert surface for L, and

S′ is obtained from S just by overturning the subsurface S3 over the disc d. Finally S′ = S1∗S2∗S3.

polynomial is ∇(L) = z3 + 4z, so by Theorem 3.1, if L were homogeneous its crossing

number would be at most 2 · 3 = 6, yielding a contradiction. Consequently, L is non-

homogeneous.

See Figure 4. The diagram D can be transformed by a Reidemeister III and a Rei-

demeister I move into the diagram D′. The new diagram D′ allows us to see L as the

boundary of a certain surface S. The surface S is clearly isotopic to S′, and S′ is the result

of performing two Stallings plumbings of three surfaces, S1, S2, S3, using discs d1, d2 and

d3 as “gluing patches”, this is, S = S1 ∗ S2 ∗ S3. Each of these surfaces consists on two

discs joined by a pair of bands twisted in a positive way, so S1, S2 and S3 are primitive

flat surfaces; hence S is a generalized flat surface and L is a pseudoalternating link.

Since every alternative link is homogeneous, the link L9n18{1}, with β(L) = 3, is a

counterexample to Conjecture 1.1.

Corollary 3.3. There exists a pseudoalternating link which is not alternative.
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Note that if one changes the orientation of one component of L (for example, reversing

the orientation of the dark component in Figure 4) the resulting link is negative, hence

alternative.

At this point one can wonder if there exist knots or links which are pseudoalternating

and non-alternative with any possible orientation of its components. We will show such

an example by finding a knot of genus two with these properties, as pseudoalternating,

homogeneous and alternative characters are not orientation-dependant in the case of knots.

This knot, whose first Betti number equals 4, is pseudoalternating and non-alternative. It

would be interesting to find a link with more than one component being a counterexample

to the conjecture with all possible orientations.

Theorem 3.4. There exists a pseudoalternating knot which is not homogeneous.

Proof. The proof is analogous to that of Theorem 3.2. Let K be the genus two knot

10145 in Rolfsen table, with the orientation given in Figure 5. Its Conway polynomial

is ∇(K) = z4 + 5z2 + 1, so by Theorem 3.1 we deduce that K is not homogeneous, as

10 > 2 · 4.

See Figure 5. By a finite sequence of Reidemeister moves, the classical diagram rep-

resenting K in [1], D1, can be transformed into D4 by performing the following steps:

from D1, we obtain D2 by leaving unchanged the diagram except for the grey strand;

perform two Reidemeister III moves on the dotted strand of D2 in order to get D3; finally,

transform D3 into D4 by moving the grey strand. At this point it is easy to see that the

surface S bounds K; S is a generalized flat surface obtained by performing two Stallings

plumbing of three primitive flat surfaces (two of them consist on a pair of discs joined by

two bands, and the other one consists on two discs together with three bands, as shown in

S′) using twice the same disc, d, as “gluing patch”. As a result, K is a pseudoalternating

knot.

Corollary 3.5. There exists a pseudoalternating knot which is not alternative.

Since 10145 is a non-alternating, non-positive knot of genus two, the following result by

Stoimenov provides an alternative proof of Corollary 3.5. We remark that the definition

of homogeneous link given by Stoimenov in [9] is equivalent to our definition of alternative

link, taken from Kauffman [7].
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Figure 5: From D1 to D2 and from D3 to D4 just move the grey strand, leaving unchanged the

rest of the diagram; from D2 to D3 perform two Reidemeister III moves on the dotted strand. By

performing a Reidemeister I move on the dotted strand in D4, we see that S is a Seifert surface

for K; S′ is the result of overturning one of the primitive flat surfaces over the disc d.

Theorem 3.6. [9, Theorem 4.1] Any alternative genus two knot K is alternating or

positive.

As we said before, alternativity, homogeneity and pseudoalternation depend on the

orientation in the case of links but not when working with knots. Moreover, a knot is

alternative, homogeneous or pseudoalternating if and only if its mirror image is so. Since

K = 10145 oriented as in Figure 5 is chiral, its mirror image K∗ is another counterexample

to Conjecture 1.1.

4 The case β(L) ≤ 2

Theorems 3.2 and 3.4 show that Conjecture 1.1 does not hold for links or knots in

general. On the contrary, in this section we prove that all links whose first Betti number
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is smaller than 3 satisfy Kauffman Conjecture (including the particular case of knots of

genus one).

Given a pseudoalternating link L, it is not easy to find a diagram which helps to find

a generalized flat surface bounding the link. Here we give an upper bound for the number

of non-trivial (that is, non-isotopic to a disc) primitive flat surfaces which can be plumbed

in order to get a generalized flat surface bounded by L.

Lemma 4.1. Let S be a generalized flat surface spanning a pseudoalternating link L with

first Betti number β(L). If S = S1 ∗ S2 ∗ . . . ∗ Sn, with each Si a non-trivial primitive flat

surface, then n ≤ β(L).

Proof. As S is a generalized flat surface, β(S) = β(L), by Proposition 2.4. As the surface

Si is connected and non-trivial, β(Si) ≥ 1. Then, after performing n Stallings plumbings,

one gets β(S1 ∗ S2 ∗ . . . ∗ Sn) = β(S1) + β(S2) + . . .+ β(Sn) ≥ n.

Lemma 4.2. Let S be a generalized flat surface spanning a pseudoalternating link L. If S

is either a primitive flat surface or a generalized flat surface constructed as the Stallings

plumbing of two primitive flat surfaces, then L is alternative.

Proof. If S is a primitive flat surface, then L is a positive or negative link, hence it is

alternative.

Otherwise S = S1 ∗ S2, with S1 and S2 two primitive flat surfaces. Now just turn S2

over (or under) the “gluing disc” (see Figure 6 for an example of a plumbing of two annuli;

notice that any primitive flat surface could be turned over in the same way). Then it is

clear that the projection of the boundary of the new surface on the plane that contains the

discs of S1 provides a diagram for L with just two spaces containing edges; this diagram

is alternative, as edges related to S1 and S2 are in different spaces.

Corollary 4.3. Every pseudoalternating link L with β(L) ≤ 2 is alternative.

The following Corollaries are particular cases of Corollary 4.3:

Corollary 4.4. Every pseudoalternating genus zero link with three or less components is

alternative.

11



Figure 6: S = S1 ∗ S2, with S1 and S2 two primitive flat surfaces plumbed by using d as gluing

disc; S2 has been colored. In A (B), the surface S2 has been overturned over (under) the disc d.

Proof. Let L be a pseudoalternating genus zero link with µ components, and let S be a

generalized flat surface whose boundary is L. As β(L) = 2g(L) + µ − 1, by Lemma 4.1

the surface S is plumbing of at most µ− 1 non-trivial primitive flat surfaces. If µ = 1, L

is the trivial knot, which bounds a disc, hence it is alternative. If µ is 2 or 3, the result

holds by Lemma 4.2.

We claim that pseudoalternating genus zero links with four or five components are also

alternative (notice that their first Betti numbers are 3 and 4, respectively). In order to

show this, one must check all different possible ways of gluing primitive flat surfaces to

obtain such links, and take into account that, when plumbing a surface S with β(S) = 1 to

a pseudoalternating surface S′, the number of boundary components increases (decreases)

by one when both bands coming from the gluing disc are attached to the same (different)

boundary component of S′. This case by case procedure is straightforward but lengthy,

so we prefer to omit it.

Another consequence of Lemmas 4.1 and 4.2 is the following corollary:

Corollary 4.5. Every pseudoalternating genus one knot is alternative.

Proof. Let K be a pseudoalternating genus one knot, and let S be a generalized flat surface

whose boundary is K. By Lemma 4.1, as β(K) = 2g(K) + µ− 1 = 2, S is plumbing of at
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most two non-trivial primitive surfaces. Lemma 4.2 completes the proof.

We have shown that a knot of genus one is pseudoalternating if and only if it is

homogeneous. As a consequence, we obtain an alternative proof of the following result:

Theorem 4.6. [6] A genus one knot is homogeneous if and only if it belongs to one of the

two following classes of knots:

1.- Pretzel knots with diagram P (a, b, c), where a, b, c are odd integers with the same sign.

2.- Pretzel knots with diagram P (m, e, k. . . , e), where m and k are non-zero even integers

and e = ±1.

Proof. As before, K = ∂S, where S is a primitive flat surface with β(S) = 2 or S = S1∗S2
is the plumbing of two primitive flat surfaces having β(S1) = β(S2) = 1.

In the first case, K is a positive or negative knot. As S is connected and β(S) = 2,

S must be as shown in Figure 7 (left). Write A,B,C for each of the three subsurfaces

consisting on “a linear path of bands and discs” in S (A,B and C in cyclic order when

traveling through the two common discs dδ and dγ). As K is a knot, each of these paths

must start and end in discs with different orientations (otherwise the link bounding the

surface would be a 3-components link). Hence, their respective numbers of bands, a′, b′, c′,

are odd. Let ε be their common sign. K is the Pretzel knot P (ε · a′, ε · b′, ε · c′), as can

be seen in Figure 7.

Now assume that S = S1 ∗ S2. Note that after the plumbing, the pair of bands

attached to d2 in S2 must alternate with the two bands attached to d1 in S1 in the gluing

disc d = d1 = d2; otherwise, the resulting surface would span a 3-components link. Let bi

be the number of bands in Si and εi their signs, i = 1, 2. β(S1) = β(S2) = 1, so both

S1 and S2 are twisted Hopf-bands, that is, each of them consists on k discs and k bands

joined forming a circle. Since they are oriented, bi is even and it follows (see an example

in Figure 8) that K is the Pretzel knot P (ε1 · b1, ε2, b2. . . , ε2). Write m = ε1 · b1, k = b2

and e = ε2.

13



Figure 7: S is a primitive flat surface; an even number of discs and bands can be attached in the

place of the dotted lines (or removed). One of the three subsurfaces, say A, has been colored. If

one thinks on the example in the picture as if all lines were non-dotted, then a′ = 5, b′ = 3, c′ = 5

and ε = −.

Figure 8: S = S1 ∗S2 is a generalized flat surface; S2 has been colored. After overturning S2 over

the dotted disc, it is clear that K is the Pretzel knot P = (−6, 1, 1, 1, 1)
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