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On dilatation factors of braids on three strands

Marta Aguilera∗

Universidad de Sevilla

Abstract

In this work we present a natural surjective map from rigid braids
in B3 (in Garside sense) to SL2(N). This map provides an upper and a
lower bound for the dilatation factor of a pseudo-Anosov 3-strand braid.
These bounds only depend on the canonical length of the classical Garside
structure of B3.

1 Introduction

In this paper we review some well-known results about the braid group in three
strands, and we rewrite them in terms of the Garside structure. In this way,
we see that the dynamic of a braid in a super summit set (i.e. with minimal
length in its conjugacy class) is easy to describe. If such a braid is reducible,
it must be ∆2sσk

1 or ∆2sσk
2 , s, k ∈ Z. Their reduction systems are simple: a

curve around the first two punctures for the former, and a curve around the last
two punctures for the latter. In the pseudo-Anosov case, we will point out that,
despite the fact that there are only two train track graphs Γ1,Γ2 as in Figure 1
that carry every foliation in the 3-times punctured disc D3, these are not train
tracks for every pseudo-Anosov braid. However, if a braid β ∈ B3 is in a super
summit set, it is rigid (a Garside theoretical property), and either Γ1 or Γ2 is a
train track for β ([14], [16]).

Figure 1: Train tracks for rigid braids on three strands.

In addition, if β is in a super summit set, it is straightforward to obtain
the associated matrix, and therefore the foliation and dilatation factor, from its
Garside normal form. This allows us to study the dynamic of any braid through
a conjugate in the super summit set. This also gives a natural map from rigid
braids to 2× 2 matrices with non-negative entries:

Theorem 1.1. There exists a 2-to-1 surjective map from the set of rigid 3-braids
(modulo ∆2) to SL2(N), which sends each rigid braid to the matrix associated
to its corresponding train track Γi, i = 1, 2.
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As a consequence, given a pseudo-Anosov braid with minimal length ℓ in
its conjugacy class, we can give a lower and an upper bound for its dilatation
factor:

Theorem 1.2. Let β ∈ B3 be a pseudo-Anosov braid in its super summit set.
If β has canonical length ℓ and dilatation factor λ, then:

1

2

(
ℓ+ 1 +

√
(ℓ+ 3) (ℓ− 1)

)
≤ λ,

and:
λ ≤ φℓ if ℓ is even,

λ ≤ Fℓ +
√
F 2
ℓ − 1 < 2√

5

(
φℓ + φ−ℓ

)
if ℓ is odd,

where φ is the golden ratio, and Fi is the ith Fibonacci number.
The lower bound is a minimum, reached only by the conjugates of β =

σ1σ
−(ℓ−1)
2 . The upper bound is a maximum if ℓ is even, reached only by the

conjugates of β =
(
σ1σ

−1
2

) ℓ

2 . If ℓ is odd, the maximal dilatation factor reached

only by the conjugates of β =
(
σ1σ

−1
2

) ℓ−1

2 σ1 satisfies that 2Fℓ − 1 < λ < 2Fℓ

with 2Fℓ =
2√
5

(
φℓ + φ−ℓ

)
.
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Meneses for numerous useful comments, corrections and suggestions on prelim-
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2 Background

The braid group on n strands Bn is isomorphic to the mapping class group
of the n times punctured disc fixing the boundary pointwise MCG(Dn, ∂Dn).
Collapsing the boundary of Dn to a point, the mapping class group of the n-
times punctured disc can be considered as a subgroup of the (n + 1) times
punctured sphere: it will be denoted MCG(Dn).

This geometric approach to Bn allows the use of the Nielsen-Thurston classi-
fication theorem [12], [17], [18]. A braid β is periodic if there exist k ∈ N, s ∈ Z,
such that βk = ∆2s, where ∆2 is a Dehn twist along the disc’s boundary ∂Dn. β
is reducible if there exists a non-degenerate 1-manifold C ⊂ Dn fixed by β. Fi-
nally, β is pseudo-Anosov if there exists a pair of transverse measured foliations
(Fs, µs) y (Fu, µu), and a real number λ > 1, such that β ((Fs, µs)) = (Fs, λµs)
and β((Fu, µu)) = (Fu, λ

−1µu). The classes of reducible and periodic braids
are not disjoint, so from now on we will call reducible those elements which are
reducible and non-periodic.

The classification problem can be solved using the train tracks techniques
introduced by Bestvina-Handel in the nineties [1], [2]. These are combinatorial
objects which encode the dynamics on the surface in terms of linear algebra. In
the pseudo-Anosov case, they also give the structure of the unstable foliation
Fu, its measure and the dilatation factor λ.

The dynamic of a braid only depends on its conjugacy class, in particular
so does its Nielsen-Thurston type. So we can study the geometry of any given
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β ∈ Bn, through any conjugate β̃ = α−1βα: Periodicity is easily recognizable
in braid groups [5], and βk = ∆2s if and only if β̃k = ∆2s. If β is reducible, and
C is a reduction system for β (1-manifold such that β(C) = C), then α(C) is a

reduction system for β̃. In the pseudo-Anosov case, if Γ is a train track for β,
then α(Γ) is train track for β̃. Also the combinatorial maps associated to Γ and

α(Γ) are the same f̃β,Γ = f̃
β̃,α(Γ), and so are the matricesM(β,Γ) = M(β̃, α(Γ))

(see next section for definitions).

2.1 Train tracks

In this section we will review some basic facts about train tracks ([1], [2], [11]).
Let Γ = (V,E) be a labeled graph embedded into the punctured disc Dn,

such that each component of Dn \ Γ is a punctured disk or a ring and π1(Γ) =
π1(Dn) = Fn. In the class of a given β ∈ MCG(Dn) there exists a representative
automorphism fβ which maps Γ into a tubular neighborhood U of itself. The
composition of this map with a deformation retract ι : U → Γ, allows us to
associate to each β, a map f̃β : Γ → Γ. Notice that we can chose fβ and ι such

that f̃β(V ) ⊆ V , and such that ι ◦ fβ is injective in the interior of each edge, so

for any e ∈ E, f̃β(e) is an edge path. Thus f̃β can be seen as a combinatorial
map.

Removing vertices of valence 2, and contracting edges which end in a valence
1 vertex, we can suppose such a graph Γ to have all vertices of valence at least
three. In addition, we will assume that at each vertex there is a well defined
tangent, so we can distinguish between those edges entering from one direction
and those entering from the other. The labels of the edges must satisfy the
switch condition: the sum of the labels going in from one side must be equal to
the sum of those going out.

A combinatorial map f̃ backtracks if there is an edge a ∈ E, and k > 0 such
that f̃k(a) contains the subword ee−1 or e−1e, for some e ∈ E. A combinatorial

map is said to be efficient if it does not backtrack. Notice that f̃β is efficient

as combinatorial map if (ι ◦ fβ)k is injective in the interior of all edges for all
k > 0.

Given β ∈ MCG(Dn), the graph Γ, with the properties described above, is

a train track graph for β, if the combinatorial map f̃k
β is efficient ∀k ≥ 1. In

this case, the tangencies at the vertices of Γ can be chosen so that ι ◦ fβ respect
tangencies, that is the image of each edge is a smooth edge path.

We can associate to a braid β and Γ a transition matrix M = M(β,Γ),

where each entry mi,j is the number of times the edge ej appears in f̃β(ei).
Obviously, M has non-negative entries. If the graph Γ is a train track for β,
M(β,Γ) contains the geometric information about β.

If the transition matrixM is reducible (i.e. Mk has at least one zero entry for
all k ∈ N), then the element β is reducible. If the matrix is not reducible, then
β is either periodic or pseudo-Anosov. The Perron-Frobenius theorem states
that, in the irreducible case, the greatest eigenvalue λ is real, has multiplicity
1 and λ ≥ 1. The element β is periodic if and only if λ = 1, and it is pseudo-
Anosov if and only if λ > 1. In the latter case, the eigenvalue λ coincides with
the dilatation factor, and the associated eigenvector yields a measure for Γ that
encodes the unstable foliation Fu [12].
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2.2 Garside structure

Braid groups have a well-known presentation [3]:

Bn =

〈
σ1, σ2, . . . , σn−1 :

σiσj = σjσi |i− j| > 1
σiσjσi = σjσiσj |i− j| = 1

〉
.

These groups can be endowed with the classic Garside structure [8], [13],
that is a triple (Bn, B

+
n ,∆), where B+

n is the monoid generated by the positive
crossings σ1, . . . , σn−1 (see Figure 2), and ∆ ∈ B+

n is called the Garside element,

∆ = (σ1 · · ·σn−1) (σ1 · · ·σn−2) · · · (σ1σ2)σ1.

For any γ, β ∈ Bn, we will say that γ is a prefix of β, γ 4 β, if γ−1β ∈ B+
n . This

is a partial order that endows Bn with a lattice structure (with well-defined gcd
and lcm), used to define normal forms.

Figure 2: Positive and negative crossings in Bn.

The mapping class ∆ is represented by a half Dehn twist along the disc’s
boundary. Considering braids up to Dehn twists along the boundary is equiva-
lent to collapse the boundary to one point, so MCG(Dn) = Bn/〈∆2〉. From the
geometric point of view β has the same properties as ∆2iβ, ∀i ∈ Z, so we will
usually consider braids up to multiplication by ∆2. It is easy to see that ∆2 is
central, actually it generates the center Z(Bn) = 〈∆2〉, [7].

The Garside element ∆ also satisfies:

• [1,∆] = {s ∈ Bn : 1 4 s 4 ∆}, the set of simple elements, generates Bn.

• The inner automorphism τ corresponding to conjugation by ∆ preserves
the lattice structure. Equivalently:

τ(B+
n ) = ∆−1B+

n ∆ = B+
n .

Definition 2.1. [9] Given a braid β ∈ Bn, the decomposition β = ∆ss1s2 · · · sk
is its left-normal form if 1 ≺ si ≺ ∆ ∀i and si is the greatest simple prefix of
sisi+1 · · · sk, ∀i = 1 . . . k. The integer k is the canonical length of β.

The computational complexity of the calculation of the normal form of a
braid on n strands written as a product of ℓ generators σ±1

i is O(ℓ2n logn) for
n > 3 [10], and linear in ℓ if n = 3.

Definition 2.2. [4] Let β be a braid and β = ∆ss1 · · · sk its normal form. We
will say the braid β is rigid if k ≥ 1 and the product skτ

−s(s1) is in left normal
form, or if β = ∆s, s ∈ Z.

If a braid β has normal form as above, then τ(β) = ∆sτ(s1) . . . τ(sk) is in
normal form. Therefore, β is rigid if and only if τ(β) is rigid.
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Theorem 2.3. [4] For every pseudo-Anosov β ∈ Bn, there exists 0 < k ≤
(
n
2

)

such that βk is conjugate to a rigid braid. In B3, one can take k = 1, that is,
every pseudo-Anosov braid is conjugate to a rigid braid.

In the braid group B3, we will see how to extract geometric information of
a pseudo-Anosov braid via a rigid conjugate.

3 Braid group in three strands

3.1 Normal forms in B3

The braid group in three strands has specially nice properties. Normal forms
are easily computable and rigidity is directly recognizable. The Garside element
is ∆ = σ1σ2σ1 = σ2σ1σ2, and the simple elements are {1, σ1, σ2, σ1σ2, σ2σ1,∆}.
Given a braid as a concatenation of σ±1

i , it is easy to rewrite it as the product
of ∆s, s ∈ Z, and a positive word in {σ1, σ2}, using the equalities:

σ−1
1 = ∆−1σ1σ2 σ1∆

±1 = ∆±1σ2

σ−1
2 = ∆−1σ2σ1 σ2∆

±1 = ∆±1σ1

Notice that each simple element, except ∆, can be written in a unique way
as a word in {σ1, σ2}. The product of two proper simple elements s1s2 is in
normal form if and only if the last letter of s1 equals the first letter of s2.
Therefore, if sisi+1 is in normal form, the last crossing in si and the length of
si+1 characterize the factor si+1. Repeating this process, a product of proper
simple elements in normal form s1 · · · sk is determined by giving s1 and the
length of the factors s2, . . . , sk.

So, the normal form of any braid β = ∆ss1 · · · sk, k > 0, can be codified
by the tuple (s; i; p1, q1, . . . , pr, qr) ∈ Z × {1, 2} × N

2r, r > 0. The integer s is
the exponent of ∆. The first crossing in s1 is σi. The other elements in the
tuple indicate the length of the factors s1, . . . , sk in the following way. The first
p1 simple elements in the normal form have length one (each one consists of
one crossing). Then, they are followed by q1 elements of length two, and after
those there are p2 elements of length one, etc. That is, for any j = 1, . . . , r, the
simple factors from position

∑
i<j (pi + qi) + 1 to position

∑
i<j (pi + qi) + pj

have length one, and those from position
∑

i<j (pi + qi) + pj + 1 to position∑
i<j+1 (pi + qi) have length two. For a coherent notation only p1 and qr could

be zero. We will codify the braid ∆s by (s; 1; 0, 0) = (s; 2; 0, 0).

Example. (−4; 1; 0, 1, 3, 2) corresponds to the braid

β = ∆−4σ1σ2 · σ2 · σ2 · σ2 · σ2σ1 · σ1σ2.

Recall that a braid β 6= ∆s, with normal form β = ∆ss1 · · · sk is rigid if
skτ

−s(s1) is in normal form. That is, the normal form of ∆−sβ must start and
finish with the same letter σi if s is even, and it must start and finish with
different letters if s is odd. The reader can check that a braid β is rigid, in
terms of the associated tuple, if and only if s +

∑
qj is even. It is easy to

check that τ ((s; 1; p1, q1, . . . , pr, qr)) = (s; 2; p1, q1, . . . , pr, qr). If a braid β =
∆ss1 · · · sk with k > 1 is not rigid, then its conjugate by τ−s(s1) either is rigid,
or its canonical length is strictly smaller than k (or both things happen). This
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conjugation is known as cycling [9], and a finite number of iterations provides
a rigid conjugate of any initial non-periodic braid. The Nielsen-Thurston type
of a rigid braid it is easily recognizable:

Proposition 3.1. [16] Every braid β ∈ B3 is conjugate to a braid α = (s; 1; p1, q1, . . . , pr, qr)
called Murasugi representative of β such that:

• If β is periodic, r = 1 and

– s ∈ Z and (p1, q1) = (0, 0), or

– s is odd and (p1, q1) = (1, 0), or

– s is even and (p1, q1) = (0, 1).

• If β is reducible, then r = 1, α is rigid and (p1, q1) ∈ {(k, 0), (0, k) : k > 0}.

• If β is pseudo-Anosov, α is rigid distinct from above.

The conjugacy problem in Bn can be solved by building the finite set of braids
with minimal canonical length in the conjugacy class, called super summit set
[9]. Notice that the non-periodic Murasugi representatives are rigid. Hence
all Murasugi representatives have minimal canonical length in their conjugacy
class, so they belong to their super summit set. Conversely, any braid β in a
super summit set satisfies that either β or τ(β) is a Murasugi representative.

Lemma 3.2. [6] Let β be a braid in B3 with canonical length at least 2. Then
the super summit set of β, SSS(β), is the set of rigid conjugates of β. Actually,
SSS(β) consists of either two closed orbits under cycling, conjugate to each
other by ∆, or one closed orbit under cycling, self conjugated by ∆.

3.2 Train tracks of braids in B3

Firstly, we want to point out the difference between train tracks as they have
been defined in the section above, from those graphs that carry foliations. A
train-track graph for a braid β and the corresponding combinatorial map provide
a matrix M . This matrix M determines the Nielsen-Thurston type of β, and if
it is pseudo-Anosov it determines the unstable foliation. However the reciprocal
does not hold: from the foliation one cannot obtain a train track for β. Actually
every admissible foliation in D3 (see Figure 3) is carried by one of the two graphs
Γ1 or Γ2 in Figure 1 1 with certain labels [11]. However not every pseudo-Anosov

1In literature, the graphs G1, G2 appear more often than Γ1. The two foliations on the

first row in Figure 3 are carried by G1 and G2 respectively. We will use Γ1 instead of Gi,

despite the fact that it is not so intuitive to see that Γ1 also carries both. Notice that if x > y

we could split Γ1 to get G1, changing the labels

{

v1 = y

u1 = x− y > 0
. And if x < y we can

split Γ1 to get G2. Similarly, Γ2 can be split to get graphs G3 and G4, mirror images of G1

and G2.
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braid admits Γ1 or Γ2 as train track, see the example below. Later it will be
shown that if the braid is rigid, then yes, it admits either Γ1 or Γ2 as train track.

Figure 3: Foliations in B3.

Example. Neither Γ1 nor Γ2 are train tracks for the braid β = (σ1σ1)
−1σ2σ

−1
1 (σ1σ1).

The image of Γi under the action of β can not be embedded into a tubular neigh-
borhood of Γi respecting tangencies (see Figure 4).

Figure 4: Γ1, Γ2 are not train track graph for β = (σ1σ1)
−1σ2σ

−1
1 (σ1σ1).

We could also check the combinatorial maps β̃ for Γ1 and Γ2. Let’s label
the edges around the punctures from left to right e1, e2, e3. We will consider ei
(i = 1, 2, 3) oriented anticlockwise, and x, y from right to left.

Γ1
β̃→ Γ1

x → y
y → (−x) e2 (−y) e3 y e2 (−y) e3

Γ2
β̃→ Γ2

x → y
y → (−y) (−x) e3 x e2 (−x)

The reader can check that in either case, β̃ backtracks in the second iteration.

The following theorem states that for a pseudo-Anosov rigid braid it is
straightforward to get a train track and its transition matrix M . Actually,
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M is the product of some simple matrices associated to the simple elements
of the normal form. This is not the case in general: the product of transition
matrices of two braids does not give any information about the product of the
braids.

Theorem 3.3. [14] Let β = (2s; 1; p1, q1, . . . , pr, qr) or β = (2s+1; 2; p1, q1, . . . , pr, qr)
be a rigid pseudo-Anosov braid in B3. Then, the graph Γ1 (see Figure 1) is a
train-track graph for β.

Its transition matrix is M(β,Γ1) = Lp1U q1 · · ·LprU qr , where

L =

(
1 0
1 1

)
U =

(
1 1
0 1

)
.

In fact this theorem can be easily extended to reducible braids. The graph
Γ1 is also a train tack for the braids (2s; 1; k, 0) = ∆2sσk

1 , where k > 0. Its

associated matrix is Lk =

(
1 0
k 1

)
, which is obviously reducible.

If a braid β has Γ1 as train track and M is the associated matrix, then τ(β)
has Γ2 = ∆(Γ1) as a train track. We order the edges by taking the one labeled
by x first, so β and τ(β) have the same associated matrix M . Therefore the
above theorem can be written for any rigid braid:

Corollary 3.4. Every rigid braid in B3 admits either Γ1 or Γ2 of Figure 1 as
a train track graph.

Let ε be the automorphisms of Bn that maps σi to σ−1
i . For any braid β,

τ ◦ε(β) is its vertical mirror image. This implies that τ ◦ε(β) has the same train
track graph but it switches labels, hence both rows and columns of the transition

matrix exchange places, M(τ ◦ ε(β)) = M(ε(β)) =

(
m2,2 m2,1

m1,2 m1,1

)
. So, β and

ε(β) have the same dilatation factor, and if −→v = (v1, v2) is the M(β) eigenvector
associated to λ, then −→w = (v2, v1) is the M(ε(β)) eigenvector associated to λ.
This verifies an obvious fact: β and ε(β) have analogous dynamics.

Notice that the incidence matrix being a product of L’s and U ’s, belongs
to SL2(N). Furthermore, L and U are very special elements of this monoid.
The following result, which is well known, is implicitly shown in the subsequent
discussion.

Theorem 3.5. The monoid SL2(N) is freely generated by L, U .

This theorem means that given any 2×2 matrix M with non negative entries
and determinant 1, it admits a unique product decomposition in terms of L and
U . We will call this the LU -decomposition of M . Because det(M) = 1 and it
has nonzero entries, we can say that M has a biggest row R(M) and a smallest

row r(M), meaning R
(M)
1 ≥ r

(M)
1 and R

(M)
2 ≥ r

(M)
2 (where at least one of the

inequalities is strict). If r(M) = (m1,1,m1,2), then the first factor of the LU -
decomposition of M is L:

M =

(
r(M)

R(M)

)
⇒ M = LM ′, where M ′ =

(
r(M)

R(M) − r(M)

)
∈ SL2(N).

And obviously, if the first row is R(M), then the first factor is U . This gives us
an algorithm to compute the LU -decomposition of M . At each step ‖M‖∞ >
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‖M ′‖∞, therefore the algorithm ends. We could have defined the analogous
algorithm defining the columns C(M) and c(M), obtaining the decomposition
from right to left.

Given M ∈ SL2(N), we define the length of M , and we write ℓ(M), as the
length on the associated LU -decomposition. We will denoteM(i) the product of
the first i factors of M , for i = 1, . . . , ℓ(M). With this notation M(ℓ(M)) = M ,

the first factor of M is M(1) and the ith factor is M(i− 1)−1M(i).

3.3 Rigid 3-braids and SL2(N)

As a consequence of the results in the section above, we can prove Theorem 1.1.

Proof: [of theorem1.1] The map from rigid braids to matrices in SL2(N) is
explicit in both senses. Given the normal form of a rigid braid β = ∆ss1 · · · sk,
we can construct from the associated tuple (s; i; p1, q1, . . . , pr, qr) the LU -word
Lp1U q1 · · ·LprU qr . Reciprocally, given a 2 × 2 square matrix M , the LU -
decomposition provides the values pj , qj . The value s must be chosen even
or odd, so that the associated braid is rigid. The 2 × 2 identity matrix is as-
sociated to powers of ∆, so 1 and ∆ (mod ∆2) are the two preimages of the
identity matrix. In the other cases, because there are always two options for i,
the correspondence restricted to Bn/〈∆2〉 is 2 to 1.

Due to Lemma 3.2, it follows that two rigid conjugated braids must have
conjugate matrices in SL2(N), that is cyclic permutations of L, U factors.

Let J =

(
0 1
1 0

)
. Because J = J−1 and L = JUJ , we have that

M(ε(β)) = JM(β)J . The LU -decomposition of a matrix M can be obtained
from that of JMJ by exchanging L’s and U ’s. However, these two matrices are
not conjugated in SL(N) in general.

Due to the above results, we can explicitly give the set of dilatation factors
in B3:

Corollary 3.6. The set of dilatation factors for pseudo-Anosov braids in three
strands is: {

λ =
T +

√
T 2 − 4

2
, T ∈ N, T ≥ 3

}
.

Proof: If the incident matrix associated to a braid is M ∈ SL2(N), the
dilatation factor is the biggest root of the polynomial x2 − Tx+ 1, where T =
trace(M) ∈ N. So the dilatation factor λ of a pseudo-Anosov braid only depends
on T = trace(M). As det(M) = 1 and all entries of M are non-negatives
integers, we have T > 1. Only Lk, Uk have trace equal to 2, but these matrices
are reducible. Therefore, for pseudo-Anosov braids T > 2, and every value of

T > 2 can be obtained at least for the matrix LUT−2 =

(
1 T − 2
1 T − 1

)
, which

corresponds, among others, to the braid σ1σ
−(T−2)
2 .
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3.4 Canonical length and dilatation factor

In this subsection we will finally relate the canonical length of a rigid braid with
its dilatation factor. We remark that a rigid braid has minimal canonical length
in its conjugacy class, hence these results will not only provide a lower bound
for the dilatation factor of a rigid pseudo-Anosov 3-braid with fixed canonical
length, but also an upper bound for the dilatation factor of any pseudo-Anosov
3-braid with fixed canonical length.

As the canonical length of a rigid braid is precisely the length of its LU -
decomposition, and the dilatation factor depends only on the trace of the asso-
ciated matrix, we just need to relate the trace of a matrix in SL2(N) with its
LU -decomposition length ℓ(M).

Remark. These two conjugacy class invariants, dilatation factor and minimal
length, do not characterize the conjugacy class of a braid. We give as example
the rigid braids β1 and β2, which are not conjugate2 modulo ∆2:

β1 = ∆σ3
1 σ1σ2 σ2 σ2σ1 σ1 σ1σ2 M(β1) = L3ULULU =

(
5 8
18 29

)

β2 =
(
σ2
1 σ1σ2 σ2σ1

)2
M(β2) = L2U2L2U2 =

(
5 12
12 29

)

Now, we give a lower bound for the trace of a matrix with fixed length.

Proposition 3.7. For a given length ℓ, the irreducible matrix in SL2(N) with
lowest trace, up to conjugation in SL2(N) and conjugation by J , is:

LU ℓ−1 =

(
1 ℓ− 1
1 ℓ

)

Proof: Let M be an irreducible matrix with minimal trace and ℓ(M) = ℓ. As
M is irreducible, ℓ > 1 and, up to conjugation in SL2(N) we can suppose that

M starts with LU =

(
1 1
1 2

)
. For any 2× 2 matrix N =

(
C1 C2

)
, where

C1, C2 are column vectors,

NL =
(
C1 + C2 C2

)
NU =

(
C1 C1 + C2

)
.

Therefore trace(NL) = trace(N) + n1,2 and trace(NU) = trace(N) + n2,1.
Setting N = LU which has positive entries, at each multiplication by L or U
the trace increases at least one unit: hence trace (M(i)) ≥ i+1 for i = 1, . . . , ℓ.
As ℓ(M) = ℓ, it follows that trace(M) ≥ ℓ+ 1.

If ℓ > 2, the third factor of M can be either U or L. In the first case, as

LU2 =

(
1 2
1 3

)
, every subsequent factor of M must also be U , otherwise

the trace would increase more than required. Hence M = LU ℓ−1. In the

second case, as LUL =

(
2 1
3 2

)
, every subsequent factor must be L. Hence

M = LULℓ−2, which is conjugate to ULℓ−1 in SL2(N), which is conjugate by
J to LU ℓ−1.

From the above, the following result is straightforward.

2Due to the homogeneity of the relations in B3, if two braids are conjugate, the sum of the

exponents of generators in their representing words must be the same. Hence, modulo ∆2 the

sums must be the same modulo 6.
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Corollary 3.8. Given M ∈ SL2(N), ℓ(M) ≤ trace(M)− 1.

Now we give an upper bound for the trace.

Proposition 3.9. For a given length ℓ > 2, the matrix in SL2(N) with greatest
trace, up to conjugation in SL2(N) and conjugation by J , is:

(LU)
ℓ

2 =

(
Fℓ−1 Fℓ

Fℓ Fℓ+1

)
if ℓ is even,

(LU)
ℓ−1

2 L =

(
Fℓ Fℓ−1

Fℓ+1 Fℓ

)
if ℓ is odd,

where F0 = 0, F1 = 1, Fi+2 = Fi+1 + Fi. That is, Fℓ is the ℓth Fibonacci
number.

Proof: Let A = LULU · · · be the matrix of length ℓ defined in the state-
ment, and let B be another matrix with the same length. If B is reducible,
its trace must be 2, which is lower than trace(A). If B is irreducible, up to
cyclic permutation of the factors and conjugation by J , we can assume that
both LU -decompositions of A, B start and finish with the same matrices.

Let us prove by induction that C(A(i)) ≥ C(B(i)), and c(A(i)) ≥ c(B(i)), i =
1, . . . , ℓ, where C(N) (resp. c(N)) is the biggest column of a matrix N ∈ SL2(N).
It is easy to see that we construct A(i + 1) keeping the biggest column of A(i)
and replacing the smallest by the sum of both columns in A(i):

C(A(i+1)) = C(A(i)) + c(A(i))

c(A(i+1)) = C(A(i)).

For B(i+ 1), all we can say is

C(B(i+1)) = C(B(i)) + c(B(i))

c(B(i+1)) ≤ C(B(i)).

We have A(1) = B(1) = L, so the claim holds for i = 1. If C(A(i)) ≥ C(B(i)),
and c(A(i)) ≥ c(B(i)) one has:

C(A(i+1)) = C(A(i)) + c(A(i)) ≥ C(B(i)) + c(B(i)) = C(B(i+1))

c(A(i+1)) = C(A(i)) ≥ C(B(i)) ≥ c(B(i+1))

and the claim is shown.
Now, as the ℓth factors in the LU -decompositions of A and B are the same,

both C(A) and C(B) are in the same relative position: either both of them are
the first columns of the corresponding matrices or they are the second ones.
This implies tr(A) ≥ tr(B), and the equality holds if and only if A = B.

We will prove by induction that the entries of the product LULU . . . are

Fibonacci numbers as stated. If ℓ = 1, then L =

(
F1 F0

F2 F1

)
. So if the claim

holds for odd length ℓ, then we have:

LU · · ·LUL ∗ U =

(
Fℓ Fℓ−1

Fℓ+1 Fℓ

)(
1 1
0 1

)
=

(
Fℓ Fℓ+1

Fℓ+1 Fℓ+2

)

LU · · ·LU ∗ L =

(
Fℓ−1 Fℓ

Fℓ Fℓ+1

)(
1 0
1 1

)
=

(
Fℓ+1 Fℓ

Fℓ+2 Fℓ+1

)
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Now we can prove our main result.

Proof: [of Theorem 1.2] Let β ∈ B3 be a pseudo-Anosov rigid braid. Its Garside
length ℓ must be at least 2. Then β has dilatation factor λ = 1

2

(
T +

√
T 2 − 4

)
,

for an integer T ≥ 3. The lower bound for λ is direct from the fact that ℓ+1 ≤ T
by Corollary 3.8.

Let λ(M) the greatest eigenvalue of a matrixM ∈ SL2(N). As a consequence
of Proposition 3.9, for the upper bound when ℓ is even, we have that

λ
(
(LU)

ℓ

2

)
= λ (LU)

ℓ

2 = (1 + φ)
ℓ

2 = φℓ.

If ℓ is odd, we get that the greatest dilatation factor of a braid with odd

canonical length is λ = 1
2

(
2Fℓ +

√
(2Fℓ)

2 − 4

)
= Fℓ+

√
F 2
ℓ − 1. Therefore we

have that
2Fℓ − 1 < λ < 2Fℓ.

As Fn = φn−(−φ)−n

√
5

, for the case ℓ odd we have that

2√
5

(
φℓ + φ−ℓ

)
− 1 < λ <

2√
5

(
φℓ + φ−ℓ

)
.
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