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AN ANALYSIS TECHNIQUE FOR STABILIZED FINITE ELEMENT SOLUTION
OF INCOMPRESSIBLE FLOWS ∗

Tomás Chacón Rebollo
1

Abstract. This paper presents an extension to stabilized methods of the standard technique for the
numerical analysis of mixed methods. We prove that the stability of stabilized methods follows from an
underlying discrete inf-sup condition, plus a uniform separation property between bubble and velocity
finite element spaces. We apply the technique introduced to prove the stability of stabilized spectral
element methods so as stabilized solution of the primitive equations of the ocean.
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1. Introduction and motivation

This paper deals with the numerical analysis of the solution of incompressible flow problems by stabilized
finite elements. We shall be interested in the Oseen equations (Stokes equations plus a linear transport term),
also called in some works “linearized Navier-Stokes equations”.

Stabilized methods provide efficient and computationally cheap techniques to solve incompressible fluids.
Historically, these methods have been the object of a specific analysis, different from that of mixed methods.
Indeed, the proof of stability is not based upon the existence of a discrete velocity – pressure inf-sup condition,
but rather upon specific arguments that strongly rely on the elementwise regularity of finite element functions.
Based upon such kind of arguments, the papers of Hugues, Franca and Balestra [21] and Hughes and Franca [20]
contained an error analysis that was improved in Brezzi and Douglas [8] and in Pierre [25]. In Franca and
Stenberg [15] a general stability and error analysis technique was introduced, which was summarized in Franca,
Hugues and Stenberg [16]. Also, the paper of Tobiska and Verfürth [27] develops an analysis of stability and
convergence for the solution of Navier-Stokes equations by stabilized methods.

Another way of analysis is suggested by the relationship between stabilized and mixed methods. In Franca
and Frey [14] it is proved that the Streamline Upwind/Petrov-Galerkin (SUPG) method is equivalent to the
standard mixed method constructed with the mini-element. This equivalence is understood in the sense that
both methods yield the same formulation if the degrees of freedom associated to the bubbles are eliminated
by static condensation. This equivalence yields the stability of SUPG method from that of the mixed method
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constructed with the mini-element. It is a direct consequence of the fact that this element satisfies the discrete
inf-sup condition. Such analysis is essentially performed in Chacón Rebollo [10].

We address in this paper the question of whether this way of analysis may be applied to stabilized methods
other than SUPG. We develop a technique for the numerical analysis of stabilized methods that gives a positive
answer to that question. Concretely, we prove the existence of an underlying discrete inf-sup condition from
which we deduce the stability of stabilized methods. Once this point has been set up, our technique allows to
analyze stabilized methods as if they where mixed methods (Th. 1). They appear as internal approximations of
a weak formulation, whose stability relies on an inf-sup condition. Then, our analysis may be applied to more
complex situations, where we use the tools provided by functional analysis to obtain gains with respect to the
standard analysis. We include in this paper two of such applications:

• To prove the stability of a spectral element approximation of the generalized Stokes equations, introduced
in Gervasio and Saleri [19]. Here, we obtain L2 estimates for the pressure, while the standard analysis,
used in that paper, allows only to estimate a seminorm of the pressure gradient.
• To solve a linear model of primitive equations of the ocean by stabilized finite elements. For such equations,

there is some lack of regularity for the convection term, so that the pressure has only Lp regularity, for
some p ∈ (1, 2). In this case, we obtain Lp estimates for the discrete pressure, and prove convergence in
H1 × Lp norm to the continuous solution. The standard analysis in this context would be quite difficult
to be carried on.

Our analysis may also be applied to nonlinear flows. For instance, in Chacón Rebollo and Domı́nguez Del-
gado [11], it is applied to the analysis of the approximation of Navier-Stokes equations by stabilized methods,
in parallel to the analysis of their approximations by mixed methods. Stability and error estimates are derived.
This analysis also applies to nonlinear stabilized methods, such as the optimal one introduced in Russo [26].
Up to our knowledge, the standard analysis is unable to handle nonlinear stabilization, which turns out to be
rather simple to manage with our technique.

Another possible application is the analysis of the solution of Oseen equations by the reducedQ1/Q1 stabilized
methods introduced in Knobloch and Tobiska [22]. This is a new family of computationally cheap methods that
may be directly analyzed with our analysis. In fact, all hypothesis of Theorem 1 are readily proved to be
satisfied, using the analysis developped in that paper.

We would like to point out that the analysis technique that we introduce is rather complex from a technical
point of view. However, we think that it is worth to be used, as it essentially reduces the difficulties of the
analysis of stabilized methods to that of mixed method. Moreover, we have tried to present the technique in a
systematic way, so that it may be applied to situations other than the considered here, with relative ease.

The paper is organized as follows. In Section 2 we introduce an abstract discretization of Oseen equations,
whose stability is analyzed in Section 3. In Section 4, we apply the abstract theory to stabilized methods.
Section 5 is devoted to the analysis of spectral element stabilized methods. Finally, in Section 6 we solve a
linear model of primitive equations of the ocean by stabilized finite elements.

2. Abstract discretization

In this Section we introduce an abstract discretization of Oseen equations which is the base of our analysis.
Let us consider a connected bounded domain Ω ⊂ Rd (d = 2 or 3), with Lipschitz-continuous boundary Γ.

We are given a “driving” velocity field u : Ω −→ Rd, that we assume to be divergence-free. Our purpose is to
solve numerically the following boundary value problem: Find y : Ω −→ Rd, p : Ω −→ R such that

u · ∇y− ν∆y +∇p = f, ∇ · y = 0 in Ω,
y = 0 on Γ.

(1)
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Here, ν > 0 is the viscosity coefficient, and f ∈
[
H−1(Ω)

]d is a given source term. Only homogeneous Dirichlet
boundary conditions are considered, in order to not introduce nonessential difficulties in our derivation.

Let us define the bilinear form on
[
H1

0 (Ω)
]d × [H1

0 (Ω)
]d,

a(w,v) = (u · ∇w,v) + ν(∇w,∇v), ∀w, v ∈
[
H1

0 (Ω)
]d
, (2)

where we denote by (·, ·) the L2 scalar product, either for scalar, vector or tensor functions. If we assume that
u ∈ [Lp(Ω)]d for some p > d, and ∇ · u = 0, then a(·, ·) is well defined and is continuous and

[
H1

0 (Ω)
]d-elliptic;

i.e., it verifies

a(w,v) ≤M(u) |w|1|v|1, a(v,v) ≥ ν |v|21 ∀v, w ∈
[
H1

0 (Ω)
]d
. (3)

Here, we have denoted by | · |1 the
[
H1(Ω)

]d seminorm. Also, M(u) = C (‖u‖0,p + ν) for some constant C
appearing from Sobolev injections, where ‖ · ‖0,p denotes the Lp norm.

The form a(·, ·) defines a linear bounded operator A from
[
H1

0 (Ω)
]d into

[
H−1(Ω)

]d, given by

〈Aw,v〉 = a(w,v), ∀w, v ∈
[
H1

0 (Ω)
]d
.

Thus, Aw = u · ∇w− ν∆w.
The standard mixed formulation of problem (1) reads as follows:{

Obtain (y, p) ∈
[
H1

0 (Ω)
]d × L2

0(Ω) such that
B(y, p; v, q) = 〈f,v〉, ∀(v, q) ∈

[
H1

0 (Ω)
]d × L2

0(Ω);
(4)

where
B(y, p; v, q) = a(y,v)− (p,∇ · v)− (∇ · y, q).

Also, 〈·, ·〉 stands for the
[
H−1(Ω)

]d − [H1
0 (Ω)

]d duality, and L2
0(Ω) is the subspace of L2(Ω) given by

L2
0(Ω) = { q ∈ L2(Ω) such that

∫
Ω

q dx = 0 }·

The pair of spaces (
[
H1

0 (Ω)
]d
, L2

0(Ω)) verifies the continuous inf-sup condition (cf. Girault and Raviart [17]).
Then, due to properties (3), problem (4) has a unique solution that depends continuously on the data f.

In order to describe our abstract discretization of problem (4) we shall consider two families of subspaces
{Yh}h>0 and {Zh}h>0 of

[
H1

0 (Ω)
]d and another family of subspaces {Mh}h>0 of L2

0(Ω), all of them of finite
dimension. These spaces may be, for instance, standard finite element spaces. We shall also consider a family
of bilinear continuous forms on

[
H1

0 (Ω)
]d× [H1

0 (Ω)
]d, {Sh(·, ·)}h>0. These forms are assumed to be coercive in

H1 norm on Zh.
We shall denote by Rh the “static condensation” operator

Rh :
[
H−1(Ω)

]d → Zh,

defined as follows. Given ϕ ∈
[
H−1(Ω)

]d, Rh(ϕ) is the only element of Zh that satisfies

Sh(Rh(ϕ), zh) = 〈ϕ, zh〉, ∀zh ∈ Zh. (5)
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We discretize problem (4) by{
Obtain (yh, ph) ∈ Yh ×Mh such that
Bh(yh, ph; vh, qh) = Fh(vh, qh), ∀(vh, qh) ∈ Yh ×Mh; (6)

where

Bh(w, r; v, q) = B(w, r; v, q)− Sh (Rh(Bv +∇q),Rh(Aw +∇r)) ;
Fh(v, q) = 〈f,v〉 − Sh (Rh(Bv +∇q),Rh(f)) ;

where B denotes the operator

Bw = −u · ∇w + εν∆w, ∀w ∈
[
H1

0 (Ω)
]d
,

for a given ε ∈ R.
We shall use method (6) as an abstract framework to analyze various standard stabilized methods. To

describe these methods, we shall consider affine-equivalent finite element spaces, as described in Hughes, Franca
and Balestra [21]. Assume that the domain Ω is polyhedric. Let us consider a triangulation Th of Ω formed by
either simplicial or parallelepipedic elements. We assume that the elements of Th are affine-transformed of a
reference element K∗ (either the unit simplex or parallelepiped), in the sense of Ciarlet [13]. Given an integer
number k ≥ 0, and an element K ∈ Th, denote by Pk(K) the space of polynomials of degree smaller than, or
equal to, k, defined on K. Also, denote by Qk(K) the space of polynomials of degree smaller than, or equal to,
k, in each variable, defined on K. Denote by Rk(K) either Pk(K), if K is a triangle or tetrahedron, or Qk(K)
if K is a quadrilateral or hexaedron. Given two integer numbers m ≥ 1, l ≥ 0, consider the following finite
element spaces.

Y
(m)
h =

{
v ∈

[
H1

0 (Ω)
]d |v|K ∈ [Rm(K)]d , ∀K ∈ Th

}
; (7)

M
(l)
h =

{
q ∈ L2

0(Ω) | q|K ∈ Rl(K), ∀K ∈ Th
}
, (8)

or

M
(l)
h =

{
q ∈ L2

0(Ω) ∩ C0(Ω) | q|K ∈ Rl(K), ∀K ∈ Th
}
. (9)

We consider the following stabilized methods.{
Find (yh, ph) ∈ Y (m)

h ×M (l)
h such that

BS(yh, ph; vh, qh) = FS(vh, qh), ∀(vh, qh) ∈ Y (m)
h ×M (l)

h ;
(10)

where

BS(w, r; v, q) = B(w, r; v, q)−
∑
K∈Th

τK (Bv +∇q;Aw +∇r)K ;

FS(v, q) = 〈f,v〉 −
∑
K∈Th

τK (Bv +∇q, f)K ,

where the τK are given stabilizing coefficients, and (·, ·)K denotes the inner product in
[
L2(K)

]d. When
l = m = 1, method (10) is independent of the actual value of the coefficient ε, and it is known as Streamline
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Upwind/Petrov-Galerkin (SUPG) method. For other values of m ≥ 1 and l ≥ 0, when ε = −1, 0 and 1,
method (10) is respectively known as Adjoint stabilized (AdS), generalized SUPG and Galerkin-Least Squares
(GaLS) method.

Typically, the coefficients τK are continuous functions of the local Péclet number on element K,

PeK =
UKhK
ν

with UK =
[∫

K

|u|p
]1/p

;

τK(PeK) = A
hK
UK

min(PeK , P ) =


A
h2
K

ν
if PeK ≤ P,

AP
hK
UK

if PeK > P ;
(11)

where A is a numerical constant and P is a preset threshold for the Péclet number. This allows on one hand
to introduce some suitable stabilization of high frequence components of the transport operator (of order hK),
due to convection dominance (Large PeK). Also, this introduces low levels of numerical diffusion (of order h2

K)
in regions where diffusion is dominant (Low PeK). On the other hand, this stabilizes the spurious modes of the
pressure gradient.

Also, for reasons of computability, in practice the convection velocity u is replaced in the stabilizing terms
by some stable interpolate uh ∈ Y (m)

h . We shall assume it so in our analysis.
The standard analysis of stabilized methods, summarized in Franca, Hughes and Stenberg [16], states that

SUPG and GaLS methods are stable for any positive coefficients τK , and that AdS and generalized SUPG
methods are stable if the τK are small enough. The obtention of optimal bounds for these coefficients to ensure
stability requires the computation of the best constant CI in the inverse inequality

CI
∑
K∈Th

h2
K ‖∆vh‖2K ≤ ‖∇vh‖20, ∀vh ∈ Y (m)

h . (12)

That analysis applies to either continuous pressures combined with velocities of arbitrary interpolation degree,
or to discontinuous pressures combined with high-degree interpolation velocities. Concretely, it holds under the
following condition:

Either M (l)
h ⊂ C0(Ω̄), orm ≥ n, (13)

where

n =
{
d if Th is formed by triangles or tetrahedra, and
2 if Th is formed by quadrilaterals or hexaedra.

In Tobiska and Verfürth [27] this restriction is removed by introducing in the structure of the method some
additional terms that take into account interelement pressure jump terms. However, it seems that method (10),
without these jump terms, is not able to stabilize the discretization of discontinuous pressures combined with
low-degree velocities.

In this paper we shall analyze methods satisfying condition (13). Our analysis also applies to general dis-
cretizations that do not necessarily satisfy this condition. However, its proof requires a rather lengthy derivation
that shall appear in a forthcoming paper.

Notice that method (6) applies to general internal approximations of
[
H1

0 (Ω)
]d and L2

0(Ω), while stabilized
methods only apply to approximations by piecewise smooth functions. We are, thus, considering a genuine
generalization of stabilized methods.

In the next two Sections we first develop a stability and convergence analysis for the abstract method (6)
which extends the standard analysis of mixed methods, and next apply it to analyze the stabilized methods (10).
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3. Analysis of abstract method

In this section we prove that the stability of the abstract method (6) follows from a discrete inf-sup Brezzi-
Babuška condition, similarly to mixed methods.

The stability of abstract method (6), in addition to the inf-sup condition, requires the following hypotheses
on the new elements appearing in method (6):

Hypothesis 1. There exists a constant C0 > 0 independent of h such that

|yh|1 + |zh|1 ≤ C0 |yh + zh|1, ∀yh ∈ Yh, zh ∈ Zh, ∀h > 0. (14)

Hypothesis 2. There exist two constants νs > 0,Ms > 0 such that

|Sh(wh,vh)| ≤Ms |wh|1|vh|1, Sh(vh,vh) ≥ νs |vh|21, ∀wh,vh ∈ Zh.

Both hypotheses play a crucial role in the obtention of estimates for both velocity and pressure, and thus in the
proof of stability of method (6). Hypothesis 1 is a generalization of the well known H1

0 -orthogonality between
piecewise affine and bubble finite elements. Hypothesis 2 is a generalization of the fact that the stabilizing
coefficients in (11) are of order h2

K .
Let us recall the definition of stability for method (6) (cf. Babuška [3], Brezzi [7]):

Definition 1. Method (6) is said to be stable on Yh ×Mh if there is a constant γ > 0 independent of h such
that for any (w, r) ∈ Yh ×Mh,

sup
(v, q) ∈ Yh ×Mh

(v, q) 6= (0, 0)

Bh(w, r; v, q)
|v|1 + ‖q‖0

≥ γ (|w|1 + ‖r‖0);

sup
(v, q) ∈ Yh ×Mh

(v, q) 6= (0, 0)

Bh(v, q; w, r)
|v|1 + ‖q‖0

≥ γ (|w|1 + ‖r‖0).

�
We now state our basic stability result.

Theorem 1. Assume that the pairs of spaces {(Yh + Zh,Mh)}h>0 satisfy a uniform discrete Brezzi-Babuška
condition, and that Hypotheses 1 and 2 hold. Assume that at least one of the two following sentences hold:

i) Zh and Yh are orthogonal with respect to the
[
H1

0 (Ω)
]d inner product and νs > 0, or

ii) νs ≥
(

1− ε
2

)2

ν, when ε 6= 1, or νs > 0 when ε = 1.

Then, the abstract method (6) is stable.

From this theorem we deduce the main result of this paper:

Theorem 2. Assume that the family of triangulations {Th}h>0 is regular. Assume that condition (13) holds.
Then, the stabilized method (10) coincides with an abstract method (6) constructed with a finite element space
Zh of bubble functions and a bilinear form Sh, verifying

1. The pairs of spaces {Yh + Zh,Mh}h>0 satisfy a uniform discrete inf-sup condition.
2. The pairs of spaces {Yh, Zh}h>0 satisfy Hypothesis 1.
3. The forms {Sh}h>0 satisfy Hypothesis 2.
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As a consequence,
• GaLS and SUPG methods are stable for any A > 0 in (11)

• The general stabilized method (10) is stable if A ≤ A0

(
2

ε− 1

)2

, where A0 is a computable positive

constant. In particular, AdS method is stable if A ≤ A0, and generalized SUPG method is stable if
A ≤ 4A0.

Thus, under our analysis, the stability of stabilized methods follows from a discrete inf-sup condition, similarly
to mixed methods. We shall prove this result in Section 4. In addition, we shall prove that the constant A0

depends on the aspect ratio of the grid and on the reference elements of spaces Yh and Mh, and shall give
computable fine estimates for this constant.

Proof of Theorem 1.
Velocity estimate. We shall treat separately cases i) and ii).
i) Assume that spaces Zh and Yh are orthogonal with respect to the

[
H1

0 (Ω)
]d inner product. In this case, all

methods (10) coincide, independently of the actual value of ε, as such orthogonality implies Rh(∆w) = 0, ∀w ∈
Yh.

Consider a pair (wh, rh) ∈ Yh ×Mh. Define ch = Rh(Awh +∇rh). As Rh(∆vh) = 0, then
ch = Rh(−Bwh +∇rh). Consequently,

Bh(wh, rh; wh,−rh) = a(wh,wh) + Sh(ch, ch) ≥ ν|wh|21 + νs|ch|21.

ii) Consider a pair (wh, rh) ∈ Yh ×Mh. Define ch = Rh(Awh +∇rh). Then,

B(wh, rh; wh,−rh) = a(wh,wh) + Sh(ch, ch) + (1− ε) ν Sh (Rh(∆wh), ch) (15)
= a(wh,wh) + Sh(ch, ch)− (1− ε) ν (∇wh,∇ch)

Due to Hypothesis 1,

|(∇yh,∇zh)| ≤ (1− δ0) |yh|1|zh|1, ∀yh ∈ Yh, zh ∈ Zh, where δ0 =
2
C2

0

· (16)

Then, using Young’s inequality, (15) implies

B(wh, rh; wh,−rh) ≥ ν̃ |wh|21 + ν̃s |ch|21, (17)

where
ν̃ = ν [1− (1− δ0)

|1− ε|
2

µ], ν̃s = νs − ν(1− δ0)
|1− ε|

2
µ−1

for any µ > 0. When ε = 1, ν̃ = ν and ν̃s = νs > 0. When ε 6= 1, we may choose

ν

νs

|1− ε|
2

(1− δ0) < µ <
2

|1− ε| (1− δ0)−1,

and then ν̃ > 0, ν̃s > 0.
Denote

S = sup
(v, q) ∈ Yh ×Mh

(v, q) 6= (0, 0)

Bh(wh, rh; v, q)
|v|1 + ‖q‖0

·

Then, in all cases

ν̃|wh|21 + ν̃s|ch|21 ≤ (|wh|1 + ‖rh‖0)S, (18)
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where for case i) we define ν̃ = ν and ν̃s = ν.
Pressure estimate. Consider a nonzero element vh ∈ Yh. We have

(rh,∇ · vh) = −Bh(wh, rh; vh, 0) + a(wh,vh)− Sh (Rh(Bvh), ch) . (19)

Remark that Bh(wh, rh;−vh, 0) ≤ S |vh|1. Observe also that

Sh (Rh(Bvh), ch) = 〈Bvh, ch〉 = −(u · ∇vh, ch)− ε ν(∇vh,∇ch)
≤ [M(u) + |ε− 1| ν] |vh|1 |ch|1.

Consequently,

(rh,∇ · vh) ≤ {S +M(u) |wh|1 + [M(u) + |ε− 1| ν] |ch|1} |vh|1 ≤
≤ C1 (S + |wh|1 + |ch|1) |vh|1,

where C1 = max{1,M(u) + |ε− 1| ν}.
Also, given a nonzero element zh ∈ Zh,

(rh,∇ · zh) = −〈∇rh, zh〉 = −Sh (Rh(∇rh), zh)
= Sh (Rh(Awh), zh)− Sh(ch, zh) (20)
≤ Ms [|Rh(Awh)|1 + |ch|1] |zh|1
≤ Ms

[
ν−1
s |Awh|−1 + |ch|1

]
|zh|1

≤ C2 (|wh|1 + |ch|1) |zh|1,

where C2 =Ms max{ν−1
s M(u), 1}. Then, using Hypothesis 1,

(rh,∇ · (zh + vh)) ≤ C3 (S + |wh|1 + |ch|1) (|vh|1 + |zh|1)
≤ C0C3 (S + |wh|1 + |ch|1) |vh + zh|1, (21)

where C3 = max{C1, C2}. Now, we use the discrete inf-sup condition: There exists a constant α > 0 such that

α ‖qh‖0 ≤ sup
xh∈Yh+Zh

(qh,∇ · xh)
|xh|1

, ∀qh ∈Mh.

Therefore,

‖rh‖0 ≤ C4 (S + |wh|1 + |ch|1) , (22)

where C4 = α−1 C0C3.
Conclusion. Combining (18) and (22) and applying Young’s inequality yields

ν̃|wh|21 + ν̃s|ch|21 ≤ C4 S
2 + [ (1 + C4) |wh|1 + C4 |ch|1]S

≤ 1
2

[(1 + C4)ε1 |wh|21 + C4ε2 |ch|21]

+ [C4 +
1
2

(1 + C4)ε−1
1 +

1
2
C4ε

−1
2 ]S2,

for any ε1 > 0, ε2 > 0. Let us take ε1 =
ν̃

1 + C4
, ε2 =

ν̃s
C4

. Then,

ν̃|wh|21 + ν̃s|ch|21 ≤ C2
5 S

2, (23)
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where C5 =
(

2C4 +
(1 + C4)2

ν̃
+
C2

4

ν̃s

)1/2

. Thus,

|wh|1 ≤
C5√
ν̃
S, |ch|1 ≤

C5√
ν̃s
S. (24)

Combining now (23) with (22), we obtain

‖rh‖0 ≤ C6 S, where C6 = C4 + C4C5

(
1√
ν̃

+
1√
ν̃s

)
. (25)

From (24) and (25) we finally deduce

S ≥ γ (|wh|1 + ‖rh‖0 + |ch|1), where γ =
{
C6 +

C5√
ν̃

+
C5√
ν̃s

}−1

· (26)

The proof of the second inequality in Definition 1 follows from similar arguments. �
The following result closes the equivalence between discrete inf-sup condition and stability of method (6).

Thus, the stability analysis of mixed method and method (6) are fully parallel.

Theorem 3. Assume that abstract method (6) is stable for some νs > 0. Assume that Hypothesis 1 and 2 hold.
Then, the pairs of spaces {Yh + Zh,Mh}h>0 satisfy the discrete Brezzi-Babuška condition.

We omit the proof of this result as it again follows from arguments similar to those used in the proof of
Theorem 1.

The stability of form Bh yields the well-possedness of our method, and allows to derive error estimates,
similarly to the standard analysis of mixed methods:

Corollary 1. Under the hypotheses of Theorem 1, problem (6) admits a unique solution (yh, ph) ∈ Yh ×Mh,
that verifies, for some constant C > 0,

|yh|1 + ‖ph‖0 + |zh|1 ≤ C ‖f‖−1, (27)

and

|y− yh|1 + ‖p− ph‖0 + |zh|1 ≤ C
[

inf
vh∈Yh

|y− vh|1 + inf
qh∈Mh

‖p− qh‖0
]
, (28)

where zh = Rh(Ayh +∇ph − f). �
Remark 1. From this result, the “bubble” space Zh appears as a control space for high-frequency components
of the residual Ayh +∇ph − f. In fact, (28) shows that the high frequency components of the residual which
are representable on Zh, via the condensation operator Rh, are bounded.

4. Application to stabilized methods

In this section we prove that stabilized methods (10) may be formulated as particular cases of abstract
method (6), and then apply the general stability analysis of Section 3.

Our derivation starts from the construction of virtual bubbles developped in Baiocchi et al. [4]. Let us recall
the main result of that paper, that we adapt to our context. Consider a Hilbert space (H, (·, ·)H ). Given a
subset B of H of finite dimension, we define the abstract static condensation operator R : H ′ → B by:

Given ϕ ∈ H ′, R(ϕ) is the only element of B that satisfies

(R(ϕ), ζ)H = 〈ϕ, ζ〉, ∀ζ ∈ B.
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Consider also a subspace W of H ′ of finite dimension endowed with an inner product (·, ·)W . With these
ingredients, we may re-write the concept of space of virtual bubbles reproducing an operator on W . This is
done as follows.

Definition 2. Consider a self-adjoint operator T on W . We say that B is a space of virtual bubbles reproducing
T on (W, (·, ·)W ) with respect to the inner product (·, ·)H if

(R(w1),R(w2) )H = (Tw2,w1)W , ∀w1, w2 ∈W.

A slight modification of the analysis made in Baiocchi et al. [4], proves the following:

Theorem 4. Let H be an infinite-dimensional Hilbert space. Consider a subset W of H ′ of finite dimension
endowed with an inner product (·, ·)W . Let B0 be a finite-dimensional subspace of H satisfying the following
property:

If 〈w, b〉 = 0, ∀b ∈ B0, for some w ∈W, then w = 0. (29)

Then, there exists a constant µ0 > 0 depending only on B0 such that if 0 < τ ≤ µ0, there exists a finite-
dimensional space of virtual bubbles B ⊂ H, that reproduces the operator τ I on W with respect to the inner
product (·, ·)H .

Space B may be constructed as a subspace of B0

⊕
N , N being any subspace of H of dimension dim(W ) such

that any function n ∈ N satisfies

〈w, n〉 = 0, ∀w ∈W, (n, b)H = 0, ∀ b ∈ B0. (30)

On this base, we may perform the analysis of stabilized methods as particular cases of the abstract method (6):

Proof of Theorem 2.

Step 1: Embedding of stabilized method in abstract method.
Let us denote W ∗j = [Rj(K∗)]

d for some integer j ≥ 0 (recall that K∗ denotes the reference element). By
Theorem 4, there exists a constant µ∗ > 0 such that if 0 < τ∗ ≤ µ∗, there exists a finite-dimensional space of
virtual bubbles B∗j ⊂

[
H1

0 (K∗)
]d, that reproduces the operator τ∗ I∗ on W ∗j with respect to the inner product

on
[
H1

0 (K∗)
]d.

Indeed, the elements of W ∗j are elements of
[
H−1(K∗)

]d if we identify the H1
0 - H−1 duality with the L2

inner product. We consider W ∗j to be endowed with the L2 inner product. Consider a polynomial function
Φ : K∗ 7→ R such that Φ = 0 on ∂K∗, and Φ > 0 in int(K∗). Define the set B0 = {Φw∗, |w∗ ∈ W ∗j }. Then,

B0 is a subspace of
[
H1

0 (K∗)
]d of dimension dim(W ∗j ) satisfying property (29): Denote by (·, ·)∗ the standard

inner product on
[
L2(K∗)

]d. If for some w∗ ∈ W ∗j we have 〈w∗, b〉 = (w∗, b)∗ = 0 for any b ∈ B0, by taking
b = Φw∗ we deduce w∗ = 0.

Let us now introduce the following elements:

• The bubble finite element space B(j)
h ⊂

[
H1

0 (Ω)
]d

generated by the reference space B∗j on triangulation
Th.
• The finite element space W (j)

h ⊂
[
L2(Ω)

]d generated by the reference space W ∗j on triangulation Th; i.e.,

W
(j)
h =

{
w ∈

[
L2(Ω)

]d |w|K ∈ [Rj(K)]d , ∀K ∈ Th
}
· (31)
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• The inner forms on
[
H1

0 (Ω)
]d,

Sh(w,v) =
∑
K∈Th

SK(w|K ,v|K ), where (32)

SK(w,v) = βK

∫
K

(CK∇w) : ∇v dx (33)

= βK

d∑
j,k,l=1

∫
K

(CK)jk ∂lwk ∂lvj dx, with βK = τ∗τ−1
K h2

K ,

for any w = (w1, · · · , wd), v = (v1, · · · , vd) ∈
[
H1(K)

]d
,

where CK is the matrix defined as follows: There exists a one-to-one affine mapping FK from the reference
element K∗ into K. Its equations are of the form x = AKx

∗ + bK , where AK = ∇FK is a nonsingular

d× d matrix and bK = FK(0) is a vector of Rd. We define the matrix CK by CK =
1
h2
K

AK A
t
K .

• The static condensation operator acting on B(j)
h associated to Sh, that we denote R(j)

h .
Then, we have the following representation lemma for the stabilizing terms:

Lemma 1. Assume f ∈
[
L2(Ω)

]d. Assume τ∗ ≤ µ∗. Then, ∀w1, w2 ∈W (j)
h ,∑

K∈Th

τK (w2 − f,w1)K = Sh
(
R(j)
h (w1),R(j)

h (w2 − fh)
)
, (34)

where fh is the L2 orthogonal projection of f onto W (j)
h .

This lemma is proved in the Appendix.
As a consequence, the stabilized method (10) coincides with the abstract method (6) constructed with spaces

Yh = Y
(m)
h , Mh = M

(l)
h , Zh = B

(j)
h (for a fixed positive parameter τ∗ ≤ µ∗), with j = max{2m− 1, l − 1}, the

form Sh given by (32), and with R(j)
h (f) replaced by R(j)

h (fh), fh being the L2 orthogonal projection of f onto
W

(j)
h .
Indeed, let us recall that we are assuming that in the stabilizing terms of method (10) the velocity u is being

replaced by some stable interpolate uh ∈ Y (m)
h . Then, for each element K ∈ Th, W (j)

h (K) contains the set{ ∑
K∈Th

(uh · ∇vh)|K1K ,
∑
K∈Th

(∆vh)|K1K ,
∑
K∈Th

(∇qh)|K1K , for vh ∈ Y (m)
h , qh ∈M (l)

h

}
,

where 1K denotes the characteristic function of K. Then, it is enough to apply Lemma 1 to obtain the formal
embedding.

Step 2: Proof of Hypothesis 1.
This is based on the general result that follows.

Lemma 2. Assume that the family of triangulations {Th}h>0 is regular. Assume Yh, Zh are finite element
subspaces of

[
H1

0 (Ω)
]d affine equivalent to reference spaces Y ∗ and Z∗, respectively, satisfying Y ∗ ∩ Z∗ = {0}

and such that Y ∗ contains the constant functions. Then, the pairs of spaces {Yh, Zh}h>0 satisfy Hypothesis 1.

This Lemma is proved in the Appendix.
We may now prove that there exists a bubble finite element space B(j)

h such that the pairs {Y (m)
h , B

(j)
h }h>0

satisfy Hypothesis 1 and the representation formula (34) holds. Indeed, replace the function Φ that defines
space B0 by a power Φi, for some integer i large enough, to ensure B0∩ [Rm(K∗)]d = Ø. Let N be any subspace
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of dimension dim(W ∗j ) of
[
H1

0 (K∗)
]d formed by non-polynomial functions that satisfy property (30). Then,

the bubble space B∗j given by Theorem 4 satisfies B∗j ∩ [Rm(K∗)]d = Ø. Moreover, as m ≥ 1, then [Rm(K∗)]d

contains the constant functions and thus Lemma 2 holds.
Step 3: Proof of Hypothesis 2.
Following the derivation of Lemma 2, we obtain

Sh(w,w) ≥ νsh |w|21, |Sh(w,v)| ≤Msh |w|1 |v|1, ∀w, v ∈
[
H1

0 (Ω)
]d
,

where νsh = Λ min
K∈Th

{βK}, Msh = M max
K∈Th

{βK}, the constants Λ and M being given by (81). Observe that

α−1
2 τ∗ ≤ βK ≤ α−1

1 τ∗, ∀K ∈ Th,

where α1 (assuming hK ≤ 1) and α2 are given by

α1 = A min
{

1
ν
,

P

‖u‖0,p

}
, α2 =

A

ν
· (35)

Then, νsh ≥ νs, Msh ≥Ms uniformly in h, with

νs = α−1
2 τ∗ Λ, Ms = α−1

1 τ∗M.

Step 4: Discrete inf-sup condition.
This will be based upon the following:

Lemma 3. Assume that for each h > 0 there exists a subspace Zh ⊂
[
H1

0 (Ω)
]d and a coercive bilinear form Ŝh

on
[
H1

0 (Ω)
]d such that Zh ∩ Y (m)

h = {0} and∑
K∈Th

h2
K ‖∇qh‖20,K ≤ Ĉ Ŝh

(
R̂(∇qh), R̂(∇qh)

)
∀qh ∈M (l)

h , (36)

for some constant Ĉ > 0, where R̂ denotes the static condensation operator on Zh with respect to the form Ŝh.
Assume that the family of forms {Ŝh}h > 0 is uniformly coercive on

[
H1

0 (Ω)
]d. Then, under condition (13),

the pairs of spaces {Y (m)
h + Zh,M

(l)
h }h>0 satisfy the discrete inf-sup condition.

Proof of Lemma 3. Under condition (13), it is proved in Franca et al. [16] – using the trick of Verfürth [28] –
that there exist two constants C1 > 0, C2 > 0 such that ∀qh ∈M (l)

h ,

sup
v∈Y (m)

h −{0}

(∇ · vh, qh)
|vh|1

≥ C1‖qh‖0 − C2

( ∑
K∈Th

h2
K ‖∇qh‖20,K

)1/2

. (37)

Then,

sup
v∈Y (m)

h −{0}

(∇ · vh, qh)
|vh|1

≥ C1‖qh‖0 − C3

[
Ŝh
(
R̂(∇qh), R̂(∇qh)

) ]1/2
, (38)

where C3 = Ĉ C2. Consider a nonzero element ṽh ∈ Y (m)
h , such that

|ṽh|1 = 1,
(∇ · ṽh, qh)
|ṽh|1

= sup
v∈Y (m)

h
−{0}

(∇ · vh, qh)
|vh|1

·
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Denote zh = R̂(∇qh). If zh = 0, then
(∇ · ṽh, qh) ≥ C1‖qh‖0.

If zh 6= 0, denote z̃h = zh/|zh|1. Given a constant C4 ≥ 0, from (38) and (36) we obtain

(∇ · (ṽh − C4z̃h), qh) ≥ C1‖qh‖0 − C3

[
Ŝh(zh, zh)

]1/2
+ C4Ŝh(zh, z̃h)

≥ C1‖qh‖0 +
{
C4

[
Ŝh(z̃h, z̃h)

]1/2
− C3

}
|zh|1

[
Ŝh(z̃h, z̃h)

]1/2
≥ C1‖qh‖0 + (C4 ν̂

1/2 − C3 ) |zh|1
[
Ŝh(z̃h, z̃h)

]1/2
,

where ν̂ is the uniform coerciveness constant of the forms Ŝh. Let us take C4 = ν̂−1/2C3. Observe that

ṽh − C4z̃h 6= 0 as Y (m)
h ∩ Zh = {0}. Define x̃h =

ṽh − C4z̃h
|ṽh − C4z̃h|1

∈ Y (m)
h + Zh. Then,

(∇ · x̃h, qh) ≥ C1

1 + C4
‖qh‖0. (39)

This completes the proof of Lemma 3. �
In our case, this result holds with Zh = B

(j)
h . Indeed, on one hand B(j)

h ∩ Y
(m)
h = Ø. On the other hand, let

us take w1 = w2 = ∇qh, f = 0 in the representation formula (34). Then,∑
K∈Th

τK ‖∇qh‖20,K = Sh
(
R(j)
h (∇qh),R(j)

h (∇qh)
)
. (40)

and (36) follows because the coefficients τK are of order h2
K : α1 h

2
K ≤ τK ≤ α2 h

2
K . Finally, by Step 3 the forms

Sh are uniformly coercive.
Step 5: Conclusion.
We now apply Theorem 1:

• SUPG method corresponds to m = l = 1, for any ε. In this case, Y (m)
h and B(j)

h are H1
0 -orthogonal. Then,

from Theorem 1, it is stable for any A > 0.
• GaLS method corresponds to ε = 1. Then, from Theorem 1, it is also stable for any A > 0.
• In the remaining cases, Y (m)

h and B(j)
h are not necessarily H1

0 -orthogonal, and ε 6= 1. Let us assume

A ≤ A0

(
2

ε− 1

)2

, with A0 = Λµ∗.

Take τ∗ in the closed interval

[
AΛ−1

(
ε− 1

2

)2

, µ∗

]
. As τ∗ ≤ µ∗, then all the preceeding analysis applies.

Also, νs = A−1 τ∗ Λ ν ≥
(
ε− 1

2

)2

ν. Then, from Theorem 1, the general stabilized method (10) is stable.

AdS and generalized SUPG methods respectively correspond to ε = −1 and ε = 0 and therefore they are
respectively stable if A ≤ Λµ∗ and A ≤ 4 Λµ∗.

This completes the proof of Theorem 2. �

Remark 2. Stability of AdS method.
The stability of AdS method may be proved without using the uniform separation property. Indeed, in

Baiocchi et al. [4] it is proved that there exists a bubble subspace Bh of
[
H1

0 (Ω)
]d (not necessarily a finite
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element space) such that for any (vh, qh), (wh, rh) ∈ Y (m)
h ×M (l)

h we have∑
K∈Th

τK(Bvh +∇qh,Awh +∇rh − f)K = a (Rh(Bvh +∇qh),Rh(Awh +∇rh − fh) ) , (41)

where Rh is the static condensation operator on Bh with respect to the bilinear form a(·, ·). This occurs
whenever τK ≤ µK for some positive µK .

As it is proved in Baiocchi et al. [4], this implies that a pair (yh, rh) ∈ Y (m)
h ×M (l)

h is a solution of AdS
method if and only if the pair (yh + bh, ph) ∈ (Y (m)

h + Bh) ×M (l)
h , where bh = Rh (f− (Ayh +∇ph) ), is a

solution of the mixed method constructed with spaces Yh = Y
(m)
h +Bh and Mh = M

(l)
h :

B(yh + bh, ph; vh, qh) = 〈f,vh〉, ∀(vh, qh) ∈ (Y (m)
h +Bh)×M (l)

h . (42)

Thus, to apply the standard analysis of mixed methods to AdS method it is enough to prove that the family of
pairs of spaces

{
Y

(m)
h + Bh,M

(l)
h

}
h>0

satisfy the discrete inf-sup condition. This may be proved by Lemma 3

starting from (41), once we prove that the upper bounds µK for the stabilizing coefficients are of order h2
K .

Notice that equation (42) provides two control equations for the large and small scale components of ∇ph.
Indeed, (42) is equivalent to

(ph,∇ · vh) = a(yh + bh,vh)− 〈f,vh〉, ∀vh ∈ Yh;

(ph,∇ · zh) = a(yh + bh, zh)− 〈f, zh〉, ∀ zh ∈ Zh.
In the case of stabilized methods other than AdS, we no longer have B = A∗ in (41). Then, we cannot write
the method under the structure (42). In this case, the control equations for ∇ph are (19) and (20).

Remark 3. Computability of stability bounds.
In Baiocchi et al. [4], Section 3.1, a general technique for estimating µ∗ is derived. The parameter µ∗ depends

only on the reference element B∗j . It must be computed once for each actual space W ∗j associated to a pair

(Y (m)
h ,M

(l)
h ). In the case of two-dimensional triangular elements , for instance, for m = l = 1, this technique

yields the estimate µ∗ = 1/320. If m = l = 2, µ∗ = 3/5120.
Also, the constant Λ may be computed from the aspect ratio of the family of triangulations {Th}h>0. Recall

that Λ = C2
1 , C1 being the constant appearing in (80). From Ciarlet [13], this constant is

C1 =
1

2h∗ σ
,

where h∗ is the diameter of the reference element K∗ and σ is the aspect ratio of the family,

σ = sup
h>0

max
K∈Th

hK
ρK

,

ρK denoting the internal diameter of element K. This technique to estimate the stability bounds simplifies the
standard one, that requires computing the best constant in the inverse inequality (12). This simplification is
particularly clear if we observe that σ may be preset “a priori” if the triangulations are constructed in order to
have

hK
ρK
≤ σ, ∀K ∈ Th, ∀h > 0.

Remark 4. Error estimates.
Let us finally make some comments about the obtention of error estimates. One may experiment some

concern by the fact that to represent the stabilized method as an abstract method, in the stabilizing terms
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the second member f is replaced by its L2 interpolate on W
(j)
h , fh. However, we still obtain error estimates of

optimal order. This is proved for Navier-Stokes equations in [11]. This proof may readily be adapted to Oseen
equations.

5. Application to stabilized spectral element method

In Gervasio and Saleri [19], a stabilized spectral element (SSE) method for solving the unsteady Navier-Stokes
equations is derived. We shall apply here our analysis to the approximation of the Oseen equations by such
method. Our main contribution is to prove that the stability of the discretization is due to an underlying discrete
inf-sup condition. This allows to obtain L2 estimates for the pressure. Oseen equations are here considered as
a model problem for the linear problems that appear after time discretization of Navier-Stokes equations.

Let us start by describing the discretization of Oseen equations by the SSE method. Assume Ω to be
polygonal. Consider a partition Th of Ω in parallelograms (d = 2) or parallelepipeds (d = 3), where h still
denotes the largest diameter of the elements of Th.

Consider an integer number N ≥ 1. Denote by {ξi}N+1
i=1 and by {ωi}N+1

i=1 the nodes and weights of the Gauss-
Lobatto Legendre quadrature formulas defined on (−1, 1). Assume, for instance, d = 3. For ûN , v̂N ∈ QN(K∗)
( K∗ = (−1, 1)d being the reference element), we define the discrete inner product,

(ûN , v̂N )N,K∗ =
N+1∑
i,j,k=1

ωi ωj ωk ûN(ξi, ξj , ξk) v̂N (ξi, ξj , ξk);

while for uN , vN ∈ QN(K) we set

(uh, vh)N,K =
N+1∑
i,j,k=1

ωi ωj ωk |detAK |uN(P (K)
ijk ) vN (P (K)

ijk );

where P (K)
ijk = FK(ξi, ξj , ξk); i, j, k = 1, · · · , N + 1, ∀K ∈ Th.

Let us define the space
WH =

{
v ∈ L2(Ω) | v|K ∈ QN(K), ∀K ∈ Th

}
,

where H = (h,N−1) is our actual discretization parameter.
Given uH, vH ∈WH we set

(uH, vH)H =
∑
K∈Th

(uH|K , vH|K )N,K ; ‖uH‖H = (uH, uH)1/2
H .

We respectively define the discrete inner products (·, ·)N,K∗ , (·, ·)N,K and (·, ·)H on a similar manner for vector
functions of [QN (K∗)]d, [QN(K)]d, and [WH]d.

We also define the spectral element spaces

YH = V dH ∩
[
H1

0 (Ω)
]d
, MH = VH ∩ L2

0(Ω),

where VH is defined by
VH =

{
v ∈ C0(Ω̄) | v|K ∈ QN (K), ∀K ∈ Th

}
·

We shall consider the following SSE approximation of Oseen equations (1):{
Obtain (yH, pH) ∈ YH ×MH such that
BH(yH, pH; vH, qH) = FH(vH, qH), ∀(vH, qH) ∈ YH ×MH; (43)
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where

BH(wH, rH; vH, qH) = B(wH, rH; vH, qH)−
∑
K∈Th

τK (BvH +∇qH;AwH +∇rH)N,K ;

FH(vH, qH) = 〈f,vH〉 −
∑
K∈Th

τK (BvH +∇qH, f)N,K .

The essential difference between SSE method and stabilized method (10) is that the L2 inner products (·, ·)K
that appear in (10) in the stabilizing terms are here replaced by the discrete inner products (·, ·)N,K . In Gervasio
and Saleri [19], the discrete inner product (·, ·)H is also used to approximate the integral terms appearing in form
B. Here, for simplicity we prefer to consider the above discretization. However, we may extend our analysis to
the actual discretization considered in that paper if the pressures are approximated by piecewise polynomials
of degree at most N − 1 (see Rem. 5).

In Gervasio and Saleri [19], the stabilizing coefficients τK are still given by (11), with

P = 2
N2

m
, A =

m

4N4
, for some m > 0.

The parameter m is determined in that paper in order to obtain uniform-in-time stability of the linear problems
that arise after time discretization. We shall simply assume that the stabilizing coefficients τK are given by (11).

Our analysis allows to state the following result:

Theorem 5. Assume the triangulations {Th}h>0 are regular. Then, the SSE method (43) is stable for any

A > 0 if ε = 1, and for 0 < A <

(
2

1− ε

)2

Â0 if ε 6= 1, where Â0 is a computable positive constant.

As a consequence, if f ∈
[
C0(Ω)

]d, problem (43) admits a unique solution that satisfies

|yH|1 + ‖pH‖0 ≤ C ‖f‖C0 , (44)

for some constant C > 0 independent of H.

Proof. We proceed as in the proof of Theorem 2.

Step 1: Embedding of SSE method in abstract method.
Let us define the local interpolation operator IKN : C0(K)→ QN(K) by

(IKN w)(P (K)
ijk ) = w(P (K)

ijk ), i, j, k = 1, · · · , N + 1.

Consider the space of piecewise continuous functions on Th,

Cp,h(Ω) = {v ∈ L2(Ω) | v|K ∈ C0(K), ∀K ∈ Th };

and define the global interpolation operator IH : Cp,h(Ω)→WH by

(IHw)|K = IKN (w|K ), ∀K ∈ Th.

Observe that C0(Ω̄) ⊂ Cp,h(Ω) and that IHw ∈ VH if w ∈ C0(Ω̄).
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The following representation formula holds:

Lemma 4. There exists a finite-dimensional bubble finite element space
ZH ⊂

[
H1

0 (Ω)
]d such that ,

Sh (RH(IHv1),RH(IHv2)) =
∑
K∈Th

τK (v1,v2)N,K , ∀v1, v2 ∈ [Cp,h(Ω)]d ; (45)

where Sh is the bilinear form defined by (32).

This lemma is proved in the Appendix.
As a consequence, for all wH, vH ∈ YH; rH, qH ∈MH,

BH(wH, rH; vH, qH) = B(wH, rH; vH, qH) (46)
−Sh (RH(IH(BvH +∇qH) ),RH(IH(AwH +∇rH) )) ;

FH(vH, qH) = 〈f,vH〉 − Sh (RH(IH(BvH +∇qH) ),RH(IH f)) .

This occurs because f ∈
[
C0(Ω)

]d and BvH +∇qH, AwH +∇rH ∈ [Cp,h(Ω)]d.
Steps 2 and 3: Proof of Hypotheses 1 and 2.
Hypotheses 1 and 2 have respectively been proved in the Steps 3 and 4 of the proof of Theorem 2.
Step 4: Discrete inf-sup condition.
Observe that if rH ∈MH, then IH(∇rH) = ∇rH, because IKN (qN ) = qN , ∀qN ∈ QN(K). Then, by (45),

Sh (RH(∇rH),RH(∇rH)) =
∑
K∈Th

τK(∇rH,∇rH)N,K , ∀ rH ∈MH.

By Bernardi and Maday [5],

‖qN‖0,K ≤ ‖qN‖N,K ≤ 3 ‖qN‖0,K , ∀qN ∈ QN (K). (47)

These estimates are obtained by affine transportation of similar estimates obtained in the reference element.
As the coefficients τK are of order h2

K , then there exists a constant C > 0 such that∑
K∈Th

h2
K ‖∇rH‖20,K ≤ C Sh (RH(∇rH),RH(∇rH)) .

Then, by Lemma 3, the pairs of spaces {YH + ZH,MH}H>0 satisfy the discrete inf-sup condition.
Step 5: Conclusion.

Following the proof of Theorem 1, we prove that if νs ≥
(1− ε)2

4
ν when ε 6= 1, or νs > 0 when ε = 1, then

the form BH is stable. Then, problem (43) admits a unique solution that satisfies, for some constant C > 0,

|yH|1 + ‖pH‖0 + |zH|1 ≤ C (‖f‖−1 + |RH(IH f)|1) ,

where zH = RH(IH(AyH) +∇pH). As f ∈
[
C0(Ω)

]d, using (47),

|RH(IH f)|1 ≤ ν−1
s ‖IH f‖0 ≤ ν−1

s ‖IH f‖H = ν−1
s ‖f‖H ≤ C ‖f‖C0 .

Thus, estimate (44) follows.
The remaining of the proof is similar to the conclusion of the proof of Theorem 2. �
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Remark 5. A slight modification of the above argument allows to prove an underlying inf-sup condition and
thus the stability for a stabilized full spectral element discretization of Oseen equations.

Indeed, let us replace the pressure space MH by MH′ , with H′ = (h, (N − 1)−1), for N ≥ 2; i.e., we consider
pressures of degree at most N − 1 elementwise. We consider the following discrete problem:{

Obtain (yH, pH′) ∈ YH ×MH′ such that
B′H(yH, pH′ ; vH, qH′) = F ′H(vH, qH′), ∀(vH, qH′) ∈ YH ×MH′ ;

(48)

where

B′H(wH, rH′ ; vH, qH′) =
1
2

[(u · ∇wH,vH)H − (u · ∇vH,wH)H ] + ν (∇wH,∇vH)H

− (∇ ·wH, qH′)H − (rH′ ,∇ · vH)H

−
∑
K∈Th

τK (BvH +∇qH′ ;AwH +∇rH′)N,K ;

F ′H(vH, qH′) = (f,vH)H −
∑
K∈Th

τK (BvH +∇qH′ , f)N,K .

Then, our analysis allows to prove that the form B′H is stable. This holds because the quadrature formula

∫
K∗

g dx∗ '
N∑

i,j,k=0

ωi ωj ωk g(ξi, ξj , ξk)

is exact for g ∈ Q2N−1(K∗).

6. Solution of linear primitive equations

In this section we apply our analysis to the solution of a linear model for the primitive equations of the ocean
by a penalty stabilized technique. This model includes the main difficulty of these equations: The vertical
convection is degenerated. This makes the pressure to be only in some space Lp for 1 < p < 2. We prove
a discrete inf-sup condition in this norm, and prove the convergence of the approximated solutions to a weak
solution of the continuous problem.

To describe our model equations, let us consider a connected 2D bounded domain ω ⊂ R2, and a piecewise
continuous function D : ω̄ → R such that D(x) > 0, ∀x = (x1, x2) ∈ ω. This function represents the sea depth.
We consider the domain

Ω = {(x, z) ∈ R3 |x ∈ ω, −D(x) < z < 0 },
which is intended to represent a piece of the ocean with flat surface. To avoid some technical complexities, we
shall assume that ω is polygonal and D is piecewise affine on some triangulation of ω̄, so that Ω is polyhedric.
Our analysis can be extended to piecewise C1 depth functions, similarly to the analysis of the approximation
of primitive equations by mixed methods (cf. Chacón Rebollo and Guillén González [12]).

We assume the domain Ω to be Lipschitz continuous. This occurs, for instance, if the normal derivative of

D satisfies
∂D

∂n
≤ α for some α < 0 a. e. on the part of ∂ω where D = 0. Notice that D may be zero partially

or totally on ∂ω. Also, that we allow the sea bottom to have vertical walls when D has a jump, and sidewalls
if D > 0 on a part of ∂ω.

We also consider the following subsets of ∂Ω:

Γs = {(x, 0) ∈ R3 |x ∈ ω̄ }, (sea surface),

Γb = ∂Ω− Γs (sea bottom and, eventually, sidewalls).
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We assume known a convection velocity W = (w1, w2, w3) on Ω, such that

{
w = (w1, w2) ∈

[
H1(Ω)

]2
, w3 ∈ L2(Ω),

∇ ·W = 0 in Ω, w3|Γs = 0, w3 · n3|Γb = 0, w|Γb = 0,
(49)

where n3 denotes the third component of the outward normal to ∂Ω, n = (n1, n2, n3). We are thus forcing
the incompressibility of the sea water (Boussinesq’s hypothesis). The first boundary condition means that we
assume the sea surface to not move in the vertical direction (rigid lid hypothesis), while the second and third
ones are rather technical boundary conditions, meaning that we treat the whole Γb as a solid wall.

We also assume known a distributed source term f, representing the effects of temperature, salinity and
Coriolis force (assumed to be constant on the whole domain for simplicity), and a “surface wind tension” g. We
set the following problem:

Obtain y : Ω̄→ R2, y = (y1, y2), (horizontal velocity)
and p : ω → R such that (surface pressure)

W · ∇y− ν ∆y +∇Hp = f in Ω,
∇H · 〈y〉 = 0 in ω,

y|Γb = 0, ν
∂y
∂n |Γs

= g.

(50)

Here, ∇H = (∂1, ∂2) stands for the horizontal gradient, and the symbols 〈·〉 denote vertical mean,

〈y〉(x) =
∫ 0

−D(x)

y(x, z) dz, for x ∈ ω.

In this problem the surface pressure p acts as a Lagrange multiplier associated to the condition ∇H · 〈y〉 = 0.
Problem (50) is a reduced version of a linear model of the primitive equations of the ocean (introduced in

Lions, Temam and Wang [24]), that reads as follows:



Obtain a velocity field (y, y3) : Ω̄→ R3,
and a pressure P : Ω→ R such that

W · ∇y− ν∆y +∇HP = f in Ω,
∇ · (y, y3) = 0 in Ω,
∂3P = −ρ g in Ω,

y|Γb = 0, ν
∂y
∂n |Γs

= g,

y3 · n3|Γb
= 0, y3|Γs = 0.

(51)

Here, ρ represents the sea water density, assumed to be constant, and g the acceleration of the gravity.
This model is formally obtained from the Navier-Stokes equations by neglecting in the vertical momentum

equation all forces (convection, diffusion and Coriolis) but the gravity. This leads to the hydrostatic pressure
approximation. A rigorous derivation of this approximation is found in Besson and Laydi [2], as an asymptotic
limit as the ratio between vertical and horizontal dimensions tends to zero. The physically meaningful –
nonlinear – problem would be to find a “fixed point” of equations (50), in the sense that y = w. This justifies
the choice of regularity and boundary conditions satisfied by w (see (49)).

Equations (50) may be viewed as a model problem for the nonlinear primitive equations, much as the Oseen
equations are a linear model for the Navier-Stokes equations.



76 T. CHACÓN REBOLLO

Remark 6. Problems (50) and (51) are equivalent. The key point for this equivalence is the following: If a
horizontal velocity y = (y1, y2) ∈

[
H1(Ω)

]2 satisfies y|Γb = 0, then

〈∇H · y〉 = ∇H · 〈y〉.

As a consequence, there exists a vertical velocity y3 ∈ L2(Ω) such that

∇ · (y, y3) = 0 in Ω, y3|Γs = 0 and y3 · n3|Γb
= 0

if and only if

y3(x, x3) =
∫ 0

x3

∇H · y(x, s) ds in Ω, (52)

and
∇H · 〈y〉 = 0 in ω.

This allows to eliminate the vertical velocity y3 from problem (51). Also, the condition ∂3P = −ρ g allows to
recover the pressure P from the surface pressure p, by

P (x, z) = ρ g z + p(x). (53)

A rigourous proof of this equivalence may be found in Lewandowski [23].

To give a variational formulation to problem (51), let us define the spaces

Vk = {v = (v1, v2) ∈
[
W 1,k(Ω)

]2 |v|Γb = 0 } for k ≥ 1, integer;

LαD(ω) = {q : ω → R measurable such that
∫
ω

D(x) |q(x)|α dx < +∞} for α ≥ 1;

LαD,0(ω) = LαD(ω)/R (quotient space).

Spaces LαD(ω) and LαD,0(ω) are Banach spaces – reflexive if 1 < α < +∞ –, respectively endowed with the norms

‖q‖LαD(ω) =
[∫

ω

D(x) |q(x)|α dx
]1/α

,

‖q‖LαD,0(ω) = inf
c ∈ R

‖q + c‖LαD(ω).

Space LαD(ω) is isomorphic, and, more specifically, isometric, to the space

Lα(∂3,Ω) = {q ∈ Lα(Ω) such that ∂3q = 0 }.

Indeed, we identify each q ∈ LαD(ω) with its extension to Ω as a constant function with respect to the x3 variable.
Then, we have ‖q‖LαD(ω) = ‖q‖Lα(Ω).

Moreover, if we consider the space Lα0 (∂3,Ω) = Lα(∂3,Ω)/R, then LαD,0(ω) and Lα0 (∂3,Ω) also are isomorphic,
and ‖q‖LαD,0(ω) = ‖q‖Lα0 (Ω), ∀q ∈ LαD,0(ω).

We further assume f ∈ V ′2 and g ∈
[
H−1/2(Γs)

]d
, the dual space of [H1/2(Γs)]d. This space is well defined

as Γs is C∞.



UNIFIED MIXED AND STABILIZED SOLUTIONS 77

We consider the following weak formulation of problem (51):{
Obtain (y, p) ∈ V2 × L3/2

D,0(ω) such that
B(PE)(y, p; v, q) = F (v); ∀(v, q) ∈ V4 × L2

D,0(ω);
(54)

where

B(PE)(y, p; v, q) = 〈W · ∇y,v〉V ′4−V4 + ν (∇y,∇v)Ω − (p,∇H · 〈v〉)ω
−(∇H · 〈y〉, q)ω ,

F (v) = 〈f,v〉V ′2−V2 + 〈g,v〉H−1/2(Γs)−H1/2(Γs).

This form is well defined, due to the following:

Lemma 5. The following statements hold.
i) Consider a function W = (w, w3) ∈ V2 × L2(Ω) such that ∇ ·W = 0, w3|Γs = 0. Then, ∀u ∈ V2,

W · ∇u ∈ V ′k for k ≥ 3, and

‖W · ∇u‖V ′
k
≤ Ĉk |w|1,Ω |u|1,Ω, (55)

for some constant Ĉk > 0.
ii) If w ∈ Vk for some k ≥ 1, then 〈w〉 ∈ [W 1,k(ω)]2 and ∂i〈w〉 = 〈∂iw〉, i = 1, 2.

Proof. i) Observe that, given w ∈ V2, and w3 ∈ L2(Ω) such that ∂3w3 = −∇H · w, and w3|Γs = 0 we have

w3(x, x3) =
∫ 0

x3

∇H ·w(x, s) ds. Thus,

‖w3‖0,Ω + ‖∂3w3‖0,Ω ≤ C1 |w|1,Ω, (56)

for some constant C1 > 0.
Now, if W is smooth, we see by integrations by parts that for u ∈ V2 and v ∈ Vk,∫

Ω

(W · ∇u) · v dx dx3 =
∫

Ω

[ (w · ∇Hu) · v− ∂3w3 u · v− w3 u · ∂3v ] dx dx3.

Then, we may define the duality 〈W · ∇u , v〉 by

〈W · ∇u , v〉 =
∫

Ω

[ (w · ∇Hu) · v− ∂3w3 u · v− w3 u · ∂3v ] dx dx3. (57)

Using (56),

|〈W · ∇u , v〉| ≤ C2 ( ‖w‖0,4;Ω|u|1,Ω‖v‖0,4;Ω + |w|1,Ω‖u‖0,4;Ω‖v‖0,4;Ω (58)

+ ‖w‖0,Ω‖u‖0,6;Ω‖∂3v‖0,3;Ω ) ≤ Ĉk |w|1,Ω |u|1,Ω |v|1,k;Ω.

This proves that W · ∇u ∈ V ′k. Next, consider a field W = (w, w3) ∈ V2 × L2(Ω) with ∇ ·W = 0, w3|Γs = 0.
Then, there exists a sequence {wn}n≥1 ⊂ [D(Ω̄)]2 such that wn = 0 on Γb, which converges to w in V2.
This is proved by a standard argument (for instance, by symmetrization with respect to Γs) using that ∂Ω is

Lipschitz-continuous. Let Wn = (wn, w3n), with w3n(x, x3) =
∫ 0

x3

∇H ·wn(x, s) ds.
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Following Dautray and Lions [18], Chapter XXI, we may ensure that if a function z ∈ L2(Ω) is such that
∂3z ∈ L2(Ω), then the trace of z on Γs belongs to H1/2(Γs). Moreover, a Poincaré inequality holds if z|Γs = 0:

‖z‖0,Ω ≤ C3 ‖∂3z‖0,Ω,

for some constant C3 > 0. Therefore,

‖w3 − w3n‖0,Ω ≤ C3 ‖∇H · (w−wn)‖0,Ω,

and w3n converges to w3 in L2(Ω). Thus, we may pass to the limit in the r.h.s. of (57), and define W · ∇u as
a linear form on Vk. Now, passing to the limit in (58) we deduce W · ∇u ∈ V ′k and estimate (55).

ii) Consider w ∈ Vk. As w ∈ [Lk(Ω)]2, one readily proves 〈w〉 ∈ [Lk(ω)]2. Also, let ϕ ∈ D(ω). Then, if w is
smooth, for i = 1, 2,∫

ω

〈∂iw〉(x)ϕ(x) dx =
∫

Ω

∂iw(x, x3)ϕ(x) dx dx3 = (59)

=
∫
∂Ω

niwϕd(∂Ω)−
∫

Ω

w(x, x3) ∂iϕ(x) dx dx3 = (60)

= −
∫
ω

〈w〉(x) ∂iϕ(x) dx,= −
∫
ω

∂i〈w〉(x)ϕ(x) dx, (61)

as ni = 0 on Γs and w = 0 on Γb. Thus, ∂i〈w〉 = 〈∂iw〉 and w ∈ [W 1,k(ω)]2.
If w is any element of Vk, the same results follows from a density argument similar to that of the proof of

statement i) above. �

Remark 7. Any solution (y, p) of problem (54) is a weak solution of problem (50) in the distribution sense.
Furthermore, if we recover the vertical velocity y3 by (52), and the physical pressure P by (53), then the couple
((y, y3), P ) is a solution of problem (51) in the distribution sense.

We shall discretize problem (54) by a penalty stabilized method, of Brezzi and Pitkäranta’s kind (cf. [9]).
Consider a triangulation Ch of ω̄ such that D is affine on each triangle T ∈ Ch. Consider also a partition Ph of
Ω̄ by sets of the form

PT = {(x, x3) ∈ R3, such that x ∈ T, −D(x) ≤ x3 ≤ 0 } for some triangle T ∈ Ch.

Notice that if a triangle T ∈ Ch is not adjacent to ∂ω, or if it is adjacent to ∂ω and D > 0 on T̄ , then its
associated set PT is a triangular prism with upper base T×{0} and possibly non-horizontal lower base. However,
if T is adjacent to ∂ω and D = 0 on a part of ∂T , then PT is a non-prismatic polyhedron.

We shall consider a triangulation Th of Ω constructed by subdividing each element Ph into tetrahedra. Let
us define the finite element spaces,

Vh = {vh ∈ C0(Ω̄) | vh|K ∈ P1(K), ∀K ∈ Th}; (62)

Yh = {vh ∈ V 2
h | vh|Γb = 0};

Ñh = {qh ∈ C0(ω̄) | qh|T ∈ P1(T ), ∀T ∈ Ch}; Nh = Ñh/R.

We introduce the following discretization of (54):{
Obtain (yh, ph) ∈ Yh ×Nh such that
B

(PE)
h (yh, ph; vh, qh) = F (vh); ∀(vh, qh) ∈ Yh ×Nh;

(63)
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where

B
(PE)
h (uh, rh; vh, qh) = B(PE)(uh, rh; vh, qh) +

∑
K∈Th

τ
(c)
K (Wh · ∇uh,Wh · ∇vh)K

−
∑
T∈Ch

τ
(p)
T (∇Hrh,∇Hqh)T .

The stabilizing coefficients for convection τ
(c)
K are assumed to be still given by (11). This will provide some

stabilization of the convective derivative. Also, to ensure the stability of the pressure discretization we shall
assume that the stabilizing coefficients for pressure τ (p)

T satisfy the following condition: There exist two constants
β1 > 0, β2 > 0 such that

β1 h
2
T

∫
T

D dx

|T | ≤ τ (p)
T ≤ β2 h

2
T

∫
T

D dx

|T | , ∀T ∈ Ch. (64)

Observe that these inequalities make sense as we assume D > 0 on ω. In the stabilizing terms of (63), we
replace the convection velocity W = (w, w3) by some interpolate Wh = (wh, w3h) ∈ Yh × Vh, satisfying for
some constant C > 0,

|Wh|1 ≤ C |w|1. (65)

We now state the main result of this section.

Theorem 6. Assume the convection velocity W = (w, w3) lies in the space V2×L2(Ω) and verifies ∇·W = 0,
w3|Γs = 0. Assume the triangulations {Th}h>0 are regular. Then, the following statements hold.

i) Problem (63) admits a unique solution (yh, ph) ∈ Yh ×Nh which is bounded in
V2 × L3/2

D,0(ω).
ii) The sequence {(yh, ph)}h>0 contains a subsequence which is weakly convergent in

V2 × L3/2
D,0(ω) to a solution of (54) satisfying the estimate

|y|1 + ‖p‖
L

3/2
D,0(ω)

≤ C
(
‖f‖V ′2 + ‖g‖−1/2,Γs

)
(1 + |w|1,Ω), (66)

for some constant C > 0 independent of h.

Proof. We proceed by steps.

Step 1: Embedding of method (63) in abstract method.

Given an element T ∈ Ch, let us define τ (p)
K =

|T |∫
T

D dx
τ

(p)
T , for any element K ∈ Th that be in the prism PT

that lies on T . We assume that the pressures of Nh are defined on the whole Ω, as constant functions in the x3
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variable. Then,

∑
K∈Th

τ
(p)
K (∇rh,∇qh)K =

∑
T∈Ch

|T |∫
T

D dx
τ

(p)
T

∫
PT

∇Hrh · ∇Hqh dx dx3

=
∑
T∈Ch

|T |∫
T

D dx
τ

(p)
T (∇Hrh)|T · (∇Hqh)|T

∫
PT

dx dx3

=
∑
T∈Ch

τ
(p)
T (∇Hrh,∇Hqh)T , ∀rh, qh ∈ Nh. (67)

Let us define Mh = Vh/R, where Vh is given by (62). We now apply Lemma 1: There exists a bubble finite
element space B1h, generated on Th by a reference element B∗1 ⊂

[
H1

0 (K∗)
]3, and a bilinear coercive form S1h

on
[
H1

0 (Ω)
]3, such that∑

K∈Th

τ
(p)
K (∇rh,∇qh)K = S1h(R1h(∇rh),R1h(∇qh) ), ∀rh, qh ∈Mh; (68)

where R1h is the static condensation operator on B1h with respect to form S1h. We may identify Nh with the
subspace of Mh defined by {qh ∈ Vh | ∂3qh = 0}. Then, from (67) and (68) we deduce∑

T∈Ch

τ
(p)
T (∇Hrh,∇Hqh)T = S1h(R1h(∇rh),R1h(∇qh) ), ∀rh, qh ∈ Nh. (69)

Also, again by Lemma 1, there exists a bubble finite element space B2h, generated on Th by a reference element
B∗2 ⊂

[
H1

0 (K∗)
]2, and a bilinear coercive form S2h on

[
H1

0 (Ω)
]2, such that ∀uh, vh ∈ Yh,∑

K∈Th

τ
(c)
K (Wh · ∇uh,Wh · ∇vh)K = S2h(R2h(Wh · ∇uh),R2h(Wh · ∇vh) ); (70)

where R2h is the static condensation operator on B2h with respect to form S2h. Then,

B
(PE)
h (uh, rh; vh, qh) = B(PE)(uh, rh; vh, qh)

+ S2h(R2h(Wh · ∇uh),R2h(Wh · ∇vh) )
−S1h(R1h(∇rh),R1h(∇qh) ), ∀uh, vh ∈ Yh, ∀rh, qh ∈ Nh.

We recall that by Theorem (2) (Step 3), the forms {S2h}h>0 are uniformly continuous and coercive in H1 norm.
Also, due to (64) and the regularity of triangulations Th, the coefficients τ (p)

K are of order h2
K . Then, the forms

{S1h}h>0 also are uniformly continuous and coercive.
Step 2: Discrete inf-sup condition.
We state the following:

Lemma 6. Given α ∈ (1, 2], there exists a constant Cα > 0 such that ∀qh ∈ Nh,

Cα ‖qh‖LαD,0(ω) ≤ sup
vh∈Yh−{0}

(∇H · 〈vh〉, qh)ω
|vh|1,α′,Ω

+ [S1h(R1h(∇qh),R1h(∇qh) )]1/2 , (71)

where α′ is the conjugate exponent of α.
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Proof. Define the space Wh = {(vh, v3h) ∈ V 3
h | (vh, v3h)|∂Ω

= 0 }. It is enough to prove that

Cα‖qh‖Lα0 (Ω) ≤ sup
(vh, v3h) ∈Wh − {0}

(∇ · (vh, v3h), qh)Ω

|(vh, v3h)|1,α′,Ω
(72)

+ [S1h(R1h(∇qh),R1h(∇qh) )]1/2 , ∀qh ∈ Vh.

Indeed, if qh ∈ Nh, (vh, v3h) ∈Wh,

(∇ · (vh, v3h), qh)Ω = (∇H · vh, qh)Ω − (v3h, ∂3qh)Ω = (∇H · 〈vh〉, qh)ω.

Then,

sup
(vh, v3h) ∈Wh − {0}

(∇ · (vh, v3h), qh)Ω

|(vh, v3h)|1,α′,Ω
= sup

(vh, v3h) ∈Wh − {0}
(∇H · 〈vh〉, qh)ω
|(vh, v3h)|1,α′,Ω

≤ sup
vh∈Yh−{0}

(∇H · 〈vh〉, qh)ω
|vh|1,α′,Ω

·

Also, ‖qh‖Lα0 (Ω) = ‖qh‖LαD,0(ω) if qh ∈ Nh. Thus, (71) follows from (72).
To prove (72), consider qh ∈ Vh. As Ω is polyhedric, then ∂Ω is Lipschitz, and the continuous inf-sup

condition in Lα(Ω) norm is satisfied (cf. Amrouche and Girault [1]): There exists a constant Dα > 0 such that

Dα ‖qh‖Lα0 (Ω) ≤ sup
v∈

h
W1,α′

0 (Ω)
i3
−{0}

(∇ · v, qh)Ω

|v|1,α′,Ω
, ∀q ∈ Lα0 (Ω).

As [D(Ω)]3 is dense in
[
W 1,α′

0 (Ω)
]3

, there exists a v0 ∈ [D(Ω)]3 such that

1
2
Dα ‖qh‖Lα0 (Ω) ≤ (∇ · v0, qh)Ω, |v0|1,α′,Ω = 1.

Following the standard finite elements interpolation theory (cf. Ciarlet [13]), there exists an interpolate v0h ∈
Wh such that

|v0h|1,α′,Ω ≤ C1 |v0|1,α′,Ω; (73)
‖v0h − v0‖0,K ≤ C1 hK |v0|1,K , ∀K ∈ Th; (74)

for some constant C1 > 0 independent of h. Then, as qh is continuous,

1
2
Dα ‖qh‖Lα0 (Ω) ≤ (∇ · v0h, qh)Ω + (v0h − v0,∇qh)Ω

≤ C1
|(∇ · v0h, qh)Ω|
|v0h|1,α′,Ω

+

[ ∑
K∈Th

h−2
K ‖v0h − v0‖20,K

]1/2 [ ∑
K∈Th

h2
K‖∇qh‖20,K

]1/2

.

As α′ ≥ 2, then (74) yields [ ∑
K∈Th

h−2
K ‖v0h − v0‖20,K

]1/2

≤ C2 |v0|1,α′,Ω.
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Also, from the representation formula (68), hypothesis (64) and the regularity of the triangulations, we obtain∑
K∈Th

h2
K‖∇qh‖20,K ≤ C3 S1h(R1h(∇qh),R1h(∇qh) ).

Thus, estimate (72) follows.
Step 3: Existence of solution of discrete problem.
Problem (63) is equivalent to a square linear system of dimension dim(Yh) + dim(Nh). Then, the existence

of solution follows from its uniqueness. If we prove that any solution is bounded by a norm of the data, the
uniqueness follows. Let us then consider a solution (yh, ph) ∈ Yh ×Nh of problem (63).

Velocity estimate. Denote ch = R1h(∇ph) ∈ B1h, dh = R2h(Wh · ∇yh) ∈ B2h. As ∇ ·W = 0, w3|Γs = 0,

yh ∈
[
W 1,∞(Ω)

]2, using (57) we have

〈W · ∇y,y〉V ′4−V4 =
1
2

∫
∂Ω

W · n |y|2 d(∂Ω)− 1
2

∫
Ω

∇ ·W |y|2 dx dx3 = 0.

Then,
ν |yh|21,Ω + S1h(ch, ch) + S2h(dh,dh) = B

(PE)
h (yh, ph; yh,−ph) = F (yh) ≤ ‖F‖V ′2 |yh|1,Ω,

where we assume V2 to be endowed with the | · |1,Ω norm. Then,

|yh|1,Ω ≤ ν−1 ‖F‖V ′2 , S1h(ch, ch) ≤ ν−1 ‖F‖2V ′2 , |dh|1,Ω ≤ (νν2)−1/2 ‖F‖V ′2 , (75)

where ν2 is the uniform coerciveness constant of the forms S2h.
Pressure estimate. Take vh ∈ Yh. Then,

(∇H · 〈vh〉, ph)ω = −F (vh) + 〈W · ∇yh,vh〉V ′4−V4 + ν (∇yh,∇vh)Ω

+ S2h(dh,R2h(Wh · ∇vh)).

Observe that, due to Sobolev’s injections and the stability interpolate (65),

S2h(dh,R2h(Wh · ∇vh)) = (Wh · ∇vh,dh)Ω ≤ C1‖wh‖0,4;Ω |vh|1,Ω ‖dh‖0,4;Ω

+C2 ‖w3‖0,Ω ‖∂3vh‖0,3;Ω ‖dh‖0,6;Ω

≤ C3 |w|1,Ω |vh|1,3;Ω ‖dh‖0,6;Ω

Then, due to (55),

(∇H · 〈vh〉, ph)ω ≤ C4 ( ‖F‖V ′2 + |w|1,Ω|yh|1,Ω + ν |yh|1,Ω
+ |w|1,Ω|dh|1,Ω ) |vh|1,3;Ω.

Then, using (75),

sup
vh∈Yh−{0}

(∇H · 〈vh〉, qh)ω
|vh|1,3,Ω

+ [S1h(ch, ch )]1/2 ≤ C5 ‖F‖V ′2 (1 + |w|1,Ω).

Due to Lemma 6, we deduce that

‖ph‖L3/2
D,0(ω)

≤ C6 ‖F‖V ′2 (1 + |w|1,Ω). (76)
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Thus, the discrete problem (54) admits a unique solution satisfying

|yh|1 + ‖ph‖L3/2
D,0(ω)

≤ C7 ‖F‖V ′2 (1 + |w|1,Ω). (77)

Step 4: Conclusion.
Due to estimates (77), the sequence {(yh, ph)}h>0 is bounded in V2 × L3/2

D,0(ω), which is a reflexive space.
Then, it contains a subsequence, that we still denote in the same way, weakly convergent in that space to a pair
(y, p). Let us prove that this pair is a solution of problem (50).

Consider a pair (v, q) ∈ V4 × L2
D,0(ω). There exists a sequence {(vh, qh)}h>0 with (vh, qh) ∈ Yh ×Nh which

is strongly convergent to (v, q) in V4 × L2
D,0(ω). Indeed, the fact that vh → v in V4 is proved by the standard

interpolation estimates by piecewise affine finite elements. Also, by the same theory, there exists a sequence
{qh}h>0 with qh ∈ Ñh which converges to q in L2(ω). But

‖qh − q‖L2
D,0(ω) ≤ ‖qh − q‖L2

D(ω) ≤ ‖D‖
1/2
0,∞;ω ‖qh − q‖0,2;ω.

Thus, lim
h→0
‖qh − q‖L2

D,0(ω) = 0.

From (57) we deduce

lim
h→0
〈W · ∇yh,vh〉V ′4−V4 = 〈W · ∇y,v〉V ′4−V4 .

Also,

lim
h→0

(ph,∇H · 〈vh〉)ω = lim
h→0

(ph,∇H · vh)Ω = (p,∇H · v)Ω = (p,∇H · 〈v〉)ω ,

and similarly

lim
h→0

(∇H · 〈yh〉, qh)ω = (∇H · 〈y〉, q)ω .

In a standard way, we have

lim
h→0

(∇yh,∇vh)Ω = (∇y,∇v)Ω.

To pass to the limit in the stabilizing terms, we need the following property of the bubble finite element spaces:

Lemma 7. Consider a family {Zh}h>0 of finite element subspaces of
[
H1

0 (Ω)
]d generated by a reference space

Z∗. Assume that Z∗ does not contain the constant functions. Then, the following statements hold.
i) For any q ∈ [2, 6], there exists a constant Cq > 0 such that

‖zh‖0,q ≤ Cq hβ |zh|1, ∀zh ∈ Zh; where
β

2
+

1− β
6

=
1
q
· (78)

ii) If a sequence {zh}h>0, with zh ∈ Zh, ∀h > 0, is bounded in
[
H1

0 (Ω)
]d, then it converges weakly to zero

in
[
H1

0 (Ω)
]d.

This Lemma is proved in the Appendix.
Due to (75) and to the uniform coerciveness of the forms S1h, the sequence {ch}h>0 is bounded in

[
H1

0 (Ω)
]3.

Then, it is weakly convergent to zero in that space. Thus,

lim
h→0

S1h(R1h(∇qh), ch) = lim
h→0

(−qh,∇ · ch)Ω = 0.
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Also

|S2h(dh,R2h(Wh · ∇vh))| = |〈Wh · ∇vh,dh〉H−1−H1
0
| =

∣∣∣∣∫
Ω

(Wh · ∇vh) · dh dx dx3

∣∣∣∣
≤ C7 (‖wh‖0,4;Ω|vh|1,Ω‖dh‖0,4;Ω + ‖w3h‖0,Ω‖∂3vh‖0,4;Ω‖dh‖0,4;Ω)
≤ C8 |w|1,Ω|vh|1,4;Ω‖dh‖0,4;Ω

≤ C9 h
1/4 |w|1,Ω|vh|1,4;Ω|dh|1;Ω

≤ C10 h
1/4 |w|1,Ω|vh|1,4;Ω‖F‖V ′2 .

Thus,
lim
h→0

S2h(dh,R2h(Wh · ∇vh)) = 0.

To complete the proof, we combine the weak lower semicontinuity of the norm on reflexive Banach spaces with
estimate (77) to derive estimate (66). �
Remark 8. This result shows the adaptivity of the general formulation provided by the abstract method (10),
and of its analysis technique in Sections 3 and 4. The two main contributions in the actual application are
• To derive a discrete inf-sup condition in Lα norm (1 < α < 2), and
• To prove that the stabilizing terms vanish in the limit h→ 0.

We have chosen piecewise affine elements for simplicity, but the same analysis applies to the general finite
element spaces introduced in Section 2.

7. Conclusion

We have developed in this paper a systematic way to extend the standard stability analysis of mixed methods
to stabilized methods. The stability of pressure discretization follows from an underlying discrete inf-sup
condition. The stability of velocity discretization follows from a uniform separation property between standard
finite element spaces and bubble finite element spaces.

We have proved the adaptivity of this technique by analyzing two non-standard situations (spectral element
method and primitive equations of the ocean) by means of the same essential analysis.

Roughly speaking, we have found a way to extend to stabilized methods any stability-related property that
one could prove for stable mixed methods, as there is always an underlying discrete inf-sup condition to each
actual stabilized method.

Appendix

Proof of Lemma 1. This proof is based upon the following:

Lemma 8. Denote by Bj(K), Wj(K), respectively, the affine-transformed of spaces B∗j , W ∗j on element K.

Then, Bj(K) is a space of virtual bubbles of
[
H1

0 (K)
]d reproducing the operator τK IK on Wj(K), with

respect to the inner product SK .

Proof. We shall respectively denote by (·, ·)∗ and ((·, ·))∗ the standard inner products in
[
L2(K∗)

]d and[
H1

0 (K∗)
]d. Consider an element K ∈ Th. Given a function v∗ defined on the reference element K∗, let

us denote by v̂ its affine-transformed on K, v̂ = v∗ ◦ (FK)−1, where FK is the affine mapping that transforms
K∗ on to K, i.e., FK(x∗) = AKx

∗ + bK .
If w∗, v∗ ∈

[
H1

0 (K∗)
]d, then ŵ, v̂ ∈

[
H1

0 (K)
]d and

SK(ŵ, v̂)K = |detAK |βK h−2
K ((w∗,v∗))∗. (79)



UNIFIED MIXED AND STABILIZED SOLUTIONS 85

Denote by R∗ the static condensation operator acting on space B∗j , associated to the inner product ((·, ·))∗.
Given v∗ ∈W ∗j , R∗(v∗) satisfies

((R∗(v∗), ζ∗))∗ = (v∗, ζ∗)∗, ∀ζ∗ ∈ B∗j .

From (79) we deduce that for any w ∈Wj(K),

h2
Kβ
−1
K SK(R̂∗(w∗), ζ) = (w, ζ)K , ∀ζ ∈ Bj(K);

where w∗ = w ◦ FK . Then, RK(w) = h2
Kβ
−1
K R̂∗(w∗).

Furthermore, by hypothesis,

((R∗(w∗1),R∗(w∗2)))∗ = τ∗ (w∗1,w
∗
2)∗, ∀w∗1, w∗2 ∈W ∗j .

From (79), this implies

h2
Kβ
−1
K SK(R̂∗(w∗1), R̂∗(w∗2)) = τ∗ (w1,w2)K , ∀w1, w2 ∈Wj(K).

Thus,
SK(RK(w1),RK(w2)) = τK (w1,w2)K , ∀w1, w2 ∈Wj(K).

�
Consider now an element ϕ ∈

[
H−1(Ω)

]d. Then, Rh(ϕ)|K = RK(ϕ|K ). This occurs because
int(K) ∩ int(K ′) = Ø if K 6= K ′.

Then, if w1, w2 ∈W (j)
h ,

Sh
(
R(j)
h (w1),R(j)

h (w2)
)

=
∑
K∈Th

SK
(
R(j)
h (w1|K ),R(j)

h (w2|K )
)

=
∑
K∈Th

τK (w2,w1)K .

This last equality holds because of Lemma 8. To finish the proof, we observe that the orthogonal projection of
f|K on W (K) with respect to the L2 inner product is just fh|K . Then,∑

K∈Th

τK (f,w1)K =
∑
K∈Th

τK (fh,w1)K = Sh
(
R(j)
h (w1),R(j)

h (fh)
)
. �

Proof of Lemma 2. Consider a triangulation Th of the family. Given an element K ∈ Th, denote by hK the
diameter of element K. Let us consider the following bilinear form on

[
H1

0 (Ω)
]d,

((w,v))h =
∑
K∈Th

∫
K

(CK∇w) : ∇v dx, ∀w, v ∈
[
H1

0 (Ω)
]d
.

Here, matrix CK is defined as in (34). The form ((·, ·))h is an inner product on
[
H1

0 (Ω)
]d, as each matrix CK

is symmetric and positive definite.
Some standard estimates yield

|((w,v))h| ≤Mh |w|1|v|1, ((w,w))h ≥ Λh |w|21,

where Mh =
1
hK

max
K,l

σKl , Λh =
1
hK

min
K,l

σKl , σK1 , . . . , σ
K
d denoting the singular values of AK .
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As the family of triangulations is regular, there exist two constants C1 > 0, C2 > 0 such that (cf. Ciarlet [13]),

C1 hK ≤ σKl ≤ C2 hK , ∀K ∈ Th, ∀h > 0, ∀l = 1, . . . , d. (80)

Consequently, the forms ((·, ·))h define inner products on
[
H1

0 (Ω)
]d which are uniformly (in h) equivalent to the

standard one. If we denote by ‖ · ‖h the norm generated by the inner product ((·, ·))h, we have

Λ |w|1 ≤ ‖w‖h ≤M |w|1, ∀w ∈
[
H1

0 (Ω)
]d

; where Λ = C2
1 > 0, M = C2

2 > 0. (81)

Let us now make the change of variable x = AKx
∗ + bK . Given w, v ∈

[
H1

0 (Ω)
]d

, define wK(x∗) = w(x),
vK(x∗) = v(x), ∀x∗ ∈ K∗. Then,∫

K

(CK∇w) : ∇v dx = h−2
K |detAK |

∫
K∗
∇wK : ∇vK dx∗.

Thus, given yh ∈ Yh, zh ∈ Zh, we have

((yh, zh))h =
∑
K∈Th

h−2
K |detAK |

∫
K∗
∇yKh : ∇zKh dx∗. (82)

Notice that we always have yKh ∈ Y ∗, zKh ∈ Z∗.
Consider now the bilinear form on

[
H1(K∗)

]d,
((w̃, ṽ))∗ =

∫
K∗
∇w̃ : ∇ṽ dx∗.

This is an inner product on the quotient space H̃ =
[
H1(K∗)

]d
/R. The spaces Ỹ ∗ = Y ∗/R and Z̃∗ = Z∗/R

are subspaces of H̃ satisfying Ỹ ∗ ∩ Z̃∗ = {0}.
Consider now a fixed nonzero z̃ ∈ Z̃∗. Denote by Π the orthogonal projection from H̃ on to Ỹ ∗ with respect

to the inner product ((·, ·))∗. Then,

−||ỹ||∗ ||Πz̃||∗ ≤ ((ỹ, z̃))∗ ≤ ||ỹ||∗ ||Πz̃||∗, ∀ỹ ∈ Ỹ ∗;

where || · ||∗ denotes the norm associated to the inner product ((·, ·))∗. As Ỹ ∗ ∩ Z̃∗ = {0}, z̃ cannot belong to
Ỹ ∗ and ||Πz̃||∗ < ||z̃||∗. Thus, there exists a constant δ > 0 such that

|((ỹ, z̃))∗| ≤ (1− δ) ||ỹ||∗ ||z̃||∗, ∀ỹ ∈ Ỹ ∗. (83)

Define N = sup {|((ỹ, z̃))∗| for ỹ ∈ Ỹ ∗, z̃ ∈ Z̃∗ with ||ỹ||∗ = ||z̃||∗ = 1 }. As both Ỹ ∗ and Z̃∗ are spaces of
finite dimension, in fact this supremum is achieved. Due to (83), we should have N < 1. Thus, we may assume
that (83) holds for all ỹ ∈ Ỹ ∗ and for all z̃ ∈ Z̃∗.

From (82) we now obtain

|((yh, zh))h| ≤ (1− δ)
∑
K∈Th

h−2
K |detAK |

(∫
K∗
|∇yKh |2 dx∗

)1/2(∫
K∗
|∇zKh |2 dx∗

)1/2

≤ (1− δ) ‖yh‖h‖zh‖h.
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Then,

‖yh + zh‖2h ≥ ‖yh‖2h + ‖zh‖2h − 2(1− δ) ‖yh‖h ‖zh‖h
≥ δ

(
‖yh‖2h + ‖zh‖2h

)
.

From this last inequality,

‖yh‖h + ‖zh‖h ≤
√

2
δ
‖yh + zh‖h.

Now, it is enough to use the uniform coerciveness and boundedness of the inner products ((·, ·))h to conclude
the proof. �

Proof of Lemma 4. The elements of [QN(K∗)]d are elements of
[
H−1(K∗)

]d if we identify the H1
0 - H−1 duality

with the L2 inner product. Observe that the bilinear form (·, ·)N,K∗ is an inner product on [QN(K∗)]d. Indeed,
if (q̂N , q̂N )N,K∗ = 0 for some q̂N ∈ QN(K∗), then q̂N (ξi, ξj , ξk) = 0, for i, j, k = 1, · · · , N + 1. Then, q̂N = 0.

Thus, similarly to the Step 1 in the proof of Theorem 2, by Theorem 4, there exists a µ̂ > 0 such that if
0 < τ∗ ≤ µ̂, there exists a finite-dimensional subspace B∗ of

[
H1

0 (K∗)
]d that reproduces the operator τ∗ I on(

[QN(K∗)]d , (·, ·)N,K∗
)

with respect to the standard inner product of
[
H1

0 (K∗)
]d.

Consider now an element K ∈ Th, and two functions v, w ∈
[
C0(Ω)

]d. Define v̂ = v ◦ FK , ŵ = w ◦ FK ,
where FK is a bijective affine transformation from K∗ on to K. Then,

(v,w)N,K = |detAK | (v̂, ŵ)N,K∗ , AK = ∇FK .

Denote by Bj(K) the affine-transformed of B∗ by F−1
K : Bj(K) = B∗ ◦ F−1

K . Similarly to Lemma 8, we deduce

that Bj(K) is a space of virtual bubbles that reproduces the operator τK I on
(

[QN (K)]d , (·, ·)N,K
)

with respect

to the inner product SK defined by (34) with βK = τ∗τ−1
K h2

K .
Denote also by BH the finite element subspace of

[
H1

0 (Ω)
]d generated by the reference element B∗ on

triangulation Th. Similarly to Lemma 1, we deduce that

Sh (RH(w1),RH(w2)) =
∑
K∈Th

τK(w1,w2)N,K , ∀w1,w2 ∈WH,

where RH denotes the static condensation operator on BH with respect to form Sh.
Consider now v1, v2 ∈ [Cp,h(Ω)]d. Then, IHvi ∈ WH, i = 1, 2 and (IHv1, IHv2)N,K = (v1,v2)N,K .

Consequently, (45) holds. �
Proof of Lemma 7. i) As Z∗ does not contain the constant functions, then the H1 seminorm is a norm on Z∗.
Therefore, there exists a constant C∗ > 0 such that

‖z∗‖0 ≤ C∗ |z∗|1, ∀Z∗ ∈ Z∗.

Consider now zh ∈ Zh. Then, using the notation introduced in Lemma 2,

‖zh‖20 =
∑
K∈Th

|detAK | ‖zKh ‖20,K∗ ≤ C∗
∑
K∈Th

|detAK | |zKh |21,K∗ .

Following Girault and Raviart [17], Lemma A.1, there exists a constant γ > 0 such that

|detAK |1/2|zKh |1,K∗ ≤ γ ‖AK‖ |zh|1,K ,
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where ‖AK‖ denotes the spectral matrix norm. Then,

‖zh‖20 ≤ C∗γ2
∑
K∈Th

‖AK‖2 |zh|21,K ≤ C1 h
2 |zh|21,

for some constant C1 > 0.
Let us now consider the interpolation estimate (cf. Brézis [6]),

‖w‖0,q ≤ C2 ‖w‖β0 ‖w‖
1−β
0,6 , ∀w ∈

[
L6(Ω)

]d
,

if 2 ≤ q ≤ 6, with β given in (78). As
[
H1

0 (Ω)
]d is continuously embedded in

[
L6(Ω)

]d if d = 2 or d = 3,
then (78) follows.

ii) Consider a sequence {zh}h>0, with zh ∈ Zh. This sequence contains a subsequence, that we still denote

in the same way, weakly convergent to some element z in
[
H1

0 (Ω)
]d. As

[
H1

0 (Ω)
]d is compactly embedded in[

L2(Ω)
]d, we may assume that this sequence converges strongly in

[
L2(Ω)

]d.
Recall that space Y (0)

h is defined by

Y
(0)
h =

{
v ∈

[
L2(Ω)

]d |v|K is constant, ∀K ∈ Th
}
. (84)

Due to standard finite element interpolation analysis, there exists a sequence {yh}h>0, with yh ∈ Y
(0)
h , strongly

convergent to z in
[
L2(Ω)

]d (even if the family of triangulations is not regular).
Denote by Y ∗ the reference space that generates space Y (0)

h . By hypothesis, Y ∗ ∩ Z∗ = {0}. Then, there
exists ρ > 0 such that

|(z∗,y∗)K∗ | ≤ (1− ρ) ‖z∗‖0,K∗‖y∗‖0,K∗ , ∀z∗ ∈ Z∗, y∗ ∈ Y ∗.

This is proved similarly to estimate (83) in Lemma 2. Thus,

|(zh,yh)| =
∑
K∈Th

|detAK | |(zKh ,yKh )K∗ | ≤ (1− ρ)
∑
K∈Th

|detAK | ‖zKh ‖0,K∗‖yKh ‖0,K∗

≤ (1− ρ) ‖zh‖0‖yh‖0.

Consequently, z = 0 as ‖z‖20 = lim
h→0
|(zh,yh)| ≤ (1− ρ) ‖z‖20.

As the limit of any weakly convergent subsequence is necessarily zero, the the whole sequence {zh}h>0

converges weakly to zero. �
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