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Abstract

In this paper, the concept of the ordered weighted averaging operator is applied to define a model which unifies and generalizes
several inequality measures. For a location x, the value of the new objective function is the ordered weighted average of the absolute
deviations from the average distance from the facilities to the location x. Several kinds of networks are studied: cyclic, tree and path
networks and, for each of them, the properties of the objective function are analyzed in order to identify a finite dominating set for
optimal locations. Polynomial-time algorithms are proposed for these problems, and the corresponding complexity is discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent studies in network location problems have been focused on designing new objective functions which general-
ize different location measures. The incorporation of several problems in a globalized model enables the exploration of
the incidence of the geometrical structure of the network with respect to different criteria. In this way, several unifying
location models have been introduced, the most recent of which is based on the concept of an ordered averaging oper-
ator. The global model obtained by means of such a concept generalizes the most important location criteria according
to the vector to be sorted. When such a vector is the classic weighted distance vector, the ordered median model is
obtained. This model provides a unified framework which includes both the center and the median as special cases,
as well as several related measures (such as the cent-dian and the k-centrum). The single ordered median problem has
been studied in several types of cyclic networks and tree networks, both from the theoretical and algorithmic points of
view, and also recent studies have focused on the multifacility version and other related instances of this problem in
several kinds of spaces (see [1–4] and references therein).

However, the ordered median model does not generalize a group of objective functions: the equality measures, whose
formulation and behavior present structural differences with respect to the center and median measures. Nevertheless,
the equality measures (and more generally, the issue of equity) are relevant in facility location problems in the public
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sector and, for this reason, have received growing attention in the last decade, as witnessed by the proliferation of
papers which deal with inequality measures in the literature.

Most of the inequality measures proposed by Marsh and Schilling [5] have been formulated in several metric spaces
and the corresponding single facility location problems have been solved by means of efficient algorithms. Some of the
most frequently used inequality measures are those in which the cost function is an operator on the vector of absolute
deviations. The weighted sum operator and the maximum operator give rise to the mean absolute deviation and the
maximum absolute deviation measures, respectively. Although both operators are the same as in the classic median
and center measures, in this case the objective is a monotone function of the deviations from the average distance, and
the behavior and properties of such absolute deviation measures are radically different from the respective properties
of the median and center measures. Therefore, the distance function vector considered gives rise to different problems
with different behavior and properties and, in the same way as the mean (or the maximum) absolute deviation problem
cannot be obtained from the median (or the center) problem, neither can the ordered absolute deviation model be
obtained from the ordered median model (nor vice-versa). These arguments endorse the need to consider these two
models separately, since they are structurally different.

Following this line of reasoning, the aim of this paper is to study the ordered absolute deviation model, whose objective
function is formulated as the ordered weighted average of the absolute deviations from facilities to the median value.
The corresponding single facility location problem is studied in cyclic, tree and path networks. The strategy for solving
each of these problems is based on identifying a Finite Dominating Set (FDS), that is, a finite set of points which is
valid for all instances of the same location problem and which contains an optimal location (see [6] for further details).

The remainder of the paper is organized as follows. Section 2 is devoted to introducing the notation and formulating
the general problem. In Section 3, this problem is solved in cyclic, path and tree networks, and some particular cases
are studied in Section 4. Finally, the main conclusions and further research are summarized.

2. Formulation of the problem

Let N(V, E) be a connected and undirected network with node set V, |V | = n and edge set E, |E| = m. Each edge
e =[u, v] is represented by a continuous rectifiable arc with positive length luv . Let x be a point on an edge of N whose
exact location is determined by its distance (along the edge) from a prescribed endpoint of the edge. Thus, any real
number x ∈ [0, lij ] denotes the location in the edge [u, v] for which the length of the subedge [u, x] is x. We let N
denote the continuum set of points of the network.

The edge lengths induce a distance function on N. For any two points x, y in N, d(x, y) will denote the length of a
shortest path connecting x and y. Thus, N is a metric space with respect the above distance function. Associated with
each node vi , let wi �0 denote the demand weight of the node (e.g. the number of customers residing at node vi).
Without any loss of generality it may be assumed that

∑
vi∈V wi = 1, and each wi can be interpreted as the fraction of

the demand originated at vi .
For any x ∈ N , the median function of x is given by M(x) = ∑

vi∈V widi(x) (where di(x) = d(vi, x)). Hence
fi(x) = wi |di(x) − M(x)| is the absolute deviation from the vi-customers to a facility located at x. Two different
measures are considered to compute a global measure of this deviation over the network. The mean absolute deviation
measure from x, defined as D(x) = ∑

vi∈V fi(x), and the maximum (weighted) absolute deviation from x, given by
Z(x) = maxvi∈V fi(x).

In a general network, the mean absolute deviation problem was initially solved by Berman and Kaplan [7] in O(mn2)

time. The algorithm proposed by Tamir [8] further reduced this complexity to O(mn log n). On the other hand, the
maximum absolute deviation problem has been solved in O(mn2 log n) time by López-de-los-Mozos and Mesa [9],
and this complexity has also been reduced to O(mn2) by Mesa et al. [10]. The same authors [10] give algorithms to
solve the mean and the maximum absolute deviation in respectively O(n2) and O(n3) time on tree networks.

A first generalization of both measures is provided by means of the k-sum deviation measure, which translates the
well-known k-centrum concept to this equality framework. In this way, the k-sum deviation function measures the
sum of the k greatest values of the vector f (x) = (f1(x), . . . , fn(x)). The mean absolute deviation and the maximum
absolute deviation are obtained when k = n and 1, respectively, and the corresponding k-sum deviation minimization
problem can be solved in O(mn2) time in general networks [11].

The new generalization is derived from applying the ordered averaging operator to the vector f (x). Let P(n)

be the set of all permutations of the set {1, . . . , n}. For each x ∈ N , let �∗ ∈ P(n) be a permutation which sorts
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Table 1
Summary of complexity for the considered cases

Cyclic network Tree network Path tree

General O(mn2 log n) O(n3 log n) O(n2 log n)

Convex O(mn2 log n) O(n2 log2 n) O(n2 log n)

Concave O(mn2 log n) O(Hn2)a O(n2)

Concave and unweighted O(mn2) O(Hn2)a O(n2)

Discrete O(n2 log n) O(n2) O(n2)

aH is the number of leaves (degree-one vertices) of the tree.

the components of the distance function vector into non-decreasing order, that is f�∗(x) = (f(1)(x), . . . , f(n)(x)),
with f(1)(x)�f(2)(x)� · · · �f(n)(x). Given a vector � = (�1, . . . , �n) ∈ Rn, with �i �0, ∀i = 1, . . . , n, the ordered
weighted operator F�(x) is defined as the scalar product between the vector � and the sorted vector f�∗(x), that is,
F�(x) = ∑n

i=1�if(i)(x) [4].
When the distance functions fi(x) are the classic weighted distances widi(x), i = 1 . . . , n, we obtain the ordered

median function
∑n

i=1�iw(i)d(i)(x). The corresponding single, multifacility, and other related location problems have
been studied in several kinds of spaces (see [1–4] and the references cited therein).

When fi(x) = wi | di(x) − M(x)|, i = 1, . . . , n, the ordered absolute deviation function F�(x) = ∑n
i=1 �if(i)(x) is

obtained, (note that in this function, the elements to sort are the fi(x) = wi |di(x) − M(x)| and not the di(x) nor the
widi(x)). Hence, the ordered absolute deviation problem is to solve minx∈N F�(x).

Clearly, different selections of the �-vectors give rise to different absolute deviation measures. In this way, � =
(1, . . . , 1) gives the mean absolute deviation D(x), � = (0, . . . , 0, 1) gives the maximum absolute deviation Z(x) and,
conversely, � = (1, 0, . . . , 0) gives the minimum absolute deviation min{fi(x), i = 1, . . . , n}. The sum of k greatest
values of f (x) (the k-sum deviation) is obtained when the last k components of � are equal to one and the rest equal to
zero, that is, � = (0, . . . , 0, 1, (k. . ., 1). Conversely, from � = (1, (k. . ., 1, 0, . . . , 0) the sum of k smallest values of f (x)

is obtained. Likewise, the convex mixture �D(x) + (1 − �)Z(x) is obtained from � = (�, . . . , �, 1), the maximum
pairwise difference maxi fi(x)−minj fj (x) is derived from �=(−1, 0, . . . , 0, 1), and, in the same way, other measures
belonging to the same equality family can be obtained.

Table 1 displays the complexity of the cases studied in this paper in order to solve the aforementioned single facility
location problem minx∈N F�(x).

3. Solving the problem

Our approach to solve the problem is based on identifying a FDS on each edge e of the network. To this end, the
behavior of the objective function will be studied in each of the subedges in which the edge can be partitioned.

Let e = [u, v] ∈ E be a given edge of the network. It is well known that for each i = 1, . . . , n, di(x) = d(vi, x) is a
continuous, concave and piecewise linear function with at most two segments with slopes 1 and −1, respectively. Its
breakpoint (if any) is reached at an interior point x̄i ∈ e for which d(vi, x̄i) via vertex u is the same as via vertex v.
Such a point x̄i is called an edge bottleneck point of vi in the edge e (see [12]). Henceforth for simplicity we will said
bottleneck point instead of edge bottleneck point. Therefore, the median function M(x) is concave and piecewise linear
on e, and all its breakpoints are bottleneck points. Let B(e) be the set of bottleneck points of e . Clearly, |B(e)|�n.
The points of set B(e)∪{u, v} determine a partition of the edge. Each closed subedge delimited by two adjacent points
of this partition is called a primary region.

On the other hand, Tamir [8] proved that each distance function d(vj , x) intersects M(x) at (at most) four points in
each edge. Although an improvement of this bound does not affect the complexity of the algorithms, proof of Theorem 1
uses that such a bound can be reduced to two points and, for this reason, we will now prove this assertion. Let x̄j be
the bottleneck point associated with vj , and let (x̄j−1, x̄j ] be the half-open set associated with the jth primary region
[x̄j−1, x̄j ]. Consider the nodal partition {Vj , V j } such that Vj = {vi ∈ V/d(vi, u) + x�d(vi, v) + luv − x}, and
V j = V \Vj . When x ∈ (x̄j−1, x̄j ], this partition is unchanged (see [13]). Let w(Vj ) and w(V j ) be the total weight of
vertices in Vj and V j , respectively. The slope of the M(x) function in the jth primary region is given by w(Vj )−w(V j ),
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Fig. 1. Intersection points of two fi -functions in a primary region of this network.

and it holds |w(Vj ) − w(V j )|�1. This fact together with the concavity of both the median and the distance functions
implies that there are at most two intersection points of M(x) with each distance function along the edge.

Let L1(e) be the set of such 2n (at most) intersection points. Each closed interval delimited by two consecutive points
of the set B(e) ∪ L1(e) ∪ {u, v} is called a secondary region. Clearly, |B(e) ∪ L1(e) ∪ {u, v}|�3n + 2. Note that in
each secondary region the sign of di(x) − M(x) is constant, therefore each fi(x) = wi |d(vi, x) − M(x)|, i = 1, . . . , n,
is linear in such a region. However, fi(x) is neither concave nor convex along the edge, and its breakpoints belong to
the set B(e) ∪ L1(e) ∪ {u, v}.

Let L2(e) = {x ∈ e : fi(x) = fj (x), i, j = 1, . . . , n} be the set of intersection points of all pairs of functions fi(x)

and fj (x) over the edge e, and let L(e) be the union of all these above sets, that is,

L(e) = B(e) ∪ L1(e) ∪ L2(e) ∪ {u, v}.

In each subedge [yi−1, yi] delimited by two consecutive points of L(e), each pair of functions fi(x) and fj (x) do
not intersect and the order f(1)(x)� · · · �f(n)(x) does not change. Therefore, the objective function F�(x) is linear
in [yi−1, yi], which implies that its local minimum is reached at an extreme point of this subedge. Consequently, the
breakpoints of F�(x) belong to the set L(e), which implies that L(e) is a FDS over the edge.

To determine the number of points of L(e), we first consider the example shown in Fig. 1, which displays (on the
right) a network with six vertices. Edge lengths are shown on the middle of the edges, and vertex weights are the
numbers in round brackets. Fig. 1 (on the left) shows the graphs of functions f4(x) and f5(x) over the edge [v2, v5].
The dashed lines delimit the five primary regions. We can observe that these two functions intersect at two points
in the first primary region. Therefore, each pair of functions fi(x) and fj (x) can intersect 2n times along the edge
(since there are O(n) primary regions), which implies that |L2(e)|�n3. Consequently, the cardinal of the FDS L(e) is
upper-bounded by O(n3).

The following theorem will allow the reduction of the cardinal of L2(e) from O(n3) to O(n2), and, therefore, the
cardinal of L(e) will also be reduced to O(n2).

Theorem 1. In each edge e = [u, v], each pair of functions fi(x), fj (x) intersect at 16 points at most.

Proof. With each function fi(x) we associate the set Si = {pi, qi, x̄i}, where pi, qi are the (at most) two intersection
points of d(vi, x) with the median M(x), and where x̄i is the bottleneck point associated with vi . Let me be the point
at which the median reaches the maximum (if it exists). These four points give (at most) five subedges on edge e (see
Fig. 2). In each of such subedges, fi(x) = wi |di(x) − M(x)| is a piecewise linear and monotone function (increasing
or decreasing), and it is either convex (if di(x) > M(x)) or concave (if di(x) < M(x)).

Given two functions fi(x) and fj (x), we now consider the (at most) seven points of the set Si ∪ Sj ∪ {me}, (where
Sj = {pj , qj , x̄j } is the set associated with fj ). These seven points provide a partition of the edge e in eight subedges



ARTICLE IN PRESS
M.C. López-de-los-Mozos et al. / Computers & Operations Research ( ) – 5

Fig. 2. Partition of an edge.

Fig. 3. Cases in a subedge.

êk , k =1, . . . , 8. The demonstration of this theorem is based on proving that in each of these subedges, fi(x) and fj (x)

intersect at two points at most. To this end several cases in a given subedge êk are considered:
Case 1: If fi is convex and fj is concave (or vice-versa), then clearly they intersect at two points at most (Fig. 3 (a)).
Case 2: If fi and fj have the same concavity (suppose, for example, both are concave), they can both have the same

monotony or different monotonies.

1. If both have the same monotony and they are, for example, decreasing (as in Fig. 3(b)), then the corresponding
distance functions di(x) and dj (x) must be parallel.
Therefore, in each primary region Rh (totally or partially contained in êk), the slopes of the functions fi(x) and
fj (x) are with and wj th, where th is the common slope of the absolute value functions |di(x) − M(x)| and
|dj (x) − M(x)| in Rh. The subedge êk can contain more than one primary region. In such a case, if fi and fj

intersect in Rh, they cannot intersect in the next primary region Rh+1 since the slope ratio wi/wj of fi(x)/fj (x)

does not vary on the subedge. Consequently, in this case there is (at most) one intersection point.
2. Suppose both functions are concave but with different monotonies (as in Fig. 3 (c), where fi is decreasing and fj

is increasing). In such a case, if they intersect in Rh, then clearly cannot intersect again in Rh+1.

Summarizing, in each subedge êk , both functions intersect at either two points or at one point at most, depending on
if they have different or the same concavity, respectively. Since there are eight subedges in the edge, then both functions
intersect at 16 points at most, which concludes the proof. �

Consequently, the set L2(e) of intersection points of all pairs of functions fi and fj has O(n2) points, since
|L2(e)| = 16(

n
2 ) = 8n(n − 1). Therefore, the cardinal of the FDS L(e) is also O(n2).

From the above results, solving the ordered absolute deviation problem in each edge e takes O(n2 log n) time.
Indeed, first the points in L(e) are computed and sorted in O(n2 log n) time (since the set L1(e) can be obtained and
sorted in O(n log n) time by applying the procedure of Tamir [8], and also the sorted list of points in L2(e) can be
computed in O(n2 log n)). On the other hand, given two consecutive points yi−1, yi in the sorted list L(e), the order
f(1)(x)� · · · �f(n)(x) does not change in the interior of the subedge [yi−1, yi], therefore the objective function at



6 M.C. López-de-los-Mozos et al. / Computers & Operations Research ( ) –

ARTICLE IN PRESS

each point yi ∈ L(e) can be recursively computed from the previous point in constant time. Consequently, the effort
to compute the objective function at all points in L(e) is O(n2).

The final complexity for solving the problem over the entire network is O(mn2 log n). This effort dominates the
preprocessing phase, in which the distance matrix is computed (in max{O(mn log n), O(n3)} time).

When the network is a tree the complexity is O(n3 log n), since although there are no arc bottleneck points on trees,
L2(e) also has O(n2) points in each edge. In the case of a path-tree (or chain), there are O(n2) intersection points of
all pairs fi(x), fj (x) along the chain, and therefore the complexity is reduced to O(n2 log n).

4. Some special cases

In the general model, the components in the �-vector are non-monotone and the objective function is neither concave
nor convex. Therefore, the above algorithm computes the objective function at all points of the FDS. However, when
the “lambdas” are monotone (non-increasing or non-decreasing) the objective function presents interesting convexity
(or concavity) properties which allow, in some cases, to improve the above complexity. These cases have received
specific attention in the literature, and they are known as the convex and the concave case, respectively.

4.1. The convex case

First we consider the case for which the �-parameters are in ascending order, that is, 0��1 ��2 � · · · ��n. By
applying the convexity of each distance function in a tree, Kalcsics et al. [1] showed that the ordered median function∑n

i=1 �iw(i)d(i)(x) is convex in each path of a tree. Therefore, the ordered operatorF�(x)=∑n
i=1 �if(i)(x) is also convex

over a real line in which each fi(x) is convex, i = 1, . . . , n. Since in a primary region each fi(x) = wi |di(x) − M(x)|
(i = 1, . . . , n) is a piecewise linear and convex function (with at most one breakpoint), then F�(x) is piecewise linear
and convex over each primary region of the network. This implies that the local minimum in each edge e is reached at
a point of the FDS, L(e). Consequently, the complexity for the solution of the problem in a network is the same as in
the general case.

4.1.1. The convex case in a tree
For tree networks the above complexity reduces to O(n2 log2 n). To obtain this bound we first observe that, although

the objective function is neither concave nor convex on any path of the tree, it is convex on each edge e = {u, v} and
its breakpoints belong to the set {u, v} ∪ L1(e) ∪ L2(e). We will use this fact to solve the problem in each edge in
O(n log2 n) time.

To this end, in a preprocessing phase we recursively compute the median function at all vertices of the tree (in
O(n) time). Once these values have been computed, the median function in each edge e is given by Ae + Bex, and
these coefficients can be obtained in constant time. Restricting ourselves to the edge e = {u, v}, we then compute and
sort the elements of L1(e) (intersection points of the median with the distance functions) in O(n log n) time. Using
the convexity of the objective function on the edge, we can apply a binary search on the set {u, v} ∪ L1(e) to find a
secondary region (a pair of consecutive points of such a set), containing the solution x∗

e of the restricted problem. Since
it requires O(n log n) time to evaluate the objective function at each point of L1(e), the secondary region [yj−1, yj ] can
be identified in O(n log2 n) time. We remark that in this region each fi(x)=wi |d(vi, x)−(Ae +Bex)|, i=1, . . . , n, is a
linear function of the parameter x, since d(vi, x)=d(vi, u)+x, if d(vi, u)�d(vi, v), and d(vi, x)=d(vi, v)+ luv −x,
otherwise.

To find the optimum x∗
e located in [yj−1, yj ], we use the general parametric procedure of Megiddo [14], with the

modification in Cole [15] (see these references for a detailed discussion of the parametric approach). The master
program that we apply is the sorting of the n linear functions {fi(x), i = 1, . . . , n} (using x as the parameter), and the
test for determining the location of a given point x′ with respect to x∗

e is based on calculating the objective function
F�(x) and determining its one-side derivatives at x′. This can be done in O(n log n) time. We now conclude that with
the above test, the parametric approach in [14,15] will find x∗

e in O(n log2 n) time.
Finally, when the tree is a path this procedure does not improve the complexity of the exhaustive evaluation of the

objective function at all the points of the FDS. Therefore, the complexity of this case is O(n2 log n).
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Fig. 4. Intersection points of the fi -functions in a chain tree.

4.2. The concave case

This case arises when �1 ��2 � · · · ��n �0. Since each fi(x) = wi |di(x) − M(x)|, i = 1, . . . , n is linear (and
therefore concave) in each secondary region, then the objective function is also concave in such a region (see [1]).
This implies that in each secondary region the local minimum is reached at one of its extreme points, therefore the set
B(e) ∪ L1(e) ∪ {u, v} is a FDS for the problem in the edge e = [u, v].

This set (with O(n) points) can be obtained and sorted in O(n log n). However, at each point yj in this set the
objective function cannot be recursively computed in constant time from the previous point yj−1, since the permutation
for which f1(x)� · · · �f(n)(x) is not constant when x varies in the secondary region [yj−1, yj ], even in the case of
a path tree. This is due to the fact that the functions {fi(x), i = 1, . . . , n} can intersect at interior points of such an
interval, as can be appreciated in the following example.

Fig. 4 represents a chain tree whose length is 46, with five vertices located, respectively, at the points: {0, 7, 22, 30, 46},
and whose vertex weights are {3, 15, 7, 30, 9}. For i =1, . . . , 4, the value |vi+1 −vi | is the length of the edge [vi, vi+1]
(in Fig. 4 each edge is delimited by dashed lines). Let L1 be the set of all intersection points of the median with the
distance functions along the chain. Since there are no arc bottleneck points on trees, V ∪ L1 is a FDS for the concave
problem in this path tree.

Fig. 4 displays the five functions fi(x) = wi |di(x) − M(x)|, i = 1, . . . , 5, in the entire chain. We can observe that
the third edge [v3, v4] is also a secondary region since it does not contain points in L1 (which correspond to contact
points of fi-functions with the X-axis), and the figure shows several intersection points of the five functions in such an
interval.

Consequently, to compute the objective function at each point yj in the FDS it is necessary to sort the fi(yj )

(i = 1, . . . , n) values, which requires O(n log n) time. Therefore, in the concave case the complexity of this procedure
for finding the local minimum in each edge of the network is the same as in the general case, O(n2 log n), since
although the cardinal of the FDS is lower, the evaluation of the objective function at each point by means of this
procedure requires more complexity.

However, when the network is a tree or a path-tree the above complexities can be reduced. Indeed, these improvement
are based on applying the techniques described by Tamir [16], which generates all the sorted vectors f�∗(yj ), ∀yj ∈ FDS.

For the sake of simplicity, first we will apply such a procedure to solve the concave case in a path tree.

4.2.1. The concave case in a path tree
Let P(v1, vn) be a path tree with length l in which the n vertices are increasingly located in the line segment [0, l]. As

it has already been seen, the set V ∪L1 is a FDS for the concave case on a path tree, and its cardinal K is upper-bounded
by 3n, since each distance function intersects the median at (at most) two points along the segment. Such a set can
be obtained and sorted in O(n log n) time. Let v1 = y1 �y2 � · · · �yK = vn be the points of the FDS sorted into
ascending order on the real line. The distance between yj and a vertex vi is given by d(vi, yj ) = |vi − yj | = yj − vi (if
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vi �yj ), and d(vi, yj ) = vi − yj (otherwise). To solve the problem it is necessary to obtain all the vectors f�∗(yj ) =
(f(1)(yj ), . . . , f(n)(yj )), with f(1)(yj )�f(2)(yj )� · · · �f(n)(yj ).

To this end, we first recursively compute the values M(yj ) = Mj at all points of the FDS (in O(n) time). On the
other hand, each f�∗(yj ) consists of the largest n elements of the multi-set f̂ (yj ) given by

f̂ (yj ) = {wi(d(vi, yj ) − Mj), i = 1, . . . , n} ∪ {−wi(d(vi, yj ) − Mj), i = 1, . . . , n}.
By applying the procedure of Tamir [16], all these multi-sets f̂ (yj ), j = 1, . . . , K can be (individually) sorted in
O(n2 + Kn) time, and therefore in O(n2) time (since K ∈ O(n)). Consequently, the concave case in a path tree is
solvable in O(n2) time, since this is the total effort to generate all the vectors f�∗(yj ).

4.2.2. The concave case in a tree
The above procedure gives a complexity of O(n3) if the network is a tree T (V, E). This is the worst case complexity,

however, the average complexity of the problem can be improved if we examine |L1| (the cardinal of L1, the set of all
intersection points of the median with the distance functions along the tree). Let m∗ be a median vertex (this is, a vertex
which minimizes the median function), let vh be a leaf (or vertex whose degree is 1), let H be the number of leaves
of the tree, and let us consider the path P(m∗, vh). Since each distance function intersects the median at (at most) two
points along P(m∗, vh), L1 has at most 2n points into this path and, consequently, its cardinal is upper-bounded by
O(Hn) (which is also the bound for the cardinal K of V1 ∪ L1, the FDS of the problem). Therefore, the problem can
be solved in O(Hn2) time. To do this, we first compute and sort (in each path) the points of the FDS, and then we
recursively compute the median value at all these points. In a second phase, we apply the recursive approach by Tamir
[16] based on the centroid decomposition of the tree to generate all the sorted vectors f�∗(yj ), yj ∈ FDS in O(Kn)

time and, therefore, in O(Hn2) time, which is the overall complexity of the problem.
We point out that this complexity is based on the cardinal of L1. Clearly, the complexity of the problem is quadratic

for trees where |L1| is linear. From the aforementioned argument, O(Hn) is an upper bound of |L1|, however, it is not
clear if such a bound is achieved. In fact, it is possible that |L1| can be improved to O(n) points, as it can be appreciated
from the following computational experience.

We have considered a set of randomly generated trees and, in each of them, we have computed the cardinal of
L1. Two sizes n of trees together with a variable number H of leaves have been considered such that each type of
tree is characterized by the input {n, H }. Table 2 (on the left) presents the results for n = 100 vertices and H =
10, 30, 50, 70, 80, 90 leaves, and (on the right) for n = 200 vertices and H = 50, 100, 120, 150, 170, 190 leaves. In all
cases, weights and lengths were uniformly generated in the range [1, 100] and [1, 1000], respectively, by means of a
random routine, and the experiment was programmed on a PC.

For each type {n, H } of tree, 100 instances were generated and, for each instance, the value |L1| was computed.
Table 2 shows, for several p values, the number of instances for which |L1|�pn in each 100 cases tested. For example,
the column corresponding to n = 200 and H = 170 indicates that, in 100 instances generated, |L1|�n = 200 in 0
instances, |L1|�2n=400 in 41 instances, |L1|�3n=600 in 97 instances, and |L1|�4n=800 in all the instances. The
results show that |L1|�4n in all the cases considered, which seems to confirm the linear order of |L1|. From above,
this bound would give a quadratic time for the problem. However, we remark that it is not yet proved whether we can
get O(n) points for |L1| in a tree and (at least as we are aware), this question still remains open.

4.2.3. The concave and unweighted case
A further improvement can be done when all weights are equal to one (or equivalently, when wi =w > 0, i=1, . . . , n),

as it is explained as follows. Consider �1 ��2 � · · · ��n �0 and wi = 1, i = 1, . . . , n. Therefore, fi(x) = |d(vi, x) −
M(x)|, i = 1, . . . , n, where, in order to preserve the scale, M(x) = 1/n

∑n
i=1 d(vi, x).

In a path tree, the cardinal of the FDS is the same as in the weighted case (O(n) points), and also the permutation
arranging the n fi-values changes between two consecutive points of the FDS. Therefore, the complexity of the concave
and unweighted case in a path tree is the same as in the weighted case: O(n2). A similar argument in a tree again gives
the already established complexity of O(hTn2).

We now turn to a general network and consider the concave and unweighted problem in each edge of the network.
Next we propose a procedure to solve this restricted problem in O(n2).

To this end, it is necessary a preprocessing phase in which the distances from each vertex to the remaining vertices
are sorted into ascending order (in O(n2 log n) time), and also for each edge e = [u, v] the points of the FDS B(e) ∪
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Table 2
Number of instances for which |L1|�pn over 100 cases

p H

10 30 50 70 80 90

n = 100
1 0 0 0 0 0 0
2 100 91 71 73 46 59
3 100 100 100 95 100
4 100

p H

50 100 120 150 170 190

n = 200
1 0 0 0 1 0 0
2 75 47 51 70 41 46
3 100 100 100 98 97 99
4 100 100 100

L1(e)∪ {u, v} are computed and sorted (in O(n log n) time). The overall complexity of this phase is O(mn log n). The
following procedure computes the objective function at each point yj of the FDS in O(n) time.

1. First, the median value M(yj ) = Mj is recursively computed at all points yj of the FDS (in O(n) time).
2. Suppose yj belongs to the rth primary region. As it has been pointed out in Section 3, all points in this region

determine a nodal partition {Vr, V r}, such that these sets contain the vertices whose distances to yj are computed
via vertex u or vertex v, respectively. Therefore,

d(vt , yj ) =
{

d(vt , u) + yj = at ∀ vt ∈ Vr,

d(vi, v) + luv − yj = bt ∀ vt ∈ V r .

From the preprocessing phase, the sorted distances {at , ∀vt ∈ Vr} and {bt , ∀vt ∈ V r} can be obtained in O(n). Let
Aj and Bj be the respective sequences.

3. Insert M(yj ) = Mj in both sorted sequences (in O(log n)), and then construct A′
j and B ′

j , which, respectively,
contain the sorted differences of Mj and the elements on its left and its right. This can be done in O(n) time. Finally
merge (in O(n) time) these two last lists. The resultant list is the sorted vector f�∗(yj ) = (f(1)(yj ), . . . , f(n)(yj )).

Consequently, in each edge the effort to compute the objective function for all points in the FDS is O(n2), which gives
a total complexity of O(mn2) over the entire network (note that this effort dominates the complexity of computing the
distance matrix).

4.3. The discrete case

In this problem, the set of potential optimal locations is restricted to set V. In general, in order to solve the problem it
is necessary to evaluate the objective function at each vertex vj , which requires the vector (f1(vj ), . . . , fn(vj )), to be
sorted into ascending order. This can be also done in O(n2) time in a path-tree and in a tree by, respectively, applying
the above procedures in Tamir [16]. For the case of a network, if we suppose the distance matrix is already computed,
the total complexity to solve the problem is O(n2 log n).

5. Conclusions

In this paper, we have extended the concept of ordered weighted operator to define a model which unifies several
equality criteria. Although the resultant model shares the same basic idea as the ordered median model (in the sense
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that both deal with flexible constructions which generalize several location problems), the distance function vector
considered as well as the equality measures incorporated give rise to a specific objective function clearly distinguished
from the ordered median objective, at least in the same way that, in location theory, the center and the median measures
are different from the maximum and the median absolute deviation measures.

For algorithmic purposes we have studied and identified the FDS for the problem in several scenarios, and, for each
of the cases considered, we have proposed polynomial time algorithms as well as discussed the complexity of each of
them.

Further research points out toward a possible improvement on the complexity of some cases (as we have already
seen in the previous section), as well as the extension of the model to multifacility problems. In addition, although the
equality measures have been slightly studied in other metric spaces (as, for example, R2), it would also be interesting
to formulate this model in these spaces.
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