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Given a Banach spack let A C X containing at leask points. In location theory, reliability
analysis, and theoretical computer science, it is useful to minimize the sum of distances flom the
furthest points ofd: this problem has received some attentionXaa finite metric space (a network), **
see, e.g., [Discrete Appl. Math. 109 (2001) 293]; in the ciise E”, k = 2 or 3, andA compact 22
some results have been given in [Math. Notes 59 (1996) 507]; also, in the field of theoretical compiiter
science it has been considered in [T. Tokuyama, Minimax parametric optimization problems in mesti-
dimensional parametric searching, in: Proc. 33rd Annu. ACM Symp. on Theory of Computing, 2081,
pp. 75-84]. Here we study the above problem for a finiteAset X, generalizing—among others 26

things—the results in [Math. Notes 59 (1996) 507]. 27
0 2003 Published by Elsevier Inc. 28
29
30
1. Introduction 31

32

Let X be a Banach space; lét={a1,...,a,} C X, n > 3,a; #a; fori # j, afinite 33
set whose cardinality will be denoted byA#Also, we denote by (A) the diameter ofd. 34
Given x € X, let o(x) = (01(x),...,0,(x)) be an ordering of the elements of35

{L,2,...,n} such thatlx — ag,(»)ll = lIx — acyx)ll = --- = X — do, () II- 36
Given an integek, 1 < k < n, we set: 37
k 38
1
(A, x) =2 llx —ag ol and rx(A) = inf ri(A, x). ¥
k i—1 xeX 40
41
J— 42
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Clearly,r1(A) is the Chebyshev radius df, that we shall also denote by A), while
r, (A) is the minimum average of distances from the pointa pfisually denoted by (A).
(We also use this notation when referring to others’ results.) A pofmathen it exists) such
thatri (A, x) = iy (A) will be called ak-centrumof A.

In particular, a 1-centrum oA is a (Chebyshev) center; aacentrum ofA is a median
(or Fermat point). The terrb-centrum was coined in the early seventi&d to refer to the

o g~ W N P

minimization of the function (A, x) when X is a finite metric space. The reader should
notice that this termi-centrum) differs fromnn-centeras it is used in recent papers. In thes

latter,n-center means center or median fispoint sets or-flat of a given finite set.

9

In this paper, we study the functiomg(A, x) and thek-centra; these problems, aparto

from some results given ir2p], have been also considered in1[15,14 from an algo-

11

rithmic point of view. The interested reader can also find different applications of theze
functions in different areas of applied mathematics as reliability: optimization of systetds

k-out-of= [1]; location analysis13] or in decision theoryZ2], among others.

2. Preliminary results
We start with a simple remark; clearly, given a finite get {a1, ..., a,}, foranyx € X
we have
ri(A, x) 2r2(A,x) = --- 2 (A, x).

From this we have the following remark.

Remark 2.1. For anyA we have
r(A) 2r2(A) = -+ 2 rp—1(A) =2 u(A). 1)
Remark 2.2. We can also give estimates in the “opposite” sense. L&til< j < n.

Given anyA = {aj, ..., a,}, for everyx € X we havekri(A,x) = XX, x — dg, 0l <
Y1 llx — ag; 0l = jrj (A, x); taking infimum onx, we obtain

kri(A) < jrj(A). (2)
A better estimate is the following (whose proof is almost trivial) proposition.

Proposition 2.1. GivenA ={axa, ..., a,}, letn > 2h with h aniintegerl < h <n/2.If i, j
is a pair of indexes such thdis; — a;|| = 5§(A), setAy1 = A\ {a;, a;}; then letiy, j1 be
indexes such that;,, aj, € Ay and|la;; —aj, || = 8§(A1); then defineds = Aq \ {ai;, aj,}.
Proceeding in this way, we obtain

2hran(A) 2 8(A) +8(A1) +8(A2) + -+ 8(Ap-1). ®3)

The next result gives us some structural properties ofth&, x) function. They are
direct consequences of basic properties of the norf @nd thus, its proof is left out.

14
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Proposition 2.2. Let A = {as, ..., a,} and letk be an integedl < k < n; then the function 1
re(A, x) (x € X) is 1-Lipschitz continuous and convex. MoreovelXifs strictly convex, 2
re (A, x) is strictly convex outside lines containing at leagioints ofA. 3
4
GivenA, letfore > 0and 1< k <n =#A, 5
6
sk(A, e) ={x € X: (A, x) <re(A) +¢}. 4 -
According to Proposition 2.2, the seis(A, ¢) are always closed and convex. Also,z

in a dual space, the functions— |x — a|| are weak-lower semicontinuous, so the sets
sk (A, g) are bounded, t+closed, and \-compact. Therefore, the (possibly empty) set

[y

0
11

sk(A) =) sk(A. ) (5) ®

e>0 13

14
is always closed, bounded, and convex, and its elements aredbstra ofA, i.e., the

pointsx such that (A, x) = ry (A).
By standard Wi-compactness arguments we obtain the following proposition.

15
16
17

18
Proposition 2.3. If X is a dual spacdin particular, if X is reflexive, thens;(A) # ¢ for 4

any finite setd and anyk betweerl and#A. 20
21

Remark 2.3. The above result is true, for example Xif=[,. Also, the same result holds ,,
if X is norm-one complemented Xi**. The proof in the case of existence of norm-oneg;
projection is simple (and obtains following the line of proofs i19]). General results of 4
this type have been given in . 25
26

Next result shows that also other spaces have the same properties. 27

28

Theorem 2.1. If X = ¢, thenforeverd ={as, ..., a,} andl <k <nwehavey(A)#£@. 29
30

Proof. We may consider as a subset df°. Since/ is a dual space, there exists= 3!
(D, x@, . xM_ ) €l such thaty (A, x) = inf{ri(A, y): y €1%}. SinceAisincy %
there exists an indexsuch thataf’)| < lx —ag ol forall j > handi =1, ...,n. Then,

xo:(x(l),...,x(h),o,...,O,...)Ecoand 3

35

llxo — a; || < sup{sup{|a”’|: j > R}, sup{|x —a'"|: j <h}} < lx = agnll, 3

37

fori=1,...,n. Hence (A, x0) < |x — dg )l <rr(A,x) =ri(A) and sorg (A, x0) = 5
re(A). O 39

40
Remark 2.4. There are spaces where for some finite sets, centers and/or medians da;not
always exist; one of these spaces is a hyperplanrg obnsidered in12]. (This does not 4,
contradict Theorem 2.1.) Examples of four-point sets with a center but without mediaryszor
with a median but without a center are indicatedig,p(J. Examples of three-point sets 44
without k-centra for any are shown at the end of this paper. 45
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Remark 2.5.Let A C F, A containing at least points, F finite. Thenr (A, x) <rg(F,x) 1
forall x € X, and sori(A) < rp(F) (L <k <#A). Also, if rp(A) = ry(F), thensg(A) C 2
sk (F). 3

4

Remark 2.6. If m; € s;(A) andc is a center of’, then we have the almost trivial estimates
6

lmy —cll <d(A, myg) +71(A), (6) ;
whered(A, my) = infyca ||x — my| denotes the distance of; from the setA. In fact, if s
lmi — ail| =d(A, my), then we have 9

10

lmg —cll < llmg — a;ll + lla;i — cl| <d(A, mp) +r(A). u

Remark 2.7. It is clear thatx € s,(A) and ||x — g;|| = constant =1, 2, ..., n, implies
x € s1(A). (See, for example 3] for results of this type.) More generally, &, € si(A)
and thek farthest points taz;, in A are at the same distaneg from ¢, then we have
r(A) <r(A,cy) =rk(A);sofori =1,... k, ri(A) =ri(A), and thercy € s (A).

3. General resultson k-centra
19
We start with a general result concerningentra, which generalizes results contained’

in [23], well-known fork = #A. 2
22

23
24

Theorem 3.1. Let X be a strictly convex space amtdC X; if k is odd, thens; (A) (1 <
k < n) contains at most one poinif & is even andy (A) containsx’ andx”, x” # x”, then

there exis{(at leas) k points ofA on the line passing througtl andx”. %

26
27
28
29

Proof. GivenA ={az,...,a,} andk, 1 <k <n,if x’, x” belong tos; (A), then according
to the convexity ofs; (A4) alsox = (x’ +x”)/2 belongs tas; (A). Letay, ..., a; be thek
points of A furthest away toc’ andx”, so thatZﬁ-‘=l lx — a;|l = krr(A). Then, we have

30

k k

x4+ x" Ix" —aill  lx" —al 31
kre(A) =" > —ai <Z< st 2
i=1 i=1 33
kr(A, x))  kre(A, x”
< T ( x)+ 7 ( x)zkrk(A), 34
2 2 35

so all these inequalities are equalities. This means two factg(1)., a; are also the& 36
points in A furthest tox; and (2)x" — a; = A; (x” — a;) for some non-negative;, i =1, 37
..., k; thereforex’, x”, a1, ..., ax are all collinear. This is impossible férodd because in 38
this case the unique median &f = {a1, ..., ax} is the only point ofd’ leaving(k — 1)/2 39
points ofay, ..., a; to each side (“central point”); for even, all points letting /2 on each 40
side are medians of’. O 41

Remark 3.1. The proof of the above theorem shows thaXifis a strictly convex space 43
andA C X, if #A is odd, or # is even and does not contdircollinear points, theg, (A) 44
(1 < k < n) contains at most one point. (The last result follows also from Proposition 2.%)
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Whenk = 2 we have no uniqueness result. (See Remark 3.3 below.)
Theorem 3.2. For any A C X we haver(A) =rz(A).

Proof. Assume by contradiction, thab(A) < r(A) for some A = {as, ..., a,}. Take
x € X such that2(A, x) =r(A) — o for someo > 0; we haver(A,x) > r(A) (by de-
finition) so there exists; € A such that|x — a;|| > r(A).

Foranya; € A, j #i, we have

© 0 N o g b~ W N P

lx —aill + [lx —ajll

2

[y
o

grz(A,x)zr(A)—cr,

[
[

SO

= e
w N

lx —ajll <2r(A) —20 — |lx —a;i|| <2r(A) — 20 —r(A) =r(A) — 2.

bR
a

If xo =xa; + (1—M)x,0< A <1, thenwe havéix; — x|| =Alla; — x|;

=
N o

1 1
E(”ai —xl+ lx —ajl) < E(”ai = xll = llx =2l + lloes — x Il + [lx — a;l)

[
©

<r(A)—o forall j#i.

N
o ©

Choosex € (0, 1) so that||x; — a;|| =r(A) — o; we obtain, for allj #i

N
[

lxx —ajll <2(r(A) — o) — llai — xall = 2r(A) — 20 — (r(A) — o) =r(A) —o;

NN
w N

thereforer (A, x,) < r(A) — o, a contradiction. O

N
IS

25
Remark 3.2. In general, in any space, we hamgA) < r2(A) for someA: for example, ¢

also in the Euclidean plang?, there are three-point sets where the center and the median
do not coincide. 28
29
We have proved (Theorem 3.2) thatA) = r2(A) always. On the contrary, the equality 54
re(A) = re+1(A) for k > 2 does not happen frequently and it has some strong implications.
We shall discuss now this fact, giving a converse of Remark 2.7. 32
33
Theorem 3.3. Let ry(A) = rr+1(A) for somek > 1 and A ={as1,...,a,}; n > k. Then 34
sk (A) C sk+1(A). (In particular, by Theoren8.2, if ¢ is a center ofA, thenc € s2(A).) 35
Moreover, ifc, € sx(A), then(at leas) thek + 1 points ofA which are farthest te;, have 36
the same distance. (A) from it; in addition, fori = 1,...,k, r;i(A) =r(A); ck € 5i(A); 37
si(A) C si+1(A). (Note that ifX is strictly convex, thesg1(A) is a singleton fork > 2 38
since thek + 1 points farthest tay are not collineai) 39
40
Proof. Let r(A) = ri+1(A); cx € sg(A). Order the elements of so that|cy — a1l > 4«

llexk —azll = -+ = llex — anl; we have 42
1 k k+1 3
44
re(A) = — cr—ail|l =2 —— cr—ail|l=r A,cr) > A).
K(4) k;” ! ,||/k+1Z;|| k= aill = resa (A, ) > rea(A) .
1= 1=
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Therefore, our assumption implies thate s;11(A); moreover, 1
1 (& 1 .
3
—_— ¢k — ai||l + |lck — aksall | = — Ck — a;
k+1<Z” i+l +||) an il .
i=1 i=1
_ 5
implies 6
k 7
llck — ap+all 1 1 Tk
— =\ ZIICk—aiH:—, 8
k+1 k k+1)4 ] k+1 .
1=
SO|lck — ak+1]l =1k (A); but then, since 10
11
k
ek — aietll < min flex —aill < =3 llex — asll = re(A) e
k — Ak+1 s, k — ai \k'—l r — aill = re(A), 1
= ] . 14
ek —a1ll = -+ = |lck — ak |l = llck — ak+1||- By recalling Remark 2.7, we obtain the con-5
clusion. O 16

17
Remark 3.3. In general, also iX is the Euclidean plane, a 2-centrumAfs not a center: 4

for example, ifA = {(0, 1); (0, —1); (¢, 0)}, 0< e < 1, then the unique center df is the 4
origin, while all points(0, «); |a| < (1 — 2)/2, are 2-centra. 20
21

Remark 3.4. If A has at most onék + 1)-centrum andri(A) = rr+1(A), thenx €,
sk+1(A) = sk (A) € {x}. Without the assumption of uniqueness Qq1(A) this is not ,,
true, as the following example shows. L&t be the plane with the max norm, and,,
A={(—150: (3. D; (—15. —1}; we havera(A) =r3(A) = 1; P = (&5, 0) belongs to
s2(A) C s3(A); the origin belongs te3(A) but not tosa(A). 26
27

Our next result, whose proof follows from the definitionrpfA), extends $, Proposi- g
tion 2.7. 29

30

Theorem 3.4. Letmy € sk (A), m; € s;(A), maxk, j} <n=#A. Then we have 2

lmx —mj|l < re(A) +rj(A). () =

33

In particular, if j =k and{my, m}} C sg(A), then o
[mi —my || < 2rk(A). (8) 3

36
Remark 3.5. The estimates (7) and (8) are sharp. (Se&kample 2.R) But if we assume 37
that X is strictly convex, then we have better estimates. In fact, according to Remark 31,
in this case (fok ## 2) we have uniqueness of solutions in many cases. But $6rj we 39
cannot give better inequalities (seke E4) apart from the fact that strict inequality holds 40
in both (7) and (8). 4
Now assume that we have equality in (7). Looking at the proof of Theorem 344,
we obtain subsequently; for thg farthest points tonj, a;, i =1,2,..., j, we have 43
lmj — a;ll + lla; — mgll = |lm; — mg|; the j farthest points tony, all have distance 44
ri(A, my) from it; therefore, ifj > k thenri(A) = r;(A) and bothm; andm; belong 45
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to 5;(A). If j =k, then thek farthest points ton; [m,] are on the sphere of radiug 1
centered ain ; [respectively ain]; moreover the distance between the centers of the two
balls is twice the radius;.

In the following we consider a localization property of thecentra with respect to
co(A), the convex hull of the set.

© 0 N o g b~ W

Theorem 3.5. If X is a two-dimensional space, or ¥ is a Hilbert space, then for any
and anyk (1 < k < #A), it holdssi (A) Nco(A) # @. Moreover, ifX is a Hilbert space, or

if dim(X) =2 and X is strictly convex, thes, (4) C co(A). 10

11

Proof. The assumptions imply thaj (A) # @. If dim(X) = 2 then (seeq1]) for every 12

x € X there existg™* € co(A) suchthafjx* —a|| < ||x —a| foranya € A;i.e.,||x* —a;|| <
lx —ail| fori=1,...,n =#A, sory(A, x*) <rr(A, x): if we takex € sg(A), this shows
that there also exists* € s (A) N co(A).

Now let X be Hilbert or if dimX) = 2, X strictly convex; ifx ¢ co(A), let x* be the
best approximation ta from co(A): we have|x* — g;|| < ||lx —a;|| fori =1,...,n, SO
re(A, x*) < ri (A, x), thus an element of, (A) must belongto cd). O

13
14
15
16
17
18
19
20

Corollary 3.1. Let X be Hilbert or if dim(X) = 2, X strictly convexgivenA C X with ”

no subset ok points being collinear, ifn; € sx(A) andc € s1(A), then|my — c|| =r(A)
implies thatmy € A.

22
23
24
Proof. Follow the line of the proof of4, Proposition 5.l O -

26
Another interesting property @fcentra of a sef is that they allow to characterize inner ,

product spaces in terms of their intersection with the convex hull.a€haracterizations ,g
of this type are known from the sixties. (S€29).) The same property concerning medians,
was considered in the nineties by Duri&},[where partial answers were given. It has beeg,
proved only recently for medians of three-point sets, this result can be fouif in [ a1
32

Theorem 3.6. If dim(X) > 3 and the norm of is not hilbertian, then there exists a three-3;
point setA such thatsz(A) Nco(A) = @. 34
35

By using such theorem, it is not difficult to obtain the following proposition. 36

37

Proposition 3.1. If dim(X) > 3 and the norm of{ is not hilbertian, then for every >3 38

there exists an-point setF’ such thatsz(F) Nco(F) = @. 39
40
Proof. We prove the result for = 4, the extension ta > 4 being similar. 41
Under the assumptions done, according to Proposition 2,2cf) r3(4, x) is always 42
attained; now takel = {a1, a2, a3} as given by Theorem 3.6: for somae> 0 we have 43
44
inf  r3(A, x) =r3(A) + 4o > r3(A). 45

x€CO(A)
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Takex € X suchthat3(A, x) < r3(A) +o;itis notarestriction to assume that — as|| <
min{||x —az1ll, |Ix — az2||}. Now takeas ¢ A such thatjaz — a4|| < o and letF = A U {aa}.
We havers(F, x) < r3(A,x) + o <r3(A) + 20. Now takey € co(F): there isx € co(A)
such that|x — y|| < o; thereforgrz(F, y) — r3(F,x)| <o, s0r3(F,y) >r3(F,x) —oc >
r3(A,x) — o >r3(A) + 3o; thus

inf  r3(F,y) >r3(A)+30 >r3(F,x)+o0 >r3(F) + o,
YECO(F)

© 0 N o g b~ W N P

this proves the thesis.O

[y
o

Given a sefd with n points andk < n, we can divide the spacginto (Z) regionsk;, so
that whenx is taken in one of these regions, the sanpoints ofA are the farthest te; of
course, inside each of these regions therecarifferent possible orderingsy, . . ., o. It
is possible to hav&®; N R; # @ (the values of th&th distance can be equal to thie+ 1)th
one); also, ifR; is determined byy, ..., a; thena; ¢ R; fori =1,...,k. Also in general
the medians ofi1, .. ., a (if they exist) do not belong t®;. Note that these regions are
not in general convex: for example Xf if the plane with the max norm, given = (1,0) .
andaz = (-1, 0), the sef|x —aa|l > [|lx — az|| is not convex. But the same is true, for some,
pair, in any space with a non-hilbertian norm.

If X is a Hilbert space, then the regioRg are convex: in fact, consider, e.g., the reglor}0
R determined by the pointg, . .., ax, k < #A:then

e
a b w N P

21
k 22

R=(reX: |lx—anl <lx—ail forh=k+1.....n}. 23
i=1

24

R is the intersection of (n — k)-convex regions, therefore it is convex. A detailed analysi®
of these sets can be found ind. (Not only for Hilbert spaces.) Also in the particular case®®
of two-dimensional spaces some geometrical properties as well as the complexity anaﬁ?sls
are given in [L4].

Minimizing r¢ (A) is equivalent to solvé;) constrained Fermat problems; then looking®
for the minimum of the values obtained: for eakh, determined by given points, say *
{a1, ..., ax}, look for a median of these points, restricted to the “feasible region’Al-
gorithms for the solution of this kind of problems in two-dimensional spaces can be fodhd
in [14]; also, in networks (finite metric spaces) algorithms are giverith1q. 3

Given X, consider foik € N the parameter 3
35

31

§(A) 37

For k = 1, the numbet/1(X) = J(X) is called the finite Jung constant and has beef?
studied intensively; in general,< J(X) < 2, while the value of/ (X) gives information 3
on the structure oX. As shown partially in §] and later completely in1[g], we always “°
have

Jk(X)zsup{ "A) . 4 X finite, max2, k}<#A} @

41
42

J(X):sup{ 5"(5‘)) A C X finite, 2<n_#A} ;

Sinceun(A) < rr(A) < r(A) always (see (1)), we obtain the following result. 45
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Theorem 3.7. In every space, for every positive integet, we have
Ji(X) = J(X). (10)

Our last result in this section was already known for medians @@éi{it it can be
extended to generalcentra.

Proposition 3.2. Let my € s;(A) for some setA. Assume thatd; C A, #A; = k and
(A=Y gea, Imi —all. I lmg — 33,4, all = r1(A) thenX is not strictly convex.

© 0 N o g b~ W N P

[y
o

Proof. By the triangular inequality we have

m—7 Y a

acAg

Thus,my is also a center afl; andry (A) = r(Ag). Now, we apply first claim in4, Propo-
sition 3.7 to the setA, to get the result. O

B
[N

1
<7 2 Imic—all=re(A).

acAg

ri(A) = '

e e
® N o 0O &~ W

4, Concluding remarks
19
To conclude our analysis df-centra, we study several properties of these points ret
garding equilateral sets. Recall thatis calledequilateralif ||a; — a;|| = constant for 2!
i#j,1<i,j<n=*#A. Also, recall that the centroid of a finite sdtis given by the 22
point % > .caa. For equilateral sets there are several nice properties connecting centérs,
medians and centroids (sed)] Some of them can be extended furthektoentra. 24
25
Proposition 4.1. Let A be an equilateral set in an inner product spakeand letk > 3; 26
then the centroid ofA belongs tas; (A). 27
28
Proof. Assume that O is the center df, then (a;, a;) = constant fori # j, 1<i,j < 20

n=#A. Lety = Y"_ A;a;; then the functionf (A1, ... A») = Yi_y Iy — ;| is sym- 20

metric. 31

In Hilbert spaces it always exisis; € sx(A) N co(A). Moreover, under the hypothesis 32
of the propositiors; (A) is a singleton, them;, is the unique minimizer off andi, = 33
A2 =---=A, = 1/n; thusmy is the centroid ofA. O 34

35

Remark 4.1. Let A = {ay, ..., a,} be an equilateral set witfu; —a;|| =d, Vi # j, then 36
it is easy to see that 37

d 38
re(A,x) > > foranyx € X. 39

Indeed, for any € X, kri (A, x) is attained as a sum of distances frorto k points ofA. ©

Let us denote byl (x) the subset oA containing the points that defing(A, x). Ax(x) 42
itself is an equilateral set witha; — a;|| =d, Vi # j, a;, a; € Ax(x); then 43
kd m
2’ 45

41

kre(A, )= Y lla—x| >

acAi(x)
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where inequality comes fron2[ Lemma 4.] applied to the sefi; (x). (Also if k is even,
it follows from (3).)

r(A) =d/2 and ry(A) = d/2 are equivalent, for ank = 2,3, ...,n. In these cases

1
2
3
Proposition 4.2. For any equilateral set in the hypothesis of Remdrk the conditions 4
5
k-centraforanyk =1,2,...,n =#A coincide. 6

7

Proof. Runs parallel to %, Proposition 5.Jlexcept for the details of considering partials
sums ofk-largest distances. O 9
10
From this last result we can present an example of set withaentra for any. [2, Ex- 11
ample 5.2is an equilateral three-point set without median. Now, we apply Proposition 422
to conclude that the set in that example cannot lkagentra for any = 1, 2, 3. 13
14
15
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