ARTCLE IN PRESS

Clearly, $r_{1}(A)$ is the Chebyshev radius of A, that we shall also denote by $r(A)$, while $r_{n}(A)$ is the minimum average of distances from the points of A, usually denoted by $\mu(A)$. (We also use this notation when referring to others' results.) A point x (when it exists) such that $r_{k}(A, x)=r_{k}(A)$ will be called a k-centrum of A.

In particular, a 1 -centrum of A is a (Chebyshev) center; an n-centrum of A is a median (or Fermat point). The term k-centrum was coined in the early seventies [15] to refer to the minimization of the function $r_{k}(A, x)$ when X is a finite metric space. The reader should notice that this term (k-centrum) differs from n-center as it is used in recent papers. In the latter, n-center means center or median for n-point sets or n-flat of a given finite set.

In this paper, we study the functions $r_{k}(A, x)$ and the k-centra; these problems, apart from some results given in [23], have been also considered in [11,15,16] from an algorithmic point of view. The interested reader can also find different applications of these functions in different areas of applied mathematics as reliability: optimization of systems k-out-of- n [1]; location analysis [13] or in decision theory [22], among others.

2. Preliminary results

We start with a simple remark; clearly, given a finite set $A=\left\{a_{1}, \ldots, a_{n}\right\}$, for any $x \in X$ we have

$$
r_{1}(A, x) \geqslant r_{2}(A, x) \geqslant \cdots \geqslant r_{n}(A, x)
$$

From this we have the following remark.
Remark 2.1. For any A we have

$$
\begin{equation*}
r(A) \geqslant r_{2}(A) \geqslant \cdots \geqslant r_{n-1}(A) \geqslant \mu(A) . \tag{1}
\end{equation*}
$$

Remark 2.2. We can also give estimates in the "opposite" sense. Let $1 \leqslant k \leqslant j \leqslant n$. Given any $A=\left\{a_{1}, \ldots, a_{n}\right\}$, for every $x \in X$ we have $k r_{k}(A, x)=\sum_{i=1}^{k}\left\|x-a_{\sigma_{i}(x)}\right\| \leqslant$ $\sum_{i=1}^{j}\left\|x-a_{\sigma_{i}(x)}\right\|=j r_{j}(A, x)$; taking infimum on x, we obtain

$$
\begin{equation*}
k r_{k}(A) \leqslant j r_{j}(A) \tag{2}
\end{equation*}
$$

A better estimate is the following (whose proof is almost trivial) proposition.
Proposition 2.1. Given $A=\left\{a_{1}, \ldots, a_{n}\right\}$, let $n \geqslant 2 h$ with h an integer $1 \leqslant h \leqslant n / 2$. If i, j is a pair of indexes such that $\left\|a_{i}-a_{j}\right\|=\delta(A)$, set $A_{1}=A \backslash\left\{a_{i}, a_{j}\right\}$; then let i_{1}, j_{1} be indexes such that $a_{i_{1}}, a_{j_{1}} \in A_{1}$ and $\left\|a_{i_{1}}-a_{j_{1}}\right\|=\delta\left(A_{1}\right)$; then define $A_{2}=A_{1} \backslash\left\{a_{i_{1}}, a_{j_{1}}\right\}$. Proceeding in this way, we obtain

$$
\begin{equation*}
2 h r_{2 h}(A) \geqslant \delta(A)+\delta\left(A_{1}\right)+\delta\left(A_{2}\right)+\cdots+\delta\left(A_{h-1}\right) . \tag{3}
\end{equation*}
$$

The next result gives us some structural properties of the $r_{k}(A, x)$ function. They are direct consequences of basic properties of the norm in X and thus, its proof is left out.

1
2 3 4 5 6 7 8 9

ARTCLE IN PRESS

 ELSGMLTM(YJMAA):m1 2003/11/25 Prn:27/11/2003; 13:15

Proposition 2.2. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let k be an integer $1 \leqslant k \leqslant n$; then the function $r_{k}(A, x)(x \in X)$ is 1-Lipschitz continuous and convex. Moreover, if X is strictly convex, $r_{k}(A, x)$ is strictly convex outside lines containing at least k points of A.

Given A, let for $\varepsilon \geqslant 0$ and $1 \leqslant k \leqslant n=\# A$,

$$
\begin{equation*}
s_{k}(A, \varepsilon)=\left\{x \in X: r_{k}(A, x) \leqslant r_{k}(A)+\varepsilon\right\} . \tag{4}
\end{equation*}
$$

According to Proposition 2.2, the sets $s_{k}(A, \varepsilon)$ are always closed and convex. Also, in a dual space, the functions $x \rightarrow\|x-a\|$ are weak*-lower semicontinuous, so the sets $s_{k}(A, \varepsilon)$ are bounded, w^{*}-closed, and w^{*}-compact. Therefore, the (possibly empty) set

$$
\begin{equation*}
s_{k}(A)=\bigcap_{\varepsilon>0} s_{k}(A, \varepsilon) \tag{5}
\end{equation*}
$$

is always closed, bounded, and convex, and its elements are the k-centra of A, i.e., the points x such that $r_{k}(A, x)=r_{k}(A)$.

By standard w^{*}-compactness arguments we obtain the following proposition.
Proposition 2.3. If X is a dual space (in particular, if X is reflexive), then $s_{k}(A) \neq \emptyset$ for any finite set A and any k between 1 and $\# A$.

Remark 2.3. The above result is true, for example, if $X=l_{\infty}$. Also, the same result holds if X is norm-one complemented in $X^{* *}$. The proof in the case of existence of norm-one projection is simple (and obtains following the line of proofs in [19]). General results of this type have been given in [19].

Next result shows that also other spaces have the same properties.
Theorem 2.1. If $X=c_{0}$, then for every $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $1 \leqslant k \leqslant n$ we have $s_{k}(A) \neq \emptyset$.
Proof. We may consider A as a subset of l^{∞}. Since l^{∞} is a dual space, there exists $x=$ $\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}, \ldots\right) \in l^{\infty}$ such that $r_{k}(A, x)=\inf \left\{r_{k}(A, y): y \in l^{\infty}\right\}$. Since A is in c_{0} there exists an index h such that $\left|a_{i}^{(j)}\right| \leqslant\left\|x-a_{\sigma_{k}(x)}\right\|$, for all $j>h$ and $i=1, \ldots, n$. Then, $x_{0}=\left(x^{(1)}, \ldots, x^{(h)}, 0, \ldots, 0, \ldots\right) \in c_{0}$ and
$\left\|x_{0}-a_{i}\right\| \leqslant \sup \left\{\sup \left\{\left|a_{i}^{(j)}\right|: j>h\right\}, \sup \left\{\left|x^{(j)}-a_{i}^{(j)}\right|: j \leqslant h\right\}\right\} \leqslant\left\|x-a_{\sigma_{k}(x)}\right\|$,
for $i=1, \ldots, n$. Hence, $r_{k}\left(A, x_{0}\right) \leqslant\left\|x-a_{\sigma_{k}(x)}\right\| \leqslant r_{k}(A, x)=r_{k}(A)$ and so $r_{k}\left(A, x_{0}\right)=$ $r_{k}(A)$.

Remark 2.4. There are spaces where for some finite sets, centers and/or medians do not always exist; one of these spaces is a hyperplane of c_{0} considered in [12]. (This does not contradict Theorem 2.1.) Examples of four-point sets with a center but without median, or with a median but without a center are indicated in [12,20]. Examples of three-point sets without k-centra for any k are shown at the end of this paper.

ARTCLE IN PRESS

Remark 2.5. Let $A \subset F, A$ containing at least k points, F finite. Then $r_{k}(A, x) \leqslant r_{k}(F, x) \quad 1$
for all $x \in X$, and so $r_{k}(A) \leqslant r_{k}(F)(1 \leqslant k \leqslant \# A)$. Also, if $r_{k}(A)=r_{k}(F)$, then $s_{k}(A) \subset \quad 2$ $s_{k}(F)$.

Remark 2.6. If $m_{k} \in s_{k}(A)$ and c is a center of F, then we have the almost trivial estimate

$$
\begin{equation*}
\left\|m_{k}-c\right\| \leqslant d\left(A, m_{k}\right)+r(A) \tag{6}
\end{equation*}
$$

where $d\left(A, m_{k}\right)=\inf _{x \in A}\left\|x-m_{k}\right\|$ denotes the distance of m_{k} from the set A. In fact, if $\left\|m_{k}-a_{i}\right\|=d\left(A, m_{k}\right)$, then we have
$\left\|m_{k}-c\right\| \leqslant\left\|m_{k}-a_{i}\right\|+\left\|a_{i}-c\right\| \leqslant d\left(A, m_{k}\right)+r(A)$.
Remark 2.7. It is clear that $x \in s_{n}(A)$ and $\left\|x-a_{i}\right\|=$ constant $i=1,2, \ldots, n$, implies $x \in s_{1}(A)$. (See, for example, [3] for results of this type.) More generally, if $c_{k} \in s_{k}(A)$ and the k farthest points to c_{k} in A are at the same distance r_{k} from c_{k}, then we have $r(A) \leqslant r\left(A, c_{k}\right)=r_{k}(A)$; so for $i=1, \ldots, k, r_{i}(A)=r_{k}(A)$, and then $c_{k} \in s_{i}(A)$.

3. General results on \boldsymbol{k}-centra

We start with a general result concerning k-centra, which generalizes results contained in [23], well-known for $k=\# A$.

Theorem 3.1. Let X be a strictly convex space and $A \subset X$; if k is odd, then $s_{k}(A)(1 \leqslant$ $k \leqslant n)$ contains at most one point; if k is even and $s_{k}(A)$ contains x^{\prime} and $x^{\prime \prime}, x^{\prime} \neq x^{\prime \prime}$, then there exist (at least) k points of A on the line passing through x^{\prime} and $x^{\prime \prime}$.

Proof. Given $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $k, 1 \leqslant k \leqslant n$, if $x^{\prime}, x^{\prime \prime}$ belong to $s_{k}(A)$, then according to the convexity of $s_{k}(A)$ also $x=\left(x^{\prime}+x^{\prime \prime}\right) / 2$ belongs to $s_{k}(A)$. Let a_{1}, \ldots, a_{k} be the k points of A furthest away to x^{\prime} and $x^{\prime \prime}$, so that $\sum_{i=1}^{k}\left\|x-a_{i}\right\|=k r_{k}(A)$. Then, we have

$$
\begin{aligned}
k r_{k}(A) & =\sum_{i=1}^{k}\left\|\frac{x^{\prime}+x^{\prime \prime}}{2}-a_{i}\right\| \leqslant \sum_{i=1}^{k}\left(\frac{\left\|x^{\prime}-a_{i}\right\|}{2}+\frac{\left\|x^{\prime \prime}-a_{i}\right\|}{2}\right) \\
& \leqslant \frac{k r_{k}\left(A, x^{\prime}\right)}{2}+\frac{k r_{k}\left(A, x^{\prime \prime}\right)}{2}=k r_{k}(A),
\end{aligned}
$$

Remark 3.1. The proof of the above theorem shows that if X is a strictly convex space and $A \subset X$, if $\# A$ is odd, or \#A is even and does not contain k collinear points, then $s_{k}(A)$ $(1 \leqslant k \leqslant n)$ contains at most one point. (The last result follows also from Proposition 2.2.)

3
4 5 6 7 8 9

\square
\square
\square

 7
 - . ? , ,

[^0]

 .
$$
39
$$
40

ARTCLE IN PRESS

When $k=2$ we have no uniqueness result. (See Remark 3.3 below.)
Theorem 3.2. For any $A \subset X$ we have $r(A)=r_{2}(A)$.
Proof. Assume by contradiction, that $r_{2}(A)<r(A)$ for some $A=\left\{a_{1}, \ldots, a_{n}\right\}$. Take $x \in X$ such that $r_{2}(A, x)=r(A)-\sigma$ for some $\sigma>0$; we have $r(A, x) \geqslant r(A)$ (by definition) so there exists $a_{i} \in A$ such that $\left\|x-a_{i}\right\| \geqslant r(A)$.

For any $a_{j} \in A, j \neq i$, we have

$$
\frac{\left\|x-a_{i}\right\|+\left\|x-a_{j}\right\|}{2} \leqslant r_{2}(A, x)=r(A)-\sigma
$$

SO

$$
\left\|x-a_{j}\right\| \leqslant 2 r(A)-2 \sigma-\left\|x-a_{i}\right\| \leqslant 2 r(A)-2 \sigma-r(A)=r(A)-2 \sigma
$$

If $x_{\lambda}=\lambda a_{i}+(1-\lambda) x, 0 \leqslant \lambda \leqslant 1$, then we have $\left\|x_{\lambda}-x\right\|=\lambda\left\|a_{i}-x\right\|$;

$$
\begin{aligned}
\frac{1}{2}\left(\left\|a_{i}-x_{\lambda}\right\|+\left\|x_{\lambda}-a_{j}\right\|\right) & \leqslant \frac{1}{2}\left(\left\|a_{i}-x\right\|-\left\|x-x_{\lambda}\right\|+\left\|x_{\lambda}-x\right\|+\left\|x-a_{j}\right\|\right) \\
& \leqslant r(A)-\sigma \text { for all } j \neq i
\end{aligned}
$$

Choose $\lambda \in(0,1)$ so that $\left\|x_{\lambda}-a_{i}\right\|=r(A)-\sigma$; we obtain, for all $j \neq i$

$$
\left\|x_{\lambda}-a_{j}\right\| \leqslant 2(r(A)-\sigma)-\left\|a_{i}-x_{\lambda}\right\|=2 r(A)-2 \sigma-(r(A)-\sigma)=r(A)-\sigma
$$

therefore $r\left(A, x_{\lambda}\right) \leqslant r(A)-\sigma$, a contradiction.
Remark 3.2. In general, in any space, we have $r_{3}(A)<r_{2}(A)$ for some A : for example, also in the Euclidean plane E^{2}, there are three-point sets where the center and the median do not coincide.

We have proved (Theorem 3.2) that $r_{1}(A)=r_{2}(A)$ always. On the contrary, the equality $r_{k}(A)=r_{k+1}(A)$ for $k \geqslant 2$ does not happen frequently and it has some strong implications. We shall discuss now this fact, giving a converse of Remark 2.7.

Theorem 3.3. Let $r_{k}(A)=r_{k+1}(A)$ for some $k \geqslant 1$ and $A=\left\{a_{1}, \ldots, a_{n}\right\} ; n>k$. Then $s_{k}(A) \subset s_{k+1}(A)$. (In particular, by Theorem 3.2, if c is a center of A, then $c \in s_{2}(A)$.) Moreover, if $c_{k} \in s_{k}(A)$, then (at least) the $k+1$ points of A which are farthest to c_{k} have the same distance $r_{k}(A)$ from it; in addition, for $i=1, \ldots, k, r_{i}(A)=r_{k}(A) ; c_{k} \in s_{i}(A)$; $s_{i}(A) \subset s_{i+1}(A)$. (Note that if X is strictly convex, then $s_{k+1}(A)$ is a singleton for $k \geqslant 2$ since the $k+1$ points farthest to c_{k} are not collinear.)

Proof. Let $r_{k}(A)=r_{k+1}(A) ; c_{k} \in s_{k}(A)$. Order the elements of A so that $\left\|c_{k}-a_{1}\right\| \geqslant$ $\left\|c_{k}-a_{2}\right\| \geqslant \cdots \geqslant\left\|c_{k}-a_{n}\right\|$; we have

$$
r_{k}(A)=\frac{1}{k} \sum_{i=1}^{k}\left\|c_{k}-a_{i}\right\| \geqslant \frac{1}{k+1} \sum_{i=1}^{k+1}\left\|c_{k}-a_{i}\right\|=r_{k+1}\left(A, c_{k}\right) \geqslant r_{k+1}(A) .
$$

1
2
3
4
\qquad
\square 3 5
 7
8 9 10 11 12 13 14 15 16 17

ARTCLE IN PRESS

Therefore, our assumption implies that $c_{k} \in s_{k+1}(A)$; moreover,

$$
\frac{1}{k+1}\left(\sum_{i=1}^{k}\left\|c_{k}-a_{i}\right\|+\left\|c_{k}-a_{k+1}\right\|\right)=\frac{1}{k} \sum_{i=1}^{k}\left\|c_{k}-a_{i}\right\|
$$

implies

$$
\frac{\left\|c_{k}-a_{k+1}\right\|}{k+1}=\left(\frac{1}{k}-\frac{1}{k+1}\right) \sum_{i=1}^{k}\left\|c_{k}-a_{i}\right\|=\frac{r_{k}}{k+1}
$$

so $\left\|c_{k}-a_{k+1}\right\|=r_{k}(A)$; but then, since

$$
\left\|c_{k}-a_{k+1}\right\| \leqslant \min _{1 \leqslant i \leqslant k}\left\|c_{k}-a_{i}\right\| \leqslant \frac{1}{k} \sum_{i=1}^{k}\left\|c_{k}-a_{i}\right\|=r_{k}(A)
$$

$\left\|c_{k}-a_{1}\right\|=\cdots=\left\|c_{k}-a_{k}\right\|=\left\|c_{k}-a_{k+1}\right\|$. By recalling Remark 2.7, we obtain the conclusion.

Remark 3.3. In general, also if X is the Euclidean plane, a 2-centrum of A is not a center: for example, if $A=\{(0,1) ;(0,-1) ;(\varepsilon, 0)\}, 0 \leqslant \varepsilon \leqslant 1$, then the unique center of A is the origin, while all points $(0, \alpha) ;|\alpha| \leqslant\left(1-\varepsilon^{2}\right) / 2$, are 2 -centra.

Remark 3.4. If A has at most one $(k+1)$-centrum and $r_{k}(A)=r_{k+1}(A)$, then $x \in$ $s_{k+1}(A) \Rightarrow s_{k}(A) \subseteq\{x\}$. Without the assumption of uniqueness on $s_{k+1}(A)$ this is not true, as the following example shows. Let X be the plane with the max norm, and $A=\left\{\left(-\frac{9}{10}, 0\right) ;\left(\frac{11}{10}, 1\right) ;\left(-\frac{9}{10},-1\right)\right\}$; we have $r_{2}(A)=r_{3}(A)=1 ; P=\left(\frac{1}{10}, 0\right)$ belongs to $s_{2}(A) \subset s_{3}(A)$; the origin belongs to $s_{3}(A)$ but not to $s_{2}(A)$.

Our next result, whose proof follows from the definition of $r_{k}(A)$, extends [3, Proposition 2.7].

Theorem 3.4. Let $m_{k} \in s_{k}(A), m_{j} \in s_{j}(A), \max \{k, j\} \leqslant n=\# A$. Then we have

$$
\begin{equation*}
\left\|m_{k}-m_{j}\right\| \leqslant r_{k}(A)+r_{j}(A) \tag{7}
\end{equation*}
$$

In particular, if $j=k$ and $\left\{m_{k}, m_{k}^{\prime}\right\} \subset s_{k}(A)$, then

$$
\begin{equation*}
\left\|m_{k}-m_{k}^{\prime}\right\| \leqslant 2 r_{k}(A) . \tag{8}
\end{equation*}
$$

Remark 3.5. The estimates (7) and (8) are sharp. (See [3, Example 2.9].) But if we assume that X is strictly convex, then we have better estimates. In fact, according to Remark 3.1, in this case (for $k \neq 2$) we have uniqueness of solutions in many cases. But for $k \neq j$ we cannot give better inequalities (see $[4, \S 4]$) apart from the fact that strict inequality holds in both (7) and (8).

Now assume that we have equality in (7). Looking at the proof of Theorem 3.4, we obtain subsequently; for the j farthest points to $m_{j}, a_{i}, i=1,2, \ldots, j$, we have $\left\|m_{j}-a_{i}\right\|+\left\|a_{i}-m_{k}\right\|=\left\|m_{j}-m_{k}\right\|$; the j farthest points to m_{k}, all have distance $r_{k}\left(A, m_{k}\right)$ from it; therefore, if $j>k$ then $r_{k}(A)=r_{j}(A)$ and both m_{k} and m_{j} belong

ARTCLE IN PRESS

to $s_{j}(A)$. If $j=k$, then the k farthest points to $m_{j}\left[m_{k}\right]$ are on the sphere of radius r_{k} centered at m_{j} [respectively at m_{k}]; moreover the distance between the centers of the two balls is twice the radius r_{k}.

In the following we consider a localization property of the k-centra with respect to $\operatorname{co}(A)$, the convex hull of the set A.

Theorem 3.5. If X is a two-dimensional space, or if X is a Hilbert space, then for any A and any $k(1 \leqslant k \leqslant \# A)$, it holds $s_{k}(A) \cap \operatorname{co}(A) \neq \emptyset$. Moreover, if X is a Hilbert space, or if $\operatorname{dim}(X)=2$ and X is strictly convex, then $s_{k}(A) \subset \operatorname{co}(A)$.

Proof. The assumptions imply that $s_{k}(A) \neq \emptyset$. If $\operatorname{dim}(X)=2$ then (see [21]) for every $x \in X$ there exists $x^{*} \in \operatorname{co}(A)$ such that $\left\|x^{*}-a\right\| \leqslant\|x-a\|$ for any $a \in A$; i.e., $\left\|x^{*}-a_{i}\right\| \leqslant$ $\left\|x-a_{i}\right\|$ for $i=1, \ldots, n=\# A$, so $r_{k}\left(A, x^{*}\right) \leqslant r_{k}(A, x)$: if we take $x \in s_{k}(A)$, this shows that there also exists $x^{*} \in s_{k}(A) \cap \operatorname{co}(A)$.

Now let X be Hilbert or if $\operatorname{dim}(X)=2, X$ strictly convex; if $x \notin \operatorname{co}(A)$, let x^{*} be the best approximation to x from $\operatorname{co}(A)$: we have $\left\|x^{*}-a_{i}\right\|<\left\|x-a_{i}\right\|$ for $i=1, \ldots, n$, so $r_{k}\left(A, x^{*}\right)<r_{k}(A, x)$, thus an element of $s_{k}(A)$ must belong to $\operatorname{co}(A)$.

Corollary 3.1. Let X be Hilbert or if $\operatorname{dim}(X)=2, X$ strictly convex; given $A \subset X$ with no subset of k points being collinear, if $m_{k} \in s_{k}(A)$ and $c \in s_{1}(A)$, then $\left\|m_{k}-c\right\|=r(A)$ implies that $m_{k} \in A$.

Proof. Follow the line of the proof of [4, Proposition 5.1].
Another interesting property of k-centra of a set A is that they allow to characterize inner product spaces in terms of their intersection with the convex hull of A. Characterizations of this type are known from the sixties. (See [8,9].) The same property concerning medians was considered in the nineties by Durier [7], where partial answers were given. It has been proved only recently for medians of three-point sets, this result can be found in [6].

Theorem 3.6. If $\operatorname{dim}(X) \geqslant 3$ and the norm of X is not hilbertian, then there exists a threepoint set A such that $s_{3}(A) \cap \operatorname{co}(A)=\emptyset$.

By using such theorem, it is not difficult to obtain the following proposition.
Proposition 3.1. If $\operatorname{dim}(X) \geqslant 3$ and the norm of X is not hilbertian, then for every $n \geqslant 3$ there exists an n-point set F such that $s_{3}(F) \cap \operatorname{co}(F)=\emptyset$.

Proof. We prove the result for $n=4$, the extension to $n \geqslant 4$ being similar.
Under the assumptions done, according to Proposition 2.2, $\inf _{x \in \operatorname{co}(A)} r_{3}(A, x)$ is always attained; now take $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ as given by Theorem 3.6: for some $\sigma>0$ we have

$$
\inf _{x \in \operatorname{co}(A)} r_{3}(A, x)=r_{3}(A)+4 \sigma>r_{3}(A) .
$$

1
2
3
4
5

Take $\bar{x} \in X$ such that $r_{3}(A, \bar{x})<r_{3}(A)+\sigma$; it is not a restriction to assume that $\left\|\bar{x}-a_{3}\right\| \leqslant$ $\min \left\{\left\|\bar{x}-a_{1}\right\|,\left\|\bar{x}-a_{2}\right\|\right\}$. Now take $a_{4} \notin A$ such that $\left\|a_{3}-a_{4}\right\| \leqslant \sigma$ and let $F=A \cup\left\{a_{4}\right\}$. We have $r_{3}(F, \bar{x}) \leqslant r_{3}(A, \bar{x})+\sigma \leqslant r_{3}(A)+2 \sigma$. Now take $y \in \operatorname{co}(F)$: there is $x \in \operatorname{co}(A)$ such that $\|x-y\| \leqslant \sigma$; therefore $\left|r_{3}(F, y)-r_{3}(F, x)\right| \leqslant \sigma$, so $r_{3}(F, y) \geqslant r_{3}(F, x)-\sigma \geqslant$ $r_{3}(A, x)-\sigma \geqslant r_{3}(A)+3 \sigma$; thus

$$
\inf _{y \in \operatorname{co}(F)} r_{3}(F, y) \geqslant r_{3}(A)+3 \sigma \geqslant r_{3}(F, \bar{x})+\sigma \geqslant r_{3}(F)+\sigma,
$$

this proves the thesis.
Given a set A with n points and $k<n$, we can divide the space X into $\binom{n}{k}$ regions R_{j}, so that when x is taken in one of these regions, the same k points of A are the farthest to x; of course, inside each of these regions there are k ! different possible orderings $\sigma_{1}, \ldots, \sigma_{k}$. It is possible to have $R_{i} \cap R_{j} \neq \emptyset$ (the values of the k th distance can be equal to the ($k+1$)th one); also, if R_{j} is determined by a_{1}, \ldots, a_{k} then $a_{i} \notin R_{j}$ for $i=1, \ldots, k$. Also in general the medians of a_{1}, \ldots, a_{k} (if they exist) do not belong to R_{j}. Note that these regions are not in general convex: for example, if X if the plane with the max norm, given $a_{1}=(1,0)$ and $a_{2}=(-1,0)$, the set $\left\|x-a_{1}\right\| \geqslant\left\|x-a_{2}\right\|$ is not convex. But the same is true, for some pair, in any space with a non-hilbertian norm.

If X is a Hilbert space, then the regions R_{j} are convex: in fact, consider, e.g., the region R determined by the points $a_{1}, \ldots, a_{k}, k<\# A$: then

$$
R=\bigcap_{i=1}^{k}\left\{x \in X:\left\|x-a_{h}\right\| \leqslant\left\|x-a_{i}\right\| \text { for } h=k+1, \ldots, n\right\} .
$$

R is the intersection of $k(n-k)$-convex regions, therefore it is convex. A detailed analysis of these sets can be found in [13]. (Not only for Hilbert spaces.) Also in the particular case of two-dimensional spaces some geometrical properties as well as the complexity analysis are given in [14].

Minimizing $r_{k}(A)$ is equivalent to solve $\binom{n}{k}$ constrained Fermat problems; then looking for the minimum of the values obtained: for each R_{j}, determined by k given points, say $\left\{a_{1}, \ldots, a_{k}\right\}$, look for a median of these points, restricted to the "feasible region" R_{j}. Algorithms for the solution of this kind of problems in two-dimensional spaces can be found in [14]; also, in networks (finite metric spaces) algorithms are given in [10,16].

Given X, consider for $k \in \mathbb{N}$ the parameter

$$
\begin{equation*}
J_{k}(X)=\sup \left\{\frac{2 r_{k}(A)}{\delta(A)}: A \subset X \text { finite }, \max \{2, k\} \leqslant \# A\right\} . \tag{9}
\end{equation*}
$$

For $k=1$, the number $J_{1}(X)=J(X)$ is called the finite Jung constant and has been studied intensively; in general, $1 \leqslant J(X) \leqslant 2$, while the value of $J(X)$ gives information on the structure of X. As shown partially in [5] and later completely in [18], we always have

$$
J(X)=\sup \left\{\frac{2 \mu(A)}{\delta(A)}: A \subset X \text { finite, } 2 \leqslant n=\# A\right\}
$$

ARTCLE IN PRESS

Theorem 3.7. In every space X, for every positive integer k, we have

$$
\begin{equation*}
J_{k}(X)=J(X) \tag{10}
\end{equation*}
$$

Our last result in this section was already known for medians (see [4]) but it can be extended to general k-centra.

Proposition 3.2. Let $m_{k} \in s_{k}(A)$ for some set A. Assume that $A_{k} \subset A, \# A_{k}=k$ and $r_{k}(A)=\frac{1}{k} \sum_{a \in A_{k}}\left\|m_{k}-a\right\|$. If $\left\|m_{k}-\frac{1}{k} \sum_{a \in A_{k}} a\right\|=r_{k}(A)$ then X is not strictly convex.

Proof. By the triangular inequality we have

$$
r_{k}(A)=\left\|m_{k}-\frac{1}{k} \sum_{a \in A_{k}} a\right\| \leqslant \frac{1}{k} \sum_{a \in A_{k}}\left\|m_{k}-a\right\|=r_{k}(A) .
$$

Thus, m_{k} is also a center of A_{k} and $r_{k}(A)=r\left(A_{k}\right)$. Now, we apply first claim in [4, Proposition 3.1] to the set A_{k} to get the result.

1
2
3
4 5
6
7
8
9

ARTCLE IN PRESS

where inequality comes from [2, Lemma 4.1] applied to the set $A_{k}(x)$. (Also if k is even, $\quad 1$
it follows from (3).)
Proposition 4.2. For any equilateral set in the hypothesis of Remark 4.1, the conditions $r(A)=d / 2$ and $r_{k}(A)=d / 2$ are equivalent, for any $k=2,3, \ldots, n$. In these cases k-centra for any $k=1,2, \ldots, n=\# A$ coincide.

Proof. Runs parallel to [2, Proposition 5.1] except for the details of considering partial sums of k-largest distances.

From this last result we can present an example of set without k-centra for any k. [2, Example 5.2] is an equilateral three-point set without median. Now, we apply Proposition 4.2 to conclude that the set in that example cannot have k-centra for any $k=1,2,3$.

References

[1] R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing, in: Int. Ser. Decision Process., Ser. Quant. Methods Decision Making, Holt, Rinehart \& Winston, New York, 1975.
[2] M. Baronti, E. Casini, P.L. Papini, Equilateral sets and their central points, Rend. Mat. Appl. (7) 13 (1993) 133-148.
[3] M. Baronti, E. Casini, P.L. Papini, Central points of finite sets, Rend. Circ. Mat. Palermo (2) Suppl. 40 (1996) 63-72
[4] M. Baronti, E. Casini, P.L. Papini, Centroids, centers, medians: what is the difference?, Geom. Dedicata 68 (1997) 157-168.
[5] M. Baronti, G. Lewicki, On some constants in Banach spaces, Arch. Math. 62 (1994) 438-444.
[6] C. Benítez, M. Fernández, M.L. Soriano, Location of the Fermat-Torricelli medians of three points, Trans. Amer. Math. Soc. 354 (2002) 5027-5038.
[7] R. Durier, Constrained and unconstrained problems in location theory and inner product spaces, Numer. Funct. Anal. Optim. 18 (1997) 297-310.
[8] A.L. Garkavi, On the Chebyshev center and the convex hull of a set, Uspekhi Mat. Nauk. USSR 19 (1964) 139-145.
[9] V. Klee, Circumspheres and inner products, Math. Scand. 8 (1960) 363-370.
[10] S. Nickel, J. Puerto, A unified approach to network location problems, Networks 34 (1999) 283-290.
[11] W. Ogryczak, A. Tamir, Minimizing the sum of the k largest functions in linear time, Inform. Process. Lett. 85 (2003) 117-122.
[12] P.L. Papini, Existence of centers and medians, Preprint, 2001.
[13] J. Puerto, F.R. Fernández, Geometrical properties of the symmetrical single facility location problem, J. Nonlinear Convex Anal. 1 (2000) 321-342.
[14] A.M. Rodríguez-Chía, S. Nickel, J. Puerto, F.R. Fernández, A flexible approach to location problems, Math. Methods Oper. Res. 51 (2000) 69-89.
[15] P. Slater, Centers to centroids in graphs, J. Graph Theory 2 (1978) 209-222.
[16] A. Tamir, The k-centrum multi-facility location problem, Discrete Appl. Math. 109 (2001) 293-307.
[17] T. Tokuyama, Minimax parametric optimization problems in multi-dimensional parametric searching, in: Proc. 33-rd Annu. ACM Symp. on Theory of Computing, 2001, pp. 75-84.
[18] L. Veselý, Equality of two Banach space constants related to different notions of radius of a set, Boll. Un. Mat. Ital. A (7) 9 (1995) 515-520.
[19] L. Veselý, Generalized centers of finite sets in Banach spaces, Acta Math. Univ. Comenian. (N.S.) 66 (1997) 83-95.
[20] L. Veselý, A Banach space in which all compact sets, but all not bounded sets, admit Chebyshev centers, Arch. Math., in press.

ARTCLE IN PRESS

ELSGMLTM (YJMAA):m1 2003/11/25 Prn:27/11/2003; $13: 15$ y 13 Ma by:ML p. 11
 P.L. Papini, J. Puerto / J. Math. Anal. Appl.

[21] R.E. Wendell, A.P. Hurter Jr., Location theory, dominance and convexity, Oper. Res. 21 (1973) 314-320. 1
[22] R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE 2 Trans. Syst. Man Cybern. 18 (1988) 183-190.
[23] V.A. Zalgaller, Distances to the two and three most distant points, Math. Notes 59 (1996) 507-510. 4

[^0]:

