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Formal groups, supersingular abelian varieties

and tame ramification

Sara Arias-de-Reyna

Abstract

Let us consider an abelian variety defined over Qℓ with good su-

persingular reduction. In this paper we give explicit conditions that

ensure that the action of the wild inertia group on the ℓ-torsion points

of the variety is trivial. Furthermore we give a family of curves of

genus 2 such that their Jacobian surfaces have good supersingular

reduction and satisfy these conditions. We address this question by

means of a detailed study of the formal group law attached to abelian

varieties.

1 Introduction

Let ℓ be a prime number and A/Qℓ be an abelian variety with good super-
singular reduction. In this paper we study the action of the wild inertia
group Iw ⊂ Gal(Qℓ/Qℓ) on the ℓ-torsion points of A. More precisely, we will
address the problem of finding explicit conditions that ensure that the Galois
extension Qℓ(A[ℓ])/Qℓ obtained by adjoining to the field of ℓ-adic numbers
the coordinates of the ℓ-torsion points of A is tamely ramified.

Let E/Qℓ be an elliptic curve. If it has good supersingular reduction,
then the field extension Qℓ(E[ℓ])/Qℓ is tamely ramified (cf. [13], § 1). The
proof relies on a detailed study of the formal group law attached to E. This
formal group law has dimension 1 and height 2. The set of elements of
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Qℓ with positive ℓ-adic valuation can be endowed with a group structure
by means of this formal group law. Call V the Fℓ-vector space of ℓ-torsion
points of this group (which is isomorphic to the group of ℓ-torsion points of
E as Gal(Qℓ/Qℓ)-module). One essential ingredient in the proof is the fact
that the ℓ-adic valuation of the points of V can be explicitly computed (see
Proposition 9, § 1.9 of [13]). This fact allows one to define an embedding
of V into a certain 1-dimensional Fℓ-vector space (called Vα in [13]) where
the wild inertia group acts trivially, and in turn this compels the wild inertia
group to act trivially upon V . When the dimension n of the formal group
law is greater than 1 the situation becomes more complicated. It is no longer
possible to compute the ℓ-adic valuation of the n coordinates of the elements
of V , which now denotes the group of ℓ-torsion points of the corresponding
formal group. In this paper we give a condition, Hypothesis 3.2, under which
we can prove that the wild inertia group acts trivially on V . The key point
is that this hypothesis allows us to define several different embeddings of V
into Vα.

In the rest of the paper we apply this result to the case of dimension 2,
and produce non-trivial examples of abelian surfaces defined over Qℓ such
that the ramification of Qℓ(A[ℓ])/Qℓ is tame. We introduce the notion of
symmetric 2-dimensional formal group law, and prove that such a formal
group law satisfies Hypothesis 3.2 under a certain condition. Furthermore,
using this result we explicitly construct, for each ℓ ≥ 5, genus 2 curves over Qℓ

such that the formal group law attached to their Jacobians satisfy Hypothesis
3.2 (cf. Theorem 5.8). Finally we formulate a condition that allows us to
deform the curves and enlarge the family of genus 2 curves such that the
Galois extension defined by the ℓ-torsion points of their Jacobians is tamely
ramified, which enables us to obtain Theorem 6.4.

Given a prime ℓ, in [2] the authors contruct certain semistable elliptic
curves defined over Q with good supersingular reduction at ℓ. When ℓ ≥
11, these curves provide tame Galois realizations of the group GL2(Fℓ). In
this way, the authors give an affirmative answer to the tame inverse Galois
problem posed by B. Birch in [5], Section 2, for the family of linear groups
GL2(Fℓ).

In [3], we will use the results in this paper in order to realize the groups
in the family GSp4(Fℓ) as the Galois group of a tamely ramified extension
for each prime ℓ ≥ 5.

The contents of this paper are part of my Ph.D. thesis. I want to thank my
advisor, Prof. Núria Vila, for her constant support and helpful conversations.
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2 Notation

We will denote by K a local field of characteristic zero and residual character-
istic ℓ, v the corresponding discrete valuation, normalized so that v(K∗) = Z,
O the ring of integers of the valuation and k the residue field. Further, we
will assume that v(ℓ) = 1 (that is to say, K will be an unramified extension
of Qℓ). We fix an algebraic closure K of K, and denote by v the extension
of v to this algebraic closure. Finally, k denotes the algebraic closure of k
obtained through the reduction of OK , the ring of integers of K with respect
to v, modulo its maximal ideal. Later in the paper, we will take K = Qℓ.

We will denote by I ⊂ Gal(K/K) the inertia group, and by Iw the wild
inertia group.

To ease notation, we will denote the tuples of elements in boldface. For
instance, we will write X = (X1, . . . , Xn), Y = (Y1, . . . , Yn),Z = (Z1, . . . , Zn)
to denote n-tuples of variables, and x = (x1, . . . , xn), y = (y1, . . . , yn) will
denote tuples of elements of K.

3 Inertia action and the formal group law

We will start by recalling that an n-dimensional formal group law defined
over O is a n-tuple of power series

(F1(X,Y), . . . , Fn(X,Y)) ∈ O[[X1, . . . , Xn, Y1, . . . , Yn]]
×n

satisfying:

• Fi(X,Y) ≡ Xi + Yi (mod terms of degree two),
for all i = 1, . . . , n.

• Fi(F1(X,Y), . . . , Fn(X,Y),Z) = Fi(X, F1(Y,Z), . . . , Fn(Y,Z))
for all i = 1, . . . , n.

Besides, if Fi(X,Y) = Fi(Y,X) for all i = 1, . . . , n, then the formal
group law is said to be commutative.

To a formal power series one can attach a group. Let us denote by m the
set of elements of K with positive valuation, and denote by m

×n the cartesian
product of m with itself n times. For this set one can define an addition law
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⊕F by

⊕F : m
×n × m

×n → m
×n

(x,y) 7→ (F1(x,y), . . . , Fn(x,y))

(which is well defined since Fi(x,y) converges to an element of m, for all
i = 1, . . . n). The set m

×n, endowed with this sum, turns out to be a group,
which will be denoted by F(m). Let us call V the Fℓ-vector space of ℓ-torsion
points of F(m).

In [13], § 8, an auxiliary object is introduced.

Definition 3.1. Let α ∈ Q be a positive rational number. Consider the sets

mα = {x ∈ m : v(x) ≥ α} and m
+
α = {x ∈ m : v(x) > α}.

We define Vα as the quotient group

Vα := mα/m
+
α .

Vα has a natural structure of k-vector space, and its dimension as such
is 1. Moreover, the absolute Galois group of K acts on Vα: for each σ ∈
Gal(K/K), and for each x+m

+
α ∈ mα/m

+
α , we have σ(x+m

+
α ) := σ(x)+m

+
α .

In general, this action does not respect the k-vector space structure. But
if we take an element σ in the inertia group I, it induces a morphism of
k-vector space on Vα, and in turn this implies that the wild inertia group
Iw acts trivially on Vα (cf. § 1.8 in [13]). The main point in the proof, in
dimension 1, that the wild inertia group acts trivially on V is to define an
embedding of V into Vα, taking advantage of the fact that the valuation of
the points of V is equal to α = 1

ℓ2−1
.

But, in the case when n > 1, each point has n coordinates, and we
have to admit the possibility that the valuations of the coordinates of the
ℓ-torsion points of F(m) have different values. Our idea is to formulate a
weaker assumption about the valuations of the coordinates, but which is
strong enough to imply the desired result about the action of the wild inertia
group Iw on F(m).

Hypothesis 3.2. There exists a positive α ∈ Q such that, for all non-zero

(x1, . . . , xn) ∈ V , it holds that

min
1≤i≤n

{v(xi)} = α.

4



Under this hypothesis, we are able to prove the desired result:

Theorem 3.3. Let F be a formal group law such that the Fℓ-vector space V
of the ℓ-torsion points of F(m) satisfies Hypothesis 3.2. Then the image of

the wild inertia group Iw by the Galois representation attached to V is trivial.

Proof. Let P = (x1, . . . , xn) ∈ V . We are going to show that each σ ∈ Iw
acts trivially on P , that is, σ(P ) = P .

According to Hypothesis 3.2, we have that, for each non-zero point Q =
(y1, . . . , yn) ∈ V ,

min
1≤i≤n

{v(yi)} = α.

Therefore, for each n-tuple (λ1, . . . , λn) ∈ Zn, we know that either λ1y1 +
· · ·λnyn = 0 or else it belongs to mα. This allows us to consider the following
map:

ϕ(λ1,...,λn) : V → Vα = mα/mα+

(y1, . . . , yn) 7→ λ1y1 + · · ·λnyn + m
+
α .

It is clear that ϕ(λ1,...,λn) is a group morphism, when we consider on V the
sum given by the formal group law, and on Vα the sum induced by that of K.
As a matter of fact, it is a morphism of Fℓ-vector spaces (for the structure
of Fℓ-vector space is determined by the sum). Besides, it is compatible with
the Galois action.

Now let us take an element σ ∈ Iw. Then

ϕ(λ1,...,λn)(σ(P )) = σ(ϕ(λ1,...,λn)(P )) = ϕ(λ1,...,λn)(P ),

where the last equation holds because Iw acts trivially upon Vα. In other
words, for each n-tuple (λ1, . . . , λn) ∈ Zn, σ(P )− P belongs to the kernel of
ϕ(λ1,...,λn). But no point of V can belong to all these kernels save the zero
vector. This, again, is a consequence of Hypothesis 3.2. Any non-zero point
Q = (y1, . . . , yn) ∈ V satisfies that there exists j ∈ {1, . . . , n} such that
v(yj) = α. If we take λi = 0 for all i 6= j, λj = 1, then ϕ(λ1,...,λn)(P ) =
xj + m

+
α 6= 0 + m

+
α .

To sum up, for each P ∈ V and each σ ∈ Iw, σ(P ) − P = (0, . . . , 0), and
so σ acts trivially on P .
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4 Symmetric formal group laws of dim 2

Let F be a formal group law over Qℓ of dimension 2. Our aim is to analyze
the valuation of the ℓ-torsion points of F(m), and try to obtain explicit
conditions that ensure that Hypothesis 3.2 holds. The property of being
ℓ-torsion provides us with two equations in two variables. Let us briefly
recall these equations. We begin by recalling the definition of homomorphism
between formal group laws of dimension n.

Definition 4.1. Let F = (F1(X,Y), . . . , Fn(X,Y)) and
G = (G1(X,Y), . . .Gn(X,Y)) be two formal group laws over O of dimension
n. A homomorphism f is a n-tuple of formal power series in O[[Z1, . . . , Zn]]
without constant term, say (f1(Z), . . . , fn(Z)), such that

f(F1(X,Y), . . . , Fn(X,Y)) =

= (G1(f1(X), . . . , fn(X), f1(Y), . . . , fn(Y)),

. . . , Gn(f1(X), . . . , fn(X), f1(Y), . . . , fn(Y))).

Example 4.2. For each m ∈ N, one can define the multiplication by m map
in the following way:











[0](Z) = (0, 0, . . . , 0)

[1](Z) = Z

[m+ 1](Z) = F([1](Z), [m](Z)) for m ≥ 1.

It is easy to prove by induction that the shape of the n power series
[m]i(Z) that constitute the multiplication by m map is the following:

[m]i(Z) = m · Zi + terms of degree ≥ 2,

for all i = 1, . . . , n.

When n = 2, the multiplication by ℓ map is defined by two equations in
two variables, and this complicates our attempt to compute the valuations of
the two coordinates of the points of V . In order to avoid this inconvenience,
we are going to restrict our attention to a special kind of formal group laws.
Namely, we will consider formal group laws such that the two equations have
a certain relationship that allows us to reduce the problem to studying a
single equation.
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Definition 4.3. Let F = (F1(X1, X2, Y1, Y2), F2(X1, X2, Y1, Y2)) be a formal
group law of dimension 2 over Qℓ. We will say that F is a symmetric formal

group law if the following relationship holds:

F2(X2, X1, Y2, Y1) = F1(X1, X2, Y1, Y2).

The symmetry is reflected in the power series [ℓ]1(Z1, Z2) and [ℓ]2(Z1, Z2).
By induction on m, one can prove the following lemma.

Lemma 4.4. Let F(X,Y) be a symmetric formal group law of dimension 2.
For all m ≥ 1, it holds that

[m]2(Z2, Z1) = [m]1(Z1, Z2).

Next we will establish two technical lemmas which will be useful.

Lemma 4.5. Let ℓ > 2 be a prime number, r ∈ N, and let f(Z1, Z2) ∈
Zℓ[[Z1, Z2]] be a formal power series such that f(Z2, Z1) = −f(Z1, Z2), which

can be written as:

f(Z1, Z2) = ℓ · (Z1 − Z2) + ℓ · (terms of total degree ≥ 2 and < ℓr)

+ a · (Zℓr

1 − Zℓr

2 ) + terms of total degree ≥ ℓr + 1,

where ℓ ∤ a. Then if (x0, y0) ∈ m×m with x0 6= y0 satisfies f(x0, y0) = 0 and

furthermore v(x0), v(y0) ≥ v(x0 − y0), then the ℓ-adic valuation v(x0 − y0) is

1/(ℓr − 1).

Proof. Let us call β = v(x0 − y0). We will compute the valuations of the
different terms that appear in the equality f(x0, y0) = 0.

• v(ℓ · (x0 − y0)) = 1 + β.

• Let us consider a term of total degree between 2 and ℓr−1, say ℓ·cxn
0y

m
0 .

Compute its valuation: v(ℓ · cxn
0y

m
0 ) = 1 + v(c) + nv(x0) + mv(y0) ≥

1 + (n+m)β > 1 + β, since n+m ≥ 2.

• Let us consider the term a(xℓr

0 − yℓr

0 ). Let us split it into the sum of
two terms, in the following way:

a · (xℓr

0 − yℓr

0 ) = a · ((x0 − y0)
ℓr − B) = a · (x0 − y0)

ℓr − a · B,

7



where B = (x0 − y0)
ℓr − (xℓr

0 − yℓr

0 ).

On the one hand, v(a · (x0 − y0)
ℓr

) = v(a)+ ℓrβ = ℓrβ, since ℓ does not
divide a.

On the other hand, note that

(x0 − y0)
ℓr

= xℓr

0 −
(

ℓr

1

)

xℓr−1
0 y0 +

(

ℓr

2

)

xℓr−2
0 y2

0 + · · ·

−
(

ℓr

2

)

x2
0y

ℓr−2
0 +

(

ℓr

1

)

x0y
ℓr−1
0 − yℓr

0 .

Therefore, each of the terms
(

ℓr

i

)

(−1)ixℓr−i
0 yi

0 has a valuation strictly

greater than 1 + β. (For v(xℓr−i
0 yi

0) ≥ β(ℓr − i + i) = ℓrβ, and hence
v(

(

ℓr

i

)

(−1)ixℓr−i
0 yi

0) ≥ 1 + βℓr > 1 + β).

• Since v(x0), v(y0) ≥ β, it is clear that the valuation of the terms of
degree greater than ℓr is greater than ℓrβ.

But obviously there must be (at least) two terms with minimal valuation,
since they must cancel out. Therefore v(ℓ · (x0−y0)) = v(a · (x0−y0)

ℓr

), that
is to say, 1 + β = ℓrβ, hence β = 1/(ℓr − 1), as was to be proven.

Lemma 4.6. Let ℓ > 2 be a prime number, r ∈ N, and let f(Z1, Z2) ∈
Zℓ[[Z1, Z2]] be a formal power series such that f(Z2, Z1) = f(Z1, Z2), which

can be written as:

f(Z1, Z2) = ℓ · (Z1 + Z2) + ℓ · (terms of total degree ≥ 2 and < ℓr)

+ a · (Zℓr

1 + Zℓr

2 ) + terms of total degree ≥ ℓr + 1,

where ℓ ∤ a. Then if (x0, y0) ∈ m × m satisfies f(x0, y0) = 0 and furthermore

v(x0), v(y0) ≥ v(x0 + y0), then v(x0 + y0) is 1/(ℓr − 1).

Proof. Analogous to that of Lemma 4.5.

We want to apply the previous lemmas to the formal power series defined
by [ℓ]1(Z1, Z2)−[ℓ]2(Z1, Z2) and [ℓ]1(Z1, Z2)+[ℓ]2(Z1, Z2). In order to do this,
we need to know the value of the parameter r that appears in these formal
power series. This parameter is related to the height of the formal group law.
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Let us recall this notion (see [10], Chapter IV, (18.3.8)). Firstly, we need to
define this concept for formal group laws defined over k, and then we will
transfer this definition to formal group laws over O through the reduction
map.

Definition 4.7. Let F be a formal group law of dimension n over k, and
let [ℓ] = ([ℓ]1(Z), . . . , [ℓ]n(Z)) be the multiplication by ℓ map. Then F is of
finite height if the ring k[[Z1, . . . , Zn]] is finitely generated as a module over
the subring k[[[ℓ]1(Z), . . . , [ℓ]n(Z)]].

When F is of finite height, it holds that k[[Z1, . . . , Zn]] is a free module
over k[[[ℓ]1(Z), . . . , [ℓ]n(Z)]] of rank equal to a power of ℓ, say ℓh. This h shall
be called the height of F.

Definition 4.8. Let F be a formal group law of dimension n over O. We
define the height of F as the height of the reduction F of F modulo the
maximal ideal of O.

Remark 4.9. A few words concerning the way to compute the height of a
formal group law are in order. Let f1(Z), . . . , fn(Z) be n formal power series
in k[[Z1, . . . , Zn]] without constant term. Note that the following statements
are equivalent:

• k[[Z1, . . . , Zn]] is generated by h elements as a module over the subring
k[[f 1, . . . , fn]].

• k[[Z1, . . . , Zn]]/〈f 1, . . . , fn〉 is a k-vector space of finite dimension less
than or equal to h.

Therefore, to compute the height of F, one seeks the least h that satisfies
the last property, that is, the dimension of the k-vector space

k[[Z1, . . . , Zn]]/〈f 1, . . . , fn〉.

But this can be easily done by means of standard bases. For the definition and
some properties of standard bases in power series rings we refer the reader to
[4]. If I is an ideal of k[[X1, . . . , Xn]], then the dimension of k[[X1, . . . , Xn]]/I
as a k-vector space is determined in this way: Take a standard basis S of I,
and consider the set of terms M = {t ∈ T : for all g ∈ S,LT(g) ∤ t}. Then
the cardinal of M is the required dimension (of course, it need not be finite).

Now, if we have a formal group law F over k of dimension n, its height is
the dimension of k[[Z1, . . . , Zn]]/〈[ℓ]1(Z), . . . , [ℓ]n(Z)〉, so we can compute it
in an explicit way.
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In the case when the formal group law is of dimension 1, another definition
of height is used (see for instance [14], Chapter IV, § 7). Namely, if F (X, Y )
is a formal group law defined over k, the height of F is defined as the largest
r such that the multiplication by ℓ map, [ℓ](Z), can be expressed as [ℓ](Z) =
g(Zℓr

), for some formal power series g(Z) ∈ k[[Z]]. One can prove, following a
simple reasoning, that the first term of g with non-zero coefficient is precisely
a constant times Zℓr

. Now what happens if we try to imitate this reasoning
in dimension n? As is stated in [10], the reasonings in (18.3.1) can be carried
out in arbitrary dimension, yielding the following result:

Proposition 4.10. Let F, G be formal group laws over k of dimension n,

and f : F → G a non-zero homomorphism. Let us write

f(Z) = (f1(Z), . . . , fn(Z)).

If u is the smallest exponent such that, in some f i(Z), some variable Zj

occurs in a non-zero monomial raised to the u-th power, then u = ℓr for

some r ≥ 0. Furthermore, there exist g1(Z), . . . , gn(Z) ∈ k[[Z1, . . . , Zn]] such

that

f i(Z) = gi(Z
ℓr

), for all i = 1, . . . , n,

where Zℓr

= (Zℓr

1 , . . . , Z
ℓr

n ).

Remark 4.11. We can apply this proposition to the homomorphism [ℓ] of
multiplication by ℓ in a formal group law F, and conclude that there exists
an r ≥ 0 (in fact r will be greater than or equal to 1) such that the formal
power series [ℓ]i(Z), i = 1, . . . , n, can be expressed as formal power series in
the variables Zℓr

1 , . . . , Zℓr

n . But this r might not be determined by the height
of F. For instance, it might be the case that the height of F is infinite, while
the exponent r must always be a finite number. The following proposition
deals with this matter.

Proposition 4.12. Let F be a 2-dimensional formal group law defined over

Fℓ, and assume that there exist two power series in Fℓ[[Z1, Z2]], say f1, f2,

such that the formal power series that give multiplication by ℓ map [ℓ] can be

written as
{

[ℓ]1(Z1, Z2) = f 1(Z
ℓr

1 , Z
ℓr

2 ),

[ℓ]2(Z1, Z2) = f 2(Z
ℓr

1 , Z
ℓr

2 ).

Then the height of F is greater than or equal to 2r.

10



Proof. Let us write
{

f1(Z1, Z2) = a11Z1 + a12Z2 + terms of degree ≥ 2

f2(Z1, Z2) = a21Z1 + a22Z2 + terms of degree ≥ 2.

We may assume that one element (at least) of the set {a11, a12, a21, a22} does
not vanish, say a11 6= 0 (the other cases are analogous).

Consider the graduated lexicographical ordering on Fℓ[[Z1, Z2]] with Z1 <
Z2, that is to say, the relation ≤ determined by the following rules:

Za
1Z

b
2 < Zc

1Z
d
2 ↔

{

a + b < c+ d or

a + b = c+ d and a > c.

Let I be the ideal generated by f1(Z1, Z2) and f2(Z1, Z2). In order to
compute the height of F, we need to find a standard basis for I. Now the
smallest monomial with respect to this ordering is Z1. And this monomial
appears in f 1(Z1, Z2). We can therefore use it to eliminate all monomials
under a given degree of f 2(Z1, Z2), save those which are pure in Z2. In fact,
if f 2(Z1, Z2) is not a multiple of f 1(Z1, Z2), we will reach a point where the
power series g2(Z1, Z2) obtained from f2 by eliminating the terms divisible
by Z1 up to a certain degree has as leading term a monomial which is pure
in Z2, say g2(Z1, Z2) = b0,tZ

t
2 + terms of degree ≥ t+ 1. Then it is easily

seen that {f 1, g2} is a standard basis for I, and the rank of Fℓ[[Z1, Z2]]/I as
a Fℓ-module is t.

Recall that the height of F is the rank of Fℓ[[Z1, Z2]]/〈[ℓ]1, [ℓ]2〉. Clearly
this rank is ℓr · (ℓrt) = ℓ2rt. But we know that t must be a power of ℓ (see
Definition 4.7), say t is of the form ℓs for some s ∈ N. Hence the height of F

is 2r + s, which is greater than (or equal to) 2r.

Remark 4.13. Note that the height of a formal group law of dimension 2
must be comprised between 2 and 4. Actually, the case that interests us is
when the height is 4. In this case, only two possibilities might occur:

• The exponent r in Proposition 4.10 is 2. By Proposition 4.12, there
exists an s ∈ N such that 4 = 2r + s = 4 + s. Hence s = 0.

• The exponent r in Proposition 4.10 is 1. Then by Proposition 4.12,
there exists an s ∈ N such that 4 = 2r + s = 2 + s. Hence s = 2.
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Assume s = 0. If we write the multiplication by ℓ map as
{

[ℓ]1(Z1, Z2) = aZℓ2

1 + bZℓ2

2 + terms of degree ≥ ℓ2

[ℓ]2(Z1, Z2) = cZℓ2

1 + dZℓ2

2 + terms of degree ≥ ℓ2

then the determinant of the matrix

(

a b

c d

)

is non-zero.

We will finally state and prove the main theorem of this section:

Theorem 4.14. Let ℓ > 2 be a prime number and let F = (F1, F2) be a

2-dimensional symmetric formal group law over Zℓ. Assume it has height

4 and the exponent in Proposition 4.10 is r = 2. Let us denote by V the

Fℓ-vector space of ℓ-torsion points of F(m), α = 1/(ℓ2 − 1).
Then for all (x0, y0) ∈ V ,

min{v(x0), v(y0)} = α.

Proof. First of all, let us recall that, since the formal group law F is symmet-
ric and of height 4 with r = 2, Remark 4.13 allows us to write the two formal
power series that comprise the multiplication by ℓ map in the following way:



















[ℓ]1(Z1, Z2) = ℓZ1 + ℓ · (terms of total degree ≥ 2 and < ℓ2)

+a · Zℓ2

1 + b · Zℓ2

2 + terms of degree ≥ ℓ2 + 1

[ℓ]2(Z1, Z2) = ℓZ2 + ℓ · (terms of total degree ≥ 2 and < ℓ2)

+b · Zℓ2

1 + a · Zℓ2

2 + terms of degree ≥ ℓ2 + 1

with ℓ ∤ a2 − b2.
Take a point P = (x0, y0) ∈ V . We split the proof in two cases.

Case 1: v(x0) 6= v(y0). Assume that v(x0) < v(y0) (otherwise we proceed
analogously). Then v(x0−y0) = v(x0). We will apply Lemma 4.5 with r = 2.
The point (x0, y0) satisfies both equations [ℓ]1(x0, y0) = 0 and [ℓ]2(x0, y0) =
0. Therefore it also satisfies that f(x0, y0) = [ℓ]1(x0, y0) − [ℓ]2(x0, y0) = 0.
Furthermore, taking into account the previous considerations, we can write

f(Z1, Z2) = ℓ(Z1 − Z2)+

+ ℓ · (terms of total degree ≥ 2 and < ℓ2) + (a− b) · (Zℓ2

1 − Zℓ2

2 )+

+ terms of degree greater than or equal to ℓ2 + 1,
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and ℓ ∤ a − b. Nothing prevents us now from applying Lemma 4.5 and
concluding that v(x0 − y0) = α. But then α = v(x0) < v(y0), hence
min{v(x0), v(y0)} = α.

Case 2: v(x0) = v(y0). Then either v(x0−y0) = v(x0) or v(x0 +y0) = v(x0).
(For both must be greater than or equal to v(x0). And taking into account
that ℓ 6= 2, we obtain v(x0) = v(2x0) = v((x0 + y0) + (x0 − y0)), so both
v(x0 + y0) and v(x0 + y0) cannot be greater than v(x0)). If v(x0 − y0) =
v(x0), we can apply Lemma 4.5 as in the previous case and conclude that
v(x0) = v(y0) = α. If v(x0 + y0) = v(x0), we make use of Lemma 4.6 with
f = [ℓ]1 + [ℓ]2 and r = 2, thus concluding that v(x0) = v(y0) = α. This
completes the proof.

Combining this theorem with Theorem 3.3, we obtain the following result:

Theorem 4.15. Let ℓ > 2 be a prime number, and let F = (F1, F2) be a

2-dimensional symmetric formal group law over Zℓ. Assume it has height 4

and the exponent in Proposition 4.10 is r = 2. Then the wild inertia group

Iw acts trivially on the Fℓ-vector space of ℓ-torsion points of F(m).

5 Symmetric genus 2 curves

In this section we are going to present a certain kind of genus 2 curves such
that their Jacobians are abelian surfaces with good supersingular reduction,
and moreover the corresponding formal group law satisfies the hypotheses of
Theorem 4.15. Let us fix an odd prime number ℓ.

Definition 5.1. We shall call a genus 2 curve symmetric if it can be expressed
through an equation y2 = f(x), where f(x) = f0x

6 + f1x
5 + f2x

4 + f3x
3 +

f2x
2 + f1x+ f0 is a polynomial of degree 6 and non-zero discriminant.

In my PhD thesis [1] the following result is proven.

Theorem 5.2. Let f(x) = f0x
6 +f1x

5 +f2x
4 +f3x

3 +f2x
2 +f1x+f0 ∈ Qℓ[x]

be a polynomial of degree 6 and non-zero discriminant, and let F = (F1, F2)
be the formal group law attached to the Jacobian variety of the curve defined

by y2 = f(x). Then

F2(s2, s1, t2, t1) = F1(s1, s2, t1, t2).

13



In this way we can control the symmetry of the formal group law. With
respect to the height, it is well known that the formal group law attached
to an abelian surface with good supersingular reduction has height 4 (cf.
[15]). We will say that a genus 2 curve defined over Fℓ is supersingular if its
Jacobian is a supersingular abelian surface.

Our aim is to construct, for a given prime number ℓ > 3, a symmetric
genus 2 curve over Qℓ with supersingular reduction. In fact, what we shall
construct is a supersingular genus 2 curve, defined over Fℓ by an equation
y2 = f(x), where f(x) = f 0x

6 +f 1x
5 +f 2x

4 +f 3x
3 +f 2x

2 +f 1x+f 0 ∈ Fℓ[x]
is a polynomial of degree 6 with non-zero discriminant. Lifting this equation
to Qℓ in a suitable way we will obtain the curve we were seeking.

Fix ℓ > 3, and assume we have a supersingular elliptic curve E defined by
y2 = x3+bx2 +bx+1 for a certain b ∈ Fℓ. Then the bielliptic curve C defined
by the equation y2 = x6 + bx4 + bx2 +1 is a supersingular genus 2 curve. For
the discriminant ∆f of f(x) = x6 + bx4 + bx2 + 1 and the discriminant ∆g

of g(x) = x3 + bx2 + bx + 1 are related by the equation ∆f = −64∆g and
the characteristic of our base field is different from 2. On the other hand, C
is isogenous to E ×E (cf. [8], Chapter 14), hence the supersingularity of C.
Therefore, our problem boils down to finding a supersingular elliptic curve
defined by an equation of the form y2 = x3 + bx2 + bx+ 1.

Recall that an elliptic curve in Legendre form y2 = x(x−1)(x−λ) defined
over a finite field of characteristic ℓ is supersingular if and only if Hℓ(λ) = 0,

where Hℓ(x) =
∑

ℓ−1

2

k=0

( ℓ−1

2

k

)2
xk is the Deuring polynomial (see Theorem 4.1-

(b) in Chapter IV of [14]). Moreover, there is always a quadratic factor of
Hℓ(x) of the form x2−x+a for a certain a ∈ F∗

ℓ , provided ℓ > 3 (see Theorem
1-(b) of [7], cf. Corollary 3.6 of [2]). We exploit this fact in the following
proposition.

Proposition 5.3. Let a ∈ Fℓ be such that x2 − x + a divides Hℓ(x). Then

the equation

y2 = x3 +
1 − a

a
x2 +

1 − a

a
x+ 1

defines a supersingular elliptic curve over Fℓ.

Proof. The discriminant of g(x) = x3 + 1−a
a
x2 + 1−a

a
x+ 1 is ∆g = − (−1+4a)3

a4 ,
which does not vanish (if ∆g = 0, then a = 1/4, and the polynomial x2−x+a
would have a double root. But the Deuring polynomial Hℓ(x) does not
have double roots). Moreover, one can easily transform this equation into

Legendre form with λ = 1
2

+
√

1−4a

1
.
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Remark 5.4. Assume ℓ = 3. The only supersingular elliptic curve over F3

is given by the equation y2 = x(x− 1)(x+ 1). We can study all the changes
of variables which turn this equation into a symmetric one, but we only
obtain the curve given by y2 = x3 + 1, which is a singular curve. Therefore,
there is no symmetric polynomial f(x) ∈ F3[x] such that the curve defined
by y2 = f(x) is a supersingular elliptic curve. This is the reason why we
exclude the prime ℓ = 3 from our reasonings.

In order to apply Theorem 4.15 to the curves provided by Proposition
5.3, we need to check that the exponent in Proposition 4.10 is r = 2. Let
us work with the reductions of the Jacobians. First of all, note that this
property is preserved by isogenies of degree prime to the characteristic ℓ.

Lemma 5.5. Let A and B be abelian varieties defined over k, and Φ : B → A
an isogeny of degree prime to ℓ. Assume moreover that the formal group law

attached to B has r = 2. Then the formal group law attached to A has r = 2
too.

Proof. Let m be the degree of Φ. We know that there exists an isogeny
Ψ : A→ B (the dual isogeny of Φ) such that Ψ ◦ Φ = [m]B.

Consider the following commutative diagram:

B
[ℓ]

B
//

Φ
��

B

Φ
��

A
[ℓ]

A
// A

Since Φ ◦ [ℓ]B = [ℓ]A ◦ Φ, Φ ◦ [ℓ]B ◦ Ψ = [ℓ]A ◦ Φ ◦ Ψ; and thus Φ ◦ [ℓ]B ◦ Ψ =

[ℓ]A ◦ [m]A.
Consider now the homomorphism these arrows induce on the formal group

laws on A and B (we will not change their names). Since [ℓ]B modulo ℓ can

be expressed by means of formal power series in Zℓ2

1 , Z
ℓ2

2 , the same is true of
the composition Φ ◦ [ℓ]B ◦ Ψ = [ℓ]A ◦ [m]A. But since the multiplication by
m map in the formal group law of A is defined by

{

[m]1(Z1, Z2) = mZ1 + · · ·
[m]2(Z1, Z2) = mZ2 + · · ·

neither of the formal power series that define [ℓ]A can possess a term of degree
smaller than ℓ2 (for m is invertible in Fℓ). Taking into account Proposition
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4.10, we conclude that the multiplication by ℓ map in A must also be ex-
pressible as a formal power series in Zℓ2

1 , Z
ℓ2

2 .

We will now see that the natural isogeny from E × E to the Jacobian of
C (cf. [8], Chapter 14) satisfies the conditions of the lemma above. We will
make use of the following result (cf. Proposition 3 of [11]).

Proposition 5.6. Let E and F be two elliptic curves over Fℓ, let A be the

polarized abelian surface E × F , and let G ⊂ A[2](Fℓ) be the graph of a

group isomorphism ψ : E[2](Fℓ) → F [2](Fℓ). Then G is a maximal isotropic

subgroup of A[2](Fℓ), and furthermore the quotient polarized abelian variety

A/G is isomorphic to the Jacobian of a curve C over Fℓ, unless ψ is the

restriction to E[2](Fℓ) of an isomorphism E → F over Fℓ. Moreover, the

curve C and the isomorphisms are defined over Fℓ if ψ is an isomorphism of

Gal(Fℓ/Fℓ)-modules.

Let us consider the elliptic curve E defined by the Weierstrass equation
y2 = x3 + bx2 + bx+ 1. The 2-torsion points of E are the following:

O

P1 := (−1, 0)

P2 := (
1

2
(1 − b+

√
−3 − 2b+ b2), 0)

P3 := (
1

2
(1 − b−

√
−3 − 2b+ b2), 0).

Let us consider the group morphism ψ : E[2](Fℓ) → E[2](Fℓ) defined as

O 7→ O, P1 7→ P1, P2 7→ P3, P3 7→ P2.

Note that it is compatible with the action of Gal(Fℓ/Fℓ). In order to
apply Proposition 5.6, we need to check that ψ is not induced from an auto-
morphism of E.

But the group of automorphisms of E is well known (cf. [14], Chapter
III, § 10). Namely, if E is an elliptic curve with j-invariant different from 0
or 1728 (that is to say, with b different from 0 or −3/2), then the group of
automorphisms of E has order 2, and the non-trivial automorphism corre-
sponds to (x, y) 7→ (x,−y). Therefore, it cannot restrict to the morphism ψ.
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In the other cases, the order of Aut(E) is 4 or 6: it is easy to compute these
automorphisms explicitly and check that they cannot restrict to ψ.

Therefore, for each b ∈ Fℓ such that the equation y2 = x3 + bx2 + bx + 1
defines an elliptic curve E (i.e., b 6= 3,−1), Proposition 5.6 tells us that there
exists a genus 2 curve C and an isogeny

Φ : E × E → J(C)

which is separable (because of the definition of the quotient of abelian vari-
eties, cf. § 7 Chapter 2, Theorem on p. 66 of [12]) of degree 4. Moreover,
the isogeny can be defined over Fℓ. Therefore, if E is a supersingular el-
liptic curve we can apply Lemma 5.5 and conclude that the Jacobian of C
satisfies that the exponent in Proposition 4.10 is 2. But can C be explicitly
determined? Fortunately, Proposition 4 of [11] gives a very explicit recipe
for computing C. As a conclusion, we can state the following result.

Proposition 5.7. Let b ∈ Fℓ be such that the Weierstrass equation y2 =
x3 + bx2 + bx + 1 defines a supersingular elliptic curve over Fℓ. Then the

formal group law attached to the Jacobian of the genus 2 curve C defined by

a lifting of the hyperelliptic equation

y2 = x6 + bx4 + bx2 + 1

has exponent r = 2.

This provides us with all the ingredients to give a family of genus 2 curves
such that the action of the wild inertia group on the ℓ-torsion points of their
Jacobians is trivial.

Theorem 5.8. Let ℓ > 3 be a prime number. Let a ∈ Fℓ be such that

x2 − x + a divides the Deuring polynomial Hℓ(x), and lift it to a ∈ Zℓ. Let

f0, f1, f2, f3 ∈ Zℓ such that f0 − 1, f1, f2 − (1 − a)/a, f3 ∈ (ℓ). Then the

equation y2 = f0x
6 + f1x

5 + f2x
4 + f3x

3 + f2x
2 + f1x + f0 ∈ Zℓ[x] defines

a genus 2 curve C such that the Galois extension Qℓ(J(C))/Qℓ is tamely

ramified.

6 Approximation to symmetry

The results in the previous section provide, for each ℓ > 3, a symmetric
genus 2 curve with good supersingular reduction such that its formal group
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law satisfies the hypotheses of Theorem 4.15, and in consequence also the
hypotheses of Theorem 3.3. But one might argue that these curves are not a
good example to illustrate Theorem 3.3, in the sense that they are actually
isogenous over Qℓ to a product of elliptic curves with good supersingular
reduction, and surely one can prove in a more direct fashion that the wild
inertia group at ℓ acts trivially. Our aim now is to enlarge this class of curves,
and provide other more complicated examples in which Theorem 3.3 applies.
The key idea is that we are going to take curves which are “approximately
symmetric”, that is to say, symmetric up to a certain order with respect to
the ℓ-adic valuation. More specifically, we wish to determine how close the
coefficients of a hyperelliptic equation of C ′ must be to those of a hyperelliptic
symmetric equation for the condition in Hypothesis 3.2 to be preserved. The
main result of this section is the following.

Theorem 6.1. Let C be a genus 2 curve given by a hyperelliptic equation

y2 = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0,

where f0, . . . , f6 ∈ Zℓ, and consider the genus 2 curve C ′/Qℓ given by the

equation

y2 = f ′
6x

6 + f ′
5x

5 + f ′
4x

4 + f ′
3x

3 + f ′
2x

2 + f ′
1x+ f ′

0

with f ′
0, . . . , f

′
6 ∈ Zℓ and satisfying fi − f ′

i ∈ (ℓ4). Then if the formal group

law attached to the Jacobian of C satisfies Hypothesis 3.2 with α = 1
ℓ2−1

, so

does the formal group law attached to the Jacobian of C ′.

The rest of the section is devoted to proving this result. Fix a genus 2
curve C/Qℓ, given by a hyperelliptic equation

y2 = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0,

where f0, . . . , f6 ∈ Zℓ, and consider the genus 2 curve C ′/Qℓ given by the
equation

y2 = f ′
6x

6 + f ′
5x

5 + f ′
4x

4 + f ′
3x

3 + f ′
2x

2 + f ′
1x+ f ′

0

with f ′
0, . . . , f

′
6 ∈ Zℓ.

Denote by F = (F1, F2) (resp. F′ = (F ′
1, F

′
2)) the formal group law

attached to C (resp. C ′). It can be proven that the coefficients of Fi (resp.
F ′

i ) lie in Z[f0, . . . , f6] (resp. Z[f ′
0, . . . , f

′
6]), i = 1, 2.

Therefore, if we assume that, for all i = 0, . . . , 6, fi − f ′
i ∈ (ℓs), then the

difference Fi(s1, s2, t1, t2) − F ′
i (s1, s2, t1, t2) has coefficients in (ℓs). Hence we

18



may drop the curves and work in the formal group setting, since all we have
to determine is the exponent s which preserves Hypothesis 3.2.

Denote by Qℓ an algebraic closure of Qℓ, and m ⊂ Qℓ the set of elements
with positive valuation. If the coefficients of the power series [ℓ]1(Z1, Z2),
[ℓ]2(Z1, Z2) are close (with respect to the ℓ-adic valuation) to the coefficients
of the series [ℓ]′1(Z1, Z2), [ℓ]

′
2(Z1, Z2), does this imply that the solutions of the

system of equations [ℓ]1(Z1, Z2) = [ℓ]2(Z1, Z2) = 0 are close to the solutions
of the system of equations [ℓ]′1(Z1, Z2) = [ℓ]′2(Z1, Z2) = 0?

A precise answer to this question can be found in [6], chapter III, § 4,
n◦ 5. The reasoning is carried out in the context of restricted formal power
series, but it can be adapted to this setting.

Namely, let A be a commutative ring, and fix an ideal m of A. Assume
that A is separable and complete with respect to the m-adic topology. As
usual, we will denote the tuples of elements in boldface.

Consider a system of n power series in n variables,

f = (f1, . . . , fn), fi ∈ A[[X1, . . . , Xn]].

We will denote by Jf the determinant of the Jacobian matrix, that is to
say,

Jf = det





∂f1

∂X1
· · · ∂f1

Xn

· · · · · · · · ·
∂fn

∂X1
· · · ∂fn

Xn



 .

By m
×n we shall mean the cartesian product of m with itself n times. We

will say that two n-tuples a and b are congruent modulo an ideal I of A if
they are so coordinatewise, that is to say, ai − bi ∈ I for i = 1, . . . , n. We
will apply the following result (cf. Corollary 1 in [6], chapter III, § 4, n◦ 5).

Corollary 6.2. Let f = (f1, . . . , fn) be a tuple of elements in A[[X1, . . . , Xn]],
and let a ∈ m

×n. Call e = Jf (a). If f(a) ≡ 0 mod e2m, then there exists

b ∈ m
×n such that f(b) = 0 and b ≡ a mod em. Furthermore, assume that

there exists another tuple b′ ∈ m
×n such that f(b′) = 0 and b′ ≡ a mod em.

Then, if A has no zero divisors, b = b′.

Let us go back now to our approximation problem. We have two formal
group laws F, F′, defined over Zℓ. We consider the two systems of equations

{

[ℓ]1(Z1, Z2) = 0

[ℓ]2(Z1, Z2) = 0
and

{

[ℓ]′1(Z1, Z2) = 0

[ℓ]′2(Z1, Z2) = 0
(1)
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where we know that for i = 1, 2, it holds that

[ℓ]i(Z1, Z2) − [ℓ]′i(Z1, Z2) ∈ ℓs · Zℓ[[Z1, Z2]].

Furthermore, since the systems of equations (1) describe the ℓ-torsion
points of the Jacobians of curves of genus 2, the set of solutions in m

×2 is
finite. We may thus consider a finite extension K ⊃ Qℓ that contains all the
coordinates of all the solutions of the systems in (1). Let us denote by OK

the ring of integers of K and by m its maximal ideal. It is clear that OK is
separable and complete with respect to the m-adic topology.

Let us call V ′ the set of pairs (x′, y′) ∈ m × m such that [ℓ]′1(x
′, y′) =

[ℓ]′2(x
′, y′) = 0. Our first claim is the following:

Lemma 6.3. For all (x′, y′) ∈ V ′, [ℓ]1(x
′, y′), [ℓ]2(x

′, y′) ∈ ℓsm.

Proof. Since [ℓ]′1(x
′, y′) = 0, we can write

[ℓ]1(x
′, y′) = [ℓ]1(x

′, y′) − [ℓ]′1(x
′, y′).

Furthermore, let us express

[ℓ]1(x, y) =
∑

ij

aijx
iyj and [ℓ]′1(x, y) =

∑

ij

a′ijx
iyj.

Hence [ℓ]1(x
′, y′) =

∑

ij(aij − a′ij)x
′iy′j . We know that aij − a′ij ∈ (ℓs),

and x′, y′ ∈ m, and also that [ℓ]1(x, y) is a power series without constant
term; thus it follows that [ℓ]1(x

′, y′) ∈ ℓsm. A similar reasoning shows that
[ℓ]2(x

′, y′) ∈ ℓsm.

In order to apply Corollary 6.2 to the system of equations [ℓ]1(Z1, Z2) =
[ℓ]2(Z1, Z2) = 0, we need to compute the determinant of the Jacobian matrix

e = det

(

ℓ 0
0 ℓ

)

= ℓ2. This suggests that we should choose s = 4.

Proof of Theorem 6.1. Take (x′, y′) ∈ m
×2 satisfying the equations

[ℓ]′1(x
′, y′) = [ℓ]′2(x

′, y′) = 0.

We know that [ℓ]1(x
′, y′), [ℓ]2(x

′, y′) ∈ ℓ4 · m. Hence there exists a unique
(x, y) ∈ m

×2 such that [ℓ]1(x, y) = [ℓ]2(x, y) = 0 and furthermore
{

x′ ≡ x mod ℓ2m

y′ ≡ y mod ℓ2m.
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In particular, the two conditions v(x′ − x) ≥ 2, v(y′ − y) ≥ 2 are satisfied.
But (x, y) is a point of ℓ-torsion of the Jacobian of C, and therefore we

know that

min{v(x), v(y)} = α =
1

ℓ2 − 1
.

But if v(x) = α and v(x′ − x) ≥ 2 > α, then it follows that v(x′) = α.
And similarly, if v(y) = α, then v(y′) = α. Also if v(x) > α, it cannot
happen that v(x′) < α (and the same applies to y, y′). We may conclude
that min{v(x′), v(y′)} = α.

Gathering together Proposition 5.8 and Theorem 6.1 we obtain, for each
prime ℓ > 3, a large family of abelian surfaces such that the action of the
wild inertia group upon their ℓ-torsion points is trivial.

Theorem 6.4. Let ℓ > 3 be a prime number. Let a ∈ Fℓ be such that

x2 − x + a divides the Deuring polynomial Hℓ(x), and lift it to a ∈ Zℓ. Let

f0, f1, . . . , f6 ∈ Zℓ satisfy that f6 − f0, f5 − f1, f4 − f2 ∈ (ℓ4) and furthermore

f6 − 1, f5, f4 − (1 − a)/a, f3 ∈ (ℓ). Then the equation y2 = f6x
6 + f5x

5 +
f4x

4 + f3x
3 + f2x

2 + f1x+ f0 ∈ Zℓ[x] defines a genus 2 curve C such that the

Galois extension Qℓ(J(C))/Qℓ is tamely ramified.
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