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COMPATIBLE SYSTEMS
OF SYMPLECTIC GALOIS REPRESENTATIONS

AND THE INVERSE GALOIS PROBLEM, II:
TRANSVECTIONS AND HUGE IMAGE

SARA ARIAS-DE-REYNA, LUIS DIEULEFAIT AND GABOR WIESE

This article is the second part of a series of three articles about compatible
systems of symplectic Galois representations and applications to the inverse
Galois problem.

This part is concerned with symplectic Galois representations having a
huge residual image, by which we mean that a symplectic group of full di-
mension over the prime field is contained up to conjugation. A key ingredi-
ent is a classification of symplectic representations whose image contains a
nontrivial transvection: these fall into three very simply describable classes,
the reducible ones, the induced ones and those with huge image. Using the
idea of an .n; p/-group of Khare, Larsen and Savin, we give simple condi-
tions under which a symplectic Galois representation with coefficients in a
finite field has a huge image. Finally, we combine this classification result
with the main result of the first part to obtain a strengthened application to
the inverse Galois problem.

1. Introduction

This article is the second of a series of three about compatible systems of symplectic
Galois representations and applications to the inverse Galois problem.

This part is concerned with symplectic Galois representations having a huge
image: for a prime `, a finite subgroup G � GSpn.F`/ is called huge if it contains
a conjugate (in GSpn.F`/) of Spn.F`/. By Corollary 1.3 below, this notion is the
same as the one introduced in Part I [Arias-de-Reyna et al. 2013].

Whereas the classification of the finite subgroups of Spn.F`/ appears very
complicated to us, it turns out that the finite subgroups containing a nontrivial
transvection can be very cleanly classified into three classes, one of which is that
of huge subgroups (see Theorem 1.1 below). Translating this group theoretic result
into the language of symplectic representations whose image contains a nontrivial
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transvection, these also fall into three very simply describable classes: the reducible
ones, the induced ones and those with huge image (see Corollary 1.2).

Using the idea of an .n;p/-group of [Khare et al. 2008] (i.e., of a maximally
induced place of order p, in the terminology of Part I), some number theory allows
us to give very simple conditions under which a symplectic Galois representation
with coefficients in F` has huge image (see Theorem 1.5 below).

This second part is independent of the first, except for Corollary 1.6, which com-
bines the main results of Part I [Arias-de-Reyna et al. 2013] and the present Part II.
In Part III [Arias-de-Reyna et al. 2015], written in collaboration with Sug Woo Shin,
a compatible system satisfying the assumptions of Corollary 1.6 is constructed.

Statement of results. To fix terminology, we recall some standard definitions. Let
K be a field. An n-dimensional K-vector space V equipped with a symplectic form
(i.e., nonsingular and alternating), denoted by hv;wiD v�w for v;w 2V , is called
a symplectic K-space. A K-subspace W � V is called a symplectic K-subspace
if the restriction of h � ; � i to W �W is nonsingular (hence, symplectic). The general
symplectic group GSp.V;h � ; � i/ DW GSp.V / consists of those A 2 GL.V / such
that there is ˛ 2K�, the multiplier (or similitude factor) of A, such that we have
.Av/�.Aw/D˛.v�w/ for all v;w2V . The symplectic group Sp.V;h � ; � i/DWSp.V /
is the subgroup of GSp.V / of elements with multiplier 1. An element �2GL.V / is a
transvection if ��idV has rank 1, i.e., if � fixes a hyperplane pointwisely, and there is
a line U such that �.v/�v2U for all v2V . We will consider the identity as a “trivial
transvection”. Any transvection has determinant and multiplier 1. A symplectic
transvection is a transvection in Sp.V /. Any symplectic transvection has the form

Tv Œ�� 2 Sp.V / W u 7! uC�.u � v/v

with direction vector v2V and parameter �2K; see, e.g., [Artin 1957, pp. 137–138].
The classification result on subgroups of general symplectic groups containing a

nontrivial transvection which plays the key role in our approach is the following.

Theorem 1.1. Let K be a finite field of characteristic at least 5 and V a symplectic
K-vector space of dimension n. Then any subgroup G of GSp.V / which contains
a nontrivial symplectic transvection satisfies one of the following assertions:

(1) There is a proper K-subspace S � V such that G.S/D S .

(2) There are mutually orthogonal nonsingular symplectic K-subspaces Si � V

with i D 1; : : : ; h of dimension m for some m < n such that V D
Lh

iD1 Si

and for all g 2 G, there is a permutation �g 2 Symh (the symmetric group
on f1; : : : ; hg) with g.Si/ D S�g.i/. Moreover, the action of G on the set
fS1; : : : ;Shg thus defined is transitive.

(3) There is a subfield L of K such that the subgroup generated by the symplectic
transvections of G is conjugated (in GSp.V /) to Spn.L/.
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In Section 2 we show how this theorem can be deduced from results of Kan-
tor [1979]. In a previous version of this article, we gave a self-contained proof,
which is still available on arXiv. For our application to Galois representations, we
provide the following representation theoretic reformulation of Theorem 1.1.

Corollary 1.2. Let ` be a prime at least 5, let � be a compact topological group and

� W �! GSpn.F`/

a continuous representation (for the discrete topology on F`). Assume that the image
of � contains a nontrivial transvection. Then one of the following assertions holds:

(1) � is reducible.

(2) There is a closed subgroup � 0 ¨ � of finite index h j n and a representation
�0 W � 0! GSpn=h.F`/ such that �Š Ind�� 0.�

0/.

(3) There is a finite field L of characteristic ` such that the subgroup generated by
the symplectic transvections in the image of � is conjugated (in GSpn.F`/) to
Spn.L/; in particular, the image is huge.

The following corollary shows that the definition of a huge subgroup of GSpn.F`/,
which we give in Part I [Arias-de-Reyna et al. 2013], coincides with the simpler
definition stated above.

Corollary 1.3. Let K be a finite field of characteristic ` � 5, V a symplectic
K-vector space of dimension n, and G a subgroup of GSp.V / which contains a
symplectic transvection. Then the following are equivalent:

(i) G is huge.

(ii) There is a subfield L of K such that the subgroup generated by the symplectic
transvections of G is conjugated (in GSp.V /) to Spn.L/.

Combining the group theoretic results above with .n;p/-groups, introduced
by [Khare et al. 2008], some number theory allows us to prove the following
theorem. Before stating it, let us collect some notation.

Set-up 1.4. Let n;N be positive integers with n even and N D N1 � N2 with
gcd.N1;N2/D 1. Let L0 be the compositum of all number fields of degree � n=2,
which are ramified at most at the primes dividing N2 (which is a number field).
Let q be a prime which is completely split in L0, and let p be a prime dividing
qn� 1 but not dividing qn=2� 1, and p � 1 .mod n/.

Theorem 1.5. Assume Set-up 1.4. Let k 2 N, ` 6D p; q be a prime such that
` > kn! C 1 and ` − N . Let �q W GQqn ! Q�

`
be a character satisfying the

assumptions of Lemma 3.1, and N�q the composition of �q with the reduction map
Z`! F`. Let N̨ WGQq

! F�
`

be an unramified character.
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Let
� WGQ! GSpn.F`/

be a Galois representation, ramified only at the primes dividing Nq`, satisfying
that a twist by some power of the cyclotomic character is regular in the sense of
Definition 3.2 with tame inertia weights at most k, and such that

(1) ResGQ

GQq
.�/D Ind

GQq

GQqn
. N�q/˝ N̨ ,

(2) the image of � contains a nontrivial transvection and

(3) for all primes `1 dividing N1, the image under � of I`1
, the inertia group at `1,

has order prime to n!.

Then the image of � is a huge subgroup of GSpn.F`/.

Combining Theorem 1.5 with the results of Part I [Arias-de-Reyna et al. 2013]
of this series yields the following corollary.

Corollary 1.6. Assume Set-up 1.4. Let �� D .��/� (where � runs through the
finite places of a number field L) be an n-dimensional a. e. absolutely irreducible
a. e. symplectic compatible system, as defined in Part I [Arias-de-Reyna et al. 2013],
for the base field Q, which satisfies the following assumptions:

� For all places �, the representation �� is unramified outside Nq`, where ` is
the rational prime below �.

� There are a 2 Z and k 2N such that, for all but possibly finitely many places �
of L, the reduction mod � of �a

`
˝ �� is regular in the sense of Definition 3.2,

with tame inertia weights at most k.

� The multiplier of the system is a finite order character times a power of the
cyclotomic character.

� For all primes ` not belonging to a density zero set of rational primes, and for
each � j `, the residual representation N�� contains a nontrivial transvection in
its image.

� For all places � not above q, one has

ResGQ

GQq
.��/D Ind

GQq

GQqn
.�q/˝˛;

where ˛ W GQq
! L�

�
is some unramified character and �q W GQqn ! Z� is

a character such that its composite with the embedding Z� ,!Q�
`

given by �
satisfies the assumptions of Lemma 3.1 for all primes `−pq. In the terminology
of Part I, q is called a maximally induced place of order p.

� For all primes `1 dividing N1 and for all but possibly finitely many places �, the
group N��.I`1

/ has order prime to n! (where I`1
denotes the inertia group at `1).
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Then we obtain:

(a) For all primes ` not belonging to a density zero set of rational primes, and for
each � j `, the image of the residual representation N�� is a huge subgroup of
GSpn.F`/.

(b) For any d j p�1
n

there exists a set Ld of rational primes ` of positive density
such that for all ` 2 Ld , there is a place � of L above ` satisfying that the
image of N� proj

�
is PGSpn.F`d / or PSpn.F`d /.

The proofs of Theorem 1.5 and Corollary 1.6 are given in Section 3.

Remark 1.7. It is natural to ask which of the two alternatives in Corollary 1.6(b)
actually holds. It is very hard to give a general answer. The same indeterminacy
occurs in [Khare et al. 2008] (see its arXiv version arXiv:math/0610860v3).

In the very special case, when there is no residual inner twist at a prime �, the
multiplier determines which case one is in. More precisely, by definition there
is no residual inner twist at � if the residue fields modulo � of E�� (the field of
definition of ��) and K�� (the projective field of definition of ��) coincide (see
[Arias-de-Reyna et al. 2013, Section 4]); call it F. In that case, if the image of
N�� is huge, up to conjugation we have Spn.F/ � N��.GQ/ � GSpn.F/ and thus
PSpn.F/� N�

proj
�
.GQ/� PGSpn.F/. The first inclusion is an equality if and only if

the multiplier of N�� is a square in F; otherwise the second inclusion is an equality.
When n D 2, in [Dieulefait and Wiese 2011] the difference between the field

of definition and the projective one could be controlled due to special choices of
modular forms; this allowed distinguishing between the two possibilities and, for
every d � 1, realising the simple group PSL2.F`d / as a Galois group over Q for a
positive density set of primes `.

If the two residue fields do not coincide, the multiplier is not enough to distinguish
between the two cases.

2. Symplectic representations containing a transvection

This section is devoted to Theorem 1.1. This theorem can be deduced from more
general results, like those of [Guralnick and Saxl 2003]. We prefer to deduce it from
the results of Kantor [1979], together with some representation theory of groups.
We hope that the detailed and quite elementary proof we give on page 6 will be of
value to the number theory community.

Throughout the section, our setting will be the following: `� 5 denotes a prime
number, n an even positive integer and V a symplectic n-dimensional vector space
over a finite field K of characteristic `.

Kantor’s classification result. Kantor [1979] classifies subgroups of classical linear
groups which are generated by a conjugacy class of elements of long root subgroups.

http://arXiv.org/abs/math/0610860v3
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In this paper, we are only concerned with subgroups of the symplectic group Sp.V /.
This case is addressed in [Kantor 1979, §11].

We need some notation in order to state his result. First of all, recall that in the
symplectic case, the elements of long root subgroups are precisely the symplectic
transvections. Given a subgroup H �Sp.V /, denote by O`.H / the maximal normal
`-subgroup contained in H , denote by ŒH;H � the commutator subgroup of H , and
by ZSp.V /.H / the centraliser of H in Sp.V /. Below we state the result of Kantor
in the symplectic case (leaving aside the cases of characteristic 2 and 3).

Theorem 2.1 (Kantor). Assume that ` � 5, and let H � Sp.V / be a subgroup
satisfying the following conditions:

(1) There exists a set X�H consisting of transvections, closed under conjugation
in H , which generates H .

(2) O`.H /� ŒH;H �\ZSp.V /.H /.

(3) H does not preserve any nonsingular subspace of V .

Then there is a subfield L of K such that H is conjugated (in Sp.V /) to Spn.L/.

We will apply this result in the case when H is an irreducible subgroup. In this
case, conditions (2) and (3) are satisfied. We elaborate on condition (2). Let W �V

be the subspace of elements that are left invariant by all elements in O`.H /. Since
O`.H / is an `-group acting on a finite `-group V , the cardinality of W is divisible
by ` (see Lemma 1 of Chapter IX of [Serre 1979]); hence W 6D f0g. Moreover, since
O`.H / is a normal subgroup of H , it follows that H stabilises W . But H is an
irreducible group; hence W DV and O`.H /DfIdg. Furthermore, if we take into ac-
count that the conjugate of a transvection is again a transvection, we can reformulate
condition (1) as follows: “the transvections contained in H generate H”, or simply
“H is generated by transvections”. This discussion proves the following corollary.

Corollary 2.2. Assume that `� 5, and let H � Sp.V / be an irreducible subgroup
which is generated by transvections. Then there is a subfield L of K such that H is
conjugated (in Sp.V /) to Spn.L/.

Proof of the group theoretic results. We will make use of the following facts about
transvections, the simple proofs of which are omitted.

Lemma 2.3. Let TuŒ�� 2 Sp.V / be a symplectic transvection. Then

(a) For any A 2GSp.V / with multiplier ˛ 2K�, we have ATuŒ��A
�1 D TAu

�
�
˛

�
.

(b) Suppose W �V is a K-vector subspace stabilised by TuŒ�� with �2K�. Then
we have

(1) u 2W or u 2W ?;
(2) u 2W ?, TuŒ��jW D idW .
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Proof of Theorem 1.1. Let G � GSp.V / be a subgroup which contains a nontrivial
transvection. If the action of G on V is reducible, we are in case (1) of the theorem.
Assume that the action of G on V is irreducible, and define the subgroup H WD h� 2

G W � is a transvectioni. Note that H is nontrivial. If the action of H on V is irre-
ducible, we can apply Corollary 2.2 to the group H and conclude that H is conjugate
in GSp.V / to Spn.L/ for some subfield L�K. This is case (3) of the theorem.

Assume then that the action of H on V is reducible. Let W � V be a K-vector
subspace on which H acts irreducibly. By Lemma 2.3(a), the group H is a normal
subgroup of G. Thus we can apply Clifford’s theorem (see [Curtis and Reiner 1981,
(11.1)]), to obtain g1; : : : ;gr 2G such that we have the equality of H -modules

(2-1) V D

rM
iD1

giW:

We first remark that W is not the trivial H -module, as otherwise H would
act trivially on V and thus H would be the trivial group. Now consider W 0 D

hu 2W W 9� 2 K� W TuŒ�� 2 H i. As W is a nontrivial H -module, W 0 ¤ 0. Let
Tv Œ�� 2H and u 2W 0. By Lemma 2.3(b), v 2W 0 or v 2W ?. In both cases, we
have Tv Œ��.u/D uC�.u � v/v 2W 0, showing that H preserves W 0, so that the
irreducibility of W implies W 0 DW .

Let zW D gW be a conjugate of W for which we assume zW ¤ W , so that
zW \W D0 since W is irreducible. We have just seen that there are w1; : : : ;wm2W

spanning W and �1; : : : ; �m2K� such that Tw1
Œ�1�; : : : ;Twm

Œ�m�2H . As H also
preserves zW , Lemma 2.3(b) shows wi 2

zW ? for 1 � i � m. This proves two
things. Firstly, W � zW ? and this means that the decomposition (2-1) of V is
into mutually orthogonal spaces. From this it follows these subspaces are also
symplectic, i.e., that the pairing is nondegenerate on each subspace. Secondly,
Tw1

Œ�1� is the identity on zW , but it is nontrivial on W (e.g., by the nondegeneration
of W , there is u 2W such that u �w1 ¤ 0, whence Tw1

Œ�1�.u/¤ u). Hence, W

and zW are nonisomorphic as H -modules.
Considering the composite maps gW ,! V

projection
�����! giW , in view of the

irreducibility of the giW and the fact that giW 6Š gj W for i ¤ j , it follows
that gW is one of the giW . Thus, G acts on the set fg1W; : : : ;gr W g. If this
action were not transitive, then the sum of the spaces in one orbit would be a
proper nontrivial G-submodule of V , contradicting the irreducibility of V . Thus,
all statements of case (2) of the theorem are proved. �
Proof of Corollary 1.2. Since � is compact and the topology on F` is discrete, the
image of � is a subgroup of GSpn.K/ for a certain finite field K of characteristic `.
Therefore one of the three possibilities of Theorem 1.1 holds for G WD im.�/. If the
first holds, then � is reducible, and if the third holds, then im.�/ contains a group
conjugate to Spn.L/ for some subfield L of K.
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Assume now that the second possibility holds. We use notation as in Theorem 1.1.
Let � 0 be fg 2 � j �g.1/ D 1g, the stabiliser of the first subspace. This is a
closed subgroup of � of finite index. Choose coset representatives and write
� D

Fh0

iD1gi�
0. The set fS1 j  2 �g contains h0 elements, namely precisely the

giS1 for i D 1; : : : ; h0. As the action of G on the decomposition is transitive, this
set is precisely fS1; : : : ;Shg, whence hD h0. Define �0 as the restriction of � to � 0

acting on S1. Then as a � 0-representation, we have the isomorphism

V Š

hM
iD1

Si Š

hM
iD1

giS1:

Proposition (10.5) of ~10A of [Curtis and Reiner 1981] implies �D Ind�� 0.�
0/. �

Proof of Corollary 1.3. Assume that G contains a subgroup conjugate (in GSp.V /)
to Spn.F`/. In particular, G does not fix any proper subspace S � V , nor any
decomposition V D

Lh
iD1 Si into mutually orthogonal nonsingular symplectic

subspaces. Hence by Theorem 1.1, there is a subfield L of K such that the subgroup
generated by the symplectic transvections of G is conjugated (in GSp.V /) to Spn.L/.
The other implication is clear. �

3. Symplectic representations with huge image

In this section we establish Theorem 1.5.

.n; p/-groups. As a generalisation of dihedral groups, in [Khare et al. 2008], Khare,
Larsen and Savin introduce so-called .n;p/-groups. We briefly recall some facts
and some notation to be used. For the definition of .n;p/-groups, we refer to
[loc. cit.]. Let q be a prime number, and let Qqn=Qq be the unique unramified
extension of Qq of degree n (inside a fixed algebraic closure Qq). Assume p is a
prime such that the order of q modulo p is n. Recall that Q�qn ' �qn�1 �U1 � qZ,
where �qn�1 is the group of .qn�1/-th roots of unity and U1 the group of 1-units.
Let ` be a prime distinct from p and q. Assuming that p; q > n, in [loc. cit.], the
authors construct a character �q WQ

�
qn !Q�

`
that satisfies the three properties of

the following lemma, which is proved in [loc. cit., Section 3.1].

Lemma 3.1. Let �q WQ
�
qn !Q�

`
be a character satisfying:

� �q has order 2p.

� �qj�qn�1�U1
has order p.

� �q.q/D�1.

This character gives rise to a character (which by abuse of notation we call also �q)
of GQqn by means of the reciprocity map of local class field theory.
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Let
�q D Ind

GQq

GQqn
.�q/:

Then �q is irreducible and symplectic, in the sense that it can be conjugated to
take values in Spn.Q`/, and the image of the reduction N�q of �q in Spn.F`/ is an
.n;p/-group. Moreover, if N̨ WGQq

! F�
`

is an unramified character, then N�q˝ N̨

is also irreducible.

Note that also the reduction of �q is IndGQq
GQqn

. N�q/, which is an irreducible rep-
resentation. Here N�q is the composite of �q and the projection Z`� F`. To see
why the last assertion is true, note that to see that

N�q˝ N̨ D Ind
GQq

GQqn
. N�q˝ . N̨ jGQqn

//

is irreducible, it suffices to prove that the n characters

N�q˝ . N̨ jGQqn
/; . N�q˝ . N̨ jGQqn

//q; : : : ; . N�q˝ . N̨ jGQqn
//q

n�1

are different (see [Serre 1977, Proposition 23, Chapter 7]). But the order of the
restriction of N�q˝ . N̨ jGQqn

/ to the inertia group at q is p (since N̨ is unramified),
and the order of q mod p is n.

Regular Galois representations. In our result we assume that our representation
� is regular, which is a condition on the tame inertia weights of �.

Definition 3.2 (regularity). Let ` be a prime number, n a natural number, V an
n-dimensional vector space over F` and � WGQ` !GL.V / a Galois representation,
and denote by I` the inertia group at `. We say that � is regular if there exists an
integer s between 1 and n, and for each i D 1; : : : ; s, a set Si of natural numbers in
f0; 1; : : : ; `�1g, of cardinality ri , with r1C� � �C rs D n, say Si D fai;1; : : : ; ai;ri

g,
such that the cardinality of S D S1[� � �[Ss equals n (i.e., all the ai;j are distinct)
and such that, if we denote by Bi the matrix

Bi �

0BBBB@
 

bi
ri

0

 
bi`
ri

: : :

0  
bi`

ri�1

ri

1CCCCA
with  ri

our fixed choice of fundamental character of niveau ri and bi D ai;1C

ai;2`C � � �C ai;ri
`ri�1, then

�jI` �

0B@ B1 �

: : :

0 Bs

1CA :
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The elements of S are called tame inertia weights of �. We will say that � has
tame inertia weights at most k if S � f0; 1; : : : ; kg. We will say that a global
representation � WGQ! GL.V / is regular if �jGQ`

is regular.

Lemma 3.3. Let � WGQ` ! GLn.F`/ be a Galois representation which is regular
with tame inertia weights at most k. Assume that ` > kn!C 1. Then all the n!-th
powers of the characters on the diagonal of �jI` are distinct.

Proof. We use the notation of Definition 3.2. Assume we have that the n!-th powers
of two characters of the diagonal coincide, say

(3-1)  
n!.c0Cc1`C���Ccri�1`

ri�1/
ri

D  
n!.d0Cd1`C���Cdrj�1`

rj�1
/

rj ;

where c0; : : : ; cri�1; d0; : : : ; drj�1 are distinct elements of S1[ � � � [Ss .
Let  ri rj be a fundamental character of niveau rirj such that

 
ˆ
.i;j /

i
ri rj D  ri

and  
ˆ
.i;j /

j

ri rj D  rj ;

where
ˆ
.i;j/
i D

`ri rj � 1

`ri � 1
and ˆ

.i;j/
j D

`ri rj � 1

`rj � 1
:

We can write (3-1) above as

 
ˆ
.i;j /

i
n!.c0Cc1`C���Ccri�1`

ri�1/
ri rj D  

ˆ
.i;j /

j
n!.d0Cd1`C���Cdrj�1`

rj�1
/

ri rj :

In other words, `ri rj � 1 divides the quantity

C0D
ˇ̌
ˆ
.i;j/
i n!.c0Cc1`C� � �Ccri�1`

ri�1/�ˆ
.i;j/
j n!.d0Cd1`C� � �Cdrj�1`

rj�1/
ˇ̌
:

Note that C0 is nonzero because modulo ` it is congruent to n!.c0 � d0/, and by
assumption all elements in S1[� � �[Ss are in different congruence classes modulo `.
But jc0C c1`C � � � C cri�1`

ri�1j � k.1C `C � � � C `ri�1/ D k.`ri � 1/=.`� 1/.
Analogously jd0 C d1`C � � � C drj�1`

rj�1j < k.`rj � 1/=.` � 1/. Thus C0 is
bounded above by

max
ˇ̌̊
ˆ
.i;j/
i n!.c0Cc1`C� � �Ccri�1`

ri�1/
ˇ̌
;
ˇ̌
ˆ
.i;j/
j n!.d0Cd1`C� � �Cdrj�1`

rj�1/
ˇ̌	

� n!k

�
`ri rj � 1

`� 1

�
< n!k.`ri rj�1

C 2`ri rj�2/:

Since `� 2� n!k, we have `2� 1> `2� 4� n!k.`C 2/ and thus

C0 < n!k.`ri rj�1
C 2`ri rj�2/D n!k.`C 2/`ri rj�2 < `ri rj � 1:

Hence `ri rj � 1 cannot divide C0. �
We will now use these lemmas to study the ramification at ` of an induced

representation under the assumption of regularity (possibly after a twist by a power
of the cyclotomic character) and boundedness of tame inertia weights.
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Proposition 3.4. Let n;m; k 2 N, a 2 Z and let ` > kn!C 1 be a prime, K=Q a
finite extension such that ŒK WQ��mDn, � WGK!GLm.F`/ a Galois representation
and let ˇ D IndGQ

GK
�. If �a

`
˝ˇ is regular with tame inertia weights at most k, then

K=Q does not ramify at `.

Proof. Assume that K=Q ramifies at `; we will derive a contradiction. First of all,
let us fix some notation: let N=Q be the Galois closure of K=Q, and let us fix a
prime � of N above `. Denote by I` � GQ the inertia group at `, I`;w � I` the
wild inertia group at ` and IN � GN the inertia group at the prime �. Let W be
the F`-vector space underlying �. For each  2 GQ, let K D  .K/ and define
� WGK ! GL.W / by �.�/D �.��1/.

Let us now pick any  2 GQ, � 2 I` and � 2 IN . Since I`=I`;w is cyclic, we
have that the commutator ��1����1 belongs to I`;w. Since IN � I` is normal,
��1�� 2 IN �GN �GK , so we may apply � and conclude

�.��1��/�.��1/D �.��1����1/ 2 �.I`;w/I

hence �.��1��/ and �.�/ have exactly the same eigenvalues.
Since N=Q ramifies in `, we may pick � 2 I` nGN , and since N D

Q
2GQ

K,
there exists some  2 GQ such that � 62 GK . This implies that ˇ.� /.W / \

ˇ. /.W /D 0. Choose now a set of left-coset representatives f1GK ; : : : ; dGK g

of GK in GQ with 1 D  and 2 D � ; Mackey’s formula [Curtis and Reiner
1981, 10.13] implies that

ResGQ

GN
IndGQ

GK
�D

dM
iD1

Res
Gi K

GN

i�:

Therefore ˇ.�/ is a block-diagonal matrix, where one block is �.�/ and another
block is ��.�/ D �.��1��/. But, by hypothesis, the tame inertia weights of
�a
`
˝ˇ are bounded. By Lemma 3.3, we have that the n!-powers of the characters

on the diagonal of �a
`
˝ˇjI` are all different, which implies that the characters on

the diagonal of ˇjIN
are all different. Thus �.�/ and �.��1��/ cannot have the

same eigenvalues for all � 2 IN . �

Representations induced in two ways. We need a proposition concerning repre-
sentations induced from different subgroups of a certain group G.

Proposition 3.5. Let G be a finite group, N EG, H �G. Assume .G WN /Dn, and
let p > n be a prime. Let K be a field of characteristic coprime to jGj containing
all jGj-th roots of unity. Let S be a KŒH �-module, � WN !K� a character, say
� D �1 ˝ �2, where �1 W N ! K� (resp. �2 W N ! K�) has order equal to a
nontrivial power of p (resp. not divisible by p). Assume

� WD IndG
H .S/D IndG

N .�/;

and furthermore the n characters f��
1
W � 2G=N g are different. Then N �H .
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Following [Serre 1977, 7.2], if G is a finite group and we are given two
G-modules V1 and V2, we will define hV1;V2iG WD dim HomG.V1;V2/. It is
known (Lemma 2 of Chapter 7 of [loc. cit.]) that, if '1 and '2 are the characters of
V1 and V2, then

hV1;V2iG D h'1; '2iG WD
1

jGj

X
g2G

'1.g
�1/'2.g/:

Before giving the proof, we will first prove a lemma.

Lemma 3.6. Let G be a group, N E G and H � G such that .G W H / � n. Let
p be a prime such that p > n, let K be a field of characteristic coprime to jGj
containing all jGj-th roots of unity, and let � WN !K� be a character whose order
is a nontrivial power of p. Then ResN

H\N� is not trivial.

Proof. Assume ResN
H\N� is trivial. Then H \N � ker�. But ker��N , and the

index .N W ker�/ is at least p. Therefore .N WH \N /� p. But on the other hand
p > n� .G WH /� .HN WH /D .N WN \H /, a contradiction. �
Proof of Proposition 3.5. Observe that � is irreducible. Namely, there is a well-
known criterion characterising when an induced representation is irreducible (see
[Serre 1977, Proposition 23, Chapter 7]). In particular, since N is normal in G,
we have that IndG

N� is irreducible if and only if � is irreducible (which clearly
holds) and, for all g 2G=N , .ResG

N .�//
h is not isomorphic to ResG

N .�/. This last
condition holds because the n characters f��

1
W � 2G=N g are different, and �2 has

order prime to p.
Since � is irreducible, we have that

1D h�; �iG D hIndG
H .S/; IndG

N .�/iG D hS;ResG
H IndG

N .�/iH D � � � ;

where in the last step we used Frobenius reciprocity. Now we apply Mackey’s
formula [Curtis and Reiner 1981, 10.13] on the right-hand side; note that, since N

is normal, HnG=N 'G=.H �N /:

� � � D

�
S;

M
2G=.H �N /

IndH
H\N ResN

H\N .�
 /

�
H

D

X
2G=.H �N /

�
S; IndH

H\N ResN
H\N .�

 /

�
H

:

Hence there is a unique  2G=.H �N / such that

hS; IndH
H\N ResN

H\N .�
 /iH D 1:

If we prove that, for all  , IndH
H\N ResN

H\N .�
 / is irreducible, then we will have

S ' IndH
H\N ResN

H\N .�
 /
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(for some  ); hence dim.S/ D .H W H \ N /. But, on the other hand, since
�D IndG

H .S/D IndG
N .�/, we have that dim.S/ � .G WH /D .G WN /, so

dim.S/D
.G WHN /.HN WN /

.G WHN /.HN WH /
D
.H WN \H /

.N WN \H /
;

and therefore the conclusion is that .N WN \H /D 1; in other words, N �H .
Therefore to conclude, we only need to see that IndH

H\N ResN
H\N .�

 / is irre-
ducible. Since conjugation by  plays no role here, let us just assume  D 1. We
apply again the criterion characterising when an induced representation is irreducible.
In particular, since H \N is normal in H , we have that IndH

H\N ResN
H\N .�/ is

irreducible if and only if ResN
H\N .�/ is irreducible (which clearly holds) and, for

all h 2H=N \H , .ResN
H\N .�//

h is not isomorphic to ResN
H\N .�/.

So pick h 2H nN . We have

.ResN
H\N .�//

h
D ResN

H\N .�
h/:

Assume ResN
H\N .�

h/ D ResN
H\N .�/. In particular, we obtain ResN

H\N .�
h
1
/ D

ResN
H\N .�1/. By Lemma 3.6, we have �1D�

h
1

as characters of N . But for all � 2
G=N , we know that ��

1
¤�1. Now it suffices to note that H=.H\N / ,!G=N . �

Proofs. Finally we carry out the proof of Theorem 1.5.

Lemma 3.7. Assume Set-up 1.4. Let k 2N, ` 6Dp; q be a prime such that `>kn!C1

and ` − N . Let �q W GQqn ! Q�
`

be a character satisfying the assumptions of
Lemma 3.1, and N�q the composition of �q with the reduction map Z` ! F`. Let
N̨ WGQq

! F�
`

be an unramified character.
Let � WGQ! GSpn.F`/ be a Galois representation, ramified only at the primes

dividing Nq`, such that a twist by some power of the cyclotomic character is regular
in the sense of Definition 3.2 with tame inertia weights at most k, and satisfying (1)
and (3) of Theorem 1.5. Then � is not induced from a representation of an open
subgroup H ¨GQ.

Proof. Let H �GQ be an open subgroup, say of index h, and �0 WH !GLn=h.F`/

a representation such that
�Š IndGQ

H
.�0/:

Call S1 and V , with S1 � V , the spaces underlying �0 and �, respectively, so that
�D IndGQ

H .S1/. Recall that by assumption

ResGQ

GQq
.�/D Ind

GQq

GQqn
. N�q/˝ N̨ :

We want to compute ResGQ

GQq
IndGQ

H .S1/. Let us apply Mackey’s formula [Curtis
and Reiner 1981, 10.13]. By Lemma 3.1 we know that

ResGQ

GQq
IndGQ

H
.S1/D Ind

GQq

GQqn
. N�q/˝ N̨
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is irreducible, so there can only be one summand in the formula; hence

ResGQ

GQq
IndGQ

H
.S1/D Ind

GQq

GQq\H
ResH

GQq\H .S1/;

and therefore

(3-2) Ind
GQq

GQq\H
ResH

GQq\H .S1/D Ind
GQq

GQqn
. N�q/˝ N̨ :

We now apply Proposition 3.5 to (3-2). Note that

ResGQ

GQq
�D Ind

GQq

GQqn
. N�q/˝ N̨ D Ind

GQq

GQqn
. N�q˝ . N̨ jGQqn

//:

We can write N�q˝. N̨ jGQqn
/ D N�1 ˝ N�2, where N�1 has order a power of p and

N�2 has order prime to p. Note that the restriction of N�q˝ . N̨ jGQqn
/ to the inertia

group Iq of GQq
coincides with the restriction of N�q , which has order p. Thus

. N�1˝ N�2/jIq
D N�qjIq

D N�1jIq
. Since the order of q mod p is n, we know that the

n characters N�1jIq
; N�

q
1
jIq
; : : : ; N�

qn

1
jIq

are distinct. We can take G D �.GQq
/ in the

statement of Proposition 3.5, whose order is a divisor of 2np � ord. N̨ / and, hence,
prime to `. It thus follows that GQqn � .GQq

\H /.
Note that, on the one hand

nD dim V D dim.IndGQ

H
S1/D .GQ WH / dim.S1/:

On the other hand,

nD dim.Ind
GQq

GQq\H
ResH

GQq\H .S1//D .GQq
WGQq

\H / dim.S1/I

hence .GQ WH /D .GQq
WGQq

\H /.
Let L be the number field such that H D Gal.Q=L/. Now Gal.Q=L/\GQq

D

Gal.Qq=Lq/, where q is a certain prime of L above q and Lq denotes the completion
of L at q. The inclusion GQqn �Gal.Qq=Lq/means that we have the field inclusions

Qq �Lq �Qqn �Qq

and ŒLq WQq �D .GQq
WGQq

\H /D .GQ WH /D ŒL WQ�; hence q is inert in L=Q.
Let `1 be a prime dividing N1, let zL=Q be a Galois closure of L=Q, ƒ1 a prime

of zL above `1 and I1 the inertia group of ƒ1 over Q. Since gcd.j�.I`1
/j; n!/D 1

and Gal. zL=Q/ has order dividing n!, we get that the projection of �.I1/� �.I`1
/

into �.GQ/=�.G zL/ is trivial. Thus, �.I1/ � �.G zL/. Hence zL=Q is unramified
at `1 and so is L=Q.

To sum up, we know that L can only be ramified at the primes dividing Nq`.
But L cannot ramify at q since Lq � Qqn (and Qqn is an unramified extension
of Qq). We just saw that L cannot ramify at the primes dividing N1. We also know
that L cannot be ramified at ` (see Proposition 3.4). Hence L only ramifies at the
primes dividing N2. By the choice of q, it is completely split in L, and at the same
time inert in L. This shows LDQ and H DGQ. �
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Now we can easily prove the main group theoretic result.

Proof of Theorem 1.5. Let G D Im�. Since G contains a transvection, one of the
following three possibilities holds (cf. Corollary 1.2):

(1) � is reducible.
(2) There exists an open subgroup H ¨GQ, say of index h with n=h even, and a

representation �0 WH ! GSpn=h.F`/ such that �Š IndGQ

H �0.
(3) The group generated by the transvections in G is conjugated (in GSpn.F`/) to

Spn.F`r / for some exponent r .

By Lemma 3.1, G acts irreducibly on V ; hence the first possibility cannot occur.
By Lemma 3.7, the second possibility does not occur. Hence the third possibility
holds, and this finishes the proof of the theorem. �

Proof of Corollary 1.6. This follows from the main theorem of Part I [Arias-de-
Reyna et al. 2013] concerning the application to the inverse Galois problem. In
order to be able to apply it, there are two things to check: Firstly, we note that ��
is maximally induced of order p at the prime q. Secondly, the existence of a
transvection in the image of N�� together with the special shape of the representation
at q allow us to conclude from Theorem 1.5 that the image of N�� is huge for all � j `,
where ` runs through the rational primes outside a density zero set. �
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