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Abstract

This article is the third and last part of a series of threelag about compatible systems of
symplectic Galois representations and applications tintrerse Galois problem.

This part proves the following new result for the inversediaproblem for symplectic groups.
For any even positive integerand any positive integet, PSp,, (F,a) or PGSp,, (F,«) occurs as
a Galois group over the rational numbers for a positive dgissit of primed.

The result is obtained by showing the existence of a regalggbraic, self-dual, cuspidal
automorphic representation 6fL,,(Ag) with local types chosen so as to obtain a compatible
system of Galois representations to which the results frarhIPof this series apply.

MSC (2010): 11F80 (Galois representations); 12F12 (Irev&slois theory).

1 Introduction

This article is the last part of a series of three on compatiylstems of symplectic Galois repres-
entations and applications to the inverse Galois probldnAdDW134d], [AdDW13h]). Our main
theorem is the following new result for the inverse Galoisigem overQ for symplectic groups.

Theorem 1.1. For any even positive integer and for any positive integetl there exists a set of
rational primes of positive density such that, for everyr@¥ in this set, the grouf?GSp,, (Fa) or
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PSp,,(F,a) is realised as a Galois group ovép. The corresponding number field ramifies at most
at ¢ and two more primes, which are independent.of

In fact, one of the two auxiliary primes can be taken to be aime, the other one can be chosen
from a set of primes of positive density defined by an expl@fitebotarev condition. The set of
primes¢ depends on the two previous choices and the choice of an arpbio form, and is also given
by a Chebotarev condition (in the projective field of defomti(see[[AdDW13a]) of the compatible
system of Galois representations attached to the autoriedigpin (see below)) except for a density-
zero set.

Theoren( LIl is complementary to the main result of Kharesdraand Savin [KLS08], in the
sense that it is in the horizontal direction in the termiggie@f [DW11], whereas loc. cit. is in the
vertical one, that is¢ is fixed andd runs. The horizontal direction needs quite a different apph
from the vertical one. Nevertheless, some ideas of [KI.Sfi8]instance that ofn, p)-groups, are
crucially used also in our approach. The overall strateglegribed in the introduction to Part I.

The goal in this Part Il is to construct compatible systerh§alois representations satisfying
the conditions in the main theorem on the inverse Galoislprnotof [AdDW13b]. In order to do
s0, we prove the existence of a regular, algebraic, self-duespidal automorphic representation
of GL,,(Ag) with the required local types by adapting the results fromiIg]. This automorphic
representation is such that the compatible system of Galpigsentations attached to it is symplectic,
generically irreducible, has a maximally induced plgcaf a certain prime ordep, and locally at a
primet contains a transvection. In order to show that the trangred preserved in the image of the
residual representation, at least for a density one setiroiegr we will apply a level-lowering result
from [BLGGT13] over suitable quadratic imaginary fields.

The structure of this paper is the following. In Sectidn 2 weall general facts about regular
self-dual automorphic representations and their corredipg compatible systems of Galois repres-
entations (everything in this section can be found in [BLAQG]). In Sectiom B we show the existence
of the sought for automorphic representation. In Sedtionedspecify the conditions on the rami-
fied primes that we will need and explain the properties ofdbmpatible system attached to the
automorphic representation from Sectidn 3. In Sediion 5 afopm the level-lowering argument.
Finally, in Sectiori 6 we derive the main conclusions thabfelfrom the combination of the results
in our three papers.
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2 RAESDC automorphic representations and the Galois repremta-
tions attached to them

The reader is referred to [BLGGT13] for more details contgyranything in this section except the
v = [ case of [(b) below, for which we refer to [Cai12]. For a figldve adopt the notatiod;, to
denote the absolute Galois groupkof

Let Z™* be the set ofi-tuplesa = (a;) € Z" such thata; > ay > .... > a,. Leta € Z™T,
and let=, be the irreducible algebraic representationGdf,, with highest weighta. A RAESDC
(regular, algebraic, essentially self-dual, cuspidalX@morphic representation @kL,,(Ag) is a pair
(m, ) consisting of a cuspidal automorphic representatiai GL,,(Ag) and a continuous character
s Ag/Q* — C* such that:

(1) (regular algebraick., has the same infinitesimal character=sfor a € Z™*. We say thatr
has weighta.

(2) (essentially self-dualy = 7V ® (u o det).

Such a pair(w, i) is an instance of a polarized representation in the sensBL@GT13, 2.1].
In this situation, there exists an integersuch that, for everyt < i < n, a; + apy1-; = w. Let
S be the (finite) set of primes such thatr, is ramified. There exist a number fiedd C C, which
is finite over the field of rationality ofr in the sense of [Cl0o90], and a strictly compatible system of
semisimple Galois representations (see [BLGGT13, 5.1thismotion; in particular the characteristic
polynomial of a Frobenius element at almost every finite plaas coefficients id/)

pa(m) : Gg — GL, (M),
p)\(:u') : GQ — M;\<7

where\ ranges over all finite places of (together with fixed embeddingd — My — M, where
M, is an algebraic closure dff,) such that the following properties are satisfied.

Q) pa(m) 2 pa(m)V ® X%;J”px(u), wherex.,. denotes thé-adic cyclotomic character.

(2) The representations, () andp, (x) are unramified outsidg U {¢}, wherel denotes the rational
prime belowA.

(3) Locally at/ (i.e., when restricted to a decomposition groug)athe representations, (7) and
px(p) are de Rham, and if ¢ S, they are crystalline.

(4) The seIT(p) (7)) of Hodge-Tate weights gf, () is equal to:
{a’l + (n_ 1)70'2 + (n_ 2)7"'7an}'

3



(The Hodge-Tate weight of.,. is —1.) In particular, they are different numbers and they are
independent of and/. Therefore, the representations are regular.

(5) The system is strictly compatible, as implied by thedaling compatibility with Local Lang-
lands: Fix any isomorphism: M ~ C compatible with the inclusiod/ c C w.r.t. the already
fixed embeddingl/ — M) — M . Whetherv { £ or v|¢, we have:

tWD(pa(m)|ag, )T ™ = rec(m, @ | det | 7/2). (2.1)

Here WD denotes the Weil-Deligne representation attached to @septation ofig,, F — ss
means the Frobenius semisimplification, awd is the notation for the (unitarily normalised)
Local Langlands Correspondence, which attaches to aruiigld admissible representation of
GL,(Q,) aWD representation of the Weil grodyy, .

Remark 2.1. We did not include in the notation since the isomorphism clasggfr) is independent
of the choice of. This is easy to deduce from the fact that the Frobenius gratall but finitely many
places are inM via the Chebotarev density theorem.

Remark 2.2. For every primep of good reduction forr, and for each\ 1 p prime of M, the trace
of the image undep, (7) of the Frobenius ap belongs to the field of rationality of (hence toM)

since the mapec twisted by| det |(1=™)/2 commutes with all field automorphisms@f Therefore,
if the residual representatiop, () is absolutely irreducible, it follows from Théoreme 2 [of [G4]

that the representatiop, () can be defined oveY/,.

Remark 2.3. Observe that the above properfy (5) implies that as long asd ¢ are different, the
behaviour locally at of the representationg, () is independent of, and it can be determined (up
to Frobenius semisimplification) from the admissible reprgationr,, via Local Langlands.

Fix a symmetric form oriWZ, and a symplectic form ifi is even. Thus we have the subgroup
GO, (M), and alsaGSp,,(M ) if n is even, ofGL,, (M ). It is important for us to know a criterion
for the image ofp, () to be contained irGSp,,(M ) (for any fixed choice of symplectic form on
MY) up to conjugation. This is deduced from a result of Bellaie@md Chenevier. Noting that
must be an algebraic Hecke characterylet Z denote the unique integer such that | =" is a finite
character. The integer ring i ,, will be denotec(DMA.

Lemma 2.4. Suppose thap, () is residually irreducible. Ifn is even andus(—1) = (—1)"
(resp. ifn is odd orjis(—1) # (—1)") then the image o, () is contained inGSp,,(Oy;, ) (resp.
GOn((’)MA)) possibly after a conjugation by an elementit,, (M ).

Remark 2.5. Whenn is even, it may happen that the imagepgfn) is contained inGSp,,(O;, )

as well asGOn(OMA) after conjugation, cf. footnote 1 af [BCI11] for an exampleenh = 2. The
point is that whilep, (7) is completely characterised byalone, there are generally several choices
of 11 for the samer with different values ofio.(—1).



Proof. By an argument as in Remark 2.2 of [AdDW13a] (where the redidveducibility is used),
the proof is reduced to showing that the image is containeittier GSp,, (M ) or GO, (M y).

We start with an easy observation. Let: I' — GL(V) be an irreducible representation on
an n-dimensional vector spacg over M,. Fix a basis{e;} for V and write {¢} for the dual
basis. Suppose th@p¥,VV) ~ (p ® x,V) for a charactery of . Let A be ann x n matrix
representing one such isomorphism. Thénh= §A for 6 € {£1}, which is called the sign of
(p,x)- (See the introduction of [BC11].) Then elementary lindgebra shows that i§ = 1 (resp.
§ = —1) then there exists a nondegenerate symmetric (resp. aitegh formV @ V' — M, such
that B(yv,yw) = x(v)B(v,w) fory € T'andv,w € V.

So the lemma amounts to the assertion thak) = (pa(7), px(r)) has sign 1 (resp-1) if n is
even anguo(—1) = (—1)" (resp. otherwise). This is exactly [BC11, Cor 1.3]. O

3 Existence of self-dual automorphic representations withprescribed
local conditions

The goal of this section is to prove the existence of a reqligrbraic self-dual cuspidal automorphic
representation o&L,,(Ag) with some particular local properties wheris even, for the application
to the inverse Galois problem in Sectidn 6. As we utilise Arthclassification for representations of
classical groups, our result depends on a few hypothesehls work depends on. (See Renfark 3.3
below.) The reader may skip to the next section after gettingliar with the notation of[&314 if he or
she is willing to accept Theorem 3.4 below.

We adopt the convention that all irreducible represemnatiof p-adic or real groups are assumed
admissible. Whenever it is clear from the context, we ofteiteva representation or airparameter
to mean an appropriate isomorphism or equivalence classaha favour of simplicity. We did
not specialize taF" = Q when recalling facts in[§3.2 and_&B.3 below since the exjpostiardly
simplifies by doing so. The attentive reader will notice thaeoren{ 3.1 easily extends to the case
over any totally real field.

3.1 Plancherel measures

This subsection is a reminder of some facts about Planchezatsures op-adic groups. Le be a
connected reductive group over a non-archimedean or aeckgam local fields. Write G(K)" for
the unitary dual of7(K), namely the set of all irreducible unitary representatioh&(K’) equipped
with the Fell topology. LefX .. (G(K')) denote the set of all unitary unramified characteré&: o)

in the usual sense. (ThisimX (G) on page 239 of [Wal03].) Harish-Chandra proved (cf. [WaJ03]
that there is a natural Borel measuird on G(K)", called the Plancherel measure, satisfying

o(1) = / HP, b CR(GK)),
G(K)N



where ¢ is the function defined by(r) := trr(¢). Let ©(G(K)) denote the Bernstein variety,
which is a (typically infinite) disjoint union of affine comgt algebraic varieties ovef. Viewing
O(G(K)) also as the topological space @rpoints, the association of supercuspidal support defines
a continuous map : G(K)" — ©(G(K)) ([Tad88, Thm 2.2]). In prescribing local conditions for
automorphic representations we will often consider thifahg kind of subsets. The terminology is
non-standard and only introduced to save words.

Definition 3.1. A subsel/ of the unitary dualG(K)" is said to beprescribablef

e U is a Borel set which iﬁpl-measurable with finite positive volume,
e v(U) is contained in a compact subset®fG(K)), and

¢ for each Levi subgroud. of G and each discrete series of L(K), consider the function on
X (L(K)) whose value af is the number of irreducible subquotients lyinglin(counted

with multiplicity) of the normalized induction of ® y to G. Then the set of points of discon-
tinuity has measure 0.

To show the flavour of this somewhat technical definition, wantion three examples for such
subsets. The first example is the subset of unramified (rgsyerisal) representations @&(K)" if
K is non-archimedean (resp. archimedean). The second exasnhle set of alr € G(K)" in a
fixed Bernstein component, i.e. thosavith the same supercuspidal support up to inertia equicalen
Finally the sef{T ® x : x € X'\, (G(K))} for a unitary discrete seriesof G(K') also satisfies the
requirements. (By a discrete series we mean an irreduaplesentation whose matrix coefficients
are square-integrable modulo center.)Glfis anisotropic overX (which is true ifG is semisimple)
then X (G(K)) is trivial so the last example is a singleton.

unit

3.2 Existence of automorphic representations

In this subsection we recall one of the few existence thesiarfEhil2], which are based on the prin-
ciple that the local components of automorphic represiemstat a fixed prime are equidistributed
in the unitary dual according to the Plancherel measure. r&éader is invited to see its introduc-
tion for more references in this direction. There is a ddfgrapproach to the existence of cuspidal
automorphic representations via Poincaré series (withming equidistribution), cf/ [KLS08, §4],
[Mui10].

Let G be a connected reductive group over a totally real numbe fieduch that

e (G has trivial center and

e G(F,) contains amR-elliptic maximal torus for every real place of I

The first condition was assumed in [Shil2] and it is kept heri¢ ia harmless for our purpose below.
However it should be possible to dispense with the conditipiixing central character in the trace
formula argument there. Now lét be a finite set of finite places @t. Let ﬂ%}’l denote the Plancherel
measure oG (F,)" forv € S. LetU, c G(F,)" be a prescribable subset for eack S.
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Proposition 3.2. There exists a cuspidal automorphic representatiaf G(A ) such that
1. 7, e U, forallve S,
2. 7 is unramified at all finite places away frof

3. 7, is a discrete series whose infinitesimal character is seffity regular for every infinite
placew.

The regularity condition above should be explained. Fix aimal torusT" and a Borel subgroup
B containingT in G overC (the base change @f to C viaw : F — C). Let Q2 denote the Weyl
group of T" in G. The infinitesimal charactey,, of =, above, which may be viewed as an element
of X*(T') ®z Q, is sufficiently regularif there is ano € Q such that{ox,,, a") > 0 for every B-
positive corootn of T in G. (Precisely the condition is thdty.,,a") > C, whereC is a large
enough constant depending only @nS and{U,},cs.) This condition is independent of the choice
of T'andB.

Proof. Our proposition is the analogue of Theorem 5.8 of [Shil2gxc¢hat a priori a weaker con-
dition on U := [Loes U, is assumed here. Let us explain this point. By the very défmiof
prescribable subsets, the characteristic functioty pdenotedl ;, belongs to the class of functions to
which Sauvageot’s density principle [Sau97, Thm 7.3] amli(Our last condition in Definitidn 3.1
corresponds to condition (a)(1) in his theorem.) Hence wetake f = 1, in[Shil2, Thm 4.11] so
that we have the analogue bf[Shi12, Cor 4.12] for BurTherefore the analogue 6f[Shi12, Thm 5.8]
is deduced through the same argument deriving that theaxmm([Bhil2, Cor 4.12] originally. O

3.3 Arthur’s endoscopic classification forSOs,, 1

Arthur [Art] classified local and global automorphic repretations of symplectic and special ortho-
gonal groups via twisted endoscopy relative to generaltimgoups. For our purpose it suffices to
recall some facts in the case of odd orthogonal groups.

Let ' be a number field. Denote I30-,,.1 the split special orthogonal group over Note that
the dual group 0802,,+1 IS Spy,,, (C). Write

€ 1 Spy, (C) = GLg, (C)

for the standard embedding, and g, := Wg, (resp.Lr, := Wg, x SLe(C)) according a® is

an infinite (resp. finite) place. Ah-parametek, : Lr, — GLa,,(C) is said to beof symplectic
typeif it preserves a suitable symplectic form on the-dimensional space, or equivalently,dif
factors througkt (after conjugating by an element 6fl,,,,(C)). For a placev of F, letrec, denote
the (unitarily normalised) local Langlands bijection frdire set of irreducible representations of
GL,(F,) to the set ofL-parameterLr, — GL,(C) for anyr € Z>;. Whenu is finite, there is

a standard dictionary for going between lodaparameters fof5L,. andr-dimensional Frobenius-
semisimple Weil-Deligne representations\Wf, in a bijective manner.
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For each localL-parameterp, : Lr, — Sps,,(C) (or a local L-parameter foiGLs,,, of sym-
plectic type), Arthur associates drpacketIly, consisting of finitely many irreducible representa-
tions of SO9,,+1(F,). Moreover each irreducible representation belongs td tpacket for a unique
parameter (up to equivalence). ¢f, has finite centraliser group ifip,,,(C) so that it is a discrete
parameter, theil,, consists only of discrete series. A similar constructiors waown earlier by
Langlands (deriving from Harish-Chandra’s results on reductive groups) when is an infinite
place ofF.

Now let 7 be a discrete automorphic representatio8©%,,,.1 (Ar). Arthur shows the existence
of a self-dual isobaric automorphic representationf GLo,,(Ar) which is a functorial lift of
along the embeddin§p,,,(C) — GL2,(C). In the generic case (in Arthur’s sense, i.e. when the
SLo-factor in the globald-parameter for- has trivial image), this means that for the unighesuch
thatr, € II,,, we have

recy (my) =~ Epy, V.

Remark 3.3. Arthur’s result [Arl] is conditional on the stabilisationfdhe twisted trace formula
and a few expected technical results in harmonic analysisxgdained there. See [BMM12, 1.18]
for a summary of these issues. We also note that the refer¢A2d]-[A28] in Arthur’'s book are in
preparation at the time our paper is finished. Since thesalt®sire expected to become available
from ongoing projects by others or by Arthur himself, thehaus think that one need not strive hard
to avoid using them. However see Rentark 3.5 below for a gessiiernative approach.

3.4 Application: Existence of self-dual representations

We seek self-dual representations with specific local dmndi. To describe them we need to set
things up. It is enough to restrict the material of previoulsgctions to the cadé = Q. Letn be

a positiveeveninteger. Letp, g, be distinct rational primes and assume that the ordgrrobdp is

n. Denote byQ,~ an unramified extension dp, of degreen. Choose a tamely ramified character
Xq @qxn — C* of order2p such thaty,(¢) = —1 andxq|qun is of orderp (cf. Section 3.1 of [KLS0O8]
and the definition of maximal induced places of orgdanade in Part I[[AdDW13a]). By local class
field theory we also regarg, as a character afg, (or Wg,). Put

G
pq = InngZn (Xq)-

We write WD (p,) for the associated Weil-Deligne representation, givisg tb a localL-parameter

¢q for GL,(Qq). Sincep, is irreducible and symplectic[(IKLS08, Prop 3.1]), the paeder ¢,
factors througrsoﬂl\((C) = Sp,,(C) c GL,(C) (after conjugation if necessary) and defines a
discreteL-parameter 080,,,1(Q,). So theL-packetIly_ consists of finitely many discrete series
of SO, 11(Qg). (In fact [KLSO8, 85.3] exploits the fact thal,, contains a generic supercuspidal
representation as shown by Jiang and Soudry. In our methadfites to have the weaker fact that
T4, CONtains a discrete series.)



It is a little more complicated to explain the objectstatLet Sty denote the Steinberg repres-
entation of GL(Q;) which appears as a subquotient of the unnormalized pacabaluction of
the trivial character. SincBt, has trivial central character, it corresponds to/aparameter val-
ued inSLy(C). Let M be a Levi subgroup 080,,;; isomorphic t0SO3 x (GL1)2~! so that
M =~ SLy(C) x GL{(C)z~!. Consider a local.-paramete)’ : Wq, x SLy(C) — M having
the form

o = (reCt(Stz),ﬁbl,“' ,¢gf1) 00 € Xini(Way),

where X (Wq,) denotes the set of unitary unramified characterSVef,. Theng¢)” is a discrete
parameter forM/. Writing n™ : M < Sp,,(C) for a Levi embedding (canonical up to conjugacy),
we see thatn™ ¢M is the L-parameter folGL,, corresponding to the-dimensional Weil-Deligne

representation

recu(St) @ @@ & 47"

Arthur associates a locél-packetlI oM of irreducible M (Q;)-representations t. Definel; to be
the set of all irreducible subquotients of the paraboliaiztebn of 7 ® x from M (Q;) t0 SO, 41(Qy)
astM runs overl andy runs overX,y, (M(Qy)). Since the effect of the parabolic induction on
L-parameters is simply composition with! (this is implicit in the proof of the proposition 2.4.3 in
[Arf]), the L-parameter for any; € U, has the following form (after composing wit:

Aorece(Ste) @ @ Aidi DA, ¢ ;A € Xini(We,), 0 <4 <

1 (3.2)

l\D|3

Notice thatl; is a prescribable subset. Among the conditions of Defin@dhwe only check the last
one as the others are reasonably easy. By theliay constructed, the function aki™*. (L(F)) in

unit

that condition is either identically zero unleks= M (up to conjugacy) and is in theXumt(L(F))-
orbit of 7 for somer"' € I1,u. So we may assume that= M and thar = 7. Then a version
of the generic irreducibility of parabolic induction (sé&alu97, Thm 3.2] attributed to Waldspurger,
cf. the fourth entry in Appendix A of [Shil2] for a minor coation) implies that the function is the
constant function 1 away from a closed measure zero set.VEhiges the condition as desired.

Theorem 3.4. There exists a cuspidal automorphic representatiaof GL,,(Ag) such that
() = is unramified away from andt,

(i) recy(my) ~ WD(p,),

(ii) recy(m;) has the form3.2),

(iv) 7 is of symplectic type and regular algebraic,

(V) 7~ 7V, and



(vi) the central character of is trivial.
As we rely on Arthur’s work[[Art], our theorem is conditionas explained in Remark3.3.

Proof. Apply Propositiori 3.2 witlS = {q, ¢}, U, = 11, andU; as above. We have seen tiigtand
U, are prescribable. Hence there exists a cuspidal autonworghiesentation of SO2,+1(Ag) such
that

1. 7, is unramified at every finite place¢ {q,t},

2. 14 € H¢q,

3.1 € Ut,

4. 7, is a discrete series whose infinitesimal character is seiffilyi regular.

Then the functorial liftr of 7 as in §3.8 has the desired propertiés (i)—(v) of the theorgohstruc-
tion. (To verify the regular algebraicity of, it is enough to note that th&:.-many exponents for/z

in the parameter for .., coming from that of., at infinite places are iéZ\Z and mutually distinct,

cf. the bottom line of [KLS0B, p.557].) To see the cuspidatif 7, it suffices to note that, is super-
cuspidal sinceec,(r,) ~ WD(p,), which is irreducible. Finally{(Vi) is derived from the fattat the
central character is trivial at (almost) all finite placesdded the central character corresponds to the
determinant of thd.-parameter fotr at each place via local class field theory, but the deternilsan
trivial since the parameter factors throug®,, 1 (C). O

Remark 3.5. A slightly different version for the existencerofan be shown by using Theorem 5.13
of [Shil2], which is obtained via the simple trace formula &, instead of using Propositidn_3.2.
Then one can prescribe,, to be any favourite discrete series at the expense of losimiyyal of
ramification at two auxiliary primes. On the other hand, itdsnceivable that one can prove the
existence ofr directly, without going through representations@f(thus avoiding the use of twisted
endoscopy), via the simple twisted trace formula@dr,, due to Deligne-Kazhdan as long as one is
willing to allow ramification at one auxiliary prime iril(i). This is allowable for our purpose.) The
idea would be to prescribe test functionsgatt and infinite places using the twisted Paley-Wiener
theorem due to Rogawski and Mezo, [cf. [CC09, Thm 3.2].

4 Compatible systems attached to the RAESDC representatienfrom
the previous section

Let n be an even integer and lebe an arbitrary prime. Choose a primdifferent fromt¢ such that
p =1 mod n. Chebotarev’s density theorem allows us to choose a pyidifferent from¢ (out of a
positive density set) such thet/2 = —1 mod p.
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From now on, we will restrict to triples of primes satisfyitigese conditions, and we will keep the
notationp, ¢, t for these primes, chosen in the order specified above. Thésioo is also compatible
with the one in the previous section.

Consider an automorphic representatioms in Theorern 314 and the trivial charactesf Aé JQ*.
Then(w, 1) is a RAESDC representation by construction, to which thésfa€ Sectioi 2 apply. So
there are a number fielt/ ¢ C and a compatible system of Galois representatjoiis) : Go —
GL, (M ) asA ranges over all places off with the following properties for every (below,? denotes
the rational prime dividing\).

(1) pa(m) = pa(m)Y @ & anddet pa(r) = e ™%,

(2) pa(m) and its residual representation are absolutely irrededfl 1 p, ¢,
(3) pa(m) is unramified away fronk = {q,t} and the residue characteristic af

(4) pa( )\GQ is de Rham and has Hodge-Tate weights as described in SEtiorparticular they
are independent of and distinct,

(5) pal )\G@ is crystalline if¢ ¢ R,
(6) pa(m) has image irGSpn((’)MA) (after a conjugation) by Lemnia 2.4}ft p, q,
(7) The multiplier ofp () is x&;",

(8) WD(pa(m)cq, )F=5 =~ WD(p,) @ |- |1=™/2if At q. In particular,py (7 ™)|Gg, = Pq®@ cx, Where
ay : Go, — M is an unramified character (i.¢is a maximally induced place of ordgiin the
terminology of Part I[[AdDW13a]), and

9) WD(pA(w)|GQt)F—SS has the form[(3]2) i\ 1 ¢. In particular the image of, underp, () is gen-
erated by a transvection, because; (Sts) is the Weil-Deligne representation having restriction
0 1

to I; of the form(1, N) with N = 0 0

All these are easy consequences of the facts recollecteédtioB[2. Note that for\ t p, g,
the residual representation pf () is irreducible since its restriction tG'g, is irreducible for the
reason thap, modulo X is irreducible ([KLS08, 3.1]). In particular the irredudity hypothesis
of Lemmal[2.4 is satisfied. After a conjugation we may and wskuame that the image lies in
GSp,,(Oar, ). The determinant op,(7) is computed easily by relating it to the central character
of 7, which is trivial (Theoreni_3]4_(V/i)), keeping in mind thaktimormalisation of the correspond-
ence involves a twist by - |(1=™)/2, cf. part [) of Sectiofi]2. Finally in order to see the second
isomorphism follows from the first in (8), observe tHatD(p,) is already Frobenius semisimple.
Since p, is irreducible, this forcesW D(pa(7)|c,,) to be already Frobenius semisimple. Thus
WD (p(m)|ag,) = WD(pg) ©|-|1=")/2, which implies thapx ()|, =~ pg© ||~/ sinceWD
is a fully faithful functor.
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5 Level-lowering and transvections

Throughout this section will denote the (fixed) automorphic representation considén Section 4,
and (px(m))a, for A running through the primes of a number field C C, the compatible system
attached tor. As before we denote by, (7) the residual representation f(r).

The aim of this section is to study the transvection conthimethe image ofp,(7) given by
its restriction tol,, for every? # t, A | £. We want to show that when reducing modwahis
transvection is preserved, or equivalently, that the tegidhod )\ representation is ramified &t at
least for a density one set of priméand every\ | £. The main tool will be a level-lowering argument
based on Theorem 4.4.1 of [BLGGT13].

One of the hypotheses in this theorem is that, when redirictehe Galois group of a suitable
cyclotomic extension, the residual representation islireible. The following lemma will be used to
meet this requirement:

Lemmab5.1. Let F' be a quadratic number field. Th@@(ﬂﬂcmm is absolutely irreducible for almost
every/ (i.e., for all but finitely many primes), and for evexy| /. Moreover, the finite exceptional set
can be bounded independently fof

Proof. Take/ to be a sufficiently large prime, such that in particutais not ramified a¥ and/ is
larger than the difference between any pair of Hodge-Tatgv® plus2. Further we will assume
¢ # p, q, so that we know that, because of the local parameigrat() is absolutely irreducible and
px(m) can be defined oveY/,. Call k) the residue field of\/,.

Assume that > [M : Q]. Because of regularity (and constancy of Hodge-Tate ws)gRtro-
position 5.1.2 and Lemma 1.1.4 of [BL10] (the latter is usedyét rid of case (3) of the former)
can be applied to conclude that either the residual haepresentation is reducible, or it is in-
duced, or the group; im(p,(m)) is a sturdy subgroup oL, (x,) (see [BL10] for the definition
of sturdy subgroup). We already know th@a(r) is irreducible (because of the local parameter at
q). Also, if we assume that it is induced, then we obtain a eafittion (for ¢ sufficiently large)
by Section 3 of[[AdDW13b]. Thus, we conclude that there exs&&ime bound3 such that, for all
¢ > B, k5 im(py(m)) is a sturdy subgroup &L, (x). As a consequence of Lemma 4.2.2[of [BL10],
fi;\(im(ﬁA(ﬂ')‘GF(Q)) is also a sturdy subgroup 6fL,,(x)). Thus, in particularﬁA(w)\GF(Q) is irre-
ducible. O

From the lemma above, we know that there is a boBralich that for all primeg > B and every
A | ¢ the conclusion of the lemma holds for any quadratic fildin what follows, we exclude the
primes/ < B.

The following lemma allows us to control the case where ategirepresentation in our system
can lose ramification dt at least over imaginary quadratic fields.

Lemma 5.2. Let F' be an imaginary quadratic field such thaand ¢, the primes where ramifies,
are split. Then among the priméghat are split inF’, there are only finitely mang such that the
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residual representatiop, () is unramified at for some\ abovel. In particular, the residual mod
representation contains a transvection given by the imdde for all but finitely many primeg that
are splitin F', for every)\ | ¢.

Proof. We restrict our reasoning to priméghat are split inF’, different fromg, ¢, and greater than
B. The last condition allows us to apply Leminal5.1 for the neslignod) representation.

Observe that, sinceis split in £, for every? # t and every\ | ¢, the restrictiorp, (7)|g, rami-
fies at the primes irF' abovet, and of course, if we assume that the mocepresentation becomes
unramified at then the same happens to its restrictiorGte. Thus, we can work ovet and this
is the setting where the problem of losing ramification carattecked because the available level-
lowering results only work, to this day, over CM fields. By égluatic) base change due to Arthur and
Clozel, the restriction t@- » of our compatible system is also attached to an automorgiesent-
ation, namely the base change of =, an automorphic representation @L.,,(Ar). (Note thatrp
is cuspidal since (7). is absolutely irreducible and that- paired with the trivial character is a
polarized representation in the sense of [BLGGT13]. Olslpu is also regular algebraic, so we
can speak of a compatible system attachedtg

Thus, we take a primésplitin F', ¢ > B, and we assume thag (7) (and, a fortiori, its restriction
to Gr) is unramified att (the primes inF' dividing ¢, respectively). To ease notation, let us call
pr = pA(m)|cp- This residual representation has an automorphic liftote given by the\-adic
representation attached+g-, and since this\-adic lift is ramified at the primes abovewhile py. , is
not, we can apply a level-lowering result in this situatibddemely, we want to apply Theorem 4.4.1
from [BLGGT13] taking S to be the ramification set gir ), i.e., we will takeS = {/,q}. In
particular,z will not be in.S. Let us first discuss the idea informally before going inttadse. The
theorem gives, for a residual representation that is knaietautomorphic, the existence of another
automorphic lift with prescribed local types, under someditions that are met in our situation. We
insist on the new automorphic lift to have the same local tgpeamified primes as the given one
except at the places above/here we are assuming the residual representation to bmified, since
we want this new automorphic form to be unramified at the @at®vet. This is the reason why, in
our situation, this theorem can be considered as a levadfiog result.

Going back to Theorem 4.4.1 of [BLGGT13], we need to checktiye conditions there. The
A-adic lift that we have, the one attachedstp, is potentially diagonalisable at the primes divid-
ing ¢ whenever/ is sufficiently large, because then we are in a Fontaineallksf situation (cf.
Lemma 1.4.3 (2) of [[BLGGT13] for a precise statement of theedon for potential diagonalisab-
ility). This verifies the first condition. The second conalitiis immediately satisfied by Lemrhab.1
and/ > B. We choose one place dividingand one place dividing in F and if we callS’ the set
of these two primes, for any € S” we fix asn-dimensional\-adic representatiop, of G, the one
obtained from the\-adic representation attachedsip, restricted toG,. Having this fixed, we can
apply Theorem 4.4.1 in [BLGGT13] to conclude that there tsxdmother automorphic representation
7, of GL,, (Ar) such that:

13



(1) =% is cuspidal, regular algebraic, and polarizable in the sefdBLGGT13] (more precisely
RAECSDC when paired with a suitable Hecke character; trem&dogous to the RAESDC rep-
resentation in Sectidd 2 except that conjugate self-guadjilaces self-duality there), in particu-
lar equipped with an associated compatible systepir’.)),., indexed by the primes of some
number field)M’,

(2) 77, is unramified outsidé,
(3) there is a place’ of M’ abovel such thap, (77.) = pp .\,

(4) ifv € 8, thenpy ()|, connects te, (see [BLGGT13] for the definition afonnect

On the one hand, by known properties of the connected ralétio [BLGGT13], Section 1.4),
Condition [3) at | £ implies that the Weil-Deligne representationsogf(n})|c ., andp,, restricted
to the inertia group at, are isomorphic. Sincg, is known to be crystalline, we can conclude that
px (7%)|ay, is crystalline. Moreover the connected relation implieg @efinition) that they have
both the same Hodge-Tate numbers. From this (and conjugasntial self-duality) we deduce that
7. has level prime td and that it has the same infinitesimal character as

On the other hand, at the prime 1 aboveq, sayw, the Weil-Deligne representations corres-
ponding topy (7%)|c, andp, have isomorphic restrictions to inertia. Indeed, singeand 7%
are cuspidal automorphic representationsG@f(A ), the local components;, and wj% are gen-
eric. Hence, by Lemma 1.3.2 6f [BLGGT13}y (')|G, = pw andpy (7%)|cy,, are smooth. From
Lemma 1.3.4 (2) of [BLGGT13] (due to Choi) we conclude that ithertial types ofrr andn/, atw
agree.

Observe that in particular, independently fpfthe automorphic representatiat}. has fixed in-
finitesimal character ato, fixed ramification set and fixed types at the ramified primédollows
from the finiteness result of Harish—Chandra (cf. (1.7) &hd)(of [BJ79]) that there are only finitely
many possibilities forr’.. (We see from[[BJ79] that there are finitely marfy with fixed infinites-
imal character ato such that the finite part of. has a nonzero invariant vector under a fixed open
compact subgroup of the finite part 6fl.,,(Ar). So it boils down to showing that the conductor of
7, is bounded. The latter can be seen via local Langlands fratth fix the ramification set of’;
as well as the types at the primes therein.)

Now assume that the residual maddepresentation attachedtg is unramified at for infinitely
many primes? (we keep the assumption that we are only working with prichdisat are split in
F). For each? we find 7}, as above (which a priori depends én Since there are only finitely
many possibilities forr, as¢ varies, we conclude that there existg’a as in [1) and[(2) such that
the congruence3) and conditidnl (4) hold true for infinitelyany A. But this has an immediate
consequence for the compatible systems attacheg tmd~’.. Since there are congruences between
these two systems in infinitely many different residual elsteristics, this forces the traces of both
systems at unramified places to be equal, and then using @netis density theorem combined
with the Brauer-Nesbitt theorem we conclude that the twadesys are isomorphic. But looking at
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the restriction of these two systems at a decompositionpyetu we get a contradiction, because
due to compatibility with Local Langland$p, (7)), is known to be ramified at the places abave
while (p, (7)), is unramified at the places abowéy construction. This contradiction proves that
the residual representatign (w) can be unramified atonly for finitely many primed (among the
primes that split inF"). O

We can apply the previous lemma over any quadratic numbek diethe formF = Q(v/—w)
wherew is a prime such that and¢ are splitinF. It is clear that there are infinitely many such fields;
consider an infinite sequencé;, ),, of distinct such fields. Let us cdll, the set of primes that are
split in one of theF;, i = 1,...n, and letL be the set of primeé such thaip, () is unramified at
for some\ | . ThenLNT, is finite for anyn € N. But asn grows, the set%, have (natural) density
arbitrarily close tal. This clearly implies that must have density.

6 Conclusion

The aim of this section is to show that the system of Galoisesmtations studied in the previous two
sections, attached to the automorphic form constructee@ati®3, does satisfy all the conditions in
the main result on the inverse Galois problem[of [AdDW13bgt Us check this in detail. (In the
setting of [AdDW13b], we takéV; = t, Ny = 1, N = t, andLy = Q). First, observe that the primes
g andp as in Sectionl4 satisfy thatis completely split inQ, andp = 1 (mod n), p | ¢" — 1 but
ptqs — 1L

The system(py(m)), of Galois representations @fg is a. e. absolutely irreducible and sym-
plectic, and it satisfies the following properties:

e The ramification set of the systemis= {q,t};

e The system is Hodge-Tate regular with constant Hodge-Tatghts and for every ¢ R and
A | 4, the representatiopy () is crystalline. Lets € Z be the smallest Hodge-Tate weight and
let us callk the biggest difference between any two Hodge-Tate numBerBontaine-Laffaille
theory, we conclude that for evefyZ R, ¢ > k + 2, X | ¢, x§ @ p,(n) is regular in the sense
of JAdDW13h], and the tame inertia weights of this repreaénh are bounded by (in fact,
these weights for thegeagree with the Hodge-Tate numbers of the system @lus

e As we have seen in Secti@h 5, for a density one set of priéngst and for every\ | ¢, the
transvection corresponding to the image/pfinderp, (7) (cf. (9) of Sectiol ) is preserved in
the reduction mod, hencep, () contains a nontrivial transvection;

e As we have already observed (df] (8) of Section 4), for evert q, for every A | ¢, the
representatiom, (m)|c,, = pg ® ax for some unramified charactes, : Gg, — My andp,

is, by definition,Indggq (x4) for x, as defined in Sectidd 3;
qn
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e For every/ # t and for every\|¢, the image ofl; underpy () consists of either a group
generated by a transvection or the trivial groupgstr)(1;) is in any case afrgroup, therefore
it has order prime ta! for any/ larger tham.

Thus, the main result on the inverse Galois problemni_of [AdIBW]lcan be applied, and we deduce
the following theorem:

Theorem 6.1. Let m be the automorphic representation given by Thedrem 3.4 aifd®é3, with the
ramified primes; andt satisfying the conditions specified in Secfidbn 4. Then, dmepatible system
(P, (7)) has huge residual image for a density one set of pritnésr every\ |/, i.e.,im(p, (7)) is a
huge subgroup ofiSp,, (F,) for a density one set of primes.

To derive our Galois theoretic result (i.e. Theoiflenj 1.1)jwseobserve that, for any given integer
d > 0, we can change the conditign= 1 (mod n) at the beginning of Sectidd 4 by the stronger
conditionp =1 (mod dn) while choosingy andt exactly as we did in Sectidg 4.

With this, we conclude from the main result on the inverseo@Ggbroblem of [AdDW130b] that,
for such an integed, the group®GSp,, (F,«) or PSp,,(IF,) are realised as Galois groups o@for
a positive density set of primés Since this can be done for adyTheoreni 11 follows.
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