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Automorphic construction of compatible systems with suitable
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Abstract

This article is the third and last part of a series of three articles about compatible systems of

symplectic Galois representations and applications to theinverse Galois problem.

This part proves the following new result for the inverse Galois problem for symplectic groups.

For any even positive integern and any positive integerd, PSpn(Fℓd) or PGSpn(Fℓd) occurs as

a Galois group over the rational numbers for a positive density set of primesℓ.

The result is obtained by showing the existence of a regular,algebraic, self-dual, cuspidal

automorphic representation ofGLn(AQ) with local types chosen so as to obtain a compatible

system of Galois representations to which the results from Part II of this series apply.

MSC (2010): 11F80 (Galois representations); 12F12 (Inverse Galois theory).

1 Introduction

This article is the last part of a series of three on compatible systems of symplectic Galois repres-

entations and applications to the inverse Galois problem (cf. [AdDW13a], [AdDW13b]). Our main

theorem is the following new result for the inverse Galois problem overQ for symplectic groups.

Theorem 1.1. For any even positive integern and for any positive integerd there exists a set of

rational primes of positive density such that, for every primeℓ in this set, the groupPGSpn(Fℓd) or
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PSpn(Fℓd) is realised as a Galois group overQ. The corresponding number field ramifies at most

at ℓ and two more primes, which are independent ofℓ.

In fact, one of the two auxiliary primes can be taken to be any prime, the other one can be chosen

from a set of primes of positive density defined by an explicitChebotarev condition. The set of

primesℓ depends on the two previous choices and the choice of an automorphic form, and is also given

by a Chebotarev condition (in the projective field of definition (see [AdDW13a]) of the compatible

system of Galois representations attached to the automorphic form (see below)) except for a density-

zero set.

Theorem 1.1 is complementary to the main result of Khare, Larsen and Savin [KLS08], in the

sense that it is in the horizontal direction in the terminology of [DW11], whereas loc. cit. is in the

vertical one, that is,ℓ is fixed andd runs. The horizontal direction needs quite a different approach

from the vertical one. Nevertheless, some ideas of [KLS08],for instance that of(n, p)-groups, are

crucially used also in our approach. The overall strategy isdescribed in the introduction to Part I.

The goal in this Part III is to construct compatible systems of Galois representations satisfying

the conditions in the main theorem on the inverse Galois problem of [AdDW13b]. In order to do

so, we prove the existence of a regular, algebraic, self-dual, cuspidal automorphic representation

of GLn(AQ) with the required local types by adapting the results from [Shi12]. This automorphic

representation is such that the compatible system of Galoisrepresentations attached to it is symplectic,

generically irreducible, has a maximally induced placeq of a certain prime orderp, and locally at a

primet contains a transvection. In order to show that the transvection is preserved in the image of the

residual representation, at least for a density one set of primes, we will apply a level-lowering result

from [BLGGT13] over suitable quadratic imaginary fields.

The structure of this paper is the following. In Section 2 we recall general facts about regular

self-dual automorphic representations and their corresponding compatible systems of Galois repres-

entations (everything in this section can be found in [BLGGT13]). In Section 3 we show the existence

of the sought for automorphic representation. In Section 4 we specify the conditions on the rami-

fied primes that we will need and explain the properties of thecompatible system attached to the

automorphic representation from Section 3. In Section 5 we perform the level-lowering argument.

Finally, in Section 6 we derive the main conclusions that follow from the combination of the results

in our three papers.
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2 RAESDC automorphic representations and the Galois representa-

tions attached to them

The reader is referred to [BLGGT13] for more details concerning anything in this section except the

v = l case of (5) below, for which we refer to [Car12]. For a fieldk we adopt the notationGk to

denote the absolute Galois group ofk.

Let Zn,+ be the set ofn-tuplesa = (ai) ∈ Zn such thata1 ≥ a2 ≥ .... ≥ an. Let a ∈ Zn,+,

and letΞa be the irreducible algebraic representation ofGLn with highest weighta. A RAESDC

(regular, algebraic, essentially self-dual, cuspidal) automorphic representation ofGLn(AQ) is a pair

(π, µ) consisting of a cuspidal automorphic representationπ of GLn(AQ) and a continuous character

µ : A×
Q/Q

× → C× such that:

(1) (regular algebraic)π∞ has the same infinitesimal character asΞ∨
a for a ∈ Zn,+. We say thatπ

has weighta.

(2) (essentially self-dual)π ∼= π∨ ⊗ (µ ◦ det).

Such a pair(π, µ) is an instance of a polarized representation in the sense of [BLGGT13, 2.1].

In this situation, there exists an integerw such that, for every1 ≤ i ≤ n, ai + an+1−i = w. Let

S be the (finite) set of primesp such thatπp is ramified. There exist a number fieldM ⊂ C, which

is finite over the field of rationality ofπ in the sense of [Clo90], and a strictly compatible system of

semisimple Galois representations (see [BLGGT13, 5.1] forthis notion; in particular the characteristic

polynomial of a Frobenius element at almost every finite place has coefficients inM )

ρλ(π) : GQ → GLn(Mλ),

ρλ(µ) : GQ → M
×
λ ,

whereλ ranges over all finite places ofM (together with fixed embeddingsM →֒ Mλ →֒ Mλ, where

Mλ is an algebraic closure ofMλ) such that the following properties are satisfied.

(1) ρλ(π) ∼= ρλ(π)
∨ ⊗ χ1−n

cyc ρλ(µ), whereχcyc denotes theℓ-adic cyclotomic character.

(2) The representationsρλ(π) andρλ(µ) are unramified outsideS ∪{ℓ}, whereℓ denotes the rational

prime belowλ.

(3) Locally atℓ (i.e., when restricted to a decomposition group atℓ), the representationsρλ(π) and

ρλ(µ) are de Rham, and ifℓ /∈ S, they are crystalline.

(4) The setHT(ρλ(π)) of Hodge-Tate weights ofρλ(π) is equal to:

{a1 + (n− 1), a2 + (n− 2), . . . , an}.
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(The Hodge-Tate weight ofχcyc is −1.) In particular, they aren different numbers and they are

independent ofλ andℓ. Therefore, the representations are regular.

(5) The system is strictly compatible, as implied by the following compatibility with Local Lang-

lands: Fix any isomorphismι : Mλ ≃ C compatible with the inclusionM ⊂ C w.r.t. the already

fixed embeddingM →֒ Mλ →֒ Mλ. Whetherv ∤ ℓ or v|ℓ, we have:

ιWD(ρλ(π)|GQv
)F−ss ∼= rec(πv ⊗ |det |(1−n)/2

v ). (2.1)

HereWD denotes the Weil-Deligne representation attached to a representation ofGQv , F− ss

means the Frobenius semisimplification, andrec is the notation for the (unitarily normalised)

Local Langlands Correspondence, which attaches to an irreducible admissible representation of

GLn(Qv) aWD representation of the Weil groupWQv .

Remark 2.1. We did not includeι in the notation since the isomorphism class ofρλ(π) is independent

of the choice ofι. This is easy to deduce from the fact that the Frobenius traces at all but finitely many

places are inM via the Chebotarev density theorem.

Remark 2.2. For every primep of good reduction forπ, and for eachλ ∤ p prime ofM , the trace

of the image underρλ(π) of the Frobenius atp belongs to the field of rationality ofπ (hence toM )

since the maprec twisted by|det |(1−n)/2 commutes with all field automorphisms ofC. Therefore,

if the residual representationρλ(π) is absolutely irreducible, it follows from Théorème 2 of [Car94]

that the representationρλ(π) can be defined overMλ.

Remark 2.3. Observe that the above property (5) implies that as long asv and ℓ are different, the

behaviour locally atv of the representationsρλ(π) is independent ofℓ, and it can be determined (up

to Frobenius semisimplification) from the admissible representationπv, via Local Langlands.

Fix a symmetric form onM
n
λ, and a symplectic form ifn is even. Thus we have the subgroup

GOn(Mλ), and alsoGSpn(Mλ) if n is even, ofGLn(Mλ). It is important for us to know a criterion

for the image ofρλ(π) to be contained inGSpn(Mλ) (for any fixed choice of symplectic form on

M
n
λ) up to conjugation. This is deduced from a result of Bellaïche and Chenevier. Noting thatµ

must be an algebraic Hecke character, letr ∈ Z denote the unique integer such thatµ| · |−r is a finite

character. The integer ring inMλ will be denotedOMλ
.

Lemma 2.4. Suppose thatρλ(π) is residually irreducible. Ifn is even andµ∞(−1) = (−1)r

(resp. ifn is odd orµ∞(−1) 6= (−1)r) then the image ofρλ(π) is contained inGSpn(OMλ
) (resp.

GOn(OMλ
)) possibly after a conjugation by an element ofGLn(Mλ).

Remark 2.5. Whenn is even, it may happen that the image ofρλ(π) is contained inGSpn(OMλ
)

as well asGOn(OMλ
) after conjugation, cf. footnote 1 of [BC11] for an example whenn = 2. The

point is that whileρλ(π) is completely characterised byπ alone, there are generally several choices

of µ for the sameπ with different values ofµ∞(−1).
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Proof. By an argument as in Remark 2.2 of [AdDW13a] (where the residual irreducibility is used),

the proof is reduced to showing that the image is contained ineitherGSpn(Mλ) orGOn(Mλ).

We start with an easy observation. Letρ : Γ → GL(V ) be an irreducible representation on

an n-dimensional vector spaceV over Mλ. Fix a basis{ei} for V and write{e∨i } for the dual

basis. Suppose that(ρ∨, V ∨) ≃ (ρ ⊗ χ, V ) for a characterχ of Γ. Let A be ann × n matrix

representing one such isomorphism. ThenAt = δA for δ ∈ {±1}, which is called the sign of

(ρ, χ). (See the introduction of [BC11].) Then elementary linear algebra shows that ifδ = 1 (resp.

δ = −1) then there exists a nondegenerate symmetric (resp. alternating) formV ⊗ V → Mλ such

thatB(γv, γw) = χ(γ)B(v,w) for γ ∈ Γ andv,w ∈ V .

So the lemma amounts to the assertion that(ρ, χ) = (ρλ(π), ρλ(µ)) has sign 1 (resp.−1) if n is

even andµ∞(−1) = (−1)r (resp. otherwise). This is exactly [BC11, Cor 1.3].

3 Existence of self-dual automorphic representations withprescribed

local conditions

The goal of this section is to prove the existence of a regularalgebraic self-dual cuspidal automorphic

representation ofGLn(AQ) with some particular local properties whenn is even, for the application

to the inverse Galois problem in Section 6. As we utilise Arthur’s classification for representations of

classical groups, our result depends on a few hypotheses which his work depends on. (See Remark 3.3

below.) The reader may skip to the next section after gettingfamiliar with the notation of §3.4 if he or

she is willing to accept Theorem 3.4 below.

We adopt the convention that all irreducible representations ofp-adic or real groups are assumed

admissible. Whenever it is clear from the context, we often write a representation or anL-parameter

to mean an appropriate isomorphism or equivalence class thereof in favour of simplicity. We did

not specialize toF = Q when recalling facts in §3.2 and §3.3 below since the exposition hardly

simplifies by doing so. The attentive reader will notice thatTheorem 3.4 easily extends to the case

over any totally real field.

3.1 Plancherel measures

This subsection is a reminder of some facts about Plancherelmeasures onp-adic groups. LetG be a

connected reductive group over a non-archimedean or archimedean local fieldK. Write G(K)∧ for

the unitary dual ofG(K), namely the set of all irreducible unitary representationsof G(K) equipped

with the Fell topology. LetXur
unit(G(K)) denote the set of all unitary unramified characters ofG(K)

in the usual sense. (This isImX(G) on page 239 of [Wal03].) Harish-Chandra proved (cf. [Wal03])

that there is a natural Borel measureµ̂pl onG(K)∧, called the Plancherel measure, satisfying

φ(1) =

∫

G(K)∧
φ̂(τ)µ̂pl, φ ∈ C∞

c (G(K)),
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where φ̂ is the function defined bŷφ(τ) := trτ(φ). Let Θ(G(K)) denote the Bernstein variety,

which is a (typically infinite) disjoint union of affine complex algebraic varieties overC. Viewing

Θ(G(K)) also as the topological space onC-points, the association of supercuspidal support defines

a continuous mapν : G(K)∧ → Θ(G(K)) ([Tad88, Thm 2.2]). In prescribing local conditions for

automorphic representations we will often consider the following kind of subsets. The terminology is

non-standard and only introduced to save words.

Definition 3.1. A subset̂U of the unitary dualG(K)∧ is said to beprescribableif

• Û is a Borel set which iŝµpl-measurable with finite positive volume,

• ν(Û) is contained in a compact subset ofΘ(G(K)), and

• for each Levi subgroupL of G and each discrete seriesσ of L(K), consider the function on

Xur
unit(L(K)) whose value atχ is the number of irreducible subquotients lying inÛ (counted

with multiplicity) of the normalized induction ofσ ⊗ χ to G. Then the set of points of discon-

tinuity has measure 0.

To show the flavour of this somewhat technical definition, we mention three examples for such

subsets. The first example is the subset of unramified (resp. spherical) representations inG(K)∧ if

K is non-archimedean (resp. archimedean). The second example is the set of allτ ∈ G(K)∧ in a

fixed Bernstein component, i.e. thoseτ with the same supercuspidal support up to inertia equivalence.

Finally the set{τ ⊗ χ : χ ∈ Xur
unit(G(K))} for a unitary discrete seriesτ of G(K) also satisfies the

requirements. (By a discrete series we mean an irreducible representation whose matrix coefficients

are square-integrable modulo center.) IfG is anisotropic overK (which is true ifG is semisimple)

thenXur
unit(G(K)) is trivial so the last example is a singleton.

3.2 Existence of automorphic representations

In this subsection we recall one of the few existence theorems in [Shi12], which are based on the prin-

ciple that the local components of automorphic representations at a fixed prime are equidistributed

in the unitary dual according to the Plancherel measure. Thereader is invited to see its introduc-

tion for more references in this direction. There is a different approach to the existence of cuspidal

automorphic representations via Poincaré series (withoutproving equidistribution), cf. [KLS08, §4],

[Mui10].

LetG be a connected reductive group over a totally real number fieldF such that

• G has trivial center and

• G(Fw) contains anR-elliptic maximal torus for every real placew of F .

The first condition was assumed in [Shi12] and it is kept here as it is harmless for our purpose below.

However it should be possible to dispense with the conditionby fixing central character in the trace

formula argument there. Now letS be a finite set of finite places ofF . Let µ̂pl
v denote the Plancherel

measure onG(Fv)
∧ for v ∈ S. Let Ûv ⊂ G(Fv)

∧ be a prescribable subset for eachv ∈ S.
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Proposition 3.2. There exists a cuspidal automorphic representationτ of G(AF ) such that

1. τv ∈ Ûv for all v ∈ S,

2. τ is unramified at all finite places away fromS,

3. τw is a discrete series whose infinitesimal character is sufficiently regular for every infinite

placew.

The regularity condition above should be explained. Fix a maximal torusT and a Borel subgroup

B containingT in G overC (the base change ofG to C via w : F →֒ C). Let Ω denote the Weyl

group ofT in G. The infinitesimal characterχw of τw above, which may be viewed as an element

of X∗(T ) ⊗Z Q, is sufficiently regularif there is anσ ∈ Ω such that〈σχw, α
∨〉 ≫ 0 for everyB-

positive corootα∨ of T in G. (Precisely the condition is that〈σχw, α
∨〉 ≥ C, whereC is a large

enough constant depending only onG, S and{Ûv}v∈S .) This condition is independent of the choice

of T andB.

Proof. Our proposition is the analogue of Theorem 5.8 of [Shi12] except that a priori a weaker con-

dition on Û :=
∏

v∈S Ûv is assumed here. Let us explain this point. By the very definition of

prescribable subsets, the characteristic function onÛ , denoted1Û , belongs to the class of functions to

which Sauvageot’s density principle [Sau97, Thm 7.3] applies. (Our last condition in Definition 3.1

corresponds to condition (a)(1) in his theorem.) Hence we can takef̂S = 1Û in [Shi12, Thm 4.11] so

that we have the analogue of [Shi12, Cor 4.12] for ourÛ . Therefore the analogue of [Shi12, Thm 5.8]

is deduced through the same argument deriving that theorem from [Shi12, Cor 4.12] originally.

3.3 Arthur’s endoscopic classification forSO2m+1

Arthur [Art] classified local and global automorphic representations of symplectic and special ortho-

gonal groups via twisted endoscopy relative to general linear groups. For our purpose it suffices to

recall some facts in the case of odd orthogonal groups.

LetF be a number field. Denote bySO2m+1 the split special orthogonal group overF . Note that

the dual group ofSO2m+1 is Sp2m(C). Write

ξ : Sp2m(C) →֒ GL2m(C)

for the standard embedding, and putLFv := WFv (resp.LFv := WFv × SL2(C)) according asv is

an infinite (resp. finite) place. AnL-parameterφv : LFv → GL2m(C) is said to beof symplectic

type if it preserves a suitable symplectic form on the2m-dimensional space, or equivalently, ifφv

factors throughξ (after conjugating by an element ofGL2m(C)). For a placev of F , let recv denote

the (unitarily normalised) local Langlands bijection fromthe set of irreducible representations of

GLr(Fv) to the set ofL-parametersLFv → GLr(C) for any r ∈ Z≥1. Whenv is finite, there is

a standard dictionary for going between localL-parameters forGLr andr-dimensional Frobenius-

semisimple Weil-Deligne representations ofWFv in a bijective manner.
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For each localL-parameterφv : LFv → Sp2m(C) (or a localL-parameter forGL2m of sym-

plectic type), Arthur associates anL-packetΠφv
consisting of finitely many irreducible representa-

tions ofSO2m+1(Fv). Moreover each irreducible representation belongs to theL-packet for a unique

parameter (up to equivalence). Ifφv has finite centraliser group inSp2m(C) so that it is a discrete

parameter, thenΠφv
consists only of discrete series. A similar construction was known earlier by

Langlands (deriving from Harish-Chandra’s results on realreductive groups) whenv is an infinite

place ofF .

Now let τ be a discrete automorphic representation ofSO2m+1(AF ). Arthur shows the existence

of a self-dual isobaric automorphic representationπ of GL2m(AF ) which is a functorial lift ofτ

along the embeddingSp2m(C) →֒ GL2m(C). In the generic case (in Arthur’s sense, i.e. when the

SL2-factor in the globalA-parameter forτ has trivial image), this means that for the uniqueφv such

thatτv ∈ Πφv
, we have

recv(πv) ≃ ξφv, ∀v.

Remark 3.3. Arthur’s result [Art] is conditional on the stabilisation of the twisted trace formula

and a few expected technical results in harmonic analysis asexplained there. See [BMM12, 1.18]

for a summary of these issues. We also note that the references [A24]-[A28] in Arthur’s book are in

preparation at the time our paper is finished. Since these results are expected to become available

from ongoing projects by others or by Arthur himself, the authors think that one need not strive hard

to avoid using them. However see Remark 3.5 below for a possible alternative approach.

3.4 Application: Existence of self-dual representations

We seek self-dual representations with specific local conditions. To describe them we need to set

things up. It is enough to restrict the material of previous subsections to the caseF = Q. Let n be

a positiveeveninteger. Letp, q, t be distinct rational primes and assume that the order ofq modp is

n. Denote byQqn an unramified extension ofQq of degreen. Choose a tamely ramified character

χq : Q
×
qn → C× of order2p such thatχq(q) = −1 andχq|Z×

qn
is of orderp (cf. Section 3.1 of [KLS08]

and the definition of maximal induced places of orderp made in Part I [AdDW13a]). By local class

field theory we also regardχq as a character ofGQq (or WQq ). Put

ρq := Ind
GQq

GQqn
(χq).

We writeWD(ρq) for the associated Weil-Deligne representation, giving rise to a localL-parameter

φq for GLn(Qq). Sinceρq is irreducible and symplectic ([KLS08, Prop 3.1]), the parameterφq

factors through ̂SOn+1(C) = Spn(C) ⊂ GLn(C) (after conjugation if necessary) and defines a

discreteL-parameter ofSOn+1(Qq). So theL-packetΠφq
consists of finitely many discrete series

of SOn+1(Qq). (In fact [KLS08, §5.3] exploits the fact thatΠφq
contains a generic supercuspidal

representation as shown by Jiang and Soudry. In our method itsuffices to have the weaker fact that

πφq
contains a discrete series.)
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It is a little more complicated to explain the objects att. Let St2 denote the Steinberg repres-

entation ofGL2(Qt) which appears as a subquotient of the unnormalized parabolic induction of

the trivial character. SinceSt2 has trivial central character, it corresponds to anL-parameter val-

ued in SL2(C). Let M be a Levi subgroup ofSOn+1 isomorphic toSO3 × (GL1)
n
2
−1 so that

M̂ ≃ SL2(C) × GL1(C)
n
2
−1. Consider a localL-parameterφM

t : WQt × SL2(C) → M̂ having

the form

φM
t =

(

rect(St2), φ1, · · · , φn
2
−1

)

, φi ∈ Xur
unit(WQt),

whereXur
unit(WQt) denotes the set of unitary unramified characters ofWQt . ThenφM

t is a discrete

parameter forM . Writing ηM : M̂ →֒ Spn(C) for a Levi embedding (canonical up to conjugacy),

we see thatξηMφM
t is theL-parameter forGLn corresponding to then-dimensional Weil-Deligne

representation

rect(St2)⊕





n
2
−1
⊕

i=1

φi ⊕ φ−1
i



 .

Arthur associates a localL-packetΠφM
t

of irreducibleM(Qt)-representations toφM
t . DefineÛt to be

the set of all irreducible subquotients of the parabolic induction ofτMt ⊗χ fromM(Qt) toSOn+1(Qt)

asτMt runs overΠφM
t

andχ runs overXur
unit(M(Qt)). Since the effect of the parabolic induction on

L-parameters is simply composition withηM (this is implicit in the proof of the proposition 2.4.3 in

[Art]), the L-parameter for anyτt ∈ Ût has the following form (after composing withξ):

λ0rect(St2)⊕





n
2
−1
⊕

i=1

λiφi ⊕ λ−1
i φ−1

i



 , λi ∈ Xur
unit(WQt), 0 ≤ i ≤ n

2
− 1. (3.2)

Notice thatÛt is a prescribable subset. Among the conditions of Definition3.1 we only check the last

one as the others are reasonably easy. By the wayÛt is constructed, the function onXur
unit(L(F )) in

that condition is either identically zero unlessL = M (up to conjugacy) andσ is in theXur
unit(L(F ))-

orbit of τMt for someτMt ∈ ΠφM
t

. So we may assume thatL = M and thatσ = τMt . Then a version

of the generic irreducibility of parabolic induction (see [Sau97, Thm 3.2] attributed to Waldspurger,

cf. the fourth entry in Appendix A of [Shi12] for a minor correction) implies that the function is the

constant function 1 away from a closed measure zero set. Thisverifies the condition as desired.

Theorem 3.4. There exists a cuspidal automorphic representationπ of GLn(AQ) such that

(i) π is unramified away fromq andt,

(ii) recq(πq) ≃ WD(ρq),

(iii) rect(πt) has the form(3.2),

(iv) π∞ is of symplectic type and regular algebraic,

(v) π ≃ π∨, and

9



(vi) the central character ofπ is trivial.

As we rely on Arthur’s work [Art], our theorem is conditionalas explained in Remark 3.3.

Proof. Apply Proposition 3.2 withS = {q, t}, Ûq = Πφq
andÛt as above. We have seen thatÛq and

Ût are prescribable. Hence there exists a cuspidal automorphic representationτ of SO2n+1(AQ) such

that

1. τv is unramified at every finite placev /∈ {q, t},

2. τq ∈ Πφq
,

3. τt ∈ Ût,

4. τ∞ is a discrete series whose infinitesimal character is sufficiently regular.

Then the functorial liftπ of τ as in §3.3 has the desired properties (i)–(v) of the theorem by construc-

tion. (To verify the regular algebraicity ofπ, it is enough to note that the2n-many exponents forz/z̄

in the parameter forπ∞, coming from that ofτ∞, at infinite places are in12Z\Z and mutually distinct,

cf. the bottom line of [KLS08, p.557].) To see the cuspidality of π, it suffices to note thatπq is super-

cuspidal sincerecq(πq) ≃ WD(ρq), which is irreducible. Finally (vi) is derived from the factthat the

central character is trivial at (almost) all finite places. Indeed the central character corresponds to the

determinant of theL-parameter forπ at each place via local class field theory, but the determinant is

trivial since the parameter factors throughSOn+1(C).

Remark 3.5. A slightly different version for the existence ofτ can be shown by using Theorem 5.13

of [Shi12], which is obtained via the simple trace formula for G, instead of using Proposition 3.2.

Then one can prescribeτ∞ to be any favourite discrete series at the expense of losing control of

ramification at two auxiliary primes. On the other hand, it isconceivable that one can prove the

existence ofπ directly, without going through representations ofG (thus avoiding the use of twisted

endoscopy), via the simple twisted trace formula forGLn due to Deligne-Kazhdan as long as one is

willing to allow ramification at one auxiliary prime in (i). (This is allowable for our purpose.) The

idea would be to prescribe test functions atq, t and infinite places using the twisted Paley-Wiener

theorem due to Rogawski and Mezo, cf. [CC09, Thm 3.2].

4 Compatible systems attached to the RAESDC representations from

the previous section

Let n be an even integer and lett be an arbitrary prime. Choose a primep different fromt such that

p ≡ 1 mod n. Chebotarev’s density theorem allows us to choose a primeq different fromt (out of a

positive density set) such thatqn/2 ≡ −1 mod p.
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From now on, we will restrict to triples of primes satisfyingthese conditions, and we will keep the

notationp, q, t for these primes, chosen in the order specified above. This notation is also compatible

with the one in the previous section.

Consider an automorphic representationπ as in Theorem 3.4 and the trivial character1 ofA×
Q/Q

×.

Then(π,1) is a RAESDC representation by construction, to which the facts of Section 2 apply. So

there are a number fieldM ⊂ C and a compatible system of Galois representationsρλ(π) : GQ →
GLn(Mλ) asλ ranges over all places ofM with the following properties for everyλ (below,ℓ denotes

the rational prime dividingλ).

(1) ρλ(π) ∼= ρλ(π)
∨ ⊗ χ1−n

cyc anddet ρλ(π) = χ
n(1−n)/2
cyc ,

(2) ρλ(π) and its residual representation are absolutely irreducible if λ ∤ p, q,

(3) ρλ(π) is unramified away fromR = {q, t} and the residue characteristic ofλ,

(4) ρλ(π)|GQℓ
is de Rham and has Hodge-Tate weights as described in Section2; in particular they

are independent ofλ and distinct,

(5) ρλ(π)|GQℓ
is crystalline ifℓ /∈ R,

(6) ρλ(π) has image inGSpn(OMλ
) (after a conjugation) by Lemma 2.4 ifλ ∤ p, q,

(7) The multiplier ofρλ(π) is χ1−n
cyc ,

(8) WD(ρλ(π)|GQq
)F−ss ≃ WD(ρq)⊗| · |(1−n)/2 if λ ∤ q. In particular,ρλ(π)|GQq

≃ ρq⊗αλ, where

αλ : GQq → M
×
λ is an unramified character (i.e.q is a maximally induced place of orderp in the

terminology of Part I [AdDW13a]), and

(9) WD(ρλ(π)|GQt
)F−ss has the form (3.2) ifλ ∤ t. In particular the image ofIt underρλ(π) is gen-

erated by a transvection, becauserect(St2) is the Weil-Deligne representation having restriction

to It of the form(1, N) with N =

(

0 1

0 0

)

.

All these are easy consequences of the facts recollected in Section 2. Note that forλ ∤ p, q,

the residual representation ofρλ(π) is irreducible since its restriction toGQq is irreducible for the

reason thatρq modulo λ is irreducible ([KLS08, 3.1]). In particular the irreducibility hypothesis

of Lemma 2.4 is satisfied. After a conjugation we may and will assume that the image lies in

GSpn(OMλ
). The determinant ofρλ(π) is computed easily by relating it to the central character

of π, which is trivial (Theorem 3.4 (vi)), keeping in mind that the normalisation of the correspond-

ence involves a twist by| · |(1−n)/2, cf. part (5) of Section 2. Finally in order to see the second

isomorphism follows from the first in (8), observe thatWD(ρq) is already Frobenius semisimple.

Sinceρq is irreducible, this forcesWD(ρλ(π)|GQq
) to be already Frobenius semisimple. Thus

WD(ρλ(π)|GQq
) ≃ WD(ρq)⊗| · |(1−n)/2, which implies thatρλ(π)|GQq

≃ ρq⊗| · |(1−n)/2 sinceWD

is a fully faithful functor.
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5 Level-lowering and transvections

Throughout this sectionπ will denote the (fixed) automorphic representation considered in Section 4,

and(ρλ(π))λ, for λ running through the primes of a number fieldM ⊂ C, the compatible system

attached toπ. As before we denote byρλ(π) the residual representation ofρλ(π).

The aim of this section is to study the transvection contained in the image ofρλ(π) given by

its restriction toIt, for everyℓ 6= t, λ | ℓ. We want to show that when reducing moduloλ this

transvection is preserved, or equivalently, that the residual modλ representation is ramified att, at

least for a density one set of primesℓ and everyλ | ℓ. The main tool will be a level-lowering argument

based on Theorem 4.4.1 of [BLGGT13].

One of the hypotheses in this theorem is that, when restricted to the Galois group of a suitable

cyclotomic extension, the residual representation is irreducible. The following lemma will be used to

meet this requirement:

Lemma 5.1. LetF be a quadratic number field. Thenρλ(π)|GF (ζℓ)
is absolutely irreducible for almost

everyℓ (i.e., for all but finitely many primes), and for everyλ | ℓ. Moreover, the finite exceptional set

can be bounded independently ofF .

Proof. Takeℓ to be a sufficiently large prime, such that in particularπ is not ramified atℓ andℓ is

larger than the difference between any pair of Hodge-Tate weights plus2. Further we will assume

ℓ 6= p, q, so that we know that, because of the local parameter atq, ρλ(π) is absolutely irreducible and

ρλ(π) can be defined overMλ. Callκλ the residue field ofMλ.

Assume thatℓ > [M : Q]. Because of regularity (and constancy of Hodge-Tate weights), Pro-

position 5.1.2 and Lemma 1.1.4 of [BL10] (the latter is used to get rid of case (3) of the former)

can be applied to conclude that either the residual modλ representation is reducible, or it is in-

duced, or the groupκ×λ im(ρλ(π)) is a sturdy subgroup ofGLn(κλ) (see [BL10] for the definition

of sturdy subgroup). We already know thatρλ(π) is irreducible (because of the local parameter at

q). Also, if we assume that it is induced, then we obtain a contradiction (for ℓ sufficiently large)

by Section 3 of [AdDW13b]. Thus, we conclude that there exists some boundB such that, for all

ℓ > B, κ×λ im(ρλ(π)) is a sturdy subgroup ofGLn(κλ). As a consequence of Lemma 4.2.2 of [BL10],

κ×λ im(ρλ(π)|GF (ζℓ)
) is also a sturdy subgroup ofGLn(κλ). Thus, in particular,ρλ(π)|GF (ζℓ)

is irre-

ducible.

From the lemma above, we know that there is a boundB such that for all primesℓ > B and every

λ | ℓ the conclusion of the lemma holds for any quadratic fieldF . In what follows, we exclude the

primesℓ ≤ B.

The following lemma allows us to control the case where a residual representation in our system

can lose ramification att, at least over imaginary quadratic fields.

Lemma 5.2. LetF be an imaginary quadratic field such thatt and q, the primes whereπ ramifies,

are split. Then among the primesℓ that are split inF , there are only finitely manyℓ such that the
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residual representationρλ(π) is unramified att for someλ aboveℓ. In particular, the residual modλ

representation contains a transvection given by the image of It for all but finitely many primesℓ that

are split inF , for everyλ | ℓ.

Proof. We restrict our reasoning to primesℓ that are split inF , different fromq, t, and greater than

B. The last condition allows us to apply Lemma 5.1 for the residual modλ representation.

Observe that, sincet is split inF , for everyℓ 6= t and everyλ | ℓ, the restrictionρλ(π)|GF
rami-

fies at the primes inF abovet, and of course, if we assume that the modλ representation becomes

unramified att then the same happens to its restriction toGF . Thus, we can work overGF and this

is the setting where the problem of losing ramification can beattacked because the available level-

lowering results only work, to this day, over CM fields. By (quadratic) base change due to Arthur and

Clozel, the restriction toGF of our compatible system is also attached to an automorphic represent-

ation, namely the base changeπF of π, an automorphic representation ofGLn(AF ). (Note thatπF
is cuspidal sinceρλ(π)|GF

is absolutely irreducible and thatπF paired with the trivial character is a

polarized representation in the sense of [BLGGT13]. Obviously πF is also regular algebraic, so we

can speak of a compatible system attached toπF .)

Thus, we take a primeℓ split inF , ℓ > B, and we assume thatρλ(π) (and, a fortiori, its restriction

to GF ) is unramified att (the primes inF dividing t, respectively). To ease notation, let us call

ρF,λ := ρλ(π)|GF
. This residual representation has an automorphic lift, theone given by theλ-adic

representation attached toπF , and since thisλ-adic lift is ramified at the primes abovet while ρF,λ is

not, we can apply a level-lowering result in this situation.Namely, we want to apply Theorem 4.4.1

from [BLGGT13] takingS to be the ramification set of̄ρF,λ, i.e., we will takeS = {ℓ, q}. In

particular,t will not be in S. Let us first discuss the idea informally before going into details. The

theorem gives, for a residual representation that is known to be automorphic, the existence of another

automorphic lift with prescribed local types, under some conditions that are met in our situation. We

insist on the new automorphic lift to have the same local typeat ramified primes as the given one

except at the places abovet where we are assuming the residual representation to be unramified, since

we want this new automorphic form to be unramified at the places abovet. This is the reason why, in

our situation, this theorem can be considered as a level-lowering result.

Going back to Theorem 4.4.1 of [BLGGT13], we need to check thetwo conditions there. The

λ-adic lift that we have, the one attached toπF , is potentially diagonalisable at the primes divid-

ing ℓ wheneverℓ is sufficiently large, because then we are in a Fontaine-Laffaille situation (cf.

Lemma 1.4.3 (2) of [BLGGT13] for a precise statement of the criterion for potential diagonalisab-

ility). This verifies the first condition. The second condition is immediately satisfied by Lemma 5.1

andℓ > B. We choose one place dividingq and one place dividingℓ in F and if we callS′ the set

of these two primes, for anyv ∈ S′ we fix asn-dimensionalλ-adic representationρv of GFv the one

obtained from theλ-adic representation attached toπF , restricted toGFv . Having this fixed, we can

apply Theorem 4.4.1 in [BLGGT13] to conclude that there exists another automorphic representation

π′
F of GLn(AF ) such that:
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(1) π′
F is cuspidal, regular algebraic, and polarizable in the sense of [BLGGT13] (more precisely

RAECSDC when paired with a suitable Hecke character; this isanalogous to the RAESDC rep-

resentation in Section 2 except that conjugate self–duality replaces self–duality there), in particu-

lar equipped with an associated compatible system(ρµ(π
′
F ))µ, indexed by the primesµ of some

number fieldM ′,

(2) π′
F is unramified outsideS,

(3) there is a placeλ′ of M ′ aboveℓ such thatρλ′(π′
F )

∼= ρ̄F,λ,

(4) if v ∈ S′, thenρλ′(π′
F )|GFv

connects toρv (see [BLGGT13] for the definition ofconnects).

On the one hand, by known properties of the connected relation (cf. [BLGGT13], Section 1.4),

Condition (4) atv | ℓ implies that the Weil-Deligne representations ofρλ′(π′
F )|GFv

andρv, restricted

to the inertia group atv, are isomorphic. Sinceρv is known to be crystalline, we can conclude that

ρλ′(π′
F )|GFv

is crystalline. Moreover the connected relation implies (by definition) that they have

both the same Hodge-Tate numbers. From this (and conjugate essential self-duality) we deduce that

π′
F has level prime toℓ and that it has the same infinitesimal character asπF .

On the other hand, at the prime inS′ aboveq, sayw, the Weil-Deligne representations corres-

ponding toρλ′(π′
F )|GFw

andρw have isomorphic restrictions to inertia. Indeed, sinceπF andπ′
F

are cuspidal automorphic representations ofGL(AF ), the local componentsπ′
w andπ′

F,w are gen-

eric. Hence, by Lemma 1.3.2 of [BLGGT13],ρλ′(π′)|GFw
= ρw andρλ′(π′

F )|GFw
are smooth. From

Lemma 1.3.4 (2) of [BLGGT13] (due to Choi) we conclude that the inertial types ofπF andπ′
F atw

agree.

Observe that in particular, independently ofℓ, the automorphic representationπ′
F has fixed in-

finitesimal character at∞, fixed ramification set and fixed types at the ramified primes. It follows

from the finiteness result of Harish–Chandra (cf. (1.7) and (4.4) of [BJ79]) that there are only finitely

many possibilities forπ′
F . (We see from [BJ79] that there are finitely manyπ′

F with fixed infinites-

imal character at∞ such that the finite part ofπ′
F has a nonzero invariant vector under a fixed open

compact subgroup of the finite part ofGLn(AF ). So it boils down to showing that the conductor of

π′
F is bounded. The latter can be seen via local Langlands from that we fix the ramification set ofπ′

F

as well as the types at the primes therein.)

Now assume that the residual modλ representation attached toπF is unramified att for infinitely

many primesℓ (we keep the assumption that we are only working with primesℓ that are split in

F ). For eachℓ we find π′
F as above (which a priori depends onℓ). Since there are only finitely

many possibilities forπ′
F asℓ varies, we conclude that there exists aπ′

F as in (1) and (2) such that

the congruence (3) and condition (4) hold true for infinitelymanyλ. But this has an immediate

consequence for the compatible systems attached toπF andπ′
F . Since there are congruences between

these two systems in infinitely many different residual characteristics, this forces the traces of both

systems at unramified places to be equal, and then using Chebotarev’s density theorem combined

with the Brauer-Nesbitt theorem we conclude that the two systems are isomorphic. But looking at

14



the restriction of these two systems at a decomposition group at t we get a contradiction, because

due to compatibility with Local Langlands,(ρλ(πF ))λ is known to be ramified at the places abovet

while (ρµ(π
′
F ))µ is unramified at the places abovet by construction. This contradiction proves that

the residual representationρλ(π) can be unramified att only for finitely many primesℓ (among the

primes that split inF ).

We can apply the previous lemma over any quadratic number field of the formF = Q(
√
−w)

wherew is a prime such thatq andt are split inF . It is clear that there are infinitely many such fields;

consider an infinite sequence(Fn)n of distinct such fields. Let us callTn the set of primes that are

split in one of theFi, i = 1, . . . n, and letL be the set of primesℓ such thatρλ(π) is unramified att

for someλ | ℓ. ThenL∩Tn is finite for anyn ∈ N. But asn grows, the setsTn have (natural) density

arbitrarily close to1. This clearly implies thatL must have density0.

6 Conclusion

The aim of this section is to show that the system of Galois representations studied in the previous two

sections, attached to the automorphic form constructed in Section 3, does satisfy all the conditions in

the main result on the inverse Galois problem of [AdDW13b]. Let us check this in detail. (In the

setting of [AdDW13b], we takeN1 = t, N2 = 1, N = t, andL0 = Q). First, observe that the primes

q andp as in Section 4 satisfy thatq is completely split inQ, andp ≡ 1 (mod n), p | qn − 1 but

p ∤ q
n
2 − 1.

The system(ρλ(π))λ of Galois representations ofGQ is a. e. absolutely irreducible and sym-

plectic, and it satisfies the following properties:

• The ramification set of the system isR = {q, t};

• The system is Hodge-Tate regular with constant Hodge-Tate weights and for everyℓ 6∈ R and

λ | ℓ, the representationρλ(π) is crystalline. Leta ∈ Z be the smallest Hodge-Tate weight and

let us callk the biggest difference between any two Hodge-Tate numbers.By Fontaine-Laffaille

theory, we conclude that for everyℓ 6∈ R, ℓ > k + 2, λ | ℓ, χa
ℓ ⊗ ρλ(π) is regular in the sense

of [AdDW13b], and the tame inertia weights of this representation are bounded byk (in fact,

these weights for theseℓ agree with the Hodge-Tate numbers of the system plusa);

• As we have seen in Section 5, for a density one set of primesℓ 6= t and for everyλ | ℓ, the

transvection corresponding to the image ofIt underρλ(π) (cf. (9) of Section 4) is preserved in

the reduction modλ, henceρλ(π) contains a nontrivial transvection;

• As we have already observed (cf. (8) of Section 4), for everyℓ 6= q, for everyλ | ℓ, the

representationρλ(π)|GQq

∼= ρq ⊗ αλ for some unramified characterαλ : GQq → M
×

λ andρq

is, by definition,Ind
GQq

GQqn
(χq) for χq as defined in Section 3;
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• For everyℓ 6= t and for everyλ|ℓ, the image ofIt underρλ(π) consists of either a group

generated by a transvection or the trivial group, soρλ(π)(It) is in any case anℓ-group, therefore

it has order prime ton! for anyℓ larger thann.

Thus, the main result on the inverse Galois problem of [AdDW13b] can be applied, and we deduce

the following theorem:

Theorem 6.1. Let π be the automorphic representation given by Theorem 3.4 of Section 3, with the

ramified primesq and t satisfying the conditions specified in Section 4. Then, the compatible system

(ρλ(π))λ has huge residual image for a density one set of primesℓ, for everyλ|ℓ, i.e.,im(ρλ(π)) is a

huge subgroup ofGSpn(Fℓ) for a density one set of primes.

To derive our Galois theoretic result (i.e. Theorem 1.1), wejust observe that, for any given integer

d > 0, we can change the conditionp ≡ 1 (mod n) at the beginning of Section 4 by the stronger

conditionp ≡ 1 (mod dn) while choosingq andt exactly as we did in Section 4.

With this, we conclude from the main result on the inverse Galois problem of [AdDW13b] that,

for such an integerd, the groupsPGSpn(Fℓd) or PSpn(Fℓd) are realised as Galois groups overQ for

a positive density set of primesℓ. Since this can be done for anyd, Theorem 1.1 follows.
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