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Estimates with A, Weights
for Various Singular Integral Operators.

J. ALVAREZ - C. PEREZ

Sunto. — Si studia la limitatezza di certe classi di integrali singolari sullo
spazio LP(w), we A.

1. — Introduction.

Most of the operators in Harmonic Analysis are known to be
bounded on LP(R") for certain values of p, and also bounded on
L?(w), we A,, for the same range of p. Sometimes, stronger forms
of these boundedness properties hold. For instance, let Tf(x) =p.v.
f k(x —y) f(y) dy be a classical singular integral operator, and let M
be the Hardy-Littlewood maximal operator. A remarkable theorem
due to R. Coifman states that for each 0 < p < », and for each w e
A, there exists C=C,, ,>0 such that

(1) f|Tf(y)l”w(y)dysCfo(y)”w(y)dy,
R" R

for each smooth f.

Coifman’s proof of (1) is based on a difficult good-A inequality in-
volving the maximal singular integral operator T* and M, which
uses estimates for 7* due to M. Cotlar.

The aim of this paper is to give a different proof of (1), under con-
ditions that allow for consideration of a wider class of operators. Our
approach combines the following two ingredients. First, we prove a
pointwise estimate. Namely, given 0 < s < 1, there exists C=C,>0
such that

(2) M (Tf)(x) <CMf(xy) fe D(R"), xye R
where M is the s-sharp maximal operator defined as

MI () =M*(|g|*)"",
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M* being the sharp maximal operator of C. Feffermn and E. Stein.
The second basic ingredient is the following estimate of C. Feffer-
man and E. Stein. For each 0 <p < ®, and for each w e A,, there
exists C=C,,, >0 such that

(3) fo(y)”W(y)dy < CfM#f(y)”'bv(y)dy fe R").
R”L

R"

A very simple proof of (3) can be found in[17], p. 42.
Once (2) is proved, the Lebesgue differentiation theorem, to-
gether with (3), yield

[ Pt dy < [ MATH Y Py dy <
k.

CfM*<le|8><y>”/Sw(y>dy=CfM;"(Tf><y>Pw(y)dys
. -

R

¢ Myruty dy.

R

REMARK 1.1. — Our result extends substantially the one obtained
by J. Bruna and B, Koremblum (cf. [3]). They obtained an inequality
similar to (2) with M/ replaced by the maximal operator M,, defined
as

1
M, f(x) = sup —r [ flzr=@-
<@ Q]
However, their estimate does not provide weighted inequalities.

REMARK 1.2. — K. Yabuta has shown (cf.[22)), that it is possible
to enlarge the class of weights for which (3) holds. Indeed, Yabuta
shows that this is the case for the class of weights C,, ¢>p>1,
which contains the class A... Therefore, a corresponding result holds
for T and M.

REMARK 1.3. — It is well known that the estimate (2) is false for
s =1, although for each r> 1 there exists C=C,>0, such that
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M*(Tf )xy) <CM, f(xy), fe X(R"), 2y € R". On the other hand it is
possible to show that a local version of (3) yields the following sharp
form

M*(Tf )(xy) SCM(Mf)(xy) fe DR"), xyeR".

The class of Calderén-Zygmund operators in the sense of R. Coif-
man and Y. Meyer (cf. [6]), will be our model case, and we will prove
(2) for these operators in Section 2.1 below. However, with similar
techniques it is possible to extend (2) to weakly strongly singular
Calderén-Zygmund operators (cf.[11] p. 21,[1],[2]), as well as to
some pseudo-differential operators in the Hérmander class (cf. [14])
and to a class of oscillatory integral operators, related to those intro-
duced by D. H. Phong and E. Stein (cf.[20]). A very interesting
class of operators for which our approach does not seem to work, is
the class of rough singular integrals. It is known, however, that
these operators are bounded on LP(w) for w e A, (cf.[10]).

In Section 2.2, we obtain weighted estimates for commutators
with BMO functions in the context of L? and Morrey spaces. Finally,
Sections 3 and 4 are dedicated to study the vector-valued case. Our
applications include Littlewood-Paley square functions and general
Hardy-Littlewood maximal operators.

2. — Singular integrals.

2.1. — Calderén-Zygmund operators, the model case.

We start by recalling the definition of the motivating example. A
kernel on R" X R" will be a locally integrable complex-valued func-
tion k, defined on Q =R" X R"\ diagonal.

We will impose on the kernel k an integral smoothness condition,
very close to the one used by B. Jawerth and A. Torchinsky (cf. [16]
p. 256), to prove various estimates for local sharp maximal func-
tions.

For each ball B = B(x,7), let

1 1
Dgpk(y) = WTE'—JJ'k(Z,y) —k(x,y)}dxdz.
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Then, the smoothness condition reads as follows,

(D) There are constants C, N > 0 such that

sup f | f(y)| Dpk(y) dy < CMf(xo),

>0y — g > Nr

for all fe MR"™) and x, € R".

Every standard kernel in the sense of R. Coifman and Y. Meyer
(cf.[6]), satisfies condition (D), as well convolution kernels of Dini

type.
We say that a linear and continuous operator T: G(R") —»>®'(R")
is associated with a kernel k, if

(Tf,9) = ffk(x,y)y(x)f(y)dxdy,

R"R"
whenever f,g € ®(R") with supp (f) N supp (g)=0.

THEOREM 2.1. — Let T be an operator associated with a kernel k
satisfying condition (D). Let us suppose that T extends to a bounded

operator from L'(R") into LY (R"). Then, for each 0<s<1, there
exists C=C,>0 such that

(4) MZ(Tf )(x,) < CMf(xg) fe O(R"™), xoeR".

PROOF. — To prove (4), we will show that for each 0 < s < 1, each
ball B = B(x,,r) and for some complex constant ¢ =cg, there exists
C=C,>0 such that,

1/s
LflleI3—|c|S|doc < CMf(x) .
|B| ;

Let f=fi +fs, where fi =fXBwo,Nns N being the same constant as
in condition (D). Using the notation gq=1/ Q| f g(y)dy, we pick
Q
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¢=(Tf)z. Now, since ||a|*— |b|*|<|a—b|® for 0<s<1, we
obtain

1/s

1/s
(lBI fIITf's |(T2)B |d.’L') \C( |B| flTﬁ'sdx) +

1/s
C( 18] s f|sz (sz)BIde) =CU +1I).

Since T:L'(R")—L"*(R") and 0<s <1, Kolmogorov’s in-
equality (cf.[13] p. 485 for instance), yields

d de<CM .
B lfll v IB( O’N )l B(wxp,Nr) |fl ’ f(xO)

To take care of II we observe that Jensen’s inequality together
with Fubini’s theorem yield,

1<—f|sz (Tfo)p|dw < f | ()| Dpk(y) dy,

|B’ |y — x| >Nr

which is bounded by a multiple of Mf(x,), according to condition (D).
This completes the proof of Theorem 2.1. =

As we mentioned in the introduction, condition (D) and Theorem
2.1 can be adapted to include the so called weakly strongly singular
Calderén-Zygmund operators. These are singular integral operators
which enjoy properties similar to those expected in the Calderén-
Zygmund operator theory, while the kernel are more singular in the
diagonal than the standard ones.

2.2. - Commutators with BMO functions.
The next result is a sharp version of the sufficient condition
in[7], Theorem 1.

THEOREM 2.2. — Let T be an operator satisfying the hypothesis of
Theorem 2.1 and let b e BMO, fixed. Then, for each we A.,, r > 1,
0 <p < «, there exists C=C,,,,>0 such that

(5) fI[b,T]f(y)I"W(y)dy<Cerf(y)pw(y)dy fe (R"),
R‘VL R’rL
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where [b, T] denotes the commutator of T with the operator of multi-
plication by b.

The proof of Theorem 2.2 is based on the following a priori
estimate.

For each be BMO,0<s<1,1<r< x®, there exists C=Cp 5 r >
0 such that,

6) MZ*([h,T) 1)) <C|bl sy M (Tf ) @) + M, f(x))  fe D(R").

Selecting s small enough, it is not hard to see that standard proper-
ties of the A., class of weights together with Theorem 2.1, imply the
conclusion of Theorem 2.2. The idea of relating commutators with
the sharp maximal operator of C. Fefferman and E. Stein is due to J.
0. Stromberg (cf. [15]).

REMARK 2.3. — Inequality (5) is false for » =1, and in fact one can
give the following sharper result

[ 1.1 P utp dy<c [ Mot ey dy.,
n Rn

R

where b and w satisfy the same conditions as in (5). These results can
be found in[19].

The a priori estimate (6) was proved for s =1 in [8], p. 326. Fol-
lowing this paper we will use (6) to obtain weighted estimates on
Morrey spaces.

More specifically, let us consider a nonincreasing funetion
0: (0, @) — (0, ©). Give, 0 < p < «, and given a weight w, that is to
say a nonnegative and locally integrable function on R", we define
the class M2, (R") as those functions f in Lf,. such that

1/p
1 1 f
sup ———\ o7 () |Pw(y)dy =\\fllmp, <*,
where the supremum is taken over all balls B. This definition coin-
cides with the one in[8], p. 324 when 1<p< ®, w=1, o(l) =
ta-m/m g <)< .

F.C
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We first observe that for each ball B, and for each
O0<p<®

M? (R") c L? (w(Myp)"),

provided that
(i) there is a positive constant 0 < D < 1 for which
o(2t) < Dgp(t)
and
(i) max {0,1+ (p logD) /(n log2)} <y.
The proof is similar to the one in [4] p. 275, and we shall omit it.

We are ready now to extend Lemma 38 in[8] p. 326.

LEMMA 24. - Let ¢ and y satisfy conditions i) and ii) above. Sup-
pose also that w is a weight such that w(Msy )" belongs to A, wuni-
Jormly on each ball B. Then for each 0 < p < =, there exists a posi-
tive constant C such that

(M _ ”Mf”Mg,w <CI[M*flup,-

The proof in[8] applies with obvious changes and will be
omitted.

REMARK 2.5. — There are interesting nontrivial weights satisfy-
ing the assumption of the lemma. Recall that a weight w satisfies the
RH, condition if there is a constant ¢ such that for each ball B

1
® il:g w(y) < WJW(y)dy.

Let w be one of these weights, and let (Mu)" be finite a.e. with
0 <y < 1,whereu =y, for a fixed ball By. We claim that w(Mu)" sat-
isfies the A, condition. Indeed, let 1 < r < 1/y. Then,

1/r

1/r
L f W Mu())Ydy | <supw(y) | - f Mu(y)7dy | <
IBI B yeB |B' B

IBI fw(y)dy Inf (Mu(y)' < lgl fw(y)(MM(y))’dy,
B

since (Mu(y))" satisfies the A, condition (cf.[13]).



130 J. ALVAREZ - C. PEREZ

Some important examples of functions satisfying the RH . condi-
tion are the polynomials. If = is a polynomial, the |z| e RH ., (cf. (9]
p- 16).

REMARK 2.6. — The A, class can be replaced in Lemma 2.4 by the
larger class weak-A which was introduced in [21]. A weight w sat-
isfies the weak-A,, condition if there are positive constants ¢ and ¢
such that

w(E) < c(%)ow(ZQ)

for each cube @ and any measurable set E ¢ Q. It is not hard to see as
in[21] that inequality (3) still holds with w satisfying the weak-A.,
condition. Hence, the proof of (7) follows with obvious modifica-
tions.

Estimates (6) and (7) imply the a priori estimate
10T, b1 f ez, < CUFlnz.ns

for each smooth function f. Analogously, from (4) and (7) we can
deduce

1T Nz, < Cf otz

for each smooth function f.

3. — Vector-valued extension and applications.

It is well known that Littlewood-Paley type estimates may be
viewed as an extension of the Calderén-Zygmund theory (ef.[13]
Chapter V). In the same way, it is possible to extend the previous
results within this context. We will describe some consequences of
this extension.

Let us consider one of the most typical square functions. Name-

ly, let $e S(R™) be a nontrivial radial function satisfying f ¢=0. We
R’IL
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set Y (2) = (1 /t") ¢(x /t), Q; f=f*;, and we consider the nonlinear
operator

1/2

st [ sl &
0

THEOREM 3.1. — For each 0 < p < « and for each we A, there
exists C=C, , >0 such that

9) fo(y)”w(y)dy S Cfo(y)”w(y)dy fe (R"),
R" R"

An analogous result holds for the discrete version of S, denoted
as S and defined by

1/2
Sf(w) = (21:’ Iszf(x)Iz) .

We will close this section considering the following generaliza-
tion of the Hardy-Littlewood maximal operator. Given ¢eL!(R"),
we define the maximal operator

M, f(x) = sup |f* ¢:(@)],

where, as usual, ¢,=(1/6" ¢(x /¢). This operator can be viewed as
a vector-valued singular integral, M,f(x)=|Tf(x)|p, where B=
I*(R") and Tf(x) = (f* $:(2));>0-

Furthermore, if we assume that ¢ satisfies |¢(x —y) — ¢(x)| <
Cy| /|x|"*"), for |x|>2|y| >0, we have the following result

THEOREM 3.2. — For each 0 < p < » and for each we A, there
exists C=C,,, >0 such that

(10) fM¢f(y)"w(y)dy sCfo(y)”w(y)dy fe ™(R").
R" R"

4. - A further consideration.

In this section we will state a further extension of Coifman’s esti-
mate (1) which is a consequence of extrapolation methods due to C.
Pérez (cf.[18]).
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THEOREM 4.1. — Let 0 <p, ¢ < ®, and let P be any of the opera-

tors T, S, S, M P described in Sections 2 and 3. Then, for each weight
we A, there exists C=Cu,pq>0 such that

® 1/q ® 1/q
(goleilq) (go(Mﬁ-)q)
for all functions f; € M (R™).

Furthermore, if b € BMO for each w e A,,r>1,there exists C=
Cuo,ripg >0 such that

® 1/q
(gol[b,T]ﬁlq)

for all functions f; e AR").

<C

LP(w)

(11)

b
LP(w)

<C

LP(w) LPw)

@ 1/q
(S0

(12) ‘

The roots of this result can be found in the celebrated vector-
valued extension of the Hardy-Littlewood maximal theorem, due to
C. Fefferman and E. Stein (ef.[12])). However, we have been mostly
influenced by the work of J. Garcia-Cuerva and J. L. Rubio de Fran-
cia on extrapolation for weights (cf.[13] Chapter IV).
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