
Potential analysis, 19 (2003), 1-33.

Potential operators, maximal functions, and

generalizations of A∞

Carlos Pérez§ and Richard L. Wheeden

1 Introduction

The purpose of this paper is to prove two kinds of weighted norm inequalities for integral

operators of potential type and their associated maximal operators in spaces of homogeneous

type. The first kind of result is an extension of a result of Muckenhoupt and Wheeden, which

showed that for A∞ weights in Euclidean space, a weighted Lp norm of the classical Riesz

fractional integral operator Iαf of a function f is equivalent to the same norm of the fractional

maximal function Mαf . Our extension of this result involves fairly general integral operators

of potential type and their associated maximal operators in spaces of homogeneous type, and

classes of weights which are more general than A∞. The second kind of inequality that we will

prove gives two-weight Lp, Lq norm estimates for such maximal operators, assuming again an

appropriate (but substantially weakened) version of A∞. An important point here is that we

completely avoid using the “good-lambda inequality” technique of Burkholder and Gundy.

Finally, we can combine these two results to obtain two-weight Lp, Lq norm estimates for

potential operators that improve similar ones derived by Sawyer and Wheeden.

In the usual n-dimensional Euclidean space Rn, if 0 < α < n, let

Iαf(x) =

∫
Rn

f(y)
1

|x− y|n−α
dy
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denote the Riesz fractional integral of f of order α, and let

Mαf(x) = sup
B:x∈B

r(B)α−n
∫
B

|f(y)| dy

be the corresponding fractional maximal function of f , where B denotes a Euclidean ball and

r(B) is the radius of B. The pointwise inequality

Mαf(x) ≤ C Iαf(x),

with C independent of x and f , follows easily from the definitions. On the other hand, the

reverse pointwise inequality is false, but it is shown in [MW] that Iαf and Mαf are often

comparable in norm. To be more precise, if w ∈ A∞ and 0 < p <∞, then it is shown in [MW]

that ∫
Rn

|Iαf(x)|pw(x) dx ≤ c

∫
Rn

Mαf(x)pw(x) dx (1)

with c independent of f . Here A∞ denotes the collection of weights w on Rn with the

property that there exist constants C, δ > 0 such that if E is a Lebesgue measurable subset of

a ball B, then

w(E)

w(B)
≤ C

(
|E|
|B|

)δ
,

where w(E) =
∫
E
w(x) dx and |E| is the Lebesgue measure of E .

This estimate has had applications in potential theory, such as in the proof of the

Hedberg–Wolff theorem [AH] concerning nonlinear potentials. The corresponding theorem for

potential operators of convolution type plays a role in the proof of the characterization by

Kerman and Sawyer of trace type inequalities, which in turn have applications to eigenvalues

estimates for Schrödinger operators (see [KS]). Inequality (1) is also related to the fact that

the positive cone for the Triebel-Lizorkin space Fα,q
p , α < 0, is independent of q; see [JPW]

and [AH].

2



An example of the first kind of result that we will prove is an estimate similar to (1) but

with Rn replaced by a space S of homogeneous type, Iα replaced by a potential operator

T = T
K

of the form

Tf(x) = T (fdµ)(x) =

∫
S
f(y)K(x, y)dµ(y) (2)

where µ is the underlying doubling measure on S (see §3 for the exact definitions of a space of

homogeneous type and a doubling measure), and with Mαf replaced by

Mϕf(x) = Mϕ(fdµ)(x) = sup
B:x∈B

ϕ(B)

∫
B

|f(y)|dµ(y) (3)

where ϕ(B) = ϕK(B) is a functional which acts on balls and is defined by

ϕ(B) = sup
x,y∈B

d(x,y)≥cr(B)

K(x, y) (4)

for a sufficiently small positive geometric constant c (see [SW1]). Here d(x, y) denotes the

quasimetric associated with S. For example, in the case of the Riesz potential we have

K(x, y) = |x− y|α−n, 0 < α < n, so that ϕ(B) ≈ r(B)α−n, and then Mϕ reduces to the

fractional maximal operator Mα. Other examples of operators of the forms (2) or (3) arise

from important differential operators; see the next section for more details.

In our generalization of (1), we will assume that the weight satisfies a condition that is

analogous to the A∞ condition described above but with Lebesgue measure replaced by a

notion of content, such as Hausdorff content, on the right-hand side.

An example of the second kind of result that we will prove is the two-weight estimate(∫
S
{Mϕ(fdµ)w}qdµ

)1/q

≤ C

(∫
S
(|f | v)pdµ

)1/p

with 1 < p ≤ q <∞ and C independent of f . Such estimates have been studied extensively,

but the nature of the condition that we shall impose on the weights is different from

elsewhere. In particular, in addition to the necessary condition

ϕ(B)

(∫
B

wqdµ

)1/q (∫
B

v−p
′
dµ

)1/p′

≤ c,
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p′ = p/(p− 1), for all balls B, we shall assume that v−p
′
satisfies an appropriate A∞ condition

of the content type. For comparison purposes, we note that the two-weight boundedness of

Mϕ is studied in [PW] under a different kind of strengthening of the necessary condition, such

as a Fefferman–Phong condition of the type

ϕ(B)µ(B)1/p′
(∫

B

wqdµ

)1/q (
1

µ(B)

∫
B

v−rp
′
dµ

)1/rp′

≤ c

for some r > 1. For example, weights for which just reverse doubling conditions are valid may

satisfy an A∞ condition of content type but not a Fefferman–Phong condition.

As mentioned earlier, it is possible to combine the two kinds of results that we will prove.

In this way, we obtain two-weight norm estimates for potential operators Tf assuming that

both weights satisfy content conditions.

2 Statements of the main results

Following [SW1], we consider potential operators of the form

T (fdσ)(x) =

∫
S
f(y)K(x, y)dσ(y), (5)

where S is a space of homogeneous type with underlying doubling measure µ, and σ is any

Borel measure on S. This definition agrees with (2) in case σ = µ. The exact definition of a

space of homogeneous type is given is §3; by a doubling measure, we mean a Borel measure µ

with the property that there is a constant C such that for every “ball” B ⊂ S,

µ(2B) ≤ Cµ(B).

As usual, 2B denotes the ball with the same center as B but twice the radius. If d(x, y) is the

corresponding quasimetric in S, we will always assume that the kernel K(x, y) is nonnegative
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and satisfies the following growth conditions: there exist constants C1, C2 strictly larger than

1 such that

K(x, y) ≤ C1K(x′, y) if d(x′, y) ≤ C2d(x, y), (6)

K(x, y) ≤ C1K(x, y′) if d(x, y′) ≤ C2d(x, y).

The main classical examples of such operators are the Riesz integrals Iαf mentioned in the

introduction. An important class of examples for metrics other than the usual Euclidean

metric consists of potential operators related to the regularity of subelliptic differential

equations. In particular, vector fields of Hörmander type ([H]) as well as the classes of

nonsmooth vector fields studied in [FL] and [SW2] lead to integral operators of the type we

will study. In addition, the differential operators of Grushin type considered in [FGuW] (at

least in the simplest case of Lebesgue measure) are related to integrals of type (2). In fact, for

all these examples the associated potential operator has the form

Tf(x) =

∫
S
f(y)

d(x, y)

µ(B(x, d(x, y)))
dµ(y) (7)

where d(x, y) is a distance function that is naturally related to the vector fields and B(x, r)

denotes the corresponding ball with center x and radius r.

Associated with K is the functional ϕ = ϕ
K

defined in (4) by

ϕ(B) = sup
x,y∈B

d(x,y)≥cr(B)

K(x, y)

for a sufficiently small positive geometric constant c. As mentioned earlier, ϕ(B) ≈ r(B)α−n

in the case of the Riesz fractional integral Iα. In the subelliptic case (7), note that

ϕ(B) ≈ r(B)/µ(B).

The conditions (6) on K lead to useful growth properties of ϕ. If B is a ball and θ > 0, let

θB denote the ball concentric with B whose radius is θr(B). It is shown in [SWZ, (4.2) and
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(4.3)] that if θ > 1, then there is a constant C depending only on θ, C1, C2, the constant c in

(4) and geometric properties of S so that

ϕ(B) ≤ Cϕ(θB) for all balls B ⊂ S. (8)

Also, for such a constant C (but now one that is independent of θ),

ϕ(B) ≤ Cϕ(B′) for all pairs of balls B′ ⊂ B. (9)

We shall assume in some of our results that ϕ satisfies the following additional condition

for some ε > 0:

ϕ(B1)µ(B1) ≤ C

(
r(B1)

r(B2)

)ε
ϕ(B2)µ(B2) if B1 ⊂ B2. (10)

For example, in the case of the fractional integrals Iα, we can pick ε = α in (10); for the

operator in (7), we can choose ε = 1.

For any Borel measure σ, we define the maximal operator

Mϕ(fdσ)(x) = sup
B:x∈B

ϕ(B)

∫
B

|f | dσ. (11)

Note that if σ = µ, this definition agrees with (3).

The pointwise estimate T (fdσ)(x) ≥ cMϕ(fdσ)(x) is easy to show by using the

assumptions on K. Our first main theorem will show that the opposite inequality often holds

in norm. Thus the theorem generalizes (1) for classical fractional integrals. In fact, the result

improves (1) not only by extending it to spaces of homogeneous type but also by allowing a

larger class of weights even in the usual Euclidean case. In order to state the result, we first

define a suitable class of measures in a space of homogeneous type. The definition is

motivated by a similar one in [SW1] for the usual Euclidean case, and it is most conveniently

phrased in terms of a grid Dm of dyadic cubes Q. Here m is a large negative integer which

indexes the edgelengths `(Q) of the smallest cubes Q ∈ Dm, namely, the smallest edgelengths
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are ρm for an appropriate geometric constant ρ > 1, and each cube in the grid has edgelength

ρk for some k ≥ m (see §3 for details about the grid). The cubes in Dm have the important

nestedness property that if Q1, Q2 ∈ Dm and Q1 ∩Q2 6= ∅, then either Q1 ⊂ Q2 or Q2 ⊂ Q1.

Also, each cube Q ∈ Dm is contained in a ball B(Q) whose radius is comparable to the

edgelength of Q; B(Q) is called the containing ball of Q.

Given an integer m and a nonnegative functional τ(B) of balls B, we define the notion of

the τ content of a set E, ||E||τ,m, as follows. If E ⊂ S, let

‖E‖τ,m = inf{
∑
i

τ(B(Qi)) : Qi ∈ Dm, E ⊂ ∪Qi}.

Thus ‖E‖τ,m is a sort of Hausdorff content of E associated with τ and the grid Dm. Typical

choices of τ are τ(B) = r(B)β for some β > 0, and also τ(B) = µ(B). The first choice

corresponds to Hausdorff content of E of dimension β.

By the nestedness property of dyadic cubes, if E ⊂ Q ∈ Dm then in the definition of

‖E‖τ,m we may assume that all Qi ⊂ Q. We say that a measure ν ∈ Ady∞(τ) if there are

positive constants C, δ independent of E,Q and m such that

ν(E)

ν(Q)
≤ C

( ‖E‖τ,m
τ(B(Q))

)δ
if E ⊂ Q ∈ Dm, (12)

where ν(E) denotes the ν-measure of E.

In case ν is absolutely continuous with respect to µ, say dν = w dµ, we say that

w ∈ Ady∞(τ) if w dµ ∈ Ady∞(τ). We also use the notation w(E) for the w dµ-measure of E:

w(E) =
∫
E
w dµ. If dν = w dx on Rn, it is not hard to see that when τ is chosen so that

τ(B) = r(B)n(≈ |B|), then w ∈ Ady∞(τ) is the same as w ∈ A∞ if w is a doubling weight.

If we choose τ(B) = r(B)β, β > 0, for all balls B, then the class Ady∞(τ) was defined in

[SW1]. In this case, we will use the notation Aβ∞ instead of Ady∞(τ), i.e.,

Aβ∞ = Ady∞(τ) when τ(B) = r(B)β.
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Related notions based on balls instead of dyadic cubes can be obtained by defining

Hτ,B(E) = inf{
∑
i

τ(Bi) : E ⊂ ∪Bi ⊂ B} if E ⊂ B

and replacing (12) by the assumption

ν(E)

ν(B)
≤ C

(
Hτ,B(E)

τ(B)

)δ
if E ⊂ B. (13)

If ν is a doubling measure, these two notions turn out to be the same for many functionals τ ;

see §3 for details. Recall that we always assume that the underlying measure µ is a doubling

measure.

We say that a Borel measure ν satisfies the reverse doubling condition of order β, β > 0, if

there is a positive constant c such that

(14)

We write ν ∈ RDβ for such a measure ν. Any doubling measure belongs to RDβ for some

β > 0 by [W, p.269]. We will show in §3 that if ν is a doubling measure and ν ∈ RDβ, then

ν ∈ Aβ∞ for the same value of β. In fact, the assumption that ν is a doubling measure is not

needed in order to conclude that ν ∈ Aβ∞ if ν satisfies the following dyadic reverse doubling

condition uniformly in m:

ν(Q2) ≥ c

(
`(Q2)

`(Q1)

)β
ν(Q1) if Q1, Q2 ∈ Dm, Q1 ⊂ Q2. (15)

We write ν ∈ RDdy
β for such ν.

We can now state our first main theorem. In it, we assume that τ(B) is a functional for

which there are constants c, ε > 0 with

a) τ(B1) ≤ cτ(B2) if B1 ⊂ B2

b) τ(2B) ≤ cτ(B) for all balls B (16)

c) ϕ(B1)τ(B1) ≤ c

(
r(B1)

r(B2)

)ε
ϕ(B2)τ(B2) if B1 ⊂ B2.
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Theorem 2.1 Let σ and ω be Borel measures on S, T (fdσ) be defined by (5) for a kernel

which satisfies (6), and Mϕ(fdσ) be defined by (11) with ϕ as in (4). Let τ be a nonnegative

functional which satisfies (16). If ω ∈ Ady∞(τ) and 1 ≤ p <∞, then∫
S
|T (fdσ)|pdω ≤ C

∫
S
(Mϕ(fdσ))pdω (17)

with C independent of f . In particular, if τ satisfies (16) and w ∈ Ady∞(τ), then∫
S
|T (fdµ)|pw dµ ≤ C

∫
S
(Mϕ(fdµ))pw dµ. (18)

In the important special case when τ(B) = r(B)β for β > 0, Theorem 2.1 leads to the next

corollary assuming that µ satisfies the doubling condition of order D, i.e., that

µ(B) ≤ C

(
r(B)

r(B̃)

)D
µ(B̃) for all balls B̃ ⊂ B.

Any doubling measure satisfies the doubling condition of order D for some D > 0.

Corollary 2.2 Let 1 ≤ p <∞, µ be a doubling measure of order D, and K be a kernel such

that ϕ satisfies (10) for some ε > 0. If ω and σ are Borel measures on S and ω ∈ Aβ∞ with

β + ε > D, then ∫
S
|T (fdσ)|p dω ≤ C

∫
S
|Mϕ(fdσ)|p dω. (19)

In particular, (19) holds if either ω ∈ RDdy
β with β + ε > D, or if ω is a doubling measure and

ω ∈ RDβ with β + ε > D.

For example, in the usual n-dimensional Euclidean situation with dµ = dx (so that

D = n), Corollary 2.2 includes the result (1) from [MW] by choosing dω = w(x)dx and β = n

since A∞ ⊂ An∞. In fact, Corollary 2.2 improves the result in (1) by showing that (1) is valid

if w ∈ Aβ∞ for any β > n− α, since the value of ε in (10) for the Riesz operator Iα is α.

Corollary 2.2 thus extends the result of [R] showing that (1) is valid for any doubling weight

w which satisfies the reverse doubling condition of order β for some β > n− α.
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Our proof of Theorem 2.1 is not based on the good-lambda technique of Burkholder and

Gundy [BG] used in [MW] but instead follows the line of the proof of Theorem 2.2 in [PW]

(see also [P1]) . The method is flexible enough to allow us to also derive the following

two-weight inequalities without any restriction on the weight which appears on the left. We

use the notation Mf for the Hardy–Littlewood maximal function of f defined by

Mf(x) = sup
B:x∈B

1

µ(B)

∫
B

|f(y)| dµ(y), (20)

and if k is a positive integer, Mkf denotes the k-fold iterate M(M(. . . (Mf) . . . )). Also, [p]

denotes the integral part of p.

Theorem 2.3 Let

T (fdµ)(x) =

∫
S
f(y)K(x, y) dµ(y)

be an integral operator of type (2) with a kernel K such that (6) holds and ϕ satisfies (10).

i) If 1 < p <∞, there is a constant C such that for any weight w and all f ,∫
S
|T (fdµ)|pw dµ ≤ C

∫
S
(Mϕ(fdµ))pM [p]+1w dµ. (21)

ii) If p ≤ 1, there is a constant C such that for any weight w and all f ,∫
S
|T (fdµ)|pw dµ ≤ C

∫
S
(Mϕ(fdµ))pMwdµ. (22)

See [P2] for the Euclidean version except in the case p < 1.

Our proof works only for potential operators and not for singular integrals. A point of

interest is that the result cannot be proved by means of good-lambda inequalities. The proof

of the cases p > 1 and p < 1 is based on “extrapolation” type techniques for non-A∞ weights

very much in the spirit of [CP1].

We will also derive an analogue of Theorem 2.1 for fractional maximal operators. Instead

of restricting ourselves just to Mϕ, we can consider similar operators formed by using any

10



nonnegative function ψ(B) of balls B ⊂ S which satisfies the following conditions:

a) ψ(B1) ≤ c ψ(B2) if B1 ⊂ B2 ⊂ cB1

b) ψ(B1)µ(B1) ≤ c ψ(B2)µ(B2) if B1 ⊂ B2 (23)

c) if S is unbounded, then lim
r(B)→∞

ψ(B) = 0, in the sense that

given ε > 0, there exists N > 0 such that ψ(B) < ε if r(B) > N.

Note that condition b) corresponds to the case ε = 0 in (10), and hence b) is weaker than

(10). In some of our results, we assume that ψ also satisfies the doubling condition

ψ(2B) ≤ Cψ(B) for all balls B.

The main example of such a functional is ψ(B) = r(B)α/µ(B) with α > 0, and in this case

condition c) is true if α strictly exceeds the reverse doubling order of µ.

If σ is any Borel measure on S (σ may not be absolutely continuous with respect to µ), we

define the maximal function Mψ(fdσ) by (11) with ϕ replaced by ψ:

Mψ(fdσ)(x) = sup
B:x∈B

ψ(B)

∫
B

|f(y)| dσ(y). (24)

The next theorem concerns two-weight Lp, Lq estimates for Mψ.

Theorem 2.4 Let ψ satisfy (23) and the doubling condition. Suppose that 1 < p ≤ q <∞,

and let ω and σ be Borel measures such that σ ∈ Ady∞(ψ−1) (i.e., σ ∈ Ady∞(τ) with

τ(B) = 1/ψ(B) for all B) and

ψ(B)ω(B)1/qσ(B)1/p′ ≤ C (25)

for all balls B. If Mψ(fdσ) is the maximal function defined by (24), then(∫
S
Mψ(f dσ)q dω

)1/q

≤ C

(∫
S
|f |p dσ

)1/p

. (26)
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In particular, if w and v are weight functions which satisfy v−p
′ ∈ Ady∞(ψ−1) and

ψ(B)

(∫
B

wq dµ

)1/q (∫
B

v−p
′
dµ

)1/p′

≤ C, (27)

then (∫
S
{Mψ(fdµ)w}q dµ

)1/q

≤ C

(∫
S
(|f | v)p dµ

)1/p

. (28)

It is easy to see (by choosing f to be the characteristic function of a ball) that (25) is a

necessary condition for (26). Similarly, (27) is a necessary condition for (28). Note that the

second statement of Theorem 2.4 follows from the first by choosing dω = wq dµ and

dσ = v−p
′
dµ, and by replacing f by fvp

′
in the conclusion of the first part.

In the special case when τ is given by τ(B) = r(B)β, β > 0, Theorem 2.4 leads to the

following corollary.

Corollary 2.5 Let ψ be a doubling functional that satisfies (23)(a),(c) and the condition

ψ(B1)µ(B1) ≤ c

(
r(B1)

r(B2)

)ε
ψ(B2)µ(B2), B1 ⊂ B2,

for some ε > 0. Suppose that 1 < p ≤ q <∞, and let ω and σ be Borel measures such that

ψ(B)ω(B)1/q σ(B)1/p′ ≤ C

for all balls B. If σ ∈ Aβ∞ with β + ε ≥ D, where D is the doubling order of µ, then(∫
S
Mψ(fdσ)q dω

)1/q

≤ c

(∫
S
|f |p dσ

)1/p

with c independent of f . In particular, if w and v are weight functions that satisfy v−p
′ ∈ Aβ∞

with β + ε ≥ D and

ψ(B)

(∫
B

wq dµ

)1/q (∫
B

v−p
′
dµ

)1/p′

≤ C

for all balls B, then (∫
S
{Mψ(fdµ)w}q dµ

)1/q

≤ c

(∫
S
(|f | v)p dµ

)1/p

with c independent of f .
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For example, if ψ is the functional which corresponds to the kernel of the operator (7),

namely ψ(B) = r(B)/µ(B), then we have ε = 1 in Corollary 2.5, and consequently the

restriction on β there becomes β ≥ D − 1.

Note that in Corollary 2.5, the value of β + ε is allowed to equal D while strict inequality is

assumed in Corollary 2.2. Corollary 2.5 is proved in §5.

For the purpose of comparison, we point out that estimates like (28) are proved in [PW]

without assuming that v−p
′ ∈ Ady∞(ψ−1). However, the results there assume a strenghtening of

condition (27) in the Fefferman–Phong sense, such as the existence of an index r > 1 for which

ψ(B)

(∫
B

wq dµ

) 1
q

µ(B)
1
p′

(
1

µ(B)

∫
B

v−rp
′
dµ

) 1
rp′

≤ C

for all balls B. Strengthenings of (27) which involve other Orlicz norms of v−1 are also

considered in [PW].

Finally, we can combine Theorems 2.1 and 2.4 (or Corollaries 2.2 and 2.5) to immediately

obtain two-weight norm estimates between T (fdσ) and f as follows.

Theorem 2.6 Let ω and σ be Borel measures on S, T (fdσ) be defined by (5) for a kernel

which satisfies (6), and let Mϕ(fdσ) be defined by (11) with ϕ as in (4) and satisfying

(23)(c). For 1 < p ≤ q <∞, suppose that

φ(B)ω(B)1/qσ(B)1/p′ ≤ C

for all balls B. Then (∫
S
|T (fdσ)|q dω

)1/q

≤ C

(∫
S
|f |p dσ

)1/p

with C independent of f provided that either

i) ϕ satisfies (23)(b), σ ∈ Ady∞(1/ϕ) and ω ∈ Ady∞(τ) for any τ which satisfies (16),

or
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ii) ϕ satisfies (10), σ ∈ Aβ1
∞ and ω ∈ Aβ2

∞ with β1 + ε ≥ D and β2 + ε > D where D is the

doubling order of µ and ε is as in (10).

Part ii) of this theorem extends a result proved in [SW1] in the usual Euclidean context.

In fact, it also improves the corresponding result in [SW1] by allowing equality in the

condition involving β1.

In the next two sections, we give some background facts about spaces of homogeneous type

and Orlicz classes. We will use Orlicz spaces only in the proof of Theorem 2.3. Our main

theorems are proved after these sections beginning with the results about maximal functions

and then those for integral operators, including relations between integral operators and

maximal functions.

3 Spaces of homogeneous type

In this section, we briefly recall some basic definitions and facts about spaces of homogeneous

type.

A quasimetric d on a set S is a function d : S × S → [0,∞) which satisfies

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y;

(iii) there exists a finite constant κ ≥ 1 such that

d(x, y) ≤ κ(d(x, z) + d(z, y))

for all x, y, z ∈ S.

Given x ∈ S and r > 0, let B(x, r) = {y ∈ S : d(x, y) < r} be the ball with center x and

radius r. If B = B(x, r) is a ball, we denote its radius r by r(B) and its center x by xB. If ν

is a measure and E is a measurable set, ν(E) denotes the ν-measure of E.
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Definition 3.1 A space of homogeneous type (S, d, µ) is a set S together with a quasimetric

d and a nonnegative Borel measure µ on S such that the doubling condition

µ(B(x, 2r)) ≤ C µ(B(x, r)) (29)

holds for all x ∈ S and r > 0.

The balls B(x, r) are not necessarily open, but by a theorem of Macias and Segovia [MS],

there is a continuous quasimetric d′ which is equivalent to d (i.e., there are positive constants

c1 and c2 such that c1d
′(x, y) ≤ d(x, y) ≤ c2d

′(x, y) for all x, y ∈ S) for which every ball is

open. We always assume that the quasimetric d is continuous and that balls are open.

If C is the smallest constant for which (29) holds, then the number D = logC is called the

doubling order of µ. By iterating (29), we have

µ(B)

µ(B̃)
≤ Cµ

(
r(B)

r(B̃)

)D
for all balls B̃ ⊂ B. (30)

We also assume that annuli in S are not empty, i.e., that B(x,R) \B(x, r) is not empty for

all x ∈ S and 0 < r < R <∞. As mentioned before, any doubling measure µ then satisfies

the reverse doubling property: there exist δ > 0 and cµ > 0 such that

µ(B)

µ(B̃)
≥ cµ

(
r(B)

r(B̃)

)δ
for all balls B̃ ⊂ B. (31)

We shall often use the following observation: if P and B are balls with P ∩B 6= ∅ and

r(P ) ≤ γr(B) for some γ > 0, then

P ⊂ cγB (32)

with cγ = κγ + κ2γ + κ2. To verify (32), note that if z ∈ B ∩ P and y ∈ P , then

d(y, xB) ≤ κ[d(y, xP ) + d(xP , xB)] ≤ κ[r(P ) + κ(d(xP , z) + d(z, xB))]

≤ κ[r(P ) + κ(r(P ) + r(B))] ≤ κ[γr(B) + κ(γr(B) + r(B))] = cγr(B),
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which implies (32).

We will use a grid of dyadic sets in S which are “almost balls”, as constructed in [SW1]. In

fact, the following has been proved there:

If ρ = 8κ5, then for any (large negative) integer m, there are points {xkj} and a

family Dm = {Ekj } of sets for k = m,m+ 1, · · · and j = 1, 2, · · · such that

• B(xkj , ρ
k) ⊂ Ekj ⊂ B(xkj , ρ

k+1)

• For each k = m,m+ 1, · · · , the family {Ekj } is pairwise disjoint in j, and

S = ∪jEkj .

• If m ≤ k < l, then either Ekj ∩ E li = ∅ or Ekj ⊂ E li .

We call the family D = ∪m∈ZDm a dyadic cube decomposition of S and refer to the sets in

D as dyadic cubes. A dyadic cube will usually be denoted by Q, and Q∗ will denote the

containing ball described above with 1
ρ
Q∗ ⊂ Q ⊂ Q∗; thus, if Q = Ekj then Q∗ = B(xkj , ρ

k+1).

We set `(Q) = r(Q∗)/ρ and call `(Q) the “sidelength” of Q. We note that while the cubes in

each Dm have the dyadic properties listed above, no nestedness properties of the cubes in Dm1

relative to the cubes in Dm2 are assumed if m1 and m2 are different.

For any Borel measure ω, define

Mω,mg(x) = sup
B:x∈B

r(B)≥ρm

1

ω(B)

∫
B

|g| dω,

and also the dyadic version

Mdy
ω,mg(x) = sup

Q:x∈Q

Q∈Dm

1

ω(Q)

∫
Q

|g| dω.

If ω is absolutely continuous with respect to µ, i.e., dω = w dµ, then we write Mw,mg and

Mdy
w,mg instead of Mwdµ,mg and Mdy

wdµ,mg. As usual, we say that w is a weight if w(x) is a

16



nonnegative locally integrable function with respect to µ, and for a measurable set E, we

write w(E) =
∫
E
w(x) dµ(x).

Let us show, as mentioned in §2, that (12) and (13) are identical notions for many

functionals τ if ν is a doubling measure. In fact, we will show this is the case if τ just satisfies

(16)(a),(b). Let ν be a doubling measure. First, suppose that (13) holds for ν, and let

E ⊂ Q ∈ Dm. Given η > 0, select cubes {Qi} in Dm with E ⊂ ∪Qi ⊂ Q and∑
τ(B(Qi)) < ‖E‖τ,m + η, where B(Qi) denotes the containing ball of Qi. Note that

E ⊂ ∪B(Qi) ⊂ cB(Q) for some geometric constant c which is independent of m,E,Q, and

{Qi}. By (13),

ν(E)

ν(cB(Q))
≤ C

(
Hτ,cB(Q)(E)

τ(cB(Q))

)δ
≤ C

(∑
τ(B(Qi))

τ(cB(Q))

)δ
.

By the properties of containing balls, and since ν is doubling and (16)(a) holds, we obtain

ν(E)

ν(Q)
≤ C

(∑
τ(B(Qi))

τ(B(Q))

)δ
≤ C

(‖E‖τ,m + η

τ(B(Q))

)δ
,

and (12) follows by letting η → 0.

Conversely, suppose that (12) holds for a doubling measure ν, and let E ⊂ ∪Bi ⊂ B. We

want to show that

ν(E)

ν(B)
≤ C

(∑
τ(Bi)

τ(B)

)δ
for some δ > 0, i.e., that (13) holds. Let m be so large that ρm << r(B). Cover B by a finite

number N1 of disjoint dyadic cubes Q ∈ Dm with `(Q) ≈ r(B), where N1 and the constants of

equivalence are independent of B and the grid Dm. By the doubling of ν, ν(B) ≈ ν(Q) for

each such Q, with similar constants of equivalence, assuming as we may that each Q touches

B. By considering the sets E ∩Q individually and adding, we may assume that E ⊂ Q for

one such Q. Also, by considering those Bi with r(Bi) ≥ ρm, and eventually letting m→ −∞,
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we may assume that all r(Bi) ≥ ρm. Cover each Bi by a finite number N2 (independent of i

and m) of cubes {Qij}N2
j=1 in Dm with r(Bi) ≈ `(Qij) uniformly in i, j,m. It follows easily

from the properties of the quasimetric that Qij ⊂ cBi for a uniform positive constant c. Since

E ⊂ ∪i,jQij and we may discard any Qij not contained in Q, it follows from (12) that

ν(E)

ν(Q)
≤ C

(∑
i,j τ(B(Qij))

τ(B(Q))

)δ

= C

(∑
i

∑
j τ(B(Qij))

τ(B(Q))

)δ
≤ C

(
N2

∑
i τ(Bi)

τ(B)

)δ
because the number of j’s is at most N2 and (16)(a),(b) hold. Since ν(B) ≈ ν(Q), a similar

estimate holds with ν(Q) replaced by ν(B) in the denominator on the left, which gives the

desired inequality.

As usual, we say that a measure ν belongs to A∞(µ) if there are positive constants C and

η such that

ν(E) ≤ C

(
µ(E)

µ(B)

)η
ν(B)

for every ball B and every measurable set E ⊂ B. It is not difficult to show that if ν ∈ A∞(µ)

then ν ∈ Ady∞(µ) (in the sense of definition (12)). In fact, let E be a set with E ⊂ ∪Qi ⊂ Q for

Qi, Q ∈ Dm. If ν ∈ A∞(µ), it follows easily that ν is doubling, and then

ν(E)

ν(Q)
≤ c

(
µ(E)

µ(Q)

)η
for some η > 0 since Q can be included in a ball of comparable measure. Therefore, since

E ⊂ ∪B(Qi),

ν(E)

ν(Q)
≤ c

(∑ µ(B(Qi))

µ(Q)

)η
≤ c

(∑ µ(B(Qi))

µ(B(Q))

)η
since µ is doubling. Consequently, ν ∈ Ady∞(µ).

Let us now show that any measure ν which satisfies the dyadic reverse doubling condition

RDdy
β (see (15)) belongs to Aβ∞ for the same value of β. A similar fact was shown in [SW1] in
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the Euclidean case. If E ⊂ ∪Qi ⊂ Q with Qi, Q ∈ Dm, then

ν(E) ≤
∑
i

ν(Qi) ≤ c
∑
i

(
`(Qi)

`(Q)

)β
ν(Q)

since ν ∈ RDdy
β . Defining τ by τ(B) = r(B)β for all B, it follows that

ν(E) ≤ c
∑
i

τ(B(Qi))

τ(B(Q))
ν(Q),

where B(Qi) and B(Q) are the containing balls of Qi and Q. Taking the infimum over all

such coverings {Qi} of E, we obtain that

ν(E) ≤ c
‖E‖τ,m
τ(B(Q))

ν(Q),

so that (12) holds with δ = 1 and thus ν ∈ Aβ∞. The conclusion that ν ∈ Aβ∞ also holds if the

hypothesis that ν ∈ RDdy
β is replaced by the assumptions that ν ∈ RDβ and ν is a doubling

measure; in fact, these assumptions are easily seen to imply that ν ∈ RDdy
β .

In passing, we note that if the underlying measure µ ∈ Ady∞(τ) and if ν ∈ A∞(µ), namely,

for some η > 0,

ν(E)

ν(B)
≤ C

(
µ(E)

µ(B)

)η
if E ⊂ B,

then also ν ∈ Ady∞(τ) for the same τ (although the value of δ for ν equals η times the value of

δ for µ). This follows easily from the definitions since µ and ν are doubling measures.

4 Orlicz spaces and Orlicz maximal functions

To prove Theorem 2.3, we will use some facts about Orlicz spaces which we recall here,

referring to [RR] and [BS] for a complete account.

A function Φ : [0,∞) → [0,∞) is called a Young function if it is continuous, convex,

increasing and satisfies Φ(0) = 0 and Φ(t) →∞ as t→∞. It follows that Φ(t)/t is increasing,
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and in particular that

Φ(γt) ≥ γΦ(t) if γ ≥ 1 and t ≥ 0.

Sometimes we will also assume that Φ satisfies the doubling condition Φ(2t) ≤ CΦ(t).

For Orlicz norms we are usually only concerned about the behavior of Young functions for

t large. By definition, the Orlicz space LΦ consists of all measurable functions f such that∫
S

Φ

(
|f |
λ

)
dµ <∞

for some positive λ. Note that if 0 < λ1 < λ2, then

Φ

(
|f |
λ2

)
≤ λ1

λ2

Φ

(
|f |
λ1

)
,

so that

lim
λ→∞

∫
S

Φ

(
|f |
λ

)
dµ = 0 if f ∈ LΦ.

The space LΦ is a Banach function space with the Luxemburg norm

‖f‖Φ = ‖f‖Φ,µ = inf{λ > 0 :

∫
S

Φ(
|f |
λ

) dµ ≤ 1}.

Each Young function Φ has an associated complementary Young function Φ̄ satisfying

t ≤ Φ−1(t)Φ̄−1(t) ≤ 2 t (33)

for all t > 0, where Φ−1 stands for the inverse function of Φ. The function Φ̄ is called the

conjugate of Φ, and the space LΦ̄ is called the conjugate space of LΦ. For example, if

Φ(t) = tp for 1 < p <∞ then Φ̄(t) = tp
′
, p′ = p/(p− 1), and the conjugate space of Lp(µ) is

Lp
′
(µ). An example that we will need is Φ(t) ≈ tp(log t)−1−ε for large t, 1 < p <∞, ε > 0,

with complementary function Φ̄(t) ≈ tp
′
(log t)(p′−1)(1+ε) for large t (cf. [O], p.275).

A very important property of Orlicz spaces is the generalized Hölder inequality∫
S
|fg| dµ ≤ ‖f‖Φ‖g‖Φ̄. (34)

20



In order to define another maximal function which will play a role in the proof of Theorem

2.3, we need local versions of Orlicz norms. If Φ is a Young function and B is a ball, let

‖f‖Φ,B = ‖f‖Φ,B,µ = inf{λ > 0 :
1

µ(B)

∫
B

Φ(
|f |
λ

) dµ ≤ 1}.

For this norm, the local version of the generalized Hölder inequality (34) is

1

µ(B)

∫
B

fg dµ ≤ ‖f‖Φ,B‖g‖Φ̄,B. (35)

Define a maximal function corresponding to Φ by

MΦf(x) = sup
B:x∈B

‖f‖Φ,B. (36)

This maximal function has been used in the usual Euclidean context in [P1] and also in the

case Φ(t) ≈ t log t in the work of T. Iwaniec and Greco [GI] and in [WW]. The norm behavior

of MΦf is closely related to the next definition.

Definition 4.1 Let 1 < p <∞. A nonnegative function Φ(t), t > 0, satisfies the Bp condition

if there is a constant c > 0 such that ∫ ∞

c

Φ(t)

tp
dt

t
<∞. (37)

Simple examples of functions which satisfy Bp are tp−δ and tp(log(1 + t))−1−δ, both when

δ > 0.

The relevance of condition Bp stems from its relationship to the boundedness of MΦ as

stated in the next theorem from [PW].

Theorem 4.2 Let 1 < p <∞ and Φ be a doubling Young function. Then the following

statements are equivalent.

i) Φ ∈ Bp, i.e., there is a constant c > 0 such that∫ ∞

c

Φ(t)

tp
dt

t
<∞. (38)
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ii) There is a constant C > 0 such that∫
S
MΦf(x)p dµ(x) ≤ C

∫
S
f(x)p dµ(x) (39)

for all nonnegative f .

iii) There is a constant C > 0 such that∫
S
MΦf(x)pw(x) dµ(x) ≤ C

∫
S
f(x)pMw(x) dµ(x) (40)

for all nonnegative f and w, where Mw is the Hardy–Littlewood maximal function defined in

(20).

For example, in the standard case when Φ(t) = tr with r ≥ 1, so that

‖f‖Φ,B =
(
µ(B)−1

∫
B
|f |r dµ

)1/r
, the equivalence of (38) and (39) reduces to the well-known

fact that the mapping

f → sup
B:x∈B

(
1

µ(B)

∫
B

|f |r dµ
)1/r

is bounded on Lp(S, µ) if and only if p > r. The characterization of Bp given above was

proved in the Euclidean context in [P3] and used to derive sharp two weight estimates for the

classical Hardy–Littlewood maximal function. In the general case, the characterization of Bp

plays a main role in some of the results in [PW]. For other applications to different operators

from harmonic analysis, see [P1], [P4] [P5], [P6], [CP1] and [CP2].

5 Proofs of Theorem 2.4 and Corollary 2.5

Recall that Mψ(fdσ) is defined by

Mψ(fdσ)(x) = sup
B:x∈B

ψ(B)

∫
B

|f(y)| dσ(y)

for any measure σ and any measurable f , where ψ(B) is assumed to be nonnegative and to

satisfy (23) and also the doubling condition. To prove Theorem 2.4, we may assume that f is
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nonnegative, bounded and has bounded support. We may also assume by a limiting argument

that Mψ(fdσ)(x) is formed by taking the supremum only over balls containing x of radius at

least ρm for fixed m, where ρ is the constant used in §3 to construct the dyadic grid Dm. For

each integer k we let

Ωk = {x ∈ S : Mψ(fdσ)(x) > γk}

where γ > 1 is a constant to be chosen. For each x ∈ Ωk, there is a ball Bx containing x with

ψ(Bx)

∫
Bx

f dσ > γk.

Now we claim the following:

To each Bx, there corresponds a dyadic cube Qx ∈ Dm (Qx may not contain x,

although Bx does) of size comparable to Bx with Qx ∩Bx 6= ∅ and

ψ(B(Qx))

∫
Qx

f dσ >
γk

c
,

where c is a geometric constant.

Recall here that if Q is any dyadic cube, then B(Q) denotes the containing ball of Q; the

radius of B(Q) is comparable to the edgelength of Q.

To prove the claim, first note that we can cover Bx by a fixed number N (independent of

x, γ, k) of disjoint dyadic cubes Q of size comparable to Bx. Indeed, let k0 be the integer such

that ρk0 ≤ r(Bx) < ρk0+1, and consider any m with m < k0 (here ρ is the constant used in §3)

to construct the dyadic grid Dm. We make the following subclaim:

In Dm, there are at most N cubes {Ek0j }j meeting Bx (i.e., there are at most N

cubes of sidelength ρk0 meeting Bx), where N is a structural constant which is

independent of Bx and m, provided that m < k0.
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To prove the subclaim, fix m < k0 and denote those cubes {Ek0j }j in Dm which have nonempty

intersection with Bx by Qj, j = 1, · · · , N . The {Qj} are disjoint, and they are contained in

some fixed enlargement of Bx since they touch Bx and their radii are comparable to r(Bx).

Thus, the sum of the µ(Qj) is at most cµ(Bx). Since the size of each Qj is comparable to the

size of Bx, each µ(Qj) exceeds a fixed multiple of µ(Bx) by doubling (in fact, the measures are

comparable). Therefore, the number N of Qj’s must be at most a fixed geometric constant,

which proves the subclaim.

Consequently, for any fixed m < k0, if Qj, j = 1, . . . , N, are the cubes in Dm mentioned

above, then χ
Bx
≤
∑N

j=1 χQj
, and so

γk < ψ(Bx)

∫
Bx

f dσ ≤ ψ(Bx)
N∑
j=1

∫
Qj

f dσ.

Thus for some j0,

γk < N ψ(Bx)

∫
Qj0

f dσ.

Pick Qx to be Qj0 . Since the sizes of Qx, Bx and B(Qx) are comparable, the claim follows by

using Qx ∩Bx 6= ∅ and the properties of ψ.

Choosing γ > c we have

ψ(B(Qx))

∫
Qx

f dσ > γk−1. (41)

Define

Ω̃k =

{
x : sup

Q∈Dm:x∈Q
ψ(B(Q))

∫
Q

f dσ > γk−1

}
and let {Qk

j}j be the maximal cubes in Dm with

γk−1 < ψ(B(Qk
j ))

∫
Qk

j

f dσ.

Then Ω̃k = ∪jQk
j . Observe that if Qx is the dyadic cube from (41) then Qx ⊂ Qk

j for some j,

and hence since there exists c0 > 1 such that x ∈ c0B(Qk
j ), we obtain that Ωk ⊂ ∪jc0B(Qk

j ).
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Now if Q̃k
j is the next largest dyadic cube containing Qk

j , then

ψ(B(Q̃k
j ))

∫
Q̃k

j

f dσ ≤ γk−1

and therefore, by using the doubling property of ψ,

γk−1 < ψ(B(Qk
j ))

∫
Qk

j

f dσ ≤ cψγ
k−1. (42)

Let Mdy
σ,m be defined as in Section 3. To prove the theorem it will enough to show that(∫

S
Mψ(fdσ)q dω

)1/q

≤ c

(∫
S
(Mdy

σ,mf)p dσ

)1/p

(43)

with c independent of m and f , since Mdy
σ,m is bounded on Lp(dσ) uniformly in m for

1 < p <∞ (see for example [W], Lemma 3.8).

Now, we start with ∫
S
Mψ(fdσ)q dω =

∑
k

∫
Ωk\Ωk+1

Mψ(fdσ)qdω

≤
∑
k

γ(k+1)qω(Ωk) ≤ γ2q
∑
k

γ(k−1)q
∑
j

ω(c0B(Qk
j ))

≤ γ2q
∑
k,j

(
ψ(B(Qk

j ))

∫
Qk

j

f dσ

)q

ω(c0B(Qk
j )).

Since ψ(B(Qk
j )) ≤ ψ(c0B(Qk

j )) by (23)(a), if we use (25) for c0B(Qk
j ), we can continue with

≤ C
∑
k,j

σ(B(Qk
j ))

−q/p′
(∫

Qk
j

f dσ

)q

≤ C
∑
k,j

σ(Qk
j )
−q/p′

(∫
Qk

j

f dσ

)q

,

≤ C

(∑
k,j

σ(Qk
j )

1−p

(∫
Qk

j

f dσ

)p)q/p

,

where we have used the facts that Qk
j ⊂ B(Qk

j ) and that p ≤ q.

Recall that Ω̃k = ∪jQk
j . Now let Ek

j = Qk
j \ Ω̃k+1. Then Ek

j ⊂ Ω̃k \ Ω̃k+1 and the sets Ek
j

are disjoint in both j, k. We wish to show that σ(Qk
j ) ≤ c σ(Ek

j ) if γ is sufficiently large. It is
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enough to show that σ(Qk
j ∩ Ω̃k+1) <

1
2
σ(Qk

j ). If Qk
j ∩Qk+1

i 6= ∅, we claim that Qk+1
i ⊂ Qk

j .

By the dyadic structure, the only other possibility is that Qk
j is a proper subset of Qk+1

i . But

then by definition of Qk+1
i ,

γk < ψ(B(Qk+1
i ))

∫
Qk+1

i

f dσ

≤ γk−1

by the maximality of Qk
j . Since γ > 1, this is impossible and the claim follows. Thus

σ(Qk
j ∩ Ω̃k+1) = σ

(
∪i:Qk

j∩Q
k+1
i 6=∅Q

k
j ∩Qk+1

i

)
= σ

(
∪i:Qk+1

i ⊂Qk
j
Qk+1
i

)
.

Now, since σ ∈ Ady∞(ψ−1) by hypothesis, if we apply (12) with Q and E there taken to be Qk
j

and ∪i:Qk+1
i ⊂Qk

j
Qk+1
i , then it follows that there exists δ > 0 such that

σ
(
∪i:Qk+1

i ⊂Qk
j
Qk+1
i

)
σ(Qk

j )
≤ c

(∑
i:Qk+1

i ⊂Qk
j
ψ(B(Qk+1

i ))−1

ψ(B(Qk
j ))

−1

)δ

.

By (42), the last expression is at most

c

ψ(B(Qk
j ))

∑
i:Qk+1

i ⊂Qk
j

1

γk

∫
Qk+1

i

f dσ


δ

≤ c

(
ψ(B(Qk

j ))

γk

∫
Qk

j

f dσ

)δ

≤ c (
cψ
γ

)δ <
1

2

if we choose γ large enough. We can now conclude the proof of (43) and hence the proof of

Theorem 2.4. In fact, since

σ(Qk
j )

1−p = σ(Qk
j )

1

σ(Qk
j )
p
≤ cσ(Ek

j )
1

σ(Qk
j )
p

by what we showed above, then(∑
k,j

σ(Qk
j )

1−p

(∫
Qk

j

f dσ

)p)q/p

≤ C

(∑
k,j

σ(Ek
j )

(
1

σ(Qk
j )

∫
Qk

j

f dσ

)p)q/p
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≤ C

(∫
S
(Mdy

σ,mf)p dσ

)q/p
since the Ek

j are pairwise disjoint in j and k.

2

Next, we prove Corollary 2.5. In fact, it is enough to show that the hypotheses on σ and ψ

in Corollary 2.5 imply that σ ∈ Ady∞(1/ψ) since the corollary then follows from Theorem 2.4.

The hypotheses are that σ ∈ Aβ∞ with β + ε ≥ D where D is the doubling order of µ and ε is

given by

ψ(B1)µ(B1) ≤ c

(
r(B1)

r(B2)

)ε
ψ(B2)µ(B2) if B1 ⊂ B2.

To show that σ ∈ Ady∞(1/ψ), let E be a set and suppose that E ⊂ ∪Qi ⊂ Q for Qi, Q ∈ Dm.

Write Bi and B for the corrsponding containing balls: Bi = B(Qi) and B = B(Q). By

hypothesis, there exists δ > 0 such that(
σ(E)

σ(Q)

)1/δ

≤ c
∑(

r(Bi)

r(B)

)β

≤ c
∑ µ(Bi)

µ(B)

(
r(Bi)

r(B)

)β−D
by the doubling of µ

= c
∑ µ(Bi)ψ(Bi)

µ(B)ψ(B)

ψ(B)

ψ(Bi)

(
r(Bi)

r(B)

)β−D
≤ c

∑(
r(Bi)

r(B)

)ε+β−D
ψ(B)

ψ(Bi)
by the condition on ψ

≤ c
∑ ψ(B)

ψ(Bi)
since ε+ β −D ≥ 0

= c
∑ 1/ψ(Bi)

1/ψ(B)
.

Taking the infimum over all Q and {Qi}, and raising both sides to the power δ, we obtain

σ(E)

σ(Q)
≤ c

(
||E||1/ψ,m
1/ψ(B)

)δ
.

This shows that σ ∈ Ady∞(1/ψ), and the proof is complete.

2
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6 Proofs of Theorem 2.1 and Corollary 2.2

The proof of Theorem 2.1 is a variant of that of Theorem 2.2 from [PW]. For f, g ≥ 0, we

start by showing that∫
S
Tm(fdσ) g dω ≤ c

∑
Q∈Dm

ϕ(B(Q))

∫
2κB(Q)

f dσ

∫
Q

g dω

where Tm is the truncation of T defined by

Tm(fdσ)(x) =

∫
d(x,y)>ρm

f(y)K(x, y) dσ(y),

ρ being the constant that is used in the definition of the dyadic grid Dm. To prove this,

momentarily fix x, y with d(x, y) > ρm and pick the integer ` ≥ m for which

ρ` < d(x, y) ≤ ρ`+1. Select Q ∈ Dm with l(Q) = ρ` and x ∈ Q. Let B(Q) denote the

containing ball of Q, and let xQ denote its center xB(Q). Thus, 1
ρ
B(Q) ⊂ Q ⊂ B(Q) and

r(B(Q)) = ρ`+1. We then have

d(y, xQ) ≤ κ(d(y, x) + d(x, xQ)) ≤ κ(ρ`+1 + ρ`+1) = 2κr(B(Q)),

so that y ∈ 2κB(Q). Since d(x, y) > ρ` = r(2κB(Q))/2κρ, then by definition and property (9)

of ϕ,

K(x, y) ≤ ϕ(2κB(Q)) ≤ Cϕ(B(Q)).

Hence,

K(x, y) ≤ cϕ(B(Q))χ
Q
(x)χ

2κB(Q)
(y) ≤ c

∑
Q∈Dm

ϕ(B(Q))χ
Q
(x)χ

2κB(Q)
(y),

where the last estimate holds for all x, y with d(x, y) > ρm. Therefore,

Tm(fdσ)(x) ≤ c
∑
Q∈Dm

ϕ(B(Q))χ
Q
(x)

∫
2κB(Q)

f(y)dσ(y),
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and then if g ≥ 0, we obtain the desired estimate∫
S
Tm(fdσ) g dω ≤ c

∑
Q∈Dm

ϕ(B(Q))

∫
2κB(Q)

f dσ

∫
Q

g dω.

By hypothesis, the measure ω ∈ Ady∞(τ) where τ satisfies (16), i.e., where

ϕ(B1)τ(B1) ≤ c

(
r(B1)

r(B2

)ε
ϕ(B2)τ(B2) if B1 ⊂ B2

for some ε > 0. Also, by hypothesis, τ is doubling and satisfies the monotonicity condition

τ(B1) ≤ cτ(B2) if B1 ⊂ B2.

For k ∈ Z and γ > 1 to be chosen, let

Ck = {Q ∈ Dm : γk <
1

τ(B(Q))

∫
Q

g dω ≤ γk+1},

and let {Qk
j}j be the maximal cubes in Dm with

γk <
1

τ(B(Qk
j ))

∫
Qk

j

g dω.

If Q̃k
j is the next largest dyadic cube containing Qk

j , then

1

τ(B(Q̃k
j ))

∫
Q̃k

j

g dω ≤ γk,

and therefore, by the doubling property of τ ,

γk <
1

τ(B(Qk
j ))

∫
Qk

j

g dω ≤ cτ,ργ
k.

Hence, if we select γ with γ ≥ cτ,ρ then

γk <
1

τ(B(Qk
j ))

∫
Qk

j

g dω ≤ γk+1. (44)

Thus Qk
j ∈ Ck. Since every cube Q ∈ Dm lies in some Ck, every Q must be contained in some

Qk
j . Of course, the {Qk

j}j are pairwise disjoint for fixed k. Then∫
S

Tm(fdσ) g dω ≤ c
∑
k

∑
Q∈Ck

ϕ(B(Q)) τ(B(Q))

∫
2κB(Q)

f dσ
1

τ(B(Q))

∫
Q

g dω
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≤ c
∑
k

γk+1
∑
j

∑
Q∈∆m(Qk

j )

ϕ(B(Q)) τ(B(Q))

∫
2κB(Q)

f dσ, (45)

where for any Q0 ∈ Dm we denote

∆m(Q0) = {Q ∈ Dm : Q ⊂ Q0}.

We need the following variant of Lemma 7.1 of [PW].

Lemma 6.1 If (16) holds, there is a constant C such that for any f ≥ 0 and any dyadic cube

Q0 ∈ Dm,

∑
Q∈∆m(Q0)

ϕ(B(Q)) τ(B(Q))

∫
2κB(Q)

f dσ ≤ Cϕ(B(Q0)) τ(B(Q0))

∫
κ(2κ+1)B(Q0)

f dσ. (46)

Proof: By (16) and the doubling of ϕ and τ , the left side of (46) is bounded by

c
∑

Q∈∆m(Q0)

(
`(Q)

`(Q0)

)ε
ϕ(B(Q0)) τ(B(Q0))

∫
2κB(Q)

f dσ

= c ϕ(B(Q0)) τ(B(Q0))
∑

Q∈∆m(Q0)

(
`(Q)

`(Q0)

)ε ∫
2κB(Q)

f dσ

= c ϕ(B(Q0)) τ(B(Q0))
∞∑
`=0

∑
Q∈∆m(Q0)

`(Q)=ρ−``(Q0)

ρ−ε`
∫

2κB(Q)

f dσ

= c ϕ(B(Q0)) τ(B(Q0))
∞∑
`=0

ρ−ε`
∑

Q∈∆m(Q0)

`(Q)=ρ−``(Q0)

∫
2κB(Q)

f dσ. (47)

To estimate the last expression, first observe that if Q ⊂ Q0 and `(Q) ≤ `(Q0), then

2κB(Q) ⊂ κ(2κ+ 1)B(Q0), since if y ∈ 2κB(Q) then

d(y, xQ0) ≤ κ[d(y, xQ) + d(xQ, xQ0)] ≤ κ[2κr(B(Q)) + r(B(Q0))]

= κ[2κρ`(Q) + r(B(Q0))] ≤ κ[2κρ`(Q0) + r(B(Q0))] = κ(2κ+ 1) r(B(Q0)).
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Thus (47) is at most

c ϕ(B(Q0)) τ(B(Q0))
∞∑
`=0

ρ−ε`
∫
κ(2κ+1)B(Q0)

∑
Q∈Dm

`(Q)=ρ−``(Q0)

χ
2κB(Q)

(x) f(x) dσ(x),

and therefore (46) will follow if we show that

∑
Q∈Dm

`(Q)=ρ−``(Q0)

χ
2κB(Q)

(x) ≤ C (48)

uniformly in x, j, k, l,m. To prove this, fix x, j, k, l,m and write r = ρ−``(Q0). If Q ∈ Dm,

`(Q) = r and x ∈ 2κB(Q), then for any y ∈ Q we have

d(x, y) ≤ κ[d(x, xQ) + d(xQ, y)] ≤ κ[2κr(B(Q)) + r(B(Q))]

≤ κ(2κ+ 1))ρ`(Q) = c1r,

so that Q ⊂ B(x, c1r). But those Q ∈ Dm with `(Q) = r are disjoint, and consequently by

doubling, since each Q has sidelength comparable to the radius of B(x, c1r), the number of

such Q ⊂ B(x, c1r) is bounded uniformly in x and r. This proves (48) and so also the lemma.

To complete the proof of Theorem 2.1, note that by (45) and (46),∫
S
Tm(fdσ)g dω ≤ c

∑
j,k

γk+1ϕ(B(Qk
j )) τ(B(Qk

j ))

∫
κ(2κ+1)B(Qk

j )

f dσ

≤ cγ
∑
j,k

ϕ(B(Qk
j ))

∫
κ(2κ+1)B(Qk

j )

f dσ

∫
Qk

j

g dω (49)

by (44). We also have

∑
i:Ql

i⊂Qk
j

τ(B(Ql
i)) ≤

∑
i:Ql

i⊂Qk
j

γ−`
∫
Ql

i

g dω ≤ γ−`
∫
Qk

j

g dω

≤ cγk−lτ(B(Qk
j )),

and if Ql
i is a proper subset of Qk

j , then ` > k since

γk <
1

τ(B(Qk
j ))

∫
Qk

j

g dω ≤ γ`
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by the maximality of Ql
i. Then, since the Ql

i are disjoint in i for fixed l, and since ω ∈ Ady∞(τ),

∑
i:Ql

i⊂Qk
j

ω(Ql
i) = ω(∪i:Ql

i⊂Qk
j
Ql
i) ≤ c


∥∥∥∪i:Ql

i⊂Qk
j
Ql
i

∥∥∥
τ,m

τ(B(Qk
j ))


δ

ω(Qk
j )

≤ c

(∑
i:Ql

i⊂Qk
j
τ(B(Ql

i))

τ(B(Qk
j ))

)δ

ω(Qk
j ) ≤ cγ(k−l)δω(Qk

j ). (50)

Now let

Ωk = {x : sup
Q∈Dm:x∈Q

1

τ(B(Q))

∫
Q

g dω > γk},

and set Ek
j = Qk

j \ Ωk+1. Then Ek
j ⊂ Ωk \ Ωk+1 and the sets Ek

j are disjoint in both j, k. Note

that Ωk = ∪jQk
j . We wish to show that ω(Qk

j ) ≤ cω(Ek
j ) if γ is sufficiently large. It is enough

to show that ω(Qk
j ∩ Ωk+1) <

1
2
ω(Qk

j ). But by the dyadic structure and our earlier

observations,

ω(Qk
j ∩ Ωk+1) =

∑
i:Qk

j∩Q
k+1
i 6=∅

ω(Qk
j ∩Qk+1

i ) =
∑

i:Qk+1
i ⊂Qk

j

ω(Qk+1
i )

≤ cγ−δω(Qk
j ) by (50) with l = k + 1

<
1

2
ω(Qk

j ) if γ is large.

Next, we rewrite the sum on the right side of (49) as

∑
j,k

ϕ(B(Qk
j ))

∫
κ(2κ+1)B(Qk

j )

f dσ ω(Qk
j )

1

ω(Qk
j )

∫
Qk

j

g dω

and apply Hölder’s inequality to obtain∫
S
Tm(fdσ) g dω ≤

c

(∑
j,k

[
ϕ(B(Qk

j ))

∫
κ(2κ+1)B(Qk

j )

f dσ

]p
ω(Qk

j )

)1/p
∑

j,k

[
1

ω(Qk
j )

∫
Qk

j

g dω

]p′
ω(Qk

j )

1/p′

.
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We may replace ω(Qk
j ) by ω(Ek

j ) in the numerators of both of these sums and then use the

disjointness of the Ek
j to majorize the last expression by

c

(∫
S
Mϕ(fdσ)p dω

)1/p(∫
S
(Mdy

ω,mg)
p′ dω

)1/p′

,

where Mdy
ω,mg is the dyadic maximal function defined in §3. As mentioned in §5, Mdy

ω,m is

bounded on Lp(dω) uniformly in m for 1 < p <∞. Thus, we obtain that∫
S
Tm(fdσ) g dω ≤ c ‖Mϕ(fdσ)‖Lp(dω)‖g‖Lp′ (dω),

with c independent of m, f and g, and consequently Theorem 2.1 follows from duality by

letting m→ −∞.

2

Let us now prove Corollary 2.2. Let τ be defined by τ(B) = r(B)β for all B, with β > 0 to

be chosen. By hypothesis, there exists ε > 0 such that

ϕ(B1)µ(B1) ≤ c

(
r(B1)

r(B2)

)ε
ϕ(B2)µ(B2) if B1 ⊂ B2.

Therefore, since µ is assumed to satisfy the doubling condition of order D,

ϕ(B1) ≤ c

(
r(B1)

r(B2)

)ε−D
ϕ(B2) if B1 ⊂ B2

= c

(
r(B1)

r(B2)

)(β+ε−D)−β

ϕ(B2)

= c

(
r(B1)

r(B2)

)β+ε−D

ϕ(B2)
τ(B2)

τ(B1)
.

It follows that (16)(c) holds with ε there taken to be β + ε−D. Clearly, (16)(a), (b) also hold

for any β > 0. Thus, if β + ε−D > 0, by applying Theorem 2.1 (with τ(B) = r(B)β as

above), the conclusion of Corollary 2.2 follows immediately.

2
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7 Proof of Theorem 2.3

We start with the case p = 1, where the proof will be a variant of that of Theorem 2.1. The

cases p > 1 and p < 1 will follow from the case p = 1 using extrapolation ideas and duality

between Lp spaces.

7.1 The case p=1

By a limiting argument we may assume that w is bounded with compact support. For f ≥ 0,

we start with inequality (49) with dω replaced by w dµ and dσ replaced by dµ:∫
S

Tm(fdµ)w dµ ≤ cγ
∑
k,j

ϕ(B(Qk
j ))

∫
κ(2κ+1)B(Qk

j )

f dµ

∫
Qk

j

w dµ,

where the dyadic cubes Qk
j are now the maximal cubes in Dm with

γk <
1

µ(Qk
j )

∫
Qk

j

w dµ

and satisfy

γk <
1

µ(Qk
j )

∫
Qk

j

w dµ ≤ cµ γ
k.

Define

Ωk =

{
x : sup

Q∈Dm:x∈Q

1

µ(Q)

∫
Q

w dµ > γk
}
,

and let Ek
j = Qk

j \ Ωk+1. Note that Ωk = ∪jQk
j . As usual, if Qk

j ∩Qk+1
i 6= ∅, then Qk+1

i ⊂ Qk
j .

If γ is large enough, then µ(Qk
j ) ≤ 2µ(Ek

j ) since

µ(Qk
j ∩ Ωk+1) =

∑
i:Qk

j∩Q
k+1
i 6=∅

µ(Qk
j ∩Qk+1

i )

=
∑

i:Qk+1
i ⊂Qk

j

µ(Qk+1
i ) ≤ γ−k−1

∑
i:Qk+1

i ⊂Qk
j

∫
Qk+1

i

w dµ

≤ γ−k−1

∫
Qk

j

w dµ ≤ γ−k−1 cµγ
kµ(Qk

j )
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=
cµ
γ
µ(Qk

j ) <
1

2
µ(Qk

j )

if γ is large.

Thus there are sets Ek
j that are pairwise disjoint in both j and k with Ek

j ⊂ Qk
j and

µ(Qk
j ) ≤ cµ(Ek

j ) for a universal constant c. If we denote Q̃k
j = κ(2κ+ 1)B(Qk

j ), then∫
S

Tm(fdµ)w dµ

≤ c
∑
k,j

ϕ(B(Qk
j ))

∫
Q̃k

j

f dµ

(
1

µ(Qk
j )

∫
Qk

j

w dµ

)
µ(Qk

j )

≤ c
∑
k,j

ϕ(Q̃k
j )

∫
Q̃k

j

f dµ

(
1

µ(Qk
j )

∫
Qk

j

w dµ

)
µ(Ek

j )

≤ c
∑
k,j

∫
Ek

j

Mϕ(fdµ)Mwdµ ≤ c

∫
S

Mϕ(fdµ)Mwdµ.

This concludes the proof of (22) when p = 1.

7.2 The case p > 1

Now let p > 1. As we mentioned above, our argument will be based on duality and the case

p = 1. In fact we will prove something sharper than (21): if δ > 0, there is a constant C such

that for any weight w and all f ,∫
S

|T (fdµ)|pw dµ ≤ C

∫
S

(Mϕ(fdµ))pM
L(logL)p−1+δ(w) dµ, (51)

where M
L(logL)p−1+δ denotes the maximal function MΦ with

Φ(t) = t(1 + log+ t)p−1+δ, t > 0.

The fact that this estimate is sharper than (21) will be shown later. By the case p = 1, there

is a constant c so that for all f, g ≥ 0 and all m,∫
S

Tm(fdµ) g w1/p dµ ≤ c

∫
S

Mϕ(fdµ)M(g w1/p) dµ.
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Now by the generalized Hölder inequality (35) for an appropriate Young function Ψ that will

be chosen soon, we can continue with

≤ c

∫
S

Mϕ(fdµ)M
Ψ
gM

Ψ̄
(w1/p) dµ

≤ c

[∫
S

Mϕ(fdµ)p (M
Ψ̄
(w1/p))p dµ

]1/p [∫
S

(M
Ψ
g)p

′
dµ

]1/p′

.

To conclude the proof of (51), we use Theorem 4.2 for an appropriate Ψ ∈ Bp′ . Indeed, as

mentioned in §4, we can choose Ψ(t) ≈ tp
′
(log t)−1−ε, ε > 0 and t large, with complementary

function Ψ̄(t) ≈ tp(log t)(p−1)(1+ε) for large t. Then by combining estimates, we obtain∫
S

Tm(fdµ) g w1/p dµ ≤ c

[∫
S

Mϕ(fdµ)pML(logL)(p−1)(1+ε)(w) dµ

]1/p [∫
S

gp
′
dµ

]1/p′

.

Since the constant c is independent of m, (51) follows by duality and letting m→ −∞.

To show that (51) implies (21), we recall the following lemma from [PW] (see also [P1],

[GI] and [WW] in the usual Euclidean case).

Lemma 7.1 Let k = 1, 2, · · · . Then there is a positive constant c such that for any

measurable function w,

‖w‖
L(logL)k,B

≤ c

µ(B)

∫
B

Mkw dµ, (52)

where Mkw denotes the k-fold iterate of the Hardy–Littlewood maximal function defined in

(20) and ‖·‖
L(logL)k,B

denotes ‖·‖Φ,B with Φ(t) = t(1 + (log+t)k).

For k = 1, 2, · · · , (52) implies that

‖w‖
L(logL)k,B

≤ c

µ(B)

∫
B

Mkw dµ.

Thus, if we choose ε = [p]
p−1

− 1 > 0 in the proof of (51), we obtain

M
Ψ̄
(w1/p)(x)p ≈M

L(logL)[p](w)(x) ≤ cM [p]+1(w)(x),

and part i) of Theorem 2.3 follows.
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7.3 The case p < 1

Assume now that 0 < p < 1. We will prove the inequality∫
S
|T (fdµ)|pw dµ ≤ C

∫
S
(Mϕ(fdµ))pMwdµ (53)

by an extrapolation argument, after first proving a strengthened version of the case p = 1. We

begin with a definition.

Definition 7.2 A weight v satisfies the RH∞(µ) condition (i.e., the reverse Hölder condition

of infinite order) if there is a constant c > 0 such that for each ball B,

ess supB v ≤
c

µ(B)

∫
B

v dµ

It is easy to check that RH∞(µ) ⊂ A∞(µ); in fact we can take η = 1 in the definition of

A∞(µ).

We will prove the following version of the case p = 1:

Lemma 7.3 Let v a weight satisfying the RH∞(µ) condition. Then there is a constant C

such that for any weight w and all f ,∫
S
|T (fdµ)| v w dµ ≤ C

∫
S
Mϕ(fdµ) vMw dµ. (54)

For the proof of this lemma we proceed as in the case v = 1:∫
S

Tm(fdµ) v w dµ ≤ c
∑
k,j

ϕ(Q̃k
j )

∫
Q̃k

j

f dµ

∫
Qk

j

v w dµ

≤ c
∑
k,j

ϕ(Q̃k
j )

∫
Q̃k

j

f dµ

∫
Qk

j

w dµ (ess supQk
j
v)

≤ c
∑
k,j

ϕ(Q̃k
j )

∫
Q̃k

j

f dµ

(
1

µ(Qk
j )

∫
Qk

j

w dµ

) ∫
Qk

j

v dµ since v ∈ RH∞(µ)
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≤ c
∑
k,j

ϕ(Q̃k
j )

∫
Q̃k

j

f dµ

(
1

µ(Qk
j )

∫
Qk

j

w dµ

) ∫
Ek

j

v dµ since v ∈ A∞(µ)

≤ c
∑
k,j

∫
Ek

j

Mϕ(fdµ)Mwv dµ ≤ c

∫
S
Mϕ(fdµ) vMw dµ.

2

Lemma 7.4 Let α > 0 and g be any function such that Mg is finite a.e. Then

(Mg)−α ∈ RH∞(µ).

This observation is due to C. Neugebauer [N] where he showed something better:

w ∈ RH∞(µ) ⇔ w ≈ (Mg)−α for some g and some α > 0.

As usual we will denote wB = 1
µ(B)

∫
B
w dµ. To prove (53), we first observe that

w−1 ∈ RH∞(µ) if w ∈ A1(µ), i.e., if wB ≤ C ess infB w for all B, since then

ess supB w
−1 = (ess infB w)−1 ≤ c (wB)−1 ≤ c (w−1)B,

where in the last inequality we have used Hölder’s inequality. The constant c is in fact the

inverse of the constant C in the definition of A1(µ).

The second observation we need is that if w ∈ RH∞(µ) then wλ ∈ RH∞(µ) when λ > 1:

ess supB w
λ = (ess supB w)λ ≤ cλ(wB)λ ≤ cλ(wλ)B.

Actually this is also true when 0 < λ < 1 but is a bit harder and we don’t need it; see [N].

Let us now prove (53) for 0 < p < 1. We will use an appropriate duality for the spaces

Lp(dν) when p < 1 and ν is a measure: if f ≥ 0 then

‖f‖Lp(dν) = inf{
∫
f u−1 dν : ‖u−1‖Lp′ (dν) = 1} =

∫
f u−1 dν

for some u ≥ 0 such that ‖u−1‖Lp′ (dν) = 1, where p′ = p
p−1

< 0. This follows from the

“reverse” Hölder inequality ∫
f g dν ≥ ‖f‖Lp(dν)‖g‖Lp′ (dν),

38



which is a consequence of the usual Hölder inequality. Combining this with the Lebesgue

differentiation theorem and both Lemmas 7.3 and 7.4 for the weight (M(gδ))−1/δ ∈ RH∞(µ),

δ > 0 and g ≥ 0, we have∫
S

Mϕ(fdµ)
Mw

g
dµ ≥

∫
S

Mϕ(fdµ)
Mw

(M(gδ))1/δ
dµ

≥ c

∫
S

T (fdµ)
w

(M(gδ))1/δ
dµ ≥ c‖T (fdµ)‖Lp(wdµ)

∥∥(M(gδ))−1/δ
∥∥
Lp′ (wdµ)

.

However, since the integral on the right side of (53) when raised to the power 1/p equals∫
S
Mϕ(fdµ)

Mw

g
dµ

for some g, everything is reduced to proving that

∥∥(M(gδ))−1/δ
∥∥
Lp′ (wdµ)

≥ c‖g−1‖Lp′ (M(w)dµ).

Since p′ < 0, this is equivalent to saying that∫
S

(M(gδ))−p
′/δ w dµ ≤ c

∫
S

g−p
′
Mwdµ.

But if we choose δ so that 0 < δ < −p′, then −p′/δ > 1 and the last estimate follows from the

known (see [FS]) weighted norm inequality∫
S

(Mf)q w dµ ≤ c

∫
S

|f |qMwdµ, q > 1.

2
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[FL] B. Franchi, E. Lanconelli, Hölder regularity theorem for a class of linear

nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup.

Pisa Cl. Sci. (4) 10 (1983), 523–541.

[FLW] B. Franchi, G. Lu, R. L. Wheeden, Representation formulas and weighted Poincaré
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[P2] C. Pérez, Sharp Lp–weighted Sobolev inequalities, Ann. Inst. Fourier 45 (1995),

809–824.
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