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Abstract

In this paper, we study convex analysis and its theoretical applications. We apply important
tools of convex analysis to Optimization and to Analysis. Then we show various deep appli-
cations of convex analysis and especially infimal convolution in Monotone Operator Theory.
Among other things, we recapture the Minty surjectivity theorem in Hilbert space, and present
a new proof of the sum theorem in reflexive spaces. More technically, we also discuss auto-
conjugate representers for maximally monotone operators. Finally, we consider various other
applications in mathematical analysis.
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1 Introduction

While other articles in this collection look at the applications of Moreau’s seminal work, we have
opted to illustrate the power of his ideas theoretically within optimization theory and within math-
ematics more generally. Space constraints preclude being comprehensive, but we think the presen-
tation made shows how elegant modern analysis can be made thanks to the work of Jean-Jacques
Moreau and others.
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‡Departamento de Análisis Matemático, Universidad de Sevilla, Spain. E-mail: victoriam@us.es
§Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle,

Callaghan, NSW 2308, Australia. E-mail: liangjin.yao@newcastle.edu.au.

1



1.1 Preliminaries

Let X be a real Banach space with norm ‖ · ‖ and dual norm ‖ · ‖∗. When there is no ambiguity
we suppress the ∗. We write X∗ and 〈 · , · 〉 for the real dual space of continuous linear functions
and the duality paring, respectively, and denote the closed unit ball by BX := {x ∈ X | ‖x‖ ≤ 1}
and set N := {1, 2, 3, . . .}. We identify X with its canonical image in the bidual space X∗∗. A set
C ⊆ X is said to be convex if it contains all line segments between its members: λx+ (1−λ)y ∈ C
whenever x, y ∈ C and 0 ≤ λ ≤ 1.

Given a subset C of X, intC is the interior of C and C is the norm closure of C. For a set

D ⊆ X∗, D
w*

is the weak∗ closure of D. The indicator function of C, written as ιC , is defined at
x ∈ X by

ιC(x) :=

{
0, if x ∈ C;

+∞, otherwise.
(1)

The support function of C, written as σC , is defined by σC(x∗) := supc∈C〈c, x∗〉. There is also a
naturally associated (metric) distance function, that is,

(2) dC(x) := inf {‖x− y‖ | y ∈ C} .

Distance functions play a central role in convex analysis, both theoretically and algorithmically.
Let f : X → ]−∞,+∞] be a function. Then dom f := f−1(R) is the domain of f , and the lower

level sets of a function f : X → ]−∞,+∞] are the sets {x ∈ X | f(x) ≤ α} where α ∈ R. The
epigraph of f is epi f := {(x, r) ∈ X ×R | f(x) ≤ r}. We will denote the set of points of continuity
of f by cont f . The function f is said to be convex if for any x, y ∈ dom f and any λ ∈ [0, 1], one
has

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

We say f is proper if dom f 6= ∅. Let f be proper. The subdifferential of f is defined by

∂f : X ⇒ X∗ : x 7→ {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ f(y)− f(x), for all y ∈ X}.

By the definition of ∂f , even when x ∈ dom f , it is possible that ∂f(x) may be empty. For example
∂f(0) = ∅ for f(x) := −

√
x whenever x ≥ 0 and f(x) := +∞ otherwise. If x∗ ∈ ∂f(x) then x∗ is

said to be a subgradient of f at x. An important example of a subdifferential is the normal cone
to a convex set C ⊆ X at a point x ∈ C which is defined as NC(x) := ∂ιC(x).

Let g : X → ]−∞,+∞]. Then the inf-convolution f�g is the function defined on X by

f�g : x 7→ inf
y∈X

{
f(y) + g(x− y)

}
.

(In [42] Moreau studied inf-convolution when X is an arbitrary commutative semigroup.) Notice
that, if both f and g are convex, so it is f�g (see, e.g., [46, p. 17]).

We will say a function f : X → ]−∞,+∞] is Lipschitz on a subset D of X if there is a constant
M ≥ 0 so that |f(x)− f(y)| ≤M‖x− y‖ for all x, y ∈ D. In this case M is said to be a Lipschitz
constant for f on D. If for each x0 ∈ D, there is an open set U ⊆ D with x0 ∈ U and a constant
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M so that |f(x)− f(y)| ≤M‖x− y‖ for all x, y ∈ U , we will say f is locally Lipschitz on D. If D
is the entire space, we simply say f is Lipschitz or locally Lipschitz respectively.

Consider a function f : X → ]−∞,+∞]; we say f is lower-semicontinuous (lsc) if
lim infx→x̄ f(x) ≥ f(x̄) for all x̄ ∈ X, or equivalently, if epi f is closed. The function f is said
to be sequentially weakly lower semi-continuous if for every x̄ ∈ X and every sequence (xn)n∈N
which is weakly convergent to x̄, one has lim infn→∞ f(xn) ≥ f(x̄). This is a useful distinction
since there are infinite dimensional Banach spaces (Schur spaces such as `1) in which weak and
norm convergence coincide for sequences, see [20, p. 384, esp. Thm 8.2.5].

1.2 Structure of this paper

The remainder of this paper is organized as follows. In Section 2, we describe results about Fenchel
conjugates and the subdifferential operator, such as Fenchel duality, the Sandwich theorem, etc.
We also look at some interesting convex functions and inequalities. In Section 3, we discuss the
Chebyshev problem from abstract approximation. In Section 4, we show applications of convex
analysis in Monotone Operator Theory. We reprise such results as the Minty surjectivity theorem,
and present a new proof of the sum theorem in reflexive spaces. We also discuss Fitzpatrick’s
problem on so called autoconjugate representers for maximally monotone operators. In Section 5
we discuss various other applications.

2 Subdifferential operators, conjugate functions & Fenchel duality

We begin with some fundamental properties of convex sets and convex functions. While many
results hold in all locally convex spaces, some of the most important such as (iv)(b) in the next
Fact do not.

Fact 2.1 (Basic properties [20, Ch. 2 and 4].) The following hold.

(i) The (lsc) convex functions form a convex cone closed under pointwise suprema: if fγ is convex
(and lsc) for each γ ∈ Γ then so is x 7→ supγ∈Γ fγ(x).

(ii) A function f is convex if and only if epi f is convex if and only if ιepi f is convex.

(iii) Global minima and local minima coincide for convex functions.

(iv) (a) A proper convex function is locally Lipschitz if and only if it is continuous if and only
if it is locally bounded. (b) Additionally, if the function is lower semicontinuous, then it is
continuous at every point in the interior of its domain.

(v) A proper lower semicontinuous and convex function is bounded from below by a continuous
affine function.

(vi) If C is a nonempty set, then dC(·) is non-expansive (i.e., is a Lipschitz function with constant
one). Additionally, if C is convex, then dC(·) is a convex function.

(vii) If C is a convex set, then C is weakly closed if and only if it is norm closed.
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(viii) Three-slope inequality: Suppose f : R→]−∞,∞] is convex and a < b < c. Then

f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
≤ f(c)− f(b)

c− b
.

The following trivial fact shows the fundamental significance of subgradients in optimization.

Proposition 2.2 (Subdifferential at optimality) Let f : X → ]−∞,+∞] be a proper convex
function. Then the point x̄ ∈ X is a local minimizer of f if and only if 0 ∈ ∂f(x̄).

The directional derivative of f at x̄ ∈ dom f in the direction d is defined by

f ′(x̄; d) := lim
t→0+

f(x̄+ td)− f(x̄)

t

if the limit exists. If f is convex, the directional derivative is everywhere finite at any point of
int dom f , and it turns out to be Lipschitz at cont f . We use the term directional derivative with
the understanding that it is actually a one-sided directional derivative.

If the directional derivative f ′(x̄, d) exists for all directions d and the operator f ′(x̄) defined
by 〈f ′(x̄), · 〉 := f ′(x̄; · ) is linear and bounded, then we say that f is Gâteaux differentiable at x̄,
and f ′(x̄) is called the Gâteaux derivative. Every function f : X → ]−∞,+∞] which is lower
semicontinuous, convex and Gâteaux differentiable at x, it is continuous at x. Additionally, the
following properties are relevant for the existence and uniqueness of the subgradients.

Proposition 2.3 (See [20, Fact 4.2.4 and Corollary 4.2.5].) Suppose f : X → ]−∞,+∞] is convex.

(i) If f is Gâteaux differentiable at x̄, then f ′(x̄) ∈ ∂f(x̄).

(ii) If f is continuous at x̄, then f is Gâteaux differentiable at x̄ if and only if ∂f(x̄) is a singleton.

Example 2.4 We show that part (ii) in Proposition 2.3 is not always true in infinite dimensions
without continuity hypotheses.

(a) The indicator of the Hilbert cube C := {x = (x1, x2, . . .) ∈ `2 : |xn| ≤ 1/n,∀n ∈ N} at zero or
any other non-support point has a unique subgradient but is nowhere Gâteaux differentiable.

(b) Boltzmann-Shannon entropy x 7→
∫ 1

0 x(t) log(x(t))dt viewed as a lower semicontinuous and
convex function on L1[0, 1] has unique subgradients at x(t) > 0 a.e. but is nowhere Gâteaux
differentiable (which for a lower semicontinuous and convex function in Banach space implies
continuity).

That Gâteaux differentiability of a convex closed function implies continuity at the point is a
consequence of the Baire category theorem. ♦

The next result proved by Moreau in 1963 establishes the relationship between subgradients and
directional derivatives, see also [46, page 65]. Proofs can be also found in most of the books in
variational analysis, see e.g. [23, Theorem 4.2.7].
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Theorem 2.5 (Moreau’s max formula [43]) Let f : X → ]−∞,+∞] be a convex function and
let d ∈ X. Suppose that f is continuous at x̄. Then, ∂f(x̄) 6= ∅ and

f ′(x̄; d) = max{〈x∗, d〉 | x∗ ∈ ∂f(x̄)}.(3)

Let f : X → [−∞,+∞]. The Fenchel conjugate (also called the Legendre-Fenchel conjugate1 or
transform) of f is the function f∗ : X∗ → [−∞,+∞] defined by

f∗(x∗) := sup
x∈X
{〈x∗, x〉 − f(x)}.

We can also consider the conjugate of f∗ called the biconjugate of f and denoted by f∗∗. This is a
convex function on X∗∗ satisfying f∗∗|X ≤ f . A useful and instructive example is σC = ι∗C .

Example 2.6 Let 1 < p < ∞ . If f(x) := ‖x‖p
p for x ∈ X then f∗(x∗) = ‖x∗‖q∗

q , where 1
p + 1

q = 1.
Indeed, for any x∗ ∈ X∗, one has

f∗(x∗) = sup
λ∈R+

sup
‖x‖=1

{
〈x∗, λx〉 − ‖λx‖

p

p

}
= sup

λ∈R+

{
λ‖x∗‖∗ −

λp

p

}
=
‖x∗‖q∗
q

.

♦

By direct construction and Fact 2.1 (i) the conjugate function f∗ is always convex and closed,
and if the domain of f is nonempty, then f∗ never takes the value −∞. The conjugate plays a role
in convex analysis in many ways analogous to the role played by the Fourier transform in harmonic
analysis.

2.1 Inequalities and their applications

An immediate consequence of the definition is that for f, g : X → [−∞,+∞], the inequality f ≥ g
implies f∗ ≤ g∗. An important result which is straightforward to prove is the following.

Proposition 2.7 (Fenchel–Young) Let f : X → ]−∞,+∞]. All points x∗ ∈ X∗ and x ∈ dom f
satisfy the inequality

(4) f(x) + f∗(x∗) ≥ 〈x∗, x〉.

Equality holds if and only if x∗ ∈ ∂f(x).

Example 2.8 (Young’s inequality) By taking f as in Example 2.6, one directly obtains from
Proposition 2.7

‖x‖p

p
+
‖x∗‖q∗
q
≥ 〈x∗, x〉,

for all x ∈ X and x∗ ∈ X∗, where p > 1 and 1
p + 1

q = 1. When X = R one recovers the original
Young inequality. ♦

1Originally the connection was made between a monotone function on an interval and its inverse. The convex
functions then arise by integration.
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This in turn leads to one of the workhorses of modern analysis:

Example 2.9 (Hölder’s inequality) Let f and g be measurable on a measure space (X,µ).
Then

(5)

∫
X
fg dµ ≤ ‖f‖p‖g‖q,

where 1 < p < ∞ and 1
p + 1

q = 1. Indeed, by rescaling, we may assume without loss of generality
that ‖f‖p = ‖g‖q = 1. Then Young’s inequality in Example 2.8 yields

|f(x)g(x)| ≤ |f(x)|p

p
+
|g(x)|q

q
for x ∈ X,

and (5) follows by integrating both sides. The result holds true in the limit for p = 1 or p =∞. ♦

We next take a brief excursion into special function theory and normed space geometry to
emphasize that “convex functions are everywhere.”

Example 2.10 (Bohr–Mollerup theorem) The Gamma function defined for x > 0 as

Γ(x) :=

∫ ∞
0

e−ttx−1dt = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)

is the unique function f mapping the positive half-line to itself and such that (a) f(1) = 1, (b)
xf(x) = f(x+ 1) and (c) log f is a convex function.

Indeed, clearly Γ(1) = 1, and it is easy to prove (b) for Γ by using integration by parts. In order
to show that log Γ is convex, pick any x, y > 0 and λ ∈ (0, 1) and apply Hölder’s inequality (5)
with p = 1/λ to the functions t 7→ e−λttλ(x−1) and t 7→ e−(1−λ)tt(1−λ)(y−1). For the converse, let
g := log f . Then (a) and (b) imply g(n+1) = log(n!). Convexity of g together with the three-slope
inequality, see Fact 2.1(viii), implies that

g(n+ 1)− g(n) ≤ g(n+ 1 + x)− g(n+ 1)

x
≤ g(n+ 2 + x)− g(n+ 1 + x),

and hence,

x log(n) ≤ log (x(x+ 1) · · · (x+ n)f(x))− log(n!) ≤ x log(n+ 1 + x);

whence,

0 ≤ g(x)− log

(
n!nx

x(x+ 1) · · · (x+ n)

)
≤ x log

(
1 +

1 + x

n

)
.

Taking limits when n→∞ we obtain

f(x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)
= Γ(x).

As a bonus we recover a classical and important limit formula for Γ(x).
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Application of the Bohr–Mollerup theorem is often automatable in a computer algebra system,
as we now illustrate. Consider the beta function

β(x, y) :=

∫ 1

0
tx−1(1− t)y−1 d t(6)

for Re(x),Re(y) > 0. As is often established using polar coordinates and double integrals

β(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
.(7)

We may use the Bohr–Mollerup theorem with

f := x→ β(x, y) Γ(x+ y)/Γ(y)

to prove (7) for real x, y.
Now (a) and (b) from Example 2.10 are easy to verify. For (c) we again use Hölder’s inequality

to show f is log-convex. Thus, f = Γ as required. ♦

Example 2.11 (Blaschke–Santaló theorem) The volume of a ball in the ‖ · ‖p-norm, Vn(p) is

Vn(p) = 2n
Γ(1 + 1

p)n

Γ(1 + n
p )
.(8)

as was first determined by Dirichlet. When p = 2, this gives

Vn = 2n
Γ(3

2)n

Γ(1 + n
2 )

=
Γ(1

2)n

Γ(1 + n
2 )
,

which is more concise than that usually recorded in texts.
Let C be convex body in Rn, that is, a closed bounded convex set with nonempty interior.

Denoting n-dimensional Euclidean volume of S ⊆ Rn by Vn(S), the Blaschke–Santaló inequality
says

(9) Vn(C)Vn(C◦) ≤ Vn(E)Vn(E◦) = V 2
n (Bn(2))

where maximality holds (only) for any ellipsoid E and Bn(2) is the Euclidean unit ball. It is
conjectured the minimum is attained by the 1-ball and the ∞-ball. Here as always the polar set is
defined by C◦ := {y ∈ Rn : 〈y, x〉 ≤ 1 for all x ∈ C}.

The p-ball case of (9) follows by proving the following convexity result:

Theorem 2.12 (Harmonic-arithmetic log-concavity) The function

Vα(p) := 2αΓ

(
1 +

1

p

)α
/Γ

(
1 +

α

p

)
satisfies

(10) Vα(p)λ Vα(q)1−λ < Vα

(
1

λ
p + 1−λ

q

)
,

for all α > 1, if p, q > 1, p 6= q, and λ ∈ (0, 1).
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Set α := n, 1
p + 1

q = 1 with λ = 1 − λ = 1/2 to recover the p−norm case of the Blaschke–Santaló
inequality. It is amusing to deduce the corresponding lower bound. This technique extends to
various substitution norms. Further details may be found in [14, §5.5]. Note that we may easily
explore Vα(p) graphically. ♦

2.2 The biconjugate and duality

The next result has been associated by different authors with the names of Legendre, Fenchel,
Moreau and Hörmander; see, e.g., [20, Proposition 4.4.2].

Proposition 2.13 (Hörmander) Let f : X → ]−∞,+∞] be a proper function. Then

f is convex and lower semicontinuous ⇔ f = f∗∗.

Example 2.14 (Establishing convexity) (See [10, Theorem 1].) We may compute conjugates
by hand or using the software SCAT [18]. This is discussed further in Section 5.3. Consider
f(x) := ex. Then f∗(x) = x log(x)−x for x ≥ 0 (taken to be zero at zero) and is infinite for x > 0.
This establishes the convexity of x log(x)− x in a way that takes no knowledge of x log(x).

A more challenging case is the following (slightly corrected) conjugation formula [19, p. 94,
Ex. 13] which can be computed algorithmically: Given real α1, α2, . . . , αm > 0, define α :=

∑
i αi

and suppose a real µ satisfies µ > α+ 1. Now define a function f : Rm × R 7→ ]−∞,+∞] by

f(x, s) :=


µ−1sµ

∏
i x
−αi
i if x ∈ Rm++, s ∈ R+;

0 if ∃xi = 0, x ∈ Rm+ , s = 0;

+∞ otherwise.

, ∀x := (xn)mn=1 ∈ Rm, s ∈ R.

it transpires that

f∗(y, t) =


ρν−1tν

∏
i(−yi)−βi if y ∈ Rm−−, t ∈ R+

0 if y ∈ Rm− , t ∈ R−
+∞ otherwise

, ∀y := (yn)mn=1 ∈ Rm, t ∈ R.

for constants

ν :=
µ

µ− (α+ 1)
, βi :=

αi
µ− (α+ 1)

, ρ :=
∏
i

(αi
µ

)βi
.

We deduce that f = f∗∗, whence f (and f∗) is (essentially strictly) convex. For attractive alterna-
tive proof of convexity see [39]. Many other substantive examples are to be found in [19, 20]. ♦

The next theorem gives us a remarkable sufficient condition for convexity of functions in terms
of the Gâteaux differentiability of the conjugate.

Theorem 2.15 (See [20, Corollary 4.5.2].) Suppose f : X → ]−∞,+∞] is such that f∗∗ is
proper. If f∗ is Gâteaux differentiable at all x∗ ∈ dom ∂f∗ and f is sequentially weakly lower
semicontinuous, then f is convex.
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Let f : X → ]−∞,+∞]. We say f is coercive if lim‖x‖→∞ f(x) = +∞. We say f is supercoercive

if lim‖x‖→∞
f(x)
‖x‖ = +∞.

Fact 2.16 (See [20, Fact 4.4.8].) If f is proper convex and lower semicontinuous at some point in
its domain, then the following statements are equivalent.

(i) f is coercive.

(ii) There exist α > 0 and β ∈ R such that f ≥ α‖ · ‖+ β.

(iii) lim inf‖x‖→∞ f(x)/‖x‖ > 0.

(iv) f has bounded lower level sets.

Because a convex function is continuous at a point if and only if it is bounded above on a
neighborhood of that point (Fact 2.1(iv)), we get the following result; see also [35, Theorem 7] for
the case of the indicator function of a bounded convex set.

Theorem 2.17 (Hörmander–Moreau–Rockafellar) Let f : X → ]−∞,+∞] be convex and
lower semicontinuous at some point in its domain, and let x∗ ∈ X∗. Then f −x∗ is coercive if and
only if f∗ is continuous at x∗.

Proof. “⇒”: By Fact 2.16, there exist α > 0 and β ∈ R such that f ≥ x∗ + α‖ · ‖ + β. Then
f∗ ≤ −β + ι{x∗+αBX∗}, from where x∗ + αBX∗ ⊆ dom f∗. Therefore, f∗ is continuous at x∗ by
Fact 2.1(iv).

“⇐”: By the assumption, there exists β ∈ R and δ > 0 such that

f∗(x∗ + z∗) ≤ β, ∀z∗ ∈ δBX∗ .

Thus, by Proposition 2.7,

〈x∗ + z∗, y〉 − f(y) ≤ β, ∀z∗ ∈ δBX∗ , ∀y ∈ X;

whence, taking the supremum with z∗ ∈ δBX∗ ,

δ‖y‖ − β ≤ f(y)− 〈x∗, y〉, ∀y ∈ X.

Then, by Fact 2.16, f − x∗ is coercive. �

Example 2.18 Given a set C in X, recall that the negative polar cone of C is the convex cone

C− := {x∗ ∈ X∗ | sup〈x∗, C〉 ≤ 0}.

Let K be a closed convex cone. Then K− is another nonempty closed convex cone with K−− = K.
Moreover, the indicator function of K and K− are conjugate to each other. If we set f := ιK− , the
indicator function of the negative polar cone of K, Theorem 2.17 applies to get that

x ∈ intK if and only if the set {x∗ ∈ K− | 〈x∗, x〉 ≥ α} is bounded for any α ∈ R.
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Indeed, since x ∈ intK = int dom ι∗K− if and only if ι∗K− is continuous at x, from Theorem 2.17
we have that this is true if and only if the function ιK− − x is coercive. Now, Proposition 2.16
assures us that coerciveness is equivalent to boundedness of the lower level sets, which implies the
assertion. ♦

Theorem 2.19 (Moreau–Rockafellar duality [44]) Let f : X → (−∞,+∞] be a lower semi-
continuous convex function. Then f is continuous at 0 if and only if f∗ has weak∗-compact lower
level sets.

Proof. Observe that f is continuous at 0 if and only if f∗∗ is continuous at 0 ([20, Fact 4.4.4(b)])if
and only if f∗ is coercive (Theorem 2.17) if and only if f∗ has bounded lower level sets (Fact 2.16)
if and only if f∗ has weak∗-compact lower level sets by the Banach-Alaoglu theorem (see [56,
Theorem 3.15]). �

Theorem 2.20 (Conjugates of supercoercive functions) Suppose f : X → ]−∞,+∞] is a
lower semicontinuous and proper convex function. Then

(a) f is supercoercive if and only if f∗ is bounded (above) on a neighbourhood of 0.

(b) f is bounded (above) on a neighbourhood of 0 if and only if f∗ is supercoercive.

Proof. (a) “⇒”: Given any α > 0, there exists M such that f(x) ≥ α‖x‖ if ‖x‖ ≥ M . Now there
exists β ≥ 0 such that f(x) ≥ −β if ‖x‖ ≤ M by Fact 2.1(v). Therefore f ≥ α‖ · ‖+ (−β). Thus,
it implies that f∗ ≤ α(‖ · ‖)∗( ·α) + β and hence f∗ ≤ β on αBX∗ .

“⇐”: Let α > 0. Now there exists K such that f∗ ≤ K on αBX∗ . Then f ≥ α‖ · ‖ −K and so

lim inf‖x‖→∞
f(x)
‖x‖ ≥ α.

(b): According to (a), f∗ is supercoercive if and only if f∗∗ is bounded on a neighbourhood of 0.
By [20, Fact 4.4.4(a)] this holds if and only if f is bounded (above) on a neighbourhood of 0. �

We finish this subsection by recalling some properties of infimal convolutions. Some of their
many applications include smoothing techniques and approximation. We shall meet them again
in Section 4. Let f, g : X → ]−∞,+∞]. Geometrically, the infimal convolution of f and g is
the largest extended real-valued function whose epigraph contains the sum of epigraphs of f and
g (see example in Figure 1), consequently it is a convex function. The following is a useful result
concerning the conjugate of the infimal convolution.

Fact 2.21 (See [20, Lemma 4.4.15] and [46, pp. 37-38].) If f and g are proper functions on X,
then (f�g)∗ = f∗ + g∗. Additionally, suppose f, g are convex and bounded below. If f : X → R
is continuous (resp. bounded on bounded sets, Lipschitz), then f�g is a convex function that is
continuous (resp. bounded on bounded sets, Lipschitz).

Remark 2.22 Suppose C is a nonempty convex set. Then dC = ‖ · ‖�ιC , implying that dC is a
Lipschitz convex function. ♦
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Example 2.23 Consider f, g : R→ ]−∞,+∞] given by

f(x) :=

{
−
√

1− x2, for − 1 ≤ x ≤ 1,
+∞ otherwise,

and g(x) := |x|.

The infimal convolution of f and g is

(f�g)(x) =

{
−
√

1− x2, −
√

2
2 ≤ x ≤ −

√
2

2 ;

|x| −
√

2, otherwise.
,

as shown in Figure 1. ♦

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

g

f
f g•

(f+g)epi

Figure 1: Infimal convolution of f(x) = −
√

1− x2 and g(x) = |x|.

2.3 The Hahn-Banach circle

Let T : X → Y be a linear mapping between two Banach spaces X and Y . The adjoint of T is the
linear mapping A∗ : Y ∗ → X∗ defined, for y∗ ∈ Y ∗, by

〈T ∗y∗, x〉 = 〈y∗, Tx〉 for all x ∈ X.

A flexible modern version of Fenchel’s celebrated duality theorem is:

Theorem 2.24 (Fenchel duality) Let Y be another Banach space, let f : X → ]−∞,+∞] and
g : Y → ]−∞,+∞] be convex functions and let T : X → Y be a bounded linear operator. Define

11



the primal and dual values p, d ∈ [−∞,+∞] by solving the Fenchel problems

p := inf
x∈X
{f(x) + g(Tx)}

d := sup
y∗∈Y ∗

{−f∗(T ∗y∗)− g∗(−y∗)}.(11)

Then these values satisfy the weak duality inequality p ≥ d.
Suppose further that f , g and T satisfy either

(12)
⋃
λ>0

λ [dom g − T dom f ] = Y and both f and g are lower semicontinuous,

or the condition

(13) cont g ∩ T dom f 6= ∅.

Then p = d, and the supremum in the dual problem (11) is attained when finite. Moreover, the
perturbation function h(u) := infx f(x) + g(Tx+ u) is convex and continuous at zero.

Generalized Fenchel duality results can be found in [25, 24]. An easy consequence is:

Corollary 2.25 (Infimal convolution) Under the hypotheses of the Fenchel duality theorem 2.24
(f + g)∗(x∗) = (f∗�g∗)(x∗) with attainment when finite.

Another nice consequence of Fenchel duality is the ability to obtain primal solutions from dual
ones, as we now record.

Corollary 2.26 Suppose the conditions for equality in the Fenchel duality Theorem 2.24 hold, and
that ȳ∗ ∈ Y ∗ is an optimal dual solution. Then the point x̄ ∈ X is optimal for the primal problem
if and only if it satisfies the two conditions x̄ ∈ ∂f∗(T ∗ȳ∗) and T x̄ ∈ ∂g∗(−ȳ∗).

The regularity conditions in Fenchel duality theorem can be weakened when each functions is
polyhedral, i.e., when their epigraph is polyhedral.

Theorem 2.27 (Polyhedral Fenchel duality) (See [19, Corollary 5.1.10].) The conclusions of
the Fenchel duality Theorem 2.24 remain valid if the regularity condition (12) is replaced by the
assumption that the functions f and g are polyhedral with

dom g ∩ T dom f 6= ∅.

Fenchel duality applied to a linear programming program yields the well-known Lagrangian
duality.

Corollary 2.28 (Linear programming duality) Given c ∈ Rn, b ∈ Rm and A an m × n real
matrix, one has

(14) inf
x∈Rn
{cTx | Ax ≤ b} ≥ sup

λ∈Rm+
{−bTλ | ATλ = −c},

12



where Rm+ :=
{

(x1, x2, · · · , xm) | xi ≥ 0, i = 1, 2, · · · ,m
}

. Equality in (14) holds if b ∈ ranA.
Moreover, both extrema are obtained when finite.
Proof. Take f(x) := cTx, T := A and g(y) := ιb≥(y) where b≥ := {y ∈ Rm | y ≤ b}. Then apply
the polyhedral Fenchel duality Theorem 2.27 observing that f∗ = ιc, and for any λ ∈ Rm,

g∗(λ) = sup
y≤b

yTλ =

{
bTλ, if λ ∈ Rm+ ;
+∞, otherwise;

and (14) follows, since dom g ∩Adom f = {x ∈ Rn | Ax ≤ b}. �
One can easily derive various relevant results from Fenchel duality, such as the Sandwich theorem,

the subdifferential sum rule, and the Hahn-Banach extension theorem, among many others.

Theorem 2.29 (Extended sandwich theorem) Let X and Y be Banach spaces and let T :
X → Y be a bounded linear mapping. Suppose that f : X → ]−∞,+∞], g : Y → ]−∞,+∞] are
proper convex functions which together with T satisfy either (12) or (13). Assume that f ≥ −g ◦T .
Then there is an affine function α : X → R of the form α(x) = 〈T ∗y∗, x〉 + r satisfying f ≥ α ≥
−g ◦ T . Moreover, for any x̄ satisfying f(x̄) = (−g ◦ T )(x̄), we have −y∗ ∈ ∂g(T x̄).

Proof. With notation as in the Fenchel duality Theorem 2.24, we know d = p, and since p ≥ 0
because f(x) ≥ −g(Tx), the supremum in d is attained. Therefore there exists y∗ ∈ Y ∗ such that

0 ≤ p = d = −f∗(T ∗y∗)− g∗(−y∗).

Then, by Fenchel-Young inequality (4), we obtain

(15) 0 ≤ p ≤ f(x)− 〈T ∗y∗, x〉+ g(y) + 〈y∗, y〉,

for any x ∈ X and y ∈ Y . For any z ∈ X, setting y = Tz in the previous inequality, we obtain

a := sup
z∈X

[−g(Tz)− 〈T ∗y∗, z〉] ≤ b := inf
x∈X

[f(x)− 〈T ∗y∗, x〉]

Now choose r ∈ [a, b]. The affine function α(x) := 〈T ∗y∗, x〉+r satisfies f ≥ α ≥ −g◦T , as claimed.
The last assertion follows from (15) simply by setting x = x̄, where x̄ satisfies f(x̄) = (−g◦T )(x̄).

Then we have supy∈Y {〈−y∗, y〉−g(y)} ≤ (−g◦T )(x̄)−〈T ∗y∗, x̄〉. Thus g∗(−y∗)+g(T x̄) ≤ −〈y∗, T x̄〉
and hence −y∗ ∈ ∂g(T x̄). �

When X = Y and T is the identity we recover the classical Sandwich theorem. The next example
shows that without a constraint qualification, the sandwich theorem may fail.

Example 2.30 Consider f, g : R→ ]−∞,+∞] given by

f(x) :=

{
−
√
−x, for x ≤ 0,

+∞ otherwise,
and g(x) :=

{
−
√
x, for x ≥ 0,

+∞ otherwise.

In this case,
⋃
λ>0 λ [dom g − dom f ] = [0,+∞[ 6= R and it is not difficult to prove there is not any

affine function which separates f and −g, see Figure 2. ♦
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The prior constraint qualifications are sufficient but not necessary for the sandwich theorem as
we illustrate in the next example.

Example 2.31 Let f, g : R→ ]−∞,+∞] be given by

f(x) :=

{
1
x , for x > 0,
+∞ otherwise,

and g(x) :=

{
− 1
x , for x < 0,

+∞ otherwise.

Despite that
⋃
λ>0 λ [dom g − dom f ] = ]−∞, 0[ 6= R, the affine function α(x) := −x satisfies

f ≥ α ≥ −g, see Figure 2. ♦

f

−g f

−g

Figure 2: On the left we show the failure of the sandwich theorem in the absence of the constraint
qualification; of the right we show that the constraint qualification is not necessary.

Theorem 2.32 (Subdifferential sum rule) Let X and Y be Banach spaces, and let f : X →
]−∞,+∞] and g : Y → ]−∞,+∞] be convex functions and let T : X → Y be a bounded linear
mapping. Then at any point x ∈ X we have the sum rule

∂(f + g ◦ T )(x) ⊇ ∂f(x) + T ∗(∂g(Tx))

with equality if (12) or (13) hold.

Proof. The inclusion is straightforward by using the definition of the subdifferential, so we prove
the reverse inclusion. Fix any x ∈ X and let x∗ ∈ ∂(f+g◦T )(x). Then 0 ∈ ∂(f−〈x∗, · 〉+g◦T )(x).
Conditions for the equality in Theorem 2.24 are satisfied for the functions f(·)−〈x∗, · 〉 and g. Thus,
there exists y∗ ∈ Y ∗ such that

f(x)− 〈x∗, x〉+ g(Tx) = −f∗(T ∗y∗ + x∗)− g∗(−y∗).

14



Now set z∗ := T ∗y∗ + x∗. Hence, by Fenchel-Young inequality (4), one has

0 ≤ f(x) + f∗(z∗)− 〈z∗, x〉 = −g(Tx)− g∗(−y∗)− 〈T ∗y∗, x〉 ≤ 0;

whence,

f(x) + f∗(z∗) = 〈z∗, x〉
g(Tx) + g∗(−y∗) = 〈−y∗, Tx〉.

Therefore equality in Fenchel-Young occurs, and one has z∗ ∈ ∂f(x) and −y∗ ∈ ∂g(Tx), which
completes the proof. �

The subdifferential sum rule for two convex functions with a finite common point where one of
them is continuous was proved by Rockafellar in 1966 with an argumentation based on Fenchel
duality, see [52, Th. 3]. In an earlier work in 1963, Moreau [43] proved the subdifferential sum rule
for a pair of convex and lsc functions, in the case that infimal convolution of the conjugate functions
is achieved, see [46, p. 63] for more details. Moreau actually proved this result for functions which
are the supremum of a family of affine continuous linear functions, a set which agrees with the
convex and lsc functions when X is a locally convex vector space, see [41] or [46, p. 28]. See
also [33, 34, 25, 17] for more information about the subdifferential calculus rule.

Theorem 2.33 (Hahn–Banach extension) Let X be a Banach space and let f : X → R be a
continuous sublinear function with dom f = X. Suppose that L is a linear subspace of X and the
function h : L→ R is linear and dominated by f , that is, f ≥ h on L. Then there exists x∗ ∈ X∗,
dominated by f , such that

h(x) = 〈x∗, x〉, for all x ∈ L.

Proof. Take g := −h+ ιL and apply Theorem 2.24 to f and g with T the identity mapping. Then,
there exists x∗ ∈ X∗ such that

0 ≤ inf
x∈X
{f(x)− h(x) + ιL(x)}

= −f∗(x∗)− sup
x∈X
{〈−x∗, x〉+ h(x)− ιL(x)}

= −f∗(x∗) + inf
x∈L
{〈x∗, x〉 − h(x)};(16)

whence,
f∗(x∗) ≤ 〈x∗, x〉 − h(x), for all x ∈ L.

Observe that f∗(x∗) ≥ 0 since f(0) = 0. Thus, being L a linear subspace, we deduce from the
above inequality that

h(x) = 〈x∗, x〉, for all x ∈ L.

Then (16) implies f∗(x∗) = 0, from where

f(x) ≥ 〈x∗, x〉, for all x ∈ X,

and we are done. �
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Remark 2.34 Moreau’s max formula (Theorem 2.5)—a true child of Cauchy’s principle of steepest
descent—can be also derived from Fenchel duality. In fact, the non-emptiness of the subdifferential
at a point of continuity, Moreau’s max formula, Fenchel duality, the Sandwich theorem, the subd-
ifferential sum rule, and Hahn-Banach extension theorem are all equivalent, in the sense that they
are easily inter-derivable.

In outline, one considers h(u) := infx f(x) + g(Ax + u) and checks that ∂h(0) 6= ∅ implies the
Fenchel and Lagrangian duality results; while condition 12 and so 13 implies h is continuous at
zero and thus Theorem 2.5 finishes the proof. Likewise, the polyhedral calculus [19, §5.1] implies
h is polyhedral when f and g are and shows that polyhedral functions have domh = dom ∂h. This
establishes Theorem 2.27. This also recovers abstract LP duality (e.g., semidefinite programming
duality) under condition 12. See [19, 20] for more details. ♦

Let us turn to two illustrations of the power of convex analysis within functional analysis.
A Banach limit is a bounded linear functional Λ on the space of bounded sequences of real

numbers `∞ such that

(i) Λ((xn+1)n∈N) = Λ((xn)n∈N) (so it only depends on the sequence’s tail),

(ii) lim infk xk ≤ Λ((xk)) ≤ lim supk xk

where (xn)n∈N = (x1, x2, . . .) ∈ `∞ and (xn+1)n∈N = (x2, x3, . . .). Thus Λ agrees with the limit on
c, the subspace of sequences whose limit exists. Banach limits care peculiar objects!

The Hahn-Banach extension theorem can be used show the existence of Banach limits (see
Sucheston [61] or [20, Exercise 5.4.12]). Many of its earliest applications were to summability
theory and related fields. We sketch Sucheston’s proof as follows.

Theorem 2.35 (Banach limits) (See [61].) Banach limits exist.

Proof. Let c be the subspace of convergent sequences in `∞. Define f : `∞ → R by

x := (xn)n∈N 7→ lim
n→∞

(
sup
j

1

n

n∑
i=1

xi+j

)
.(17)

Then f is sublinear with full domain, since the limit in (17) always exists (see [61, p. 309]). Define
h on c by h := limn xn for every x := (xn)n∈N in c. Hence h is linear and agrees with f on c.
Applying the Hahn-Banach extension Theorem 2.33, there exists Λ ∈ (`∞)∗, dominated by f , such
that Λ = h on c. Thus Λ extends the limit linearly from c to `∞. Let S denote the forward shift
defined as S((xn)n∈N) := (xn+1)n∈N. Note that f(Sx− x) = 0, since

|f(Sx− x)| =

∣∣∣∣∣ lim
n→∞

(
sup
j

1

n
(xj+n+1 − xj+1)

)∣∣∣∣∣ ≤ lim
n→∞

1

2n
sup
j
|xj | = 0.

Thus, Λ(Sx)−Λ(x) = Λ(Sx− x) ≤ 0, and Λ(x)−Λ(Sx) = Λ(x− Sx) ≤ f(x− Sx) = 0; that is, Λ
is indeed a Banach limit. �
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Theorem 2.36 (Principle of uniform boundedness) (See ([20, Example 1.4.8].) Let Y be
another Banach space and Tα : X → Y for α ∈ A be bounded linear operators. Assume that
supα∈A ‖Tα(x)‖ < +∞ for each x in X. Then supα∈A ‖Tα‖ < +∞.

Proof. Define a function fA by
fA(x) := sup

α∈A
‖Tα(x)‖

for each x in X. Then, as observed in Fact 2.1(i), fA is convex. It is also lower semicontinuous since
each mapping x 7→ ‖Tα(x)‖ is continuous. Hence fA is a finite, lower semicontinuous and convex
(actually sublinear) function. Now Fact 2.1(iv) ensures fA is continuous at the origin. Select ε > 0
with sup{fA(x) | ‖x‖ ≤ ε} ≤ 1 + fA(0) = 1. It follows that

sup
α∈A
‖Tα‖ = sup

α∈A

1

ε
sup
‖x‖≤ε

‖Tα(x)‖ =
1

ε
sup
‖x‖≤ε

sup
α∈A
‖Tα(x)‖ ≤ 1

ε
.

Thus, uniform boundedness is revealed to be continuity of fA. �

3 The Chebyshev problem

Let C be a nonempty subset of X. We define the nearest point mapping by

PC(x) := {v ∈ C | ‖v − x‖ = dC(x)}.

A set C is said to be a Chebyshev set if PC(x) is a singleton for every x ∈ X. If PC(x) 6= ∅ for
every x ∈ X, then C is said to be proximal; the term proximinal is also used.

In 1961 Victor Klee [36] posed the following fundamental question: Is every Chebyshev set in a
Hilbert space convex? At this stage, it is known that the answer is affirmative for weakly closed
sets. In what follows we will present a proof of this fact via convex duality. To this end, we will
make use of the following fairly simple lemma.

Lemma 3.1 (See [20, Proposition 4.5.8].) Let C be a weakly closed Chebyshev subset of a Hilbert
space H. Then the nearest point mapping PC is continuous.

Theorem 3.2 Let C be a nonempty weakly closed subset of a Hilbert space H. Then C is convex
if and only if C is a Chebyshev set.

Proof. For the direct implication, we will begin by proving that C is proximal. We can and do
suppose that 0 ∈ C. Pick any x ∈ H. Consider the convex and lsc functions f(z) := −〈x, z〉+ιBH (z)
and g(z) := σC(z). Notice that

⋃
λ>0 λ [dom g − dom f ] = H. With the notation of Theorem 2.24,

one has p = d, and the supremum of the dual problem is attained if finite. Since f∗(y) = ‖x+ y‖
and g∗(y) = ιC(y), as C is closed, the dual problem (11) takes the form

d = sup
y∈H
{−‖x+ y‖ − ιC(−y)} = −dC(x).

Choose any c ∈ C. Observe that 0 ≤ dC(x) ≤ ‖x− c‖. Therefore the supremum must be attained,
and PC(x) 6= ∅. Uniqueness follows easily from the convexity of C.
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For the converse, consider the function f := 1
2‖ · ‖

2 + ιC . We first show that

(18) ∂f∗(x) = {PC(x)}, for all x ∈ H.

Indeed, for x ∈ H,

f∗(x) = sup
y∈C

{
〈x, y〉 − 1

2
〈y, y〉

}
=

1

2
〈x, x〉+

1

2
sup
y∈C
{−〈x, x〉+ 2〈x, y〉 − 〈y, y〉}

=
1

2
‖x‖2 − 1

2
inf
y∈C
‖x− y‖2 =

1

2
‖x‖2 − 1

2
d2
C(x)

=
1

2
‖x‖2 − 1

2
‖x− PC(x)‖2 = 〈x, PC(x)〉 − 1

2
‖PC(x)‖2

= 〈x, PC(x)〉 − f(PC(x)).

Consequently, by Proposition 2.7, PC(x) ∈ ∂f∗(x) for x ∈ X. Now suppose y ∈ ∂f∗(x), and define
xn = x + 1

n(y − PC(x)). Then xn → x, and hence PC(xn) → PC(x) by Lemma 3.1. Using the
subdifferential inequality, we have

0 ≤ 〈xn − x, PC(xn)− y〉 =
1

n
〈y − PC(x), PC(xn)− y〉.

This now implies:
0 ≤ lim

n→∞
〈y − PC(x), PC(xn)− y〉 = −‖y − PC(x)‖2.

Consequently, y = PC(x) and so (18) is established.
Since f∗ is continuous and we just proved that ∂f∗ is a singleton, Proposition 2.3 implies that f∗

is Gâteaux differentiable. Now −∞ < f∗∗(x) ≤ f(x) = 1
2‖x‖

2 for all x ∈ C. Thus, f∗∗ is a proper
function. One can easily check that f is sequentially weakly lsc, C being weakly closed. Therefore,
Theorem 2.15 implies that f is convex; whence, dom f = C must be convex. �

Observe that we have actually proved that every Chebyshev set with a continuous projection
mapping is convex (and closed). We finish the section by recalling a simple but powerful “hidden
convexity” result.

Remark 3.3 (See [3].) Let C be a closed subset of a Hilbert space H. Then there exists a
continuous and convex function f defined on H such that d2

C(x) = ‖x‖2− f(x), ∀x ∈ H. Precisely,
f can be taken as x 7→ supc∈C{2〈x, c〉 − ‖c‖2}.

4 Monotone operator theory

Let A : X ⇒ X∗ be a set-valued operator (also known as a relation, point-to-set mapping or
multifunction), i.e., for every x ∈ X, Ax ⊆ X∗, and let graA :=

{
(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax

}
be

the graph of A. The domain of A is domA :=
{
x ∈ X | Ax 6= ∅

}
and ranA := A(X) is the range

of A. We say that A is monotone if

(19) 〈x− y, x∗ − y∗〉 ≥ 0, for all (x, x∗), (y, y∗) ∈ graA,
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and maximally monotone if A is monotone and A has no proper monotone extension (in the sense
of graph inclusion). Given A monotone, we say that (x, x∗) ∈ X ×X∗ is monotonically related to
graA if

〈x− y, x∗ − y∗〉 ≥ 0, for all (y, y∗) ∈ graA.

Monotone operators have frequently shown themselves to be a key class of objects in both modern
Optimization and Analysis; see, e.g., [11, 12, 13, 22], the books [5, 20, 26, 50, 57, 58, 55, 62, 63, 64]
and the references given therein.

Given sets S ⊆ X and D ⊆ X∗, we define S⊥ by S⊥ := {x∗ ∈ X∗ | 〈x∗, x〉 = 0, ∀x ∈ S}
and D⊥ by D⊥ := {x ∈ X | 〈x, x∗〉 = 0, ∀x∗ ∈ D} [51]. Then the adjoint of A is the operator
A∗ : X∗∗ ⇒ X∗ such that

graA∗ :=
{

(x∗∗, x∗) ∈ X∗∗ ×X∗ | (x∗,−x∗∗) ∈ (graA)⊥
}
.

Note that the adjoint is always a linear relation, i.e. its graph is a linear subspace.
The Fitzpatrick function [31] associated with an operator A is the function FA : X × X∗ →

]−∞,+∞] defined by

FA(x, x∗) := sup
(a,a∗)∈graA

(
〈x, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉

)
.(20)

Fitzpatrick functions have been proved to be an important tool in modern monotone operator
theory. One of the main reasons is shown in the following result.

Fact 4.1 (Fitzpatrick) (See ([31, Propositions 3.2&4.2, Theorem 3.4 and Corollary 3.9].) Let
A : X ⇒ X∗ be monotone with domA 6= ∅. Then FA is proper lower semicontinuous, convex,
and FA = 〈·, ·〉 on graA. Moreover, if A is maximally monotone, for every (x, x∗) ∈ X ×X∗, the
inequality

〈x, x∗〉 ≤ FA(x, x∗) ≤ F ∗A(x∗, x)

is true, and the first equality holds if and only if (x, x∗) ∈ graA.

The next result is central to maximal monotone operator theory and algorithmic analysis. Orig-
inally it was proved by direct and harder methods than the concise convex analysis argument we
present.

Theorem 4.2 (Local boundedness) (See [50, Theorem 2.2.8].) Let A : X ⇒ X∗ be monotone
with int domA 6= ∅. Then A is locally bounded at x ∈ int domA, i.e., there exist δ > 0 and K > 0
such that

sup
y∗∈Ay

‖y∗‖ ≤ K, ∀y ∈ (x+ δBX) ∩ domA.

Proof. Let x ∈ int domA. After translating the graphs if necessary, we can and do suppose that
x = 0 and (0, 0) ∈ graA. Define f : X → ]−∞,+∞] by

y 7→ sup
(a,a∗)∈graA, ‖a‖≤1

〈y − a, a∗〉.
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By Fact 2.1(i), f is convex and lower semicontinuous. Since 0 ∈ int domA. Then there exists δ1 > 0
such that δ1BX ⊆ domA. Now we show that δ1BX ⊆ dom f . Let y ∈ δ1BX and y∗ ∈ Ay. Thence,
we have

〈y − a, y∗ − a∗〉 ≥ 0, ∀(a, a∗) ∈ graA, ‖a‖ ≤ 1

⇒ 〈y − a, y∗〉 ≥ 〈y − a, a∗〉, ∀(a, a∗) ∈ graA, ‖a‖ ≤ 1

⇒ +∞ > (‖y‖+ 1) · ‖y∗‖ ≥ 〈y − a, a∗〉, ∀(a, a∗) ∈ graA, ‖a‖ ≤ 1

⇒ f(y) < +∞ ⇒ y ∈ dom f.

Hence δ1BX ⊆ dom f and thus 0 ∈ int dom f . By Fact 2.1(iv), there is δ > 0 with δ ≤ min{1
2 ,

1
2δ1}

such that

f(y) ≤ f(0) + 1 = 1, ∀y ∈ 2δBX .

Thus,
〈y, a∗〉 ≤ 〈a, a∗〉+ 1, ∀y ∈ 2δBX , (a, a

∗) ∈ graA, ‖a‖ ≤ δ,

whence, taking the supremum with y ∈ 2δBX ,

2δ‖a∗‖ ≤ ‖a‖ · ‖a∗‖+ 1 ≤ δ‖a∗‖+ 1, ∀(a, a∗) ∈ graA, a ∈ δBX

⇒ ‖a∗‖ ≤ 1

δ
, ∀(a, a∗) ∈ graA, a ∈ δBX .

Setting K := 1
δ , we get the desired result. �

Generalizations of Theorem 4.2 can be found in [58, 16] and [21, Lemma 4.1].

4.1 Sum theorem and Minty surjectivity theorem

In the early 1960s, Minty [40] presented an important characterization of maximally monotone
operators in a Hilbert space; which we now reestablish. The proof we give of Theorem 4.3 is due
to Simons and Zălinescu [59, Theorem 1.2]. We denote by Id the identity mapping from H to H.

Theorem 4.3 (Minty) Suppose that H is a Hilbert space. Let A : H ⇒ H be monotone. Then
A is maximally monotone if and only if ran(A+ Id) = H.

Proof. “⇒”: Fix any x∗0 ∈ H, and let B : H ⇒ H be given by graB := graA− {(0, x∗0)}. Then B
is maximally monotone. Define F : H ×H → ]−∞,+∞] by

(x, x∗) 7→ FB(x, x∗) +
1

2
‖x||2 +

1

2
‖x∗||2.(21)

Fact 4.1 together with Fact 2.1(v) implies that F is coercive. By [62, Theorem 2.5.1(ii)], F has a
minimizer. Assume that (z, z∗) ∈ H × H is a minimizer of F . Then we have (0, 0) ∈ ∂F (z, z∗).
Thus, (0, 0) ∈ ∂FB(z, z∗) + (z, z∗) and (−z,−z∗) ∈ ∂FB(z, z∗). Then〈

(−z,−z∗), (b, b∗)− (z, z∗)
〉
≤ FB(b, b∗)− FB(z, z∗), ∀(b, b∗) ∈ graB,
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and by Fact 4.1, 〈
(−z,−z∗), (b, b∗)− (z, z∗)

〉
≤ 〈b, b∗〉 − 〈z, z∗〉, ∀(b, b∗) ∈ graB;

that is,

(22) 0 ≤ 〈b, b∗〉 − 〈z, z∗〉+ 〈z, b〉+ 〈z∗, b∗〉 − ‖z‖2 − ‖z∗‖2, ∀(b, b∗) ∈ graB.

Hence,〈
b+ z∗, b∗ + z

〉
= 〈b, b∗〉+ 〈z, b〉+ 〈z∗, b∗〉+ 〈z, z∗〉 ≥ ‖z + z∗‖2 ≥ 0, ∀(b, b∗) ∈ graB,

which implies that (−z∗,−z) ∈ graB, since B is maximally monotone. This combined with (22)
implies 0 ≤ −2〈z, z∗〉 − ‖z‖2 − ‖z∗‖2. Then we have z = −z∗, and (z,−z) = (−z∗,−z) ∈ graB,
whence (z,−z) + (0, x∗0) ∈ graA. Therefor x∗0 ∈ Az + z, which implies x∗0 ∈ ran(A+ Id).

“⇐”: Let (v, v∗) ∈ H × H be monotonically related to graA. Since ran(A + Id) = H, there
exists (y, y∗) ∈ graA such that v∗ + v = y∗ + y. Then we have

−‖v − y‖2 =
〈
v − y, y∗ + y − v − y∗

〉
=
〈
v − y, v∗ − y∗

〉
≥ 0.

Hence v = y, which also implies v∗ = y∗. Thus (v, v∗) ∈ graA, and therefore A is maximally
monotone. �

Remark 4.4 The proof of Minty’s theorem in reflexive spaces (in which case it asserts the sur-
jectivity of A + JX for the normalized duality mapping JX defined below) [20, Proposition 3.5.6,
page 119] is only slightly more complicated than that of Theorem 4.3.

Let A and B be maximally monotone operators from X to X∗. Clearly, the sum operator
A + B : X ⇒ X∗ : x 7→ Ax + Bx :=

{
a∗ + b∗ | a∗ ∈ Ax and b∗ ∈ Bx

}
is monotone. Rockafellar

established the following important result in 1970 [54], the so-called “sum theorem”: Suppose that
X is reflexive. If domA∩ int domB 6= ∅, then A+B is maximally monotone. We can weaken this
constraint qualification to be that

⋃
λ>0 λ [domA− domB] is a closed subspace (see [58, 60, 20]).

We turn to a new proof of this generalized result. To this end, we need the following fact
along with the definition of the partial inf-convolution. Given two real Banach spaces X,Y and
F1, F2 : X × Y → ]−∞,+∞], the partial inf-convolution F1�2F2 is the function defined on X × Y
by

F1�2F2 : (x, y) 7→ inf
v∈Y

{
F1(x, y − v) + F2(x, v)

}
.

.

Fact 4.5 (Simons and Zălinescu) (See [60, Theorem 4.2] or [58, Theorem 16.4(a)].) Let X,Y
be real Banach spaces and F1, F2 : X×Y → ]−∞,+∞] be proper lower semicontinuous and convex
bifunctionals. Assume that for every (x, y) ∈ X × Y ,

(F1�2F2)(x, y) > −∞

and that
⋃
λ>0 λ [PX domF1 − PX domF2] is a closed subspace of X. Then for every (x∗, y∗) ∈

X∗ × Y ∗,
(F1�2F2)∗(x∗, y∗) = min

u∗∈X∗
{F ∗1 (x∗ − u∗, y∗) + F ∗2 (u∗, y∗)} .
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We denote by JX the duality map from X to X∗, which will be simply written as J , i.e., the
subdifferential of the function 1

2‖ · ‖
2. Let F : X × Y → ]−∞,+∞] be a bifunctional defined on

two real Banach spaces. Following the notation by Penot [48] we set

(23) F ᵀ : Y ×X : (y, x) 7→ F (x, y).

Theorem 4.6 (Sum theorem) Suppose that X is reflexive. Let A,B : X ⇒ X be maximally
monotone. Assume that

⋃
λ>0 λ [domA− domB] is a closed subspace. Then A + B is maximally

monotone.

Proof. Clearly, A + B is monotone. Assume that (z, z∗) ∈ X × X∗ is monotonically related to
gra(A+B).

Let F1 := FA�2FB, and F2 := F ∗ᵀ1 . By [7, Lemma 5.8],
⋃
λ>0 λ [PX(domFA)− PX(domFB)] is

a closed subspace. Then Fact 4.5 implies that

F ∗1 (x∗, x) = min
u∗∈X∗

{F ∗A(x∗ − u∗, x) + F ∗B(u∗, x)} , for all (x, x∗) ∈ X ×X∗.(24)

Set G : X ×X∗ → ]−∞,+∞] by

(x, x∗) 7→ F2(x+ z, x∗ + z∗)− 〈x, z∗〉 − 〈z, x∗〉+
1

2
‖x‖2 +

1

2
‖x∗‖2.

Assume that (x0, x
∗
0) ∈ X×X∗ is a minimizer of G. ([62, Theorem 2.5.1(ii)] implies that minimizers

exist since G is coercive). Then we have (0, 0) ∈ ∂G(x0, x
∗
0). Thus, there exists v∗ ∈ Jx0, v ∈ JX∗x∗0

such that (0, 0) ∈ ∂F2(x0 + z, x∗0 + z∗) + (v∗, v) + (−z∗,−z), and then

(z∗ − v∗, z − v) ∈ ∂F2(x0 + z, x∗0 + z∗).

Thence 〈
(z∗ − v∗, z − v), (x0 + z, x∗0 + z∗)

〉
= F2(x0 + z, x∗0 + z∗) + F ∗2 (z∗ − v∗, z − v).(25)

Fact 4.1 and (24) show that

F2 ≥ 〈·, ·〉, F ∗ᵀ2 = F1 ≥ 〈·, ·〉.

Then by (25),〈
(z∗ − v∗, z − v), (x0 + z, x∗0 + z∗)

〉
= F2(x0 + z, x∗0 + z∗) + F ∗2 (z∗ − v∗, z − v)

≥
〈
x0 + z, x∗0 + z∗

〉
+
〈
z∗ − v∗, z − v

〉
.(26)

Thus, since v∗ ∈ Jx0, v ∈ JX∗x∗0,

0 ≤ δ :=
〈

(z∗ − v∗, z − v), (x0 + z, x∗0 + z∗)
〉
−
〈
x0 + z, x∗0 + z∗

〉
−
〈
z∗ − v∗, z − v

〉
=
〈
− x0 − v, x∗0 + v∗

〉
= 〈−x0, x

∗
0〉 − 〈x0, v

∗〉 − 〈v, x∗0〉 − 〈v, v∗〉

= 〈−x0, x
∗
0〉 −

1

2
‖x∗0‖2 −

1

2
‖x0‖2 −

1

2
‖v∗‖2 − 1

2
‖v‖2 − 〈v, v∗〉,
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which implies

δ = 0 and 〈x0, x
∗
0〉+

1

2
‖x∗0‖2 +

1

2
‖x0‖2 = 0;

that is,

(27) δ = 0 and x∗0 ∈ −Jx0.

Combining (26) and (27), we have F2(x0 + z, x∗0 + z∗) =
〈
x0 + z, x∗0 + z∗

〉
. By (24) and Fact 4.1,

(x0 + z, x∗0 + z∗) ∈ gra(A+B).(28)

Since (z, z∗) is monotonically related to gra(A+B), it follows from (28) that〈
x0, x

∗
0

〉
=
〈
x0 + z − z, x∗0 + z∗ − z∗

〉
≥ 0,

and then by (27),
−‖x0‖2 = −‖x∗0‖2 ≥ 0,

whence (x0, x
∗
0) = (0, 0). Finally, by (28), one deduces that (z, z∗) ∈ gra(A + B) and A + B is

maximally monotone. �
It is still unknown whether the reflexivity condition can be omitted in Theorem 4.6 though many

partial results exist, see [12, 13] and [20, §9.7].

4.2 Autoconjugate functions

Given F : X ×X∗ → ]−∞,+∞], we say that F is autoconjugate if F = F ∗ᵀ on X ×X∗. We say
F is a representer for graA if

(29) graA =
{

(x, x∗) ∈ X ×X∗ | F (x, x∗) = 〈x, x∗〉
}
.

Autoconjugate functions are the core of representer theory, which has been comprehensively studied
in Optimization (see [6, 7, 49, 58, 20]).

Fitzpatrick posed the following question in [31, Problem 5.5]:

If A : X ⇒ X∗ is maximally monotone, does there necessarily exist an autoconjugate
representer for A?

Bauschke and Wang gave an affirmative answer to the above question in reflexive spaces by con-
struction of the function BA in Fact 4.7. This naturally raises a question:

Is BA still an autoconjugate representer for a maximally monotone operator A in a
general Banach space?

We give a negative answer to the above question in Example 4.12: in certain spaces, BA fails to be
autoconjugate.
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Fact 4.7 (Bauschke and Wang) (See [6, Theorem 5.7].) Suppose that X is reflexive. Let
A : X ⇒ X∗ be maximally monotone. Then

BA : X ×X∗ → ]−∞,+∞]

(x, x∗) 7→ inf
(y,y∗)∈X×X∗

{
1
2FA(x+ y, x∗ + y∗) + 1

2F
∗ᵀ
A (x− y, x∗ − y∗) + 1

2‖y‖
2 + 1

2‖y
∗‖2
}

(30)

is an autoconjugate representer for A.

We will make use of the following result to prove Theorem 4.11.

Fact 4.8 (Simons) (See [58, Corollary 10.4].) Let f1, f2, g : X → ]−∞,+∞] be proper convex.
Assume that g is continuous at a point of dom f1 − dom f2. Suppose that

h(x) := inf
z∈X

{
1
2f1(x+ z) + 1

2f2(x− z) + 1
4g(2z)

}
> −∞, ∀x ∈ X.

Then

h∗(x∗) = min
z∗∈X∗

{
1
2f
∗
1 (x∗ + z∗) + 1

2f
∗
2 (x∗ − z∗) + 1

4g
∗(−2z∗)

}
, ∀x∗ ∈ X∗.

Let A : X ⇒ X∗ be a linear relation. We say that A is skew if graA ⊆ gra(−A∗); equivalently,
if 〈x, x∗〉 = 0, ∀(x, x∗) ∈ graA. Furthermore, A is symmetric if graA ⊆ graA∗; equivalently, if
〈x, y∗〉 = 〈y, x∗〉, ∀(x, x∗), (y, y∗) ∈ graA. We define the symmetric part and the skew part of A via

(31) P := 1
2A+ 1

2A
∗ and S := 1

2A−
1
2A
∗,

respectively. It is easy to check that P is symmetric and that S is skew.

Fact 4.9 (See [4, Theorem 3.7].) Let A : X∗ → X∗∗ be linear and continuous. Assume that
ranA ⊆ X and that there exists e ∈ X∗∗\X such that

〈Ax∗, x∗〉 = 〈e, x∗〉2, ∀x∗ ∈ X∗.

Let P and S respectively be the symmetric part and skew part of A. Let T : X ⇒ X∗ be defined by

graT :=
{

(−Sx∗, x∗) | x∗ ∈ X∗, 〈e, x∗〉 = 0
}

=
{

(−Ax∗, x∗) | x∗ ∈ X∗, 〈e, x∗〉 = 0
}
.(32)

Then the following hold.

(i) A is a maximally monotone operator on X∗ .

(ii) Px∗ = 〈x∗, e〉e, ∀x∗ ∈ X∗.

(iii) T is maximally monotone and skew on X.

(iv) graT ∗ = {(Sx∗ + re, x∗) | x∗ ∈ X∗, r ∈ R}.

(v) FT = ιC , where C := {(−Ax∗, x∗) | x∗ ∈ X∗}.
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We next give concrete examples of A, T as in Fact 4.9.

Example 4.10 (c0) (See [4, Example 4.1].) Let X := c0, with norm ‖ · ‖∞ so that X∗ = `1

with norm ‖ · ‖1, and X∗∗ = `∞ with its second dual norm ‖ · ‖∗. Fix α := (αn)n∈N ∈ `∞ with
lim supαn 6= 0, and let Aα : `1 → `∞ be defined by

(Aαx
∗)n := α2

nx
∗
n + 2

∑
i>n

αnαix
∗
i , ∀x∗ = (x∗n)n∈N ∈ `1.(33)

Now let Pα and Sα respectively be the symmetric part and skew part of Aα. Let Tα : c0 ⇒ X∗ be
defined by

graTα :=
{

(−Sαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{

(−Aαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{(

(−
∑
i>n

αnαix
∗
i +

∑
i<n

αnαix
∗
i )n∈N, x

∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}
.(34)

Then

(i) 〈Aαx∗, x∗〉 = 〈α, x∗〉2, ∀x∗ = (x∗n)n∈N ∈ `1 and (34) is well defined.

(ii) Aα is a maximally monotone.

(iii) Tα is a maximally monotone operator.

(iv) Let G : `1 → `∞ be Gossez’s operator [32] defined by(
G(x∗)

)
n

:=
∑
i>n

x∗i −
∑
i<n

x∗i , ∀(x∗n)n∈N ∈ `1.

Then Te : c0 ⇒ `1 as defined by

graTe := {(−G(x∗), x∗) | x∗ ∈ `1, 〈x∗, e〉 = 0}

is a maximally monotone operator, where e := (1, 1, . . . , 1, . . .). ♦

We may now show that BT need not be autoconjugate.

Theorem 4.11 Let A : X∗ → X∗∗ be linear and continuous. Assume that ranA ⊆ X and that
there exists e ∈ X∗∗\X such that ‖e‖ < 1√

2
and

〈Ax∗, x∗〉 = 〈e, x∗〉2, ∀x∗ ∈ X∗.

Let P and S respectively be the symmetric part and skew part of A. Let T,C be defined as in
Fact 4.9. Then

BT (−Aa∗, a∗) > B∗T (a∗,−Aa∗), ∀a∗ /∈ {e}⊥.

In consequence, BT is not autoconjugate.
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Proof. First we claim that

ι∗ᵀC |X×X∗ = ιgraT .(35)

Clearly, if we set D := {(A∗x∗, x∗) | x∗ ∈ X∗}, we have

ι∗ᵀC = σᵀC = ιᵀ
C⊥

= ιD,(36)

where in the second equality we use the fact that C is a subspace. Additionally,

A∗x∗ ∈ X ⇔ (S + P )∗x∗ ∈ X ⇔ S∗x∗ + P ∗x∗ ∈ X ⇔ −Sx∗ + Px∗ ∈ X
⇔ −Sx∗ − Px∗ + 2Px∗ ∈ X ⇔ 2Px∗ −Ax∗ ∈ X ⇔ Px∗ ∈ X (since ranA ⊆ X)

⇔ 〈x∗, e〉e ∈ X (by Fact 4.9(ii))

⇔ 〈x∗, e〉 = 0 (since e /∈ X).(37)

Observe that Px∗ = 0 for all x∗ ∈ {e}⊥ by Fact 4.9(ii). Thus, A∗x∗ = −Ax∗ for all x∗ ∈ {e}⊥.
Combining (36) and (37), we have

ι∗ᵀC |X×X∗ = ιD∩(X×X∗) = ιgraT ,

and hence (35) holds.
Let a∗ /∈ {e}⊥. Then 〈a∗, e〉 6= 0. Now we compute BT (−Aa∗, a∗). By Fact 4.9(v) and (35),

BT (−Aa∗, a∗)
= inf

(y,y∗)∈X×X∗

{
ιC(−Aa∗ + y, a∗ + y∗) + ιgraT (−Aa∗ − y, a∗ − y∗) + 1

2‖y‖
2 + 1

2‖y
∗‖2
}
.(38)

Thus

BT (−Aa∗, a∗) = inf
y=−Ay∗

{
ιgraT (−Aa∗ − y, a∗ − y∗) + 1

2‖y‖
2 + 1

2‖y
∗‖2
}

= inf
y=−Ay∗, 〈a∗−y∗,e〉=0

{
1
2‖y‖

2 + 1
2‖y
∗‖2
}

= inf
〈a∗−y∗,e〉=0

{
1
2‖Ay

∗‖2 + 1
2‖y
∗‖2
}

≥ inf
〈a∗−y∗,e〉=0

〈Ay∗, y∗〉 = inf
〈a∗−y∗,e〉=0

〈e, y∗〉2

= 〈e, a∗〉2.(39)

Next we will compute B∗T (a∗,−Aa∗). By Fact 4.8 and (38), we have

B∗T (a∗,−Aa∗)

= min
(y∗,y∗∗)∈X∗×X∗∗

{
1

2
ι∗C(a∗ + y∗,−Aa∗ + y∗∗) +

1

2
ι∗graT (a∗ − y∗,−Aa∗ − y∗∗) + 1

2‖y
∗∗‖2 + 1

2‖y
∗‖2
}

= min
(y∗,y∗∗)∈X∗×X∗∗

{
ιD(−Aa∗ + y∗∗, a∗ + y∗) + ι(graT )⊥(a∗ − y∗,−Aa∗ − y∗∗) + 1

2‖y
∗∗‖2 + 1

2‖y
∗‖2
}

(by (36))

≤ ιD(−Aa∗ + 2Pa∗, a∗) + ι(graT )⊥(a∗,−Aa∗ − 2Pa∗) + 1
2‖2Pa

∗‖2 (by taking y∗ = 0, y∗∗ = 2Pa∗)

= ιgra(−T ∗)(−Aa∗ − 2Pa∗, a∗) + 1
2‖2Pa

∗‖2
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= 1
2‖2Pa

∗‖2 (by Fact 4.9(iv))

= 1
2‖2〈a

∗, e〉e‖2 (by Fact 4.9(ii))

= 2〈a∗, e〉2‖e‖2.

This inequality along with (39), 〈e, a∗〉 6= 0 and ‖e‖ < 1√
2
, yield

BT (−Aa∗, a∗) ≥ 〈e, a∗〉2 > 2〈a∗, e〉2‖e‖2 ≥ B∗T (a∗,−Aa∗), ∀a∗ /∈ {e}⊥.

Hence BT is not autoconjugate. �

Example 4.12 (c0) Let X := c0, with norm ‖·‖∞ so that X∗ = `1 with norm ‖·‖1, and X∗∗ = `∞

with its second dual norm ‖ · ‖∗. Fix α := (αn)n∈N ∈ `∞ with lim supαn 6= 0 and ‖α‖∗ < 1√
2
, and

let Aα : `1 → `∞ be defined by

(Aαx
∗)n := α2

nx
∗
n + 2

∑
i>n

αnαix
∗
i , ∀x∗ = (x∗n)n∈N ∈ `1.(40)

Now let Pα and Sα respectively be the symmetric part and skew part of Aα. Let Tα : c0 ⇒ X∗ be
defined by

graTα :=
{

(−Sαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{

(−Aαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{(

(−
∑
i>n

αnαix
∗
i +

∑
i<n

αnαix
∗
i )n∈N, x

∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}
.(41)

Then

BTα(−Aa∗, a∗) > B∗Tα(a∗,−Aa∗), ∀a∗ /∈ {e}⊥.

In consequence, BTα is not autoconjugate. This is proved just applying Example 4.10 and Theo-
rem 4.11 directly. ♦

The latter raises a very interesting question:

Problem 4.13 Is there a maximally monotone operator on some (resp. every) non-reflexive Ba-
nach space that has no autoconjugate representer?

4.3 The Fitzpatrick function and differentiability

The Fitzpatrick function introduced in [31] was discovered precisely to provide a more transparent
convex alternative to the earlier saddle function construction due to Krauss [20]—we have not
discussed saddle-functions but they produce interesting maximally monotone operators [54, §33
& §37]. At the time, Fitzpatrick’s interests were more centrally in the differentiation theory for
convex functions and monotone operators.

The search for results relating when a maximally monotone T is single-valued to differentiability
of FT did not yield fruit, and he put the function aside. This is still the one area where to the best
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of our knowledge FT has proved of very little help—in part because generic properties of domFT
and of dom(T ) seem poorly related.

That said, monotone operators often provide efficient ways to prove differentiability of convex
functions. The discussion of Mignot’s theorem in[20] is somewhat representative of how this works
as is the treatment in [50]. By contrast, as we have seen the Fitzpatrick function and its relatives
now provide the easiest access to a gamut of solvability and boundedness results.

5 Other results

5.1 Renorming results: Asplund averaging

Edgar Asplund [2] showed how to exploit convex analysis to provide remarkable results on the
existence of equivalent norms with nice properties. Most optimizers are unaware of his lovely idea
which we recast in the language of inf-convolution. Our development is a reworking of that in
Day [29]. Let us start with two equivalent norms ‖ ·‖1 and ‖ ·‖2 on a Banach space X. We consider
the quadratic forms p0 := ‖ · ‖21/2 and q0 := ‖ · ‖22/2, and average for n ≥ 0 by

pn+1(x) :=
pn(x) + qn(x)

2
and qn+1(x) :=

(pn�qn)(2x)

2
.(42)

Let C > 0 be such that q0 ≤ p0 ≤ (1 + C)q0. By the construction of pn and qn, we have
qn ≤ pn ≤ (1+4−nC)qn ([2, Lemma]) and so the sequences (pn)n∈N, (qn)n∈N converge to a common
limit: a convex quadratic function p.

We shall show that the norm ‖ · ‖3 :=
√

2p typically inherits the good properties of both ‖ · ‖1
and ‖ · ‖2. This is based on the following fairly straightforward result.

Theorem 5.1 (Asplund) (See [2, Theorem 1].) If either p0 or q0 is strictly convex, so is p.

We make a very simple application in the case that X is reflexive. In [38], Lindenstrauss showed
that every reflexive Banach space has an equivalent strictly convex norm. The reader may consult
[20, Chapter 4] for more general results. Now take ‖ · ‖1 to be an equivalent strictly convex norm
on X, and take ‖ · ‖2 to be an equivalent smooth norm with its dual norm on X∗ strictly convex.
Theorem 5.1 shows that p is strictly convex. We note that by Corollary 2.25 and Fact 2.21

q∗n+1(x∗) :=
q∗n(x∗) + qn(x∗)

2
and p∗n+1(x∗) :=

(p∗n�q
∗
n)(2x∗)

2

so that Theorem 5.1 applies to p∗0 and q∗0. Hence p∗ is strictly convex (see also [28, Proof of
Corollary 1, page 111]). Hence ‖ · ‖3(:=

√
2p) and its dual norm (:=

√
2p∗) are equivalent strictly

convex norms on X and X∗ respectively.
Hence ‖ · ‖3 is an equivalent strictly convex and smooth norm (since its dual is strictly convex).

The existence of such a norm was one ingredient of Rockafellar’s first proof of the Sum theorem.

5.2 Resolvents of maximally monotone operators and connection with convex
functions

It is well known since Minty, Rockafellar, and Bertsekas-Eckstein that in Hilbert spaces, monotone
operators can be analyzed from the alternative viewpoint of certain nonexpansive (and thus Lips-
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chitz continuous) mappings, more precisely, the so-called resolvents. Given a Hilbert space H and
a set-valued operator A : H ⇒ H∗, the resolvent of A is

JA := (Id +A)−1.

The history of this notion goes back to Minty [40] (in Hilbert spaces) and Brezis, Crandall and
Pazy [27] (in Banach spaces). There exist more general notions of resolvents based on different
tools, such as the normalized duality mapping, the Bregman distance or other maximally monotone
operators (see [37, 1, 9]). For more details on resolvents on Hilbert spaces see [5].

The Minty surjectivity theorem (Theorem 4.3 [40]) implies that a monotone operator is maximally
monotone if and only if the resolvent is single-valued with full domain. In fact, a classical result due
to Eckstein-Bertsekas [30] says even more. Recall that a mapping T : H → H is firmly nonexpansive
if for all x, y ∈ H, ‖Tx− Ty‖ ≤ 〈Tx− ty, x− y〉.

Theorem 5.2 Let H be a Hilbert space. An operator A : H ⇒ H∗ is (maximal) monotone if and
only if JA is firmly nonexpansive (with full domain).

Example 5.3 Given a closed convex set C ⊆ H, the normal cone operator of C, NC , is a maximally
monotone operator whose resolvent can be proved to be the metric projection onto C. Therefore,
Theorem 5.2 implies the firm nonexpansivity of the metric projection. ♦

In the particular case when A is the subdifferential of a possibly non-differentiable convex function
in a Hilbert space, whose maximal monotonicity was established by Moreau [45] (in Banach spaces
this is due to Rockafellar [53], see also [23, 20]), the resolvent turns into the proximal mapping in
the following sense of Moreau. If f : H → ]−∞,+∞] is a lower semicontinuous convex function
defined on a Hilbert space H, the proximal or proximity mapping is the operator proxf : H → H
defined by

proxf (x) := argmin
y∈H

{
f(y) +

1

2
‖x− y‖2

}
.

This mapping is well-defined because proxf (x) exists and is unique for all x ∈ H. Moreover, there
exists the following subdifferential characterization: u = proxf (x) if and only if x− u ∈ ∂f(u).

Moreau’s decomposition in terms of the proximal mapping is a powerful nonlinear analysis tool
in the Hilbert setting that has been used in various areas of optimization and applied mathematics.
Moreau established his decomposition motivated by problems in unilateral mechanics. It can be
proved readily by using the conjugate and subdifferential.

Theorem 5.4 (Moreau decomposition) Given a lower semicontinuous convex function f :
H → ]−∞,+∞], for all x ∈ H,

x = proxf (x) + proxf∗(x).

Example 5.5 Note that for f := ιC , with C closed and convex, the proximal mapping turns into
the projection onto a closed and convex set C. Therefore, this result generalizes the decomposition
by orthogonal projection on subspaces. In particular, if K is a closed convex cone (thus ι∗K = ιK− ,
see Example 2.18), Moreau’s decomposition provides a characterization of the projection onto K:
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x = y + z with y ∈ K, z ∈ K− and 〈y, z〉 = 0 ⇔ y = PKx and z = PK−x.

This illustrates that in Hilbert space, the Moreau decomposition can be thought of as generalizing
the decomposition into positive and negative parts of a vector in a normed lattice [20, §6.7] to an
arbitrary convex cone. ♦

There is another notion associated to an operator A, which is strongly related to the resolvent.
That is the Yosida approximation of index λ > 0 or the Yosida λ-regularization:

Aλ := (λ Id +A−1)−1 =
1

λ
(Id−JλA).

If the operator A is maximally monotone, so is the Yosida approximation, and along with the
resolvent they provide the so-called Minty parametrization of the graph of A that is Lipschitz
continuous in both directions [55]:

(JλA(z), Aλ(z)) = (x, y)⇔ z = x+ y, (x, y) ∈ graA.

If A = ∂f is the subdifferential of a proper lower semicontinuous convex function f , it turns out
that the Yosida approximation of A is the gradient of the Moreau envelope of f eλf , defined as the
infimal convolution of f and ‖ · ‖2/2λ, that is,

eλf(x) := f �
‖ · ‖2

2λ
= inf

y∈H

{
f(y) +

1

2λ
‖x− y‖2

}
.

This justifies the alternative term Moreau-Yosida approximation for the mapping (∂f)λ =
(λ Id +(∂f)−1)−1. This allows to obtain a proof in Hilbert space of the connection between the
convexity of the function and the monotonicity of the subdifferential (see [55]): a proper lower
semicontinuous function is convex if and only its Clarke subdifferential is monotone.

It is worth mentioning that generally the role of the Moreau envelope is to approximate the
function, with a regularizing effect since it is finite and continuous even though the function may
not be so. This behavior has very useful implications in convex and variational analysis.

5.3 Symbolic convex analysis

The thesis work of Hamilton [18] has provided a conceptual and effective framework (the SCAT
Maple software) for computing conjugates, subdifferentials and infimal convolutions of functions of
several variables. Key to this is the notion of iterated conjugation (analogous to iterated integration)
and a good data structure.

As a first example, with some care, the convex conjugate of the function

f : x 7→ log

(
sinh (3x)

sinhx

)
can be symbolically nursed to obtain the result

g : y 7→ y

2
· log

(
y +

√
16− 3y2

4− 2y

)
+ log

(√
16− 3y2 − 2

6

)
,
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with domain [−2, 2].
Since the conjugate of g is much more easily computed to be f , this produces a symbolic com-

putational proof that f and g are convex and are mutually conjugate.
Similarly, Maple produces the conjugate of x 7→ exp(exp(x)) as y 7→ y (log (y)−W (y)− 1/W (y))

in terms of the Lambert’s W function—the multi-valued inverse of z 7→ zez. This function is un-
known to most humans but is built into both Maple and Mathematica. Thus Maple knows that to
order five

g(y) = −1 + (−1 + log y) y − 1

2
y2 +

1

3
y3 − 3

8
y4 +O

(
y5
)
.

Figure 3 shows the Maple-computed conjugate after the SCAT package is loaded: There is a

> > 

> > 

> > 

> > 

> > 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

restart:

read("scat.mpl"):read("ccat.mpl"):

with(SCAT);with(CCAT);
"1. combinat,gfun,student,IntegerRelations,PolynomialTools loaded"

"2. p2s,s2p,r2p,f2p,pslq,find loaded"
"3. anim and binzetas loaded"

f11:=convert(exp(exp(x)),PWF);

g11:=Conj(f11,y);

sdg11:=SubDiff(g11);

Plot(sdg11,y=-1..1,view=[0..1,-5..0],axes=boxed,labels=["$y$",""]

); 

Figure 3: The conjugate and subdifferential of exp exp.

corresponding numerical program CCAT [18]. Current work is adding the capacity to symbolically
compute convex compositions—and so in principle Fenchel duality.
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5.4 Partial Fractions and Convexity

We consider a network objective function pN given by

pN (q) :=
∑
σ∈SN

(
N∏
i=1

qσ(i)∑N
j=i qσ(j)

)(
N∑
i=1

1∑N
j=i qσ(j)

)
,

summed over all N ! permutations; so a typical term is(
N∏
i=1

qi∑N
j=i qj

)(
N∑
i=1

1∑n
j=i qj

)
.

For example, with N = 3 this is

q1q2q3

(
1

q1 + q2 + q3

)(
1

q2 + q3

)(
1

q3

)(
1

q1 + q2 + q3
+

1

q2 + q3
+

1

q3

)
.

This arose as the objective function in research into coupon collection. The researcher, Ian Affleck,
wished to show pN was convex on the positive orthant.

First, we tried to simplify the expression for pN . The partial fraction decomposition gives:

p1(x1) =
1

x1
,(43)

p2(x1, x2) =
1

x1
+

1

x2
− 1

x1 + x2
,

p3(x1, x2, x3) =
1

x1
+

1

x2
+

1

x3
− 1

x1 + x2
− 1

x2 + x3
− 1

x1 + x3
+

1

x1 + x2 + x3
.

Partial fraction decompositions are another arena in which computer algebra systems are hugely
useful. The reader is invited to try performing the third case in (43) by hand. It is tempting to
predict the “same” pattern will hold for N = 4. This is easy to confirm (by computer if not by
hand) and so we are led to:

Conjecture 5.6 For each N ∈ N, the function

pN (x1, · · · , xN ) =

∫ 1

0

(
1−

N∏
i=1

(1− txi)

)
dt

t
(44)

is convex; indeed 1/pN is concave.

One may check symbolically that this is true for N < 5 via a large Hessian computation. But this
is impractical for larger N . That said, it is easy to numerically sample the Hessian for much larger
N , and it is always positive definite. Unfortunately, while the integral is convex, the integrand is
not, or we would be done. Nonetheless, the process was already a success, as the researcher was
able to rederive his objective function in the form of (44).

A year after, Omar Hjab suggested re-expressing (44) as the joint expectation of Poisson distri-
butions.2 Explicitly, this leads to:

2 See “Convex, II” SIAM Electronic Problems and Solutions at http://www.siam.org/journals/problems/

downloadfiles/99-5sii.pdf.
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Lemma 5.7 [15, §1.7] If x = (x1, · · · , xn) is a point in the positive orthant Rn++, then∫ ∞
0

(
1−

n∏
i=1

(1− e−txi)

)
dt =

(
n∏
i=1

xi

)∫
Rn++

e−〈x,y〉max(y1, · · · , yn) dy,

(45)

where 〈x, y〉 = x1y1 + · · ·+ xnyn is the Euclidean inner product.

It follows from the lemma—which is proven in [15] with no recourse to probability theory—that

pN (x) =

∫
RN++

e−(y1+···+yN ) max

(
y1

x1
, · · · , yN

xN

)
dy,

and hence that pN is positive, decreasing, and convex, as is the integrand. To derive the stronger
result that 1/pN is concave we refer to [15, §1.7]. Observe that since 2ab

a+b ≤
√
ab ≤ (a + b)/2, it

follows from (45) that pN is log-convex (and convex). A little more analysis of the integrand shows
pN is strictly convex on its domain. The same techniques apply when xk is replaced in (43) or (44)
by g(xk) for a concave positive function g.

There is still no truly direct proof of the convexity of pN . Surely there should be! This develop-
ment neatly shows both the power of computer assisted convex analysis and its current limitations.

Lest one think most results on the real line are easy, we challenge the reader to prove the empirical
observation that

p 7→ √p
∫ ∞

0

∣∣∣∣sinxx
∣∣∣∣p dx

is difference convex on (1,∞), i.e. it can be written as a difference of two convex functions [3].

6 Concluding comments

All researchers and practitioners in convex analysis and optimization owe a great debt to Jean-
Jacques Moreau—whether they know so or not. We are delighted to help make his seminal role
more apparent to the current generation of scholars. For those who read French we urge them to
experience the pleasure of [41, 42, 43, 45] and especially [46]. For others, we highly recommend
[47], which follows [45] and of which Zuhair Nashed wrote in his Mathematical Review MR0217617:
“There is a great need for papers of this kind; the present paper serves as a model of clarity and
motivation.”
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