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THE CONTACT NUMBER
OF A PSEUDO-EUCLIDEAN SUBMANIFOLD

J. L. Cabrerizo, M. Fernández and J. S. Gómez

Abstract. In this paper we define the contact number of a pseudo-Riemannian
submanifold into the pseudo-Euclidean space, and prove that this contact num-
ber is closely related to the notion of pseudo-isotropic submanifold. We give
a classification of hypersurfaces into the pseudo-Euclidean space with contact
number at least 3. A classification of the complete spacelike codimension-2
submanifolds of the Lorentz-Minkowski space with contact number at least 3
is also obtained.

1. INTRODUCTION

The concept of isotropic submanifold of a Riemannian manifold was introduced
by B. O’ Neill [11], who studied the general properties of such class of submanifold.
These submanifolds can be considered as a generalization of the totally umbilical
submanifolds, and constitute a distinguished family in submanifold theory. An
interesting example [2] is provided by a G-equivariant isometric immersion φ of a
rank one symmetric space M into an arbitrary Riemannian homogeneous space M̃ .

Recently, B.-Y. Chen and S.-J. Li introduced and studied the notion of contact
number c�(M) of a Euclidean submanifold in [5], and they proved that the contact
number is closely related with the notions of isotropic submanifolds and holomor-
phic curves. In particular, a surface in the Euclidean space R4 has contact number
3 if an only it is a non-planar holomorphic curve with respect to some orthogonal
complex structure on R4. On the other hand, explicit examples of non-totally umbil-
ical submanifoldM of dimension n in a Euclidean space R

4n with contact number
c�(M) = 4n − 2 are exhibited in [4].
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In this paper we first define in Section 2 the contact number c�(Mn
s ) of a

pseudo-Riemannian submanifold Mn
s into the pseudo-Euclidean space R

n+d
ν , and

then we show in Section 3 that the contact number is closely related to the notion
of pseudo-isotropic submanifold. The essential step is the characterization property
of pseudo-isotropy (Lemma 3.3), which reads as the one given by O’Neill [11] in
the Riemannian case, whereas the proof needs to face up to a different background.
Then, we prove that the contact number of any submanifold is at least 2, and it
is at least 3 (respectively, 4) if and only if the submanifold is pseudo-isotropic
(respectively, constant pseudo-isotropic).

Nevertheless, some remarkable differences for the contact number with respect
to the Euclidean case are obtained. In particular, we show that any Lorentz sub-
manifold of the Lorentz-Minkowski space with contact number at least 3, is totally
umbilical. Another difference with respect the Euclidean case is obtained in Sec-
tion 4, where we show that a complete 0-pseudo-isotropic submanifold Mn

s in the
pseudo-Euclidean space R

n+2
s+1 can be viewed as an expansion of R

n
s into R

n+1
s,1 ,

which has c�(Mn
s ) = ∞ but, in general, it is not totally umbilical. In particular,

when s = 0 we show (Lemma 4.4) that any pseudo-isotropic non-totally umbilical
submanifoldMn

0 of the Lorentz-Minkowski space R
n+2
1 is 0-pseudo-isotropic. The

notion of 0-pseudo-isotropic on codimension-2 submanifolds is related to the notion
of (marginally) trapped surface 10, 13, since the mean curvature vector of such
a submanifold satisfies 〈H,H〉 = 0. A classification of complete codimension-2
spacelike submanifolds in the Lorentz-Minkowski space with contact number at
least 3 is also obtained (Theorem 4.5).

2. PRELIMINARIES AND BASIC FORMULAS

Let Rn+d
ν be the (n+d)-dimensional pseudo-Euclidean space with metric tensor

〈·, ·〉 of index ν given by

〈·, ·〉 =
n+d−ν∑

i=1

dx2
i −

n+d∑
i=n+d−ν+1

dx2
i

in terms of the natural coordinate system (x1, . . . , xn+d) of the Euclidean (n+ d)-
dimensional space R

n+d.
Throughout this paper Mn

s will denote an n-dimensional pseudo-Riemannian
submanifold of index s (0 ≤ s ≤ ν) which lies into the pseudo-Euclidean space
R

n+d
ν . The submanifolds are assumed to be connected and with dimension n ≥ 2.
Denote by ∇ and ∇̄ the Levi-Civita connections of Mn

s and Rn+d
ν , respectively,

and let D stands for the normal connection of Mn
s in R

n+d
ν . Then, the Gauss and

Weingarten formulas of Mn
s in Rn+d

ν are given by

(1) ∇̄XY = ∇XY + h(X, Y ),
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and

(2) ∇̄Xξ = −AξX +DXξ,

for any two vector fieldsX, Y ∈ X(Mn
s ) and any normal vector field ξ ∈ X⊥(Mn

s ),
where h is the second fundamental form of Mn

s and Aξ is the Weingarten en-
domorphism associated to ξ. The second fundamental form and the Weingarten
endomorphism are related by 〈AξX, Y 〉 = 〈h(X, Y ), ξ〉.

The covariant derivative ∇̃h of h is defined by

(3) (∇̃Xh)(Y, Z) = DX(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ),

for any vector fields X, Y, Z ∈ X(Mn
s ). Sometimes we write (∇̃Xh)(Y, Z) as

(∇̃h)(Y, Z,X). If we set ∇̃0h = h, in general, the kth (k ≥ 1) covariant derivative
∇̃kh of h [12] is given by

(4)

(∇̃kh)(X1, . . . , Xk+2) = DXk+2
((∇̃k−1h)(X1, . . . , Xk+1))

−
k+1∑
i=1

(∇̃k−1h)(X1, . . . ,∇Xk+2
Xi, . . . , Xk+1).

It is clear that (∇̃kh) is a normal-bundle-valued tensor field of type (0, k+ 2). We
simply denote (∇̃kh)(X, . . . , X) by (∇̃kh)(Xk+2).

The equations of Gauss and Codazzi are given, respectively, by

(5) 〈R(X, Y )Z,W 〉 = 〈h(X,W ), h(Y,Z)〉− 〈h(X,Z), h(Y,W )〉

(6) (∇̃Xh)(Y, Z) = (∇̃Y h)(X,Z),

for vector fields X, Y, Z,W ∈ X(Mn
s ).

3. THE CONTACT NUMBER AND PSEUDO-ISOTROPIC SUBMANIFOLS

For a given point p ∈Mn
s and any unit tangent vector u ∈ UpM

n
s (i.e., 〈u, u〉 =

±1), there is a unique unit speed geodesic γu (spacelike or timelike) inMn
s through

p satisfying γu(0) = p, γ ′u(0) = u. For the same pair (p, u), we define the normal
section βu at (p, u) as follows. Let Eδ(p, u) be the affine (d + 1)-subspace in
R

n+d
ν through p spanned by u and the normal space T⊥

p M
n
s at p, where the index

δ = ν−s if u is spacelike or δ = ν−s+1 if u is timelike. Then the intersection of
Mn

s and Eδ(p, u) gives rise to a unit speed curve βu(s) defined on an open interval
containing 0 with βu(0) = p and β′

u(0) = u.
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The geodesic γu and the normal section βu at (p, u) are said to be in contact of
order k ∈ N if γ (i)

u (0) = β
(i)
u (0) for i = 1, . . . , k, where γ(i)

u and β(i)
u denote the

ith derivatives of γu and βu in Rn+d
ν , respectively, with respect to their arclength

functions.

Definition 3.1. Let M n
s be a pseudo-Riemannian submanifold of the pseudo-

Euclidean space R
n+d
ν . Then Mn

s is said to be in contact of order k if, for each
p ∈Mn

s and unit tangent vector u ∈ UpM
n
s , the geodesic γu and the normal section

βu at (p, u) are in contact of order k. The contact number c�(Mn
s ) ofMn

s is defined
to be the largest natural number k such that M n

s is in contact of order k and but
not of order k+1. If the submanifoldMn

s is in contact of order k for every natural
number k, the contact number is defined to be ∞.

We recall the following definition [8]: M n
s is called pseudo-isotropic at p ∈M n

s

if 〈h(u, u), h(u, u)〉= λ(p) does not depends on the choice of the unit tangent vector
u ∈ TpM

n
s , and Mn

s is said to be pseudo-isotropic if M n
s is pseudo-isotropic at

each point of Mn
s . If λ(p) is also independent of p ∈ Mn

s , then Mn
s is said to be

constant pseudo-isotropic (denoted by λ-pseudo-isotropic).

Example 3.1. Every totally umbilical pseudo-Riemannian submanifold is pseu-
do-isotropic. Thus, for example [12], pseudo-Riemannian spheres

S
n
ν (r) = {x ∈ R

n+1
ν : 〈x, x〉 = r2},

H
n
ν (r) = {x ∈ R

n+1
ν+1 : 〈x, x〉 = −r2},

and (non-degenerate) n-planes into a pseudo-Euclidean space are constant pseudo-
isotropic submanifolds.

Example 3.2. [1] Expansions of R
n
s into R

n+1
s,1 . Let f : R

n
s → R be a smooth

function. Define the space R
n+1
s,1 as R

n+1 equipped with the degenerate metric
tensor given by the matrix  In−s

−Is
0

 .

The isometric immersion

ψ : R
n
s → R

n+2
s+1 , ψ(x) = (f(x), x, f(x)),

is a 0-pseudo-isotropic immersion which is full in R
n+1
s,1 (if f is not linear), i.e.,

the imagen ψ(Rn
s ) is contained in no affine hyperplane of R

n+1
s,1 . If we denote by
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(x1, . . . , xn) the canonical coordinates of Rn, then the second fundamental form h

becomes

h

(
∂

∂xi
,
∂

∂xj

)
=
(

∂2f

∂xi∂xj
, 0, . . . , 0,

∂2f

∂xi∂xj

)
, i, j = 1, ..., n.

If ψ is an isometric immersion with parallel second fundamental form, the geodesics
are mapped to parabolas (or line segments), so f must be a quadratic polynomial.
Up to an isometry of R

n+1
s,1 , f(x1, . . . , xn) =

∑n
i=1 aix

2
i , so that ψ(Rn

s ) is an elliptic
or hyperbolic paraboloid, or an orthogonal cylinder over one of these.

Notice thatMn
s = ψ(Rn

s ) is totally geodesic if and only if f is an affine function,
and it is totally umbilical [9] if and only if f is given by

f(x1, . . . , xn) = a

(
n−s∑
i=1

x2
i −

n∑
i=n−s+1

x2
i

)
+

n∑
i=1

bixi + c,

with a, b1, . . . , bn, c ∈ R. Furthermore, if ψ is non-totally geodesic, the first normal
space Im(h) at each point is entirely constituted by null vectors and dim(Im(h)) =
1. As a consequence, the mean curvature vector field satisfies 〈H,H〉 = 0.

Lemma 3.3. A pseudo-Riemannian submanifold M n
s in R

n+d
ν is pseudo-

isotropic if and only if we have

(7) 〈h(u, u), h(u, v)〉= 0,

for any orthonormal vectors u, v tangents to M n
s at each point. Furthermore, if

Mn
s is a pseudo-isotropic submanifold, we have

(8) 〈h(u, u), h(v, v)〉+ 2 〈h(u, v), h(u, v)〉= λ(p) 〈u, u〉 〈v, v〉,

(9) 〈h(u, u), h(v,w)〉+ 2 〈h(u, v), h(u,w)〉= 0,

for any orthogonal vectors u, v, w tangents to M n
s at each point.

Proof. The set Σ = UpM
n
s = {u ∈ TpM

n
s : |〈u, u〉| = 1} is a (n −

1)−dimensional submanifold of R
n+d and TuΣ = {v ∈ TpM

n
s : 〈u, v〉 = 0}.

Now, define the function f : Σ → R by f(w) = 〈h(w, w), h(w, w)〉. Then, for any
v ∈ TuΣ we have

(10) (df)u(v) = 4 〈h(u, u), h(u, v)〉.

If Mn
s is pseudo-isotropic, then f is constant, and therefore from Eq. (10) we get

〈h(u, u), h(u, v)〉 = 0.
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Conversely, assume that 〈h(u, u), h(u, v)〉 = 0 for any orthonormal pair u, v ∈
UpM

n
s . Then, f is the constant function on each connected component of Σ. We

have two cases.

Case (i). s ∈ {0, n}. Then Σ is connected and 〈h(u, u), h(u, v)〉 = 0 for
u ∈ UpM

n
s = Σ, v ∈ TpM

n
s with 〈u, v〉 = 0. Thus, f is constant on Σ and M n

s is
pseudo-isotropic.

Case (ii). Assume 0 < s < n. Let Σ+ (respectively, Σ−) be a connected
component of {u ∈ TpM

n
s : 〈u, u〉 = 1} (respectively, {u ∈ TpM

n
s : 〈u, u〉 =

−1}). Then f is constant on Σ+ and Σ−. Let λ+(p) (respectively, λ−(p)) de-
note the constant value of f on Σ+ (respectively, Σ−). Since 〈h(v, v), h(v, v)〉 =
〈v, v〉2 λ−(p) for any timelike v ∈ TpM

n
s , then for any w ∈ TpM

n
s we have

w(〈h(v, v), h(v, v)〉) = 4λ−(p) 〈v, v〉〈v,w〉. But we have also
w(〈h(v, v), h(v, v)〉) = 4〈h(v, v), h(v,w)〉,

and then

(11) 〈h(v, v), h(v,w)〉= λ−(p) 〈v, v〉〈v, w〉.
Let x be a null vector and take a sequence {vk}k∈N of timelike vectors which
converges to x. Then, by continuity and Eq. (11) we get 〈h(x, x), h(x, w)〉 =
λ−(p) 〈x, x〉〈x, w〉 = 0, for any w ∈ TpM

n
s . In particular,

(12) 〈h(x, x), h(x, y)〉= 0,

for any pair of null vectors x, y. Consider two orthonormal vectors u ∈ Σ+ and
v ∈ Σ−. Then, x = u + v and y = u − v are null vectors, and from Eq. (12) we
have

0 = 〈h(x, x), h(x, y)〉= λ+(p)− λ−(p).

Therefore, λ+(p) = λ−(p) = λ(p), and Mn
s is pseudo-isotropic.

On the other hand, notice that for any spacelike or timelike v ∈ TpM
n
s we have

(13) 〈h(v, v), h(v, v)〉= 〈v, v〉2 λ(p),

and hence, by continuity, the same equation is satisfied for null vectors. Now, for
any p ∈Mn

s define on TpM
n
s the multilinear function

F (x, y, z, t) = 〈h(x, y), h(z, t)〉− λ(p) 〈x, y〉〈z, t〉.
rom Eq. (13), for any x ∈ TpM

n
s we have B(x) = F (x, x, x, x) = 0, and therefore

B(x + y) +B(x − y) = 0. This equation gives

(14) F (x, x, y, y)+ 2 F (x, y, x, y) = 0,
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for any x, y ∈ TpM
n
s . If we take x = u, y = v orthogonal vectors, then we obtain

Eq. (8). Substitution of x + y by y in Eq. (14) gives F (x, x, x, y) = 0. Assume
n ≥ 3 and take u, v, w orthogonal vectors. If we set x = u and y = v + w in Eq.
(14) we obtain

F (u, u, v, w)+ 2F (u, v, u, w) = 0,

and this is Eq. (9).

Remark 3.4. The notion of pseudo-isotropic (indefinite) submanifolds can be
sharped. In fact, it is enough to deal with timelike tangent vectors as the following
argument shows. Assume

〈h(u, u), h(u, u)〉= λ〈u, u〉2

holds for any timelike u ∈ TpM
n
s . Let v be any tangent vector (of any causal

character) in TpM
n
s and consider the curve ut, given by ut := u + tv, where u is

a (fixed) timelike tangent vector in TpM
n
s . By continuity, there exists ε > 0 such

that 〈ut, ut〉 < 0 for any t ∈] − ε, ε[, and therefore

〈h(ut, ut), h(ut, ut)〉 = λ〈ut, ut〉2,
which is an equality between two polynomials of degree 4. Therefore, their coeffi-
cients of same degree coincide and, in particular, it gives

〈h(v, v), h(v, v)〉= λ〈v, v〉2,
for any v ∈ TpM

n
s . Similarly, we can prove that a pseudo-Riemannian submanifol

is pseudo-isotropic if 〈h(u, u), h(u, u)〉= λ〈u, u〉2 holds for any spacelike tangent
vector u at a point p ∈Mn

s . Moreover, formulas (8) and (9) in Lemma 3.3 can be
also obtained.

Corollary 3.5. Let Mn
s ⊆ R

n+1
ν be a pseudo-isotropic hypersurface. Then,

Mn
s is totally umbilical.

Proof. First, assume M n
s has a definite induced metric. For any u ∈ UpM

n
s

we have 〈h(u, u), h(u, u)〉 = λ(p), and hence 〈Ah(u,u)u, u〉 = λ(p). By Eq. (7),
〈Ah(u,u)u, v〉 = 0 for any v ∈ UpM

n
s orthogonal to u, and therefore Ah(u,u)u =

λ(p)〈u, u〉u. Since 〈u, u〉 does not change the sign, Mn
s is totally umbilical.

Finally, supposeMn
s has an indefinite induced metric. From Eq. (12) 〈h(x, x),

h(x, x)〉 = 0 for any null vector x ∈ TpM
n
s . As T⊥

p M
n
s is 1-dimensional, this

means h(x, x) = 0, and then [6] M n
s is totally umbilical.

As for constant isotropic submanifolds in the Euclidean space [5], we have
the following characterization of the constant pseudo-isotropic submanifolds in the
semi-Euclidean space.
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Lemma 3.6. Let Mn
s be a pseudo-isotropic submanifold of R n+d

ν . The follow-
ing assertions are equivalent:

(1) Mn
s is constant pseudo-isotropic.

(2) 〈A
(∇̃h)(u3)

u, v〉 = 0, for any orthonormal vectors u, v tangent toM n
s at each

point.
(3) A

(∇̃h)(u3)
u = 0 for any tangent vector u to M n

s at each point.

Now, from Lemmas 3.3 and 3.6 it can be proved as in the Euclidean case [5],
the following two theorems which relate the contact number c�(Mn

s ), the pseudo-
isotropic property and the Weingarten endomorphism of the submanifoldMn

s .

Theorem 3.7. Let Mn
s be a pseudo-Riemannian submanifold in R n+d

ν . Then,
we have

(1) The contact number c�(Mn
s ) of Mn

s satisfies c�(Mn
s ) ≥ 2.

(2) Mn
s is pseudo-isotropic if and only if c �(Mn

s ) ≥ 3.
(3) Mn

s is constant pseudo-isotropic if and only if c �(Mn
s ) ≥ 4.

Theorem 3.8. A pseudo-Riemannian submanifoldM n
s into a pseudo-Euclidean

space Rn+d
ν is in contact of order k (k ≥ 3) if and only if each u ∈ UM n

s is
eigenvector of A(∇̃jh)(uj+2) for j = 0, 1, . . . , k− 3.

As an consequence of Theorem 3.8 we have the following.

Corollary 3.9. A pseudo-isotropic submanifold with parallel second funda-
mental form in pseudo-Euclidean space satisfies c �(Mn

s ) = ∞.

Remark 3.10. Notice that the pseudo-isotropic condition in the Corollary is
essential. In fact, the right cylinder C in the Lorentz-Minkowski space L

3 = R
3
1 is a

non-pseudo-isotropic surface with parallel second fundamental form, and c�(C) = 2.

Corollary 3.11. A totally umbilical submanifold into the pseudo-Euclidean
space satisfies c�(Mn

s ) = ∞.

For hypersurfaces of the pseudo-Euclidean space we have the following classi-
fication.

Theorem 3.12. LetMn
s be a pseudo-Riemannian hypersurface of R n+1

ν . Then
one of the following cases holds.

(1) c�(Mn
s ) = 2.

(2) c�(Mn
s ) = ∞ and Mn

s is an open portion of a hyperplane.
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(3) c�(Mn
s ) = ∞ and Mn

s is an open portion of a pseudo-Riemannian hyper-
sphere.

Proof. When the contact number c�(Mn
s ) ≥ 3, from Theorem 3.7 the hyper-

surface is pseudo-isotropic, and Corollaries 3.5 and 3.1 imply that the hypersurface
is totally umbilical and its contact number is c �(Mn

s ) = ∞. Moreover, Mn
s is an

open portion of an hyperplane or an hypersphere [12].

With respect to the contact number, the behavior of the Lorentzian submanifolds
in the Lorentz-Minkowski space R

n+d
1 is similar to that of the pseudo-Riemanian

hypersurfaces of Rn+1
ν . In fact, we have the following.

Theorem 3.13. Let Mn
1 be a Lorentzian submanifold of R

n+d
1 . Then one of

the following cases happens.

(1) c �(Mn
1 ) = 2.

(2) c �(Mn
1 ) = ∞ and Mn

1 is an open portion of a Lorentzian n-plane.
(3) c �(Mn

1 ) = ∞ andMn
1 is an open portion of a De Sitter space S

n
1 contained

in a Lorentzian (n+ 1) − plane.

Proof. If c �(Mn
1 ) ≥ 3, from Theorem 3.7 Mn

1 is pseudo-isotropic. Since
T⊥

p M
n
1 is a spacelike subspace of R

n+d
1 , then from Eq. (12) we have h(x, x) = 0

for any null vector x, and then Mn
1 is totally umbilical [6]. Corollary 3.11 applies

to give c �(Mn
1 ) = ∞, and with a similar argument than [3], it is proved that any

totally umbilical Lorentz submanifold in the Lorentz-Minkowski space is an open
portion of a Lorentzian n-plane or De Sitter space.

With similar arguments as in the proof of the last theorem, the following result
can be stated.

Theorem 3.14. Let Mn
s be a pseudo-isotropic submanifold of the pseudo-

Euclidean space Rn+d
ν with indefinite induced metric, and ν = s, or ν = s + d.

Then, Mn
s is totally umbilical.

4. CODIMENSION-2 SUBMANIFOLDS

Lemma 4.1. Let Mn
s be a 0-pseudo-isotropic submanifold of R

n+2
s+1 . Then, at

each non-totally geodesic point the first normal space Im(h) is entirely constituted
by null vectors and dim(Im(h)) = 1.

Proof. If Mn
s is a submanifold of R

n+2
s+1 , the normal space at p ∈ Mn

s is a
Lorentzian plane. Let p be a non-totally geodesic point and take a unit vector e1 at
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p such that h(e1, e1) 
= 0. Since 〈h(e1, e1), h(e1, e1)〉 = 0, then h(e1, e1) is a null
vector. We can find e2, . . . , en such that {e1, e2, . . . , en} is an orthonormal basis
at p. By Eq. (7), (8) and (9) we can prove that h(ei, ej) and h(e1, e1) are linearly
dependent for any i, j ∈ {1, . . . , n}, and the result follows.

Lemma 4.2. Let Mn
s be a 0-pseudo-isotropic submanifold of R

n+2
s+1 . Then

c�(Mn
s ) = ∞.
Proof. If Mn

s is totally umbilical, by Corollary 3.11, c�(Mn
s ) = ∞. Assume

Mn
s is non-totally umbilical. Let p ∈ Mn

s be a non-totally geodesic point. By
Lemma 4.1, Im(h) is a null straight line. Now we prove (∇̃jh)(uj+2) ∈ Im(h)
for any non-totally geodesic p ∈Mn

s and u ∈ UpM
n
s . For this end, take u ∈ UpM

n
s .

If h(u, u) 
= 0, by Lemma 3.6 we have

〈(∇̃h)(u3), h(u, u)〉 = 0,

and then (∇̃h)(u3) ∈ Im(h). If h(u, u) = 0, take a unit v with h(v, v) 
= 0. Let
X, Y be local orthonormal extensions of u, v respectively, and satisfying ∇wX =
∇wY = 0 for every w ∈ TpM

n
s . Since 〈h(X,X), h(Y, Y )〉 = 0, then by Eq. (3)

we obtain

0 = u(〈h(X,X), h(Y, Y )〉)
= 〈Duh(X,X), h(v, v)〉+ 〈h(u, u), Duh(Y, Y )〉
= 〈(∇̃h)(u3), h(v, v)〉+ 〈h(u, u), (∇̃h)(v, v, u)〉
= 〈(∇̃h)(u3), h(v, v)〉.

Thus (∇̃h)(u3) ∈ Im(h) for any u ∈ UpM
n
s .

By the induction method, suppose (∇̃�h)(u�+2) ∈ Im(h) for any non-totally
geodesic point p, u ∈ UpM

n
s and � = 0, 1, 2, . . . , j − 1. Take orthonormal u, v ∈

UpM
n
s and assume h(v, v) 
= 0. Let U be the (open) subset of non-totally geodesic

points of the submanifoldMn
s ⊆ R

n+2
s+1 . It is clear that U 
= ∅. Now we extend u, v

to local vector fields X, Y respectively, defined on the open neighborhood Op ⊆ U
and satisfying ∇wX = ∇wY = 0 for any w ∈ TpM

n
s . Then,

〈(∇̃j−1h)(X j+1), h(Y, Y )〉 = 0.

Therefore, Eq. (3) and (4) yield

0 = u(〈(∇̃j−1h)(X j+1), h(Y, Y )〉)
= 〈Du(∇̃j−1h)(X j+1), h(v, v)〉+ 〈(∇̃j−1h)(uj+1), Duh(Y, Y )〉



Contact Number in Pseudo-Euclidean Space 1717

= 〈(∇̃jh)(uj+2), h(v, v)〉+ 〈(∇̃j−1h)(uj+1), (∇̃h)(v2, u)〉
= 〈(∇̃jh)(uj+2), h(v, v)〉.

Hence (∇̃jh)(uj+2) ∈ Im(h), and in particular 〈(∇̃jh)(uj+2), h(u, v)〉 = 0. Thus,
by Theorem 3.8, c�(Mn

s ) = ∞.

Theorem 4.3. Let Mn
s be a complete 0-pseudo-isotropic submanifold in a

pseudo-Euclidean space R
n+2
s+1 . Then, Mn

s is an expansion of R
n
s into R

n+1
s,1 with

c�(Mn
s ) = ∞.

Proof. From the proof of Lemma 4.2, for any u ∈ UpM
n
s we have that the

vectors (∇̃h)(u3) ∈ Im(h) and h(u, u) are linearly dependents. This joined to
Codazzi Eq. (6) can be used to show that (∇̃h)(u, v, w) ∈ Im(h) for any vectors
u, v, w. Thus [1, 7], the codimension can be reduced in such a way that M n

s is
contained in a degenerate hyperplane of R

n+2
s+1 . As this hyperplane is isometric to

R
n+1
s,1 , Mn

s is imbedded in R
n+1
s,1 . Let π : R

n+1
s,1 → R

n
s be the projection map on the

first n coordinates. Then π(Mn
s ) is an open subset of the pseudo-Euclidean space Rn

s

[9]. In consequence, by completeness, there exists a smooth function f : R
n
s → R

such that M n
s (viewed in R

n+1
s,1 ) can be realized as the set of points (x, f(x)).

Finally, it suffices to note that the map R
n+1
s,1 ↪→ R

n+2
s+1 given by (y1, . . . , yn+1) �→

(yn+1, y1, . . . , yn+1) is an isometric embedding.

Lemma 4.4. Let Mn
0 be a non-totally umbilical submanifold of R

n+2
1 with

c �(Mn
0 ) ≥ 3. Then, Mn

0 is 0-pseudo-isotropic.

Proof. Set

V = {p ∈Mn
0 : h(u, v) 
= 0 for some orthonormal vectors u, v ∈ TpM

n
0 }.

Clearly, V is a non-empty open subset which is non-totally umbilical at every point.
Take u, v ∈ TpM

n
0 such that h(u, v) 
= 0 and set e1 = u, en = v. We extend e1, en

to an orthonormal frame {e1, e2, . . . , en} at p. Since c �(Mn
0 ) ≥ 3, from Theorem

3.7 there exists λ = λ(p) ∈ R such that

(15) 〈h(u, u), h(u, u)〉 = λ

for any u ∈ UpM
n
0 . Now we prove that λ = 0.

Case (i). Suppose λ > 0. Since 〈h(e1, e1), h(e1, e1)〉 = λ, and the pseudo-
isotropy condition of Eq. (7) yields 〈h(e1, e1), h(e1, en)〉 = 0, we have that
h(e1, e1) 
= 0 is spacelike and h(e1, en) is timelike. Let us write

(16) h(e1, e1) = δ en+1,
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(17) h(e1, en) = µ en+2,

where {e1, e2, . . . , en, en+1, en+2} is an orthonormal frame of R
n+2
1 (en+2 is a unit

timelike vector), and δ =
√
λ > 0, µ =

√−〈h(e1, en), h(e1, en)〉 > 0. On the
other hand, from Eq. (7) we have also that 〈h(e1, en), h(en, en)〉 = 0. Thus Eq.
(15) and Eq. (17) give h(en, en) = ±δ en+1. If h(en, en) = δ en+1, then from Eq.
(8) we have

(18) 〈h(e1, e1), h(en, en)〉 + 2〈h(e1, en), h(e1, en)〉 = λ.

Thus Eq. (16) and (17) yield 〈h(e1, en), h(e1, en)〉 = 0, which is a contradiction
because µ > 0. The case h(en, en) = −δ en+1 yields a contradiction because Eq.
(18) says µ2 = −λ.

Case (ii). Assume λ < 0. As in Case (i), we can reach a contradiction by
writing h(e1, e1) = δ en+2, h(e1, en) = µ en+1, where now δ =

√−λ, µ =√〈h(e1, en), h(e1, en)〉.
Now, let p ∈ V be an umbilical point in the boundary of V and take a se-

quence {pN}N∈N in Mn
0 which converges to p so that every pN is not umbilical.

Now let X be a local unitary vector field around p and consider the function
〈h(X,X), h(X,X)〉. By continuity we have

λ(p) = lim
N

〈h(X(pN), X(pN)), h(X(pN), X(pN))〉 = lim
N
λ(pN) = 0.

If V is dense the resul follows. If V is not dense, the set Mn
0 − V is an open

submanifold of Mn
0 which is totally umbilical, and thus constant pseudo-isotropic.

Let λ ∈ R be the pseudo-isotropy constant. Now we take a sequence of umbilical
points converging to a point in the boundary of V , we obtain λ = 0.

Theorem 4.5. Let Mn
0 be a complete submanifold of R

n+2
1 . Then one of the

following cases holds.

(1) c�(Mn
0 ) = 2.

(2) c�(Mn
0 ) = ∞ and Mn

0 is a spacelike n-plane.
(3) c�(Mn

0 ) = ∞ and Mn
0 is a Riemannian n-sphere contained in a spacelike

(n+ 1)-plane of R
n+2
1 .

(4) c�(Mn
0 ) = ∞ andMn

0 is a hyperbolic n-plane contained in a timelike (n+1)-
plane.

(5) c�(Mn
0 ) = ∞ andMn

0 is a totally umbilical and non-totally geodesic expan-
sion of R

n into R
n+1
0,1 .

(6) c�(Mn
0 ) = ∞ and Mn

0 in non-totally umbilical expansion of R
n into R

n+1
0,1 .
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Proof. Assume c�(Mn
0 ) ≥ 3. Then, by Lemma 4.2 and Lemma 4.4, c�(Mn

0 ) =
∞ and hence there exists a constant λ ∈ R such that 〈h(u, u), h(u, u)〉= λ for any
u ∈ UMn

0 . We distinguish two cases.

Case (a). Suppose Mn
0 is totally umbilical. Then h(X, Y ) = 〈X, Y 〉H for

any X, Y ∈ X(Mn
0 ), where H is the mean curvature vector field of Mn

0 . Thus
〈H,H〉 = λ. Now we have three possibilities for λ.

(a1) λ = 0. IfMn
0 is totally geodesic then it satisfies assertion (2) in the Theorem,

and if Mn
0 is not totally geodesic thenMn

0 is as indicated on assertion (5).
(a2) λ > 0. Since Mn

0 has parallel second fundamental form, the codimension
can be reduced so that Mn

0 lies in a (n + 1)-dimensional spacelike plane
Π. On the other hand, it is easy to check that P + (ξ/λ) = c, where P
is the vector position vector for points of Mn

0 and c ∈ R
n+2
1 . Therefore

〈P−c, P−c〉 = 1/λ, and thenMn
0 lives in the De Sitter space S

n+1
1 (c, 1/

√
λ).

Thus Mn
0 lies in the intersection Π ∩ S

n+1
1 (c, 1/

√
λ), which is isometric to

an n-dimensional sphere S
n, and this means that M n

0 satisfies assertion (3).
(a3) If λ < 0, Mn

0 lives in an (n + 1)-dimensional Lorentzian plane Π. But
we have also that P − ξ

λ = c ∈ R
n+2
1 , and therefore Mn

0 lies also in an
(n+ 1)-dimensional hyperbolic space H

n+1
(
c, 1/

√−λ). Thus, assertion (4)
follows.

Case (b). Assume Mn
0 is not totally umbilical. Then by Theorem 4.3 and

Lemma 4.6 the assertion (6) is fulfilled.

Corollary 4.6. Let Mn
0 be a complete non-totally umbilical pseudo-isotropic

submanifold in the Lorentz-Minkowski space R
n+2
1 . Then, Mn

0 is a non-totally
umbilical expansion of R

n into R
n+1
0,1 .
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