TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 7, pp. 1707-1720, October 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

THE CONTACT NUMBER OF A PSEUDO-EUCLIDEAN SUBMANIFOLD

J. L. Cabrerizo, M. Fernández and J. S. Gómez

Abstract. In this paper we define the contact number of a pseudo-Riemannian submanifold into the pseudo-Euclidean space, and prove that this contact number is closely related to the notion of pseudo-isotropic submanifold. We give a classification of hypersurfaces into the pseudo-Euclidean space with contact number at least 3. A classification of the complete spacelike codimension-2 submanifolds of the Lorentz-Minkowski space with contact number at least 3 is also obtained.

1. INTRODUCTION

The concept of isotropic submanifold of a Riemannian manifold was introduced by B. O' Neill [11], who studied the general properties of such class of submanifold. These submanifolds can be considered as a generalization of the totally umbilical submanifolds, and constitute a distinguished family in submanifold theory. An interesting example [2] is provided by a *G*-equivariant isometric immersion ϕ of a rank one symmetric space *M* into an arbitrary Riemannian homogeneous space \widetilde{M} .

Recently, B.-Y. Chen and S.-J. Li introduced and studied the notion of contact number $\mathbf{c}_{\sharp}(M)$ of a Euclidean submanifold in [5], and they proved that the contact number is closely related with the notions of isotropic submanifolds and holomorphic curves. In particular, a surface in the Euclidean space \mathbb{R}^4 has contact number 3 if an only it is a non-planar holomorphic curve with respect to some orthogonal complex structure on \mathbb{R}^4 . On the other hand, explicit examples of non-totally umbilical submanifold M of dimension n in a Euclidean space \mathbb{R}^{4n} with contact number $\mathbf{c}_{\sharp}(M) = 4n - 2$ are exhibited in [4].

Received July 17, 2006, accepted March 23, 2007.

Communicated by Bang-Yen Chen.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C40; Secondary 53B30.

Key words and phrases: Pseudo-Riemannian submanifold, Pseudo-isotropic submanifold, Contact number of a submanifold.

In this paper we first define in Section 2 the contact number $c_{\sharp}(M_s^n)$ of a pseudo-Riemannian submanifold M_s^n into the pseudo-Euclidean space \mathbb{R}_{ν}^{n+d} , and then we show in Section 3 that the contact number is closely related to the notion of pseudo-isotropic submanifold. The essential step is the characterization property of pseudo-isotropy (Lemma 3.3), which reads as the one given by O'Neill [11] in the Riemannian case, whereas the proof needs to face up to a different background. Then, we prove that the contact number of any submanifold is at least 2, and it is at least 3 (respectively, 4) if and only if the submanifold is pseudo-isotropic (respectively, constant pseudo-isotropic).

Nevertheless, some remarkable differences for the contact number with respect to the Euclidean case are obtained. In particular, we show that any Lorentz submanifold of the Lorentz-Minkowski space with contact number at least 3, is totally umbilical. Another difference with respect the Euclidean case is obtained in Section 4, where we show that a complete 0-pseudo-isotropic submanifold M_s^n in the pseudo-Euclidean space \mathbb{R}_{s+1}^{n+2} can be viewed as an expansion of \mathbb{R}_s^n into $\mathbb{R}_{s,1}^{n+1}$, which has $\mathbf{c}_{\sharp}(M_s^n) = \infty$ but, in general, it is not totally umbilical. In particular, when s = 0 we show (Lemma 4.4) that any pseudo-isotropic non-totally umbilical submanifold M_0^n of the Lorentz-Minkowski space \mathbb{R}_1^{n+2} is 0-pseudo-isotropic. The notion of 0-pseudo-isotropic on codimension-2 submanifolds is related to the notion of (marginally) trapped surface 10, 13, since the mean curvature vector of such a submanifold satisfies $\langle H, H \rangle = 0$. A classification of complete codimension-2 spacelike submanifolds in the Lorentz-Minkowski space with contact number at least 3 is also obtained (Theorem 4.5).

2. PRELIMINARIES AND BASIC FORMULAS

Let \mathbb{R}^{n+d}_{ν} be the (n+d)-dimensional pseudo-Euclidean space with metric tensor $\langle \cdot, \cdot \rangle$ of index ν given by

$$\langle \cdot, \cdot \rangle = \sum_{i=1}^{n+d-\nu} dx_i^2 - \sum_{i=n+d-\nu+1}^{n+d} dx_i^2$$

in terms of the natural coordinate system (x_1, \ldots, x_{n+d}) of the Euclidean (n+d)-dimensional space \mathbb{R}^{n+d} .

Throughout this paper M_s^n will denote an *n*-dimensional pseudo-Riemannian submanifold of index $s \ (0 \le s \le \nu)$ which lies into the pseudo-Euclidean space \mathbb{R}_{ν}^{n+d} . The submanifolds are assumed to be connected and with dimension $n \ge 2$. Denote by ∇ and $\overline{\nabla}$ the Levi-Civita connections of M_s^n and \mathbb{R}_{ν}^{n+d} , respectively, and let D stands for the normal connection of M_s^n in \mathbb{R}_{ν}^{n+d} . Then, the Gauss and Weingarten formulas of M_s^n in \mathbb{R}_{ν}^{n+d} are given by

(1)
$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

and

(2)
$$\nabla_X \xi = -A_\xi X + D_X \xi,$$

for any two vector fields $X, Y \in \mathfrak{X}(M_s^n)$ and any normal vector field $\xi \in \mathfrak{X}^{\perp}(M_s^n)$, where h is the second fundamental form of M_s^n and A_{ξ} is the Weingarten endomorphism associated to ξ . The second fundamental form and the Weingarten endomorphism are related by $\langle A_{\xi}X, Y \rangle = \langle h(X,Y), \xi \rangle$.

The covariant derivative ∇h of h is defined by

(3)
$$(\widetilde{\nabla}_X h)(Y, Z) = D_X(h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z),$$

for any vector fields $X, Y, Z \in \mathfrak{X}(M_s^n)$. Sometimes we write $(\widetilde{\nabla}_X h)(Y, Z)$ as $(\widetilde{\nabla}h)(Y, Z, X)$. If we set $\widetilde{\nabla}^0 h = h$, in general, the *k*th $(k \ge 1)$ covariant derivative $\widetilde{\nabla}^k h$ of h [12] is given by

(4)

$$(\nabla^{k}h)(X_{1},\ldots,X_{k+2}) = D_{X_{k+2}}((\nabla^{k-1}h)(X_{1},\ldots,X_{k+1}))$$

$$-\sum_{i=1}^{k+1}(\widetilde{\nabla}^{k-1}h)(X_{1},\ldots,\nabla_{X_{k+2}}X_{i},\ldots,X_{k+1}).$$

It is clear that $(\widetilde{\nabla}^k h)$ is a normal-bundle-valued tensor field of type (0, k+2). We simply denote $(\widetilde{\nabla}^k h)(X, \ldots, X)$ by $(\widetilde{\nabla}^k h)(X^{k+2})$.

The equations of Gauss and Codazzi are given, respectively, by

(5)
$$\langle R(X,Y)Z,W\rangle = \langle h(X,W), h(Y,Z)\rangle - \langle h(X,Z), h(Y,W)\rangle$$

(6)
$$(\widetilde{\nabla}_X h)(Y, Z) = (\widetilde{\nabla}_Y h)(X, Z),$$

for vector fields $X, Y, Z, W \in \mathfrak{X}(M_s^n)$.

3. The Contact Number and Pseudo-isotropic Submanifols

For a given point $p \in M_s^n$ and any unit tangent vector $u \in U_p M_s^n$ (i.e., $\langle u, u \rangle = \pm 1$), there is a unique unit speed *geodesic* γ_u (spacelike or timelike) in M_s^n through p satisfying $\gamma_u(0) = p$, $\gamma'_u(0) = u$. For the same pair (p, u), we define the *normal section* β_u at (p, u) as follows. Let $E_{\delta}(p, u)$ be the affine (d + 1)-subspace in \mathbb{R}_{ν}^{n+d} through p spanned by u and the normal space $T_p^{\perp} M_s^n$ at p, where the index $\delta = \nu - s$ if u is spacelike or $\delta = \nu - s + 1$ if u is timelike. Then the intersection of M_s^n and $E_{\delta}(p, u)$ gives rise to a unit speed curve $\beta_u(s)$ defined on an open interval containing 0 with $\beta_u(0) = p$ and $\beta'_u(0) = u$.

The geodesic γ_u and the normal section β_u at (p, u) are said to be in *contact of* order $k \in \mathbb{N}$ if $\gamma_u^{(i)}(0) = \beta_u^{(i)}(0)$ for i = 1, ..., k, where $\gamma_u^{(i)}$ and $\beta_u^{(i)}$ denote the *i*th derivatives of γ_u and β_u in \mathbb{R}^{n+d}_{ν} , respectively, with respect to their arclength functions.

Definition 3.1. Let M_s^n be a pseudo-Riemannian submanifold of the pseudo-Euclidean space \mathbb{R}_{ν}^{n+d} . Then M_s^n is said to be *in contact of order* k if, for each $p \in M_s^n$ and unit tangent vector $u \in U_p M_s^n$, the geodesic γ_u and the normal section β_u at (p, u) are in contact of order k. The *contact number* $\mathbf{c}_{\sharp}(M_s^n)$ of M_s^n is defined to be the largest natural number k such that M_s^n is in contact of order k and but not of order k+1. If the submanifold M_s^n is in contact of order k for every natural number k, the contact number is defined to be ∞ .

We recall the following definition [8]: M_s^n is called *pseudo-isotropic at* $p \in M_s^n$ if $\langle h(u, u), h(u, u) \rangle = \lambda(p)$ does not depends on the choice of the unit tangent vector $u \in T_p M_s^n$, and M_s^n is said to be *pseudo-isotropic* if M_s^n is pseudo-isotropic at each point of M_s^n . If $\lambda(p)$ is also independent of $p \in M_s^n$, then M_s^n is said to be *constant pseudo-isotropic* (denoted by λ -pseudo-isotropic).

Example 3.1. Every totally umbilical pseudo-Riemannian submanifold is pseudo-isotropic. Thus, for example [12], pseudo-Riemannian spheres

$$S^n_{\nu}(r) = \{ x \in \mathbb{R}^{n+1}_{\nu} : \langle x, x \rangle = r^2 \},$$

$$\mathbb{H}^n_{\nu}(r) = \{ x \in \mathbb{R}^{n+1}_{\nu+1} : \langle x, x \rangle = -r^2 \},$$

and (non-degenerate) *n*-planes into a pseudo-Euclidean space are constant pseudoisotropic submanifolds.

Example 3.2. [1] Expansions of \mathbb{R}^n_s into $\mathbb{R}^{n+1}_{s,1}$. Let $f: \mathbb{R}^n_s \to \mathbb{R}$ be a smooth function. Define the space $\mathbb{R}^{n+1}_{s,1}$ as \mathbb{R}^{n+1} equipped with the degenerate metric tensor given by the matrix

$$\left(\begin{array}{cc}I_{n-s}&&\\&-I_s&\\&&0\end{array}\right).$$

The isometric immersion

$$\psi: \mathbb{R}^n_s \to \mathbb{R}^{n+2}_{s+1}, \ \psi(x) = (f(x), x, f(x)),$$

is a 0-pseudo-isotropic immersion which is full in $\mathbb{R}_{s,1}^{n+1}$ (if f is not linear), i.e., the imagen $\psi(\mathbb{R}_s^n)$ is contained in no affine hyperplane of $\mathbb{R}_{s,1}^{n+1}$. If we denote by

 (x_1, \ldots, x_n) the canonical coordinates of \mathbb{R}^n , then the second fundamental form h becomes

$$h\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}, 0, \dots, 0, \frac{\partial^2 f}{\partial x_i \partial x_j}\right), i, j = 1, \dots, n.$$

If ψ is an isometric immersion with parallel second fundamental form, the geodesics are mapped to parabolas (or line segments), so f must be a quadratic polynomial. Up to an isometry of $\mathbb{R}^{n+1}_{s,1}$, $f(x_1, \ldots, x_n) = \sum_{i=1}^n a_i x_i^2$, so that $\psi(\mathbb{R}^n_s)$ is an elliptic or hyperbolic paraboloid, or an orthogonal cylinder over one of these.

Notice that $M_s^n = \psi(\mathbb{R}_s^n)$ is totally geodesic if and only if f is an affine function, and it is totally umbilical [9] if and only if f is given by

$$f(x_1, \dots, x_n) = a\left(\sum_{i=1}^{n-s} x_i^2 - \sum_{i=n-s+1}^n x_i^2\right) + \sum_{i=1}^n b_i x_i + c,$$

with $a, b_1, \ldots, b_n, c \in \mathbb{R}$. Furthermore, if ψ is non-totally geodesic, the first normal space Im(h) at each point is entirely constituted by null vectors and dim(Im(h)) = 1. As a consequence, the mean curvature vector field satisfies $\langle H, H \rangle = 0$.

Lemma 3.3. A pseudo-Riemannian submanifold M_s^n in \mathbb{R}_{ν}^{n+d} is pseudoisotropic if and only if we have

(7)
$$\langle h(u, u), h(u, v) \rangle = 0$$

for any orthonormal vectors u, v tangents to M_s^n at each point. Furthermore, if M_s^n is a pseudo-isotropic submanifold, we have

(8)
$$\langle h(u,u), h(v,v) \rangle + 2 \langle h(u,v), h(u,v) \rangle = \lambda(p) \langle u,u \rangle \langle v,v \rangle,$$

(9)
$$\langle h(u,u), h(v,w) \rangle + 2 \langle h(u,v), h(u,w) \rangle = 0,$$

for any orthogonal vectors u, v, w tangents to M_s^n at each point.

Proof. The set $\Sigma = U_p M_s^n = \{u \in T_p M_s^n : |\langle u, u \rangle| = 1\}$ is a (n - 1)-dimensional submanifold of \mathbb{R}^{n+d} and $T_u \Sigma = \{v \in T_p M_s^n : \langle u, v \rangle = 0\}$. Now, define the function $f : \Sigma \to \mathbb{R}$ by $f(w) = \langle h(w, w), h(w, w) \rangle$. Then, for any $v \in T_u \Sigma$ we have

(10)
$$(df)_u(v) = 4 \langle h(u,u), h(u,v) \rangle.$$

If M_s^n is pseudo-isotropic, then f is constant, and therefore from Eq. (10) we get $\langle h(u, u), h(u, v) \rangle = 0$.

Conversely, assume that $\langle h(u, u), h(u, v) \rangle = 0$ for any orthonormal pair $u, v \in U_p M_s^n$. Then, f is the constant function on each connected component of Σ . We have two cases.

Case (i). $s \in \{0, n\}$. Then Σ is connected and $\langle h(u, u), h(u, v) \rangle = 0$ for $u \in U_p M_s^n = \Sigma$, $v \in T_p M_s^n$ with $\langle u, v \rangle = 0$. Thus, f is constant on Σ and M_s^n is pseudo-isotropic.

Case (ii). Assume 0 < s < n. Let Σ^+ (respectively, Σ^-) be a connected component of $\{u \in T_p M_s^n : \langle u, u \rangle = 1\}$ (respectively, $\{u \in T_p M_s^n : \langle u, u \rangle = -1\}$). Then f is constant on Σ^+ and Σ^- . Let $\lambda^+(p)$ (respectively, $\lambda^-(p)$) denote the constant value of f on Σ^+ (respectively, Σ^-). Since $\langle h(v, v), h(v, v) \rangle = \langle v, v \rangle^2 \ \lambda^-(p)$ for any timelike $v \in T_p M_s^n$, then for any $w \in T_p M_s^n$ we have $w(\langle h(v, v), h(v, v) \rangle) = 4\lambda^-(p) \ \langle v, v \rangle \langle v, w \rangle$. But we have also

$$w(\langle h(v,v), h(v,v) \rangle) = 4 \langle h(v,v), h(v,w) \rangle,$$

and then

(11)
$$\langle h(v,v), h(v,w) \rangle = \lambda^{-}(p) \langle v,v \rangle \langle v,w \rangle.$$

Let x be a null vector and take a sequence $\{v^k\}_{k\in\mathbb{N}}$ of timelike vectors which converges to x. Then, by continuity and Eq. (11) we get $\langle h(x,x), h(x,w) \rangle = \lambda^{-}(p) \langle x, x \rangle \langle x, w \rangle = 0$, for any $w \in T_p M_s^n$. In particular,

(12)
$$\langle h(x,x), h(x,y) \rangle = 0,$$

for any pair of null vectors x, y. Consider two orthonormal vectors $u \in \Sigma^+$ and $v \in \Sigma^-$. Then, x = u + v and y = u - v are null vectors, and from Eq. (12) we have

$$0 = \langle h(x, x), h(x, y) \rangle = \lambda^+(p) - \lambda^-(p).$$

Therefore, $\lambda^+(p) = \lambda^-(p) = \lambda(p)$, and M_s^n is pseudo-isotropic.

On the other hand, notice that for any spacelike or timelike $v \in T_p M_s^n$ we have

(13)
$$\langle h(v,v), h(v,v) \rangle = \langle v,v \rangle^2 \lambda(p)$$

and hence, by continuity, the same equation is satisfied for null vectors. Now, for any $p \in M_s^n$ define on $T_p M_s^n$ the multilinear function

$$F(x, y, z, t) = \langle h(x, y), h(z, t) \rangle - \lambda(p) \ \langle x, y \rangle \langle z, t \rangle.$$

rom Eq. (13), for any $x \in T_p M_s^n$ we have B(x) = F(x, x, x, x) = 0, and therefore B(x + y) + B(x - y) = 0. This equation gives

(14)
$$F(x, x, y, y) + 2 F(x, y, x, y) = 0,$$

for any $x, y \in T_p M_s^n$. If we take x = u, y = v orthogonal vectors, then we obtain Eq. (8). Substitution of x + y by y in Eq. (14) gives F(x, x, x, y) = 0. Assume $n \ge 3$ and take u, v, w orthogonal vectors. If we set x = u and y = v + w in Eq. (14) we obtain

$$F(u, u, v, w) + 2F(u, v, u, w) = 0,$$

and this is Eq. (9).

Remark 3.4. The notion of pseudo-isotropic (indefinite) submanifolds can be sharped. In fact, it is enough to deal with timelike tangent vectors as the following argument shows. Assume

$$\langle h(u,u), h(u,u) \rangle = \lambda \langle u,u \rangle^2$$

holds for any timelike $u \in T_p M_s^n$. Let v be any tangent vector (of any causal character) in $T_p M_s^n$ and consider the curve u_t , given by $u_t := u + tv$, where u is a (fixed) timelike tangent vector in $T_p M_s^n$. By continuity, there exists $\epsilon > 0$ such that $\langle u_t, u_t \rangle < 0$ for any $t \in] -\epsilon, \epsilon[$, and therefore

$$\langle h(u_t, u_t), h(u_t, u_t) \rangle = \lambda \langle u_t, u_t \rangle^2,$$

which is an equality between two polynomials of degree 4. Therefore, their coefficients of same degree coincide and, in particular, it gives

$$\langle h(v,v), h(v,v) \rangle = \lambda \langle v,v \rangle^2,$$

for any $v \in T_p M_s^n$. Similarly, we can prove that a pseudo-Riemannian submanifol is pseudo-isotropic if $\langle h(u, u), h(u, u) \rangle = \lambda \langle u, u \rangle^2$ holds for any spacelike tangent vector u at a point $p \in M_s^n$. Moreover, formulas (8) and (9) in Lemma 3.3 can be also obtained.

Corollary 3.5. Let $M_s^n \subseteq \mathbb{R}_{\nu}^{n+1}$ be a pseudo-isotropic hypersurface. Then, M_s^n is totally umbilical.

Proof. First, assume M_s^n has a definite induced metric. For any $u \in U_p M_s^n$ we have $\langle h(u, u), h(u, u) \rangle = \lambda(p)$, and hence $\langle A_{h(u,u)}u, u \rangle = \lambda(p)$. By Eq. (7), $\langle A_{h(u,u)}u, v \rangle = 0$ for any $v \in U_p M_s^n$ orthogonal to u, and therefore $A_{h(u,u)}u = \lambda(p)\langle u, u \rangle u$. Since $\langle u, u \rangle$ does not change the sign, M_s^n is totally umbilical.

Finally, suppose M_s^n has an indefinite induced metric. From Eq. (12) $\langle h(x, x), h(x, x) \rangle = 0$ for any null vector $x \in T_p M_s^n$. As $T_p^{\perp} M_s^n$ is 1-dimensional, this means h(x, x) = 0, and then [6] M_s^n is totally umbilical.

As for constant isotropic submanifolds in the Euclidean space [5], we have the following characterization of the constant pseudo-isotropic submanifolds in the semi-Euclidean space. **Lemma 3.6.** Let M_s^n be a pseudo-isotropic submanifold of \mathbb{R}_{ν}^{n+d} . The following assertions are equivalent:

- (1) M_s^n is constant pseudo-isotropic.
- (2) $\langle A_{(\widetilde{\nabla}h)(u^3)}u, v \rangle = 0$, for any orthonormal vectors u, v tangent to M_s^n at each point.
- (3) $A_{(\widetilde{\nabla}h)(u^3)}u = 0$ for any tangent vector u to M_s^n at each point.

Now, from Lemmas 3.3 and 3.6 it can be proved as in the Euclidean case [5], the following two theorems which relate the contact number $\mathbf{c}_{\sharp}(M_s^n)$, the pseudo-isotropic property and the Weingarten endomorphism of the submanifold M_s^n .

Theorem 3.7. Let M_s^n be a pseudo-Riemannian submanifold in \mathbb{R}_{ν}^{n+d} . Then, we have

- (1) The contact number $\mathbf{c}_{\sharp}(M_s^n)$ of M_s^n satisfies $\mathbf{c}_{\sharp}(M_s^n) \geq 2$.
- (2) M_s^n is pseudo-isotropic if and only if $\mathbf{c}_{\sharp}(M_s^n) \geq 3$.
- (3) M_s^n is constant pseudo-isotropic if and only if $\mathbf{c}_{\sharp}(M_s^n) \geq 4$.

Theorem 3.8. A pseudo-Riemannian submanifold M_s^n into a pseudo-Euclidean space \mathbb{R}_{ν}^{n+d} is in contact of order k ($k \ge 3$) if and only if each $u \in UM_s^n$ is eigenvector of $A_{(\widetilde{\nabla}^j h)(u^{j+2})}$ for j = 0, 1, ..., k-3.

As an consequence of Theorem 3.8 we have the following.

Corollary 3.9. A pseudo-isotropic submanifold with parallel second fundamental form in pseudo-Euclidean space satisfies $\mathbf{c}_{\sharp}(M_s^n) = \infty$.

Remark 3.10. Notice that the pseudo-isotropic condition in the Corollary is essential. In fact, the right cylinder C in the Lorentz-Minkowski space $\mathbb{L}^3 = \mathbb{R}^3_1$ is a non-pseudo-isotropic surface with parallel second fundamental form, and $\mathbf{c}_{\sharp}(C) = 2$.

Corollary 3.11. A totally umbilical submanifold into the pseudo-Euclidean space satisfies $\mathbf{c}_{\sharp}(M_s^n) = \infty$.

For hypersurfaces of the pseudo-Euclidean space we have the following classification.

Theorem 3.12. Let M_s^n be a pseudo-Riemannian hypersurface of \mathbb{R}^{n+1}_{ν} . Then one of the following cases holds.

- (1) $\mathbf{c}_{\sharp}(M_s^n) = 2.$
- (2) $\mathbf{c}_{\sharp}(M_s^n) = \infty$ and M_s^n is an open portion of a hyperplane.

(3) $\mathbf{c}_{\sharp}(M_s^n) = \infty$ and M_s^n is an open portion of a pseudo-Riemannian hypersphere.

Proof. When the contact number $\mathbf{c}_{\sharp}(M_s^n) \geq 3$, from Theorem 3.7 the hypersurface is pseudo-isotropic, and Corollaries 3.5 and 3.1 imply that the hypersurface is totally umbilical and its contact number is $\mathbf{c}_{\sharp}(M_s^n) = \infty$. Moreover, M_s^n is an open portion of an hyperplane or an hypersphere [12].

With respect to the contact number, the behavior of the Lorentzian submanifolds in the Lorentz-Minkowski space \mathbb{R}_1^{n+d} is similar to that of the pseudo-Riemanian hypersurfaces of \mathbb{R}_{ν}^{n+1} . In fact, we have the following.

Theorem 3.13. Let M_1^n be a Lorentzian submanifold of \mathbb{R}_1^{n+d} . Then one of the following cases happens.

- (1) $\mathbf{c}_{\sharp}(M_1^n) = 2.$
- (2) $\mathbf{c}_{\sharp}(M_1^n) = \infty$ and M_1^n is an open portion of a Lorentzian *n*-plane.
- (3) $\mathbf{c}_{\sharp}(M_1^n) = \infty$ and M_1^n is an open portion of a De Sitter space \mathbb{S}_1^n contained in a Lorentzian (n+1) plane.

Proof. If $\mathbf{c}_{\sharp}(M_1^n) \geq 3$, from Theorem 3.7 M_1^n is pseudo-isotropic. Since $T_p^{\perp}M_1^n$ is a spacelike subspace of \mathbb{R}_1^{n+d} , then from Eq. (12) we have h(x, x) = 0 for any null vector x, and then M_1^n is totally umbilical [6]. Corollary 3.11 applies to give $\mathbf{c}_{\sharp}(M_1^n) = \infty$, and with a similar argument than [3], it is proved that any totally umbilical Lorentz submanifold in the Lorentz-Minkowski space is an open portion of a Lorentzian n-plane or De Sitter space.

With similar arguments as in the proof of the last theorem, the following result can be stated.

Theorem 3.14. Let M_s^n be a pseudo-isotropic submanifold of the pseudo-Euclidean space \mathbb{R}_{ν}^{n+d} with indefinite induced metric, and $\nu = s$, or $\nu = s + d$. Then, M_s^n is totally umbilical.

4. Codimension-2 Submanifolds

Lemma 4.1. Let M_s^n be a 0-pseudo-isotropic submanifold of \mathbb{R}_{s+1}^{n+2} . Then, at each non-totally geodesic point the first normal space Im(h) is entirely constituted by null vectors and dim(Im(h)) = 1.

Proof. If M_s^n is a submanifold of \mathbb{R}_{s+1}^{n+2} , the normal space at $p \in M_s^n$ is a Lorentzian plane. Let p be a non-totally geodesic point and take a unit vector e_1 at

p such that $h(e_1, e_1) \neq 0$. Since $\langle h(e_1, e_1), h(e_1, e_1) \rangle = 0$, then $h(e_1, e_1)$ is a null vector. We can find e_2, \ldots, e_n such that $\{e_1, e_2, \ldots, e_n\}$ is an orthonormal basis at p. By Eq. (7), (8) and (9) we can prove that $h(e_i, e_j)$ and $h(e_1, e_1)$ are linearly dependent for any $i, j \in \{1, \ldots, n\}$, and the result follows.

Lemma 4.2. Let M_s^n be a 0-pseudo-isotropic submanifold of \mathbb{R}_{s+1}^{n+2} . Then $\mathbf{c}_{\sharp}(M_s^n) = \infty$.

Proof. If M_s^n is totally umbilical, by Corollary 3.11, $\mathbf{c}_{\sharp}(M_s^n) = \infty$. Assume M_s^n is non-totally umbilical. Let $p \in M_s^n$ be a non-totally geodesic point. By Lemma 4.1, Im(h) is a null straight line. Now we prove $(\widetilde{\nabla}^j h)(u^{j+2}) \in Im(h)$ for any non-totally geodesic $p \in M_s^n$ and $u \in U_p M_s^n$. For this end, take $u \in U_p M_s^n$. If $h(u, u) \neq 0$, by Lemma 3.6 we have

$$\langle (\nabla h)(u^3), h(u,u) \rangle = 0,$$

and then $(\widetilde{\nabla}h)(u^3) \in Im(h)$. If h(u, u) = 0, take a unit v with $h(v, v) \neq 0$. Let X, Y be local orthonormal extensions of u, v respectively, and satisfying $\nabla_w X = \nabla_w Y = 0$ for every $w \in T_p M_s^n$. Since $\langle h(X, X), h(Y, Y) \rangle = 0$, then by Eq. (3) we obtain

$$0 = u(\langle h(X, X), h(Y, Y) \rangle)$$

= $\langle D_u h(X, X), h(v, v) \rangle + \langle h(u, u), D_u h(Y, Y) \rangle$
= $\langle (\widetilde{\nabla} h)(u^3), h(v, v) \rangle + \langle h(u, u), (\widetilde{\nabla} h)(v, v, u) \rangle$
= $\langle (\widetilde{\nabla} h)(u^3), h(v, v) \rangle.$

Thus $(\widetilde{\nabla}h)(u^3) \in Im(h)$ for any $u \in U_p M_s^n$.

By the induction method, suppose $(\widetilde{\nabla}^{\ell}h)(u^{\ell+2}) \in Im(h)$ for any non-totally geodesic point $p, u \in U_p M_s^n$ and $\ell = 0, 1, 2, \dots, j-1$. Take orthonormal $u, v \in U_p M_s^n$ and assume $h(v, v) \neq 0$. Let \mathcal{U} be the (open) subset of non-totally geodesic points of the submanifold $M_s^n \subseteq \mathbb{R}_{s+1}^{n+2}$. It is clear that $\mathcal{U} \neq \emptyset$. Now we extend u, v to local vector fields X, Y respectively, defined on the open neighborhood $O_p \subseteq \mathcal{U}$ and satisfying $\nabla_w X = \nabla_w Y = 0$ for any $w \in T_p M_s^n$. Then,

$$\langle (\widetilde{\nabla}^{j-1}h)(X^{j+1}), h(Y,Y) \rangle = 0.$$

Therefore, Eq. (3) and (4) yield

$$0 = u(\langle (\widetilde{\nabla}^{j-1}h)(X^{j+1}), h(Y, Y) \rangle)$$

= $\langle D_u(\widetilde{\nabla}^{j-1}h)(X^{j+1}), h(v, v) \rangle + \langle (\widetilde{\nabla}^{j-1}h)(u^{j+1}), D_uh(Y, Y) \rangle$

$$= \langle (\widetilde{\nabla}^{j}h)(u^{j+2}), h(v,v) \rangle + \langle (\widetilde{\nabla}^{j-1}h)(u^{j+1}), (\widetilde{\nabla}h)(v^{2},u) \rangle$$
$$= \langle (\widetilde{\nabla}^{j}h)(u^{j+2}), h(v,v) \rangle.$$

Hence $(\widetilde{\nabla}^{j}h)(u^{j+2}) \in Im(h)$, and in particular $\langle (\widetilde{\nabla}^{j}h)(u^{j+2}), h(u,v) \rangle = 0$. Thus, by Theorem 3.8, $\mathbf{c}_{\sharp}(M_{s}^{n}) = \infty$.

Theorem 4.3. Let M_s^n be a complete 0-pseudo-isotropic submanifold in a pseudo-Euclidean space \mathbb{R}_{s+1}^{n+2} . Then, M_s^n is an expansion of \mathbb{R}_s^n into $\mathbb{R}_{s,1}^{n+1}$ with $\mathbf{c}_{\sharp}(M_s^n) = \infty$.

Proof. From the proof of Lemma 4.2, for any $u \in U_p M_s^n$ we have that the vectors $(\widetilde{\nabla}h)(u^3) \in Im(h)$ and h(u, u) are linearly dependents. This joined to Codazzi Eq. (6) can be used to show that $(\widetilde{\nabla}h)(u, v, w) \in Im(h)$ for any vectors u, v, w. Thus [1, 7], the codimension can be reduced in such a way that M_s^n is contained in a degenerate hyperplane of \mathbb{R}_{s+1}^{n+2} . As this hyperplane is isometric to $\mathbb{R}_{s,1}^{n+1}$, M_s^n is imbedded in $\mathbb{R}_{s,1}^{n+1}$. Let $\pi : \mathbb{R}_{s,1}^{n+1} \to \mathbb{R}_s^n$ be the projection map on the first n coordinates. Then $\pi(M_s^n)$ is an open subset of the pseudo-Euclidean space \mathbb{R}_s^n [9]. In consequence, by completeness, there exists a smooth function $f : \mathbb{R}_s^n \to \mathbb{R}$ such that M_s^n (viewed in $\mathbb{R}_{s,1}^{n+1}$) can be realized as the set of points (x, f(x)). Finally, it suffices to note that the map $\mathbb{R}_{s,1}^{n+1} \hookrightarrow \mathbb{R}_{s+1}^{n+2}$ given by $(y_1, \ldots, y_{n+1}) \mapsto (y_{n+1}, y_1, \ldots, y_{n+1})$ is an isometric embedding.

Lemma 4.4. Let M_0^n be a non-totally umbilical submanifold of \mathbb{R}_1^{n+2} with $\mathbf{c}_{\sharp}(M_0^n) \geq 3$. Then, M_0^n is 0-pseudo-isotropic.

Proof. Set

 $\mathcal{V} = \{ p \in M_0^n : h(u, v) \neq 0 \text{ for some orthonormal vectors } u, v \in T_p M_0^n \}.$

Clearly, \mathcal{V} is a non-empty open subset which is non-totally umbilical at every point. Take $u, v \in T_p M_0^n$ such that $h(u, v) \neq 0$ and set $e_1 = u$, $e_n = v$. We extend e_1, e_n to an orthonormal frame $\{e_1, e_2, \ldots, e_n\}$ at p. Since $\mathbf{c}_{\sharp}(M_0^n) \geq 3$, from Theorem 3.7 there exists $\lambda = \lambda(p) \in \mathbb{R}$ such that

(15)
$$\langle h(u,u), h(u,u) \rangle = \lambda$$

for any $u \in U_p M_0^n$. Now we prove that $\lambda = 0$.

Case (i). Suppose $\lambda > 0$. Since $\langle h(e_1, e_1), h(e_1, e_1) \rangle = \lambda$, and the pseudoisotropy condition of Eq. (7) yields $\langle h(e_1, e_1), h(e_1, e_n) \rangle = 0$, we have that $h(e_1, e_1) \neq 0$ is spacelike and $h(e_1, e_n)$ is timelike. Let us write

(16)
$$h(e_1, e_1) = \delta \ e_{n+1},$$

(17)
$$h(e_1, e_n) = \mu \ e_{n+2},$$

where $\{e_1, e_2, \ldots, e_n, e_{n+1}, e_{n+2}\}$ is an orthonormal frame of \mathbb{R}_1^{n+2} $(e_{n+2}$ is a unit timelike vector), and $\delta = \sqrt{\lambda} > 0$, $\mu = \sqrt{-\langle h(e_1, e_n), h(e_1, e_n) \rangle} > 0$. On the other hand, from Eq. (7) we have also that $\langle h(e_1, e_n), h(e_n, e_n) \rangle = 0$. Thus Eq. (15) and Eq. (17) give $h(e_n, e_n) = \pm \delta e_{n+1}$. If $h(e_n, e_n) = \delta e_{n+1}$, then from Eq. (8) we have

(18)
$$\langle h(e_1, e_1), h(e_n, e_n) \rangle + 2 \langle h(e_1, e_n), h(e_1, e_n) \rangle = \lambda.$$

Thus Eq. (16) and (17) yield $\langle h(e_1, e_n), h(e_1, e_n) \rangle = 0$, which is a contradiction because $\mu > 0$. The case $h(e_n, e_n) = -\delta e_{n+1}$ yields a contradiction because Eq. (18) says $\mu^2 = -\lambda$.

Case (ii). Assume $\lambda < 0$. As in *Case (i)*, we can reach a contradiction by writing $h(e_1, e_1) = \delta e_{n+2}$, $h(e_1, e_n) = \mu e_{n+1}$, where now $\delta = \sqrt{-\lambda}$, $\mu = \sqrt{\langle h(e_1, e_n), h(e_1, e_n) \rangle}$.

Now, let $p \in \overline{\mathcal{V}}$ be an umbilical point in the boundary of \mathcal{V} and take a sequence $\{p_N\}_{N\in\mathbb{N}}$ in M_0^n which converges to p so that every p_N is not umbilical. Now let X be a local unitary vector field around p and consider the function $\langle h(X, X), h(X, X) \rangle$. By continuity we have

$$\lambda(p) = \lim_{N} \langle h(X(p_N), X(p_N)), h(X(p_N), X(p_N)) \rangle = \lim_{N} \lambda(p_N) = 0.$$

If \mathcal{V} is dense the resul follows. If \mathcal{V} is not dense, the set $M_0^n - \overline{\mathcal{V}}$ is an open submanifold of M_0^n which is totally umbilical, and thus constant pseudo-isotropic. Let $\lambda \in \mathbb{R}$ be the pseudo-isotropy constant. Now we take a sequence of umbilical points converging to a point in the boundary of \mathcal{V} , we obtain $\lambda = 0$.

Theorem 4.5. Let M_0^n be a complete submanifold of \mathbb{R}_1^{n+2} . Then one of the following cases holds.

- (1) $\mathbf{c}_{\sharp}(M_0^n) = 2.$
- (2) $\mathbf{c}_{\sharp}(M_0^n) = \infty$ and M_0^n is a spacelike *n*-plane.
- (3) $\mathbf{c}_{\sharp}(M_0^n) = \infty$ and M_0^n is a Riemannian n-sphere contained in a spacelike (n+1)-plane of \mathbb{R}_1^{n+2} .
- (4) $\mathbf{c}_{\sharp}(M_0^n) = \infty$ and M_0^n is a hyperbolic *n*-plane contained in a timelike (n+1)-plane.
- (5) $\mathbf{c}_{\sharp}(M_0^n) = \infty$ and M_0^n is a totally umbilical and non-totally geodesic expansion of \mathbb{R}^n into $\mathbb{R}_{0,1}^{n+1}$.
- (6) $\mathbf{c}_{\sharp}(M_0^n) = \infty$ and M_0^n in non-totally umbilical expansion of \mathbb{R}^n into $\mathbb{R}_{0,1}^{n+1}$.

Proof. Assume $\mathbf{c}_{\sharp}(M_0^n) \geq 3$. Then, by Lemma 4.2 and Lemma 4.4, $\mathbf{c}_{\sharp}(M_0^n) = \infty$ and hence there exists a constant $\lambda \in \mathbb{R}$ such that $\langle h(u, u), h(u, u) \rangle = \lambda$ for any $u \in UM_0^n$. We distinguish two cases.

Case (a). Suppose M_0^n is totally umbilical. Then $h(X, Y) = \langle X, Y \rangle H$ for any $X, Y \in \mathfrak{X}(M_0^n)$, where H is the mean curvature vector field of M_0^n . Thus $\langle H, H \rangle = \lambda$. Now we have three possibilities for λ .

- (a1) $\lambda = 0$. If M_0^n is totally geodesic then it satisfies assertion (2) in the Theorem, and if M_0^n is not totally geodesic then M_0^n is as indicated on assertion (5).
- (a2) $\lambda > 0$. Since M_0^n has parallel second fundamental form, the codimension can be reduced so that M_0^n lies in a (n + 1)-dimensional spacelike plane Π . On the other hand, it is easy to check that $P + (\xi/\lambda) = c$, where Pis the vector position vector for points of M_0^n and $c \in \mathbb{R}_1^{n+2}$. Therefore $\langle P-c, P-c \rangle = 1/\lambda$, and then M_0^n lives in the De Sitter space $\mathbb{S}_1^{n+1}(c, 1/\sqrt{\lambda})$. Thus M_0^n lies in the intersection $\Pi \cap \mathbb{S}_1^{n+1}(c, 1/\sqrt{\lambda})$, which is isometric to an *n*-dimensional sphere \mathbb{S}^n , and this means that M_0^n satisfies assertion (3).
- (a3) If $\lambda < 0$, M_0^n lives in an (n + 1)-dimensional Lorentzian plane II. But we have also that $P \frac{\xi}{\lambda} = c \in \mathbb{R}_1^{n+2}$, and therefore M_0^n lies also in an (n+1)-dimensional hyperbolic space $\mathbb{H}^{n+1}(c, 1/\sqrt{-\lambda})$. Thus, assertion (4) follows.

Case (b). Assume M_0^n is not totally umbilical. Then by Theorem 4.3 and Lemma 4.6 the assertion (6) is fulfilled.

Corollary 4.6. Let M_0^n be a complete non-totally umbilical pseudo-isotropic submanifold in the Lorentz-Minkowski space \mathbb{R}_1^{n+2} . Then, M_0^n is a non-totally umbilical expansion of \mathbb{R}^n into $\mathbb{R}_{0,1}^{n+1}$.

ACKNOWLEDGMENT

The authors would like to express their many thanks to Professor Alfonso Romero and the referee for his valuable suggestions. Research partially supported by MCYT FEDER Grant MTM2004-04934-C04 and by Grupo de Investigación FQM-327, Junta de Andaluc'a.

References

1. C. Blomstrom, Planar geodesic immersions in pseudo-Euclidean space, *Math. Ann.*, **274** (1986), 585-598.

- N. Boumuki and S. Maeda, Study of Isotropic Immersions, *Kyungpook Math. J.*, 45 (2005), 363-394.
- 3. B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- 4. B. Y. Chen, Surfaces with high contact number and their characterization, *Ann. Mat. Pura Appl.*, **185** (2006), 555-576.
- 5. B. Y. Chen and S. J. Li, The contact number of a Euclidean submanifold, *Proc. Edinb. Math. Soc.*, **47** (2004), 69-100.
- 6. M. Dajczer and K. Nomizu, On the boundedness of Ricci curvature of an indefinite metric, *Bol. Soc. Brasil. Mat.*, **11** (1980), 25-30.
- J. Erbacher, Reduction of the codimension of an isometric immersion, *J. Diff. Geom.*, 5 (1971), 343-340.
- Y. H. Kim, Minimal Surfaces of pseudo-Euclidean spaces with geodesic normal sections, *Diff. Geom. Applic.*, 5 (1995), 321-329.
- 9. M. A. Magid, Isometric immersions of Lorentz Spaces with parallel second fundamental forms, *Tsukuba J. Math.*, **8** (1984), 31-54.
- 10. M. Mars and J. M. M. Senovilla, Trapped surfaces and symmetries, *Class. Quantum Grav.*, **20** (2003), 293-300.
- 11. B. O'Neill, Isotropic and Kaehler immersions, Canad. J. Math., 17 (1965), 907-915.
- 12. B. O'Neill, Semi-Riemannian Geometry With Applications to Relativity, Acad. Press, New York, 1983.
- 13. R. Penrose, Gravitational collapse and space-time singularities, *Phys. Rev. Lett.*, 14 (1965), 57-59.

J. L. Cabrerizo, M. Fernández and J. S. Gómez Departamento de Geometríay Topología, Universidad de Sevilla, Apdo. Correos 1160, 41080-Sevilla, Spain E-mail: jaraiz@us.es mafernan@us.es jsalvador@us.es