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THE CONTACT NUMBER
OF A PSEUDO-EUCLIDEAN SUBMANIFOLD

J. L. Cabrerizo, M. Fernandez and J. S. Gomez

Abstract. In this paper we define the contact number of a pseudo-Riemannian
submanifold into the pseudo-Euclidean space, and prove that this contact num-
ber is closely related to the notion of pseudo-isotropic submanifold. We give
a classification of hypersurfaces into the pseudo-Euclidean space with contact
number at least 3. A classification of the complete spacelike codimension-2
submanifolds of the Lorentz-Minkowski space with contact number at least 3
is also obtained.

1. INTRODUCTION

The concept of isotropic submanifold of a Riemannian manifold was introduced
by B. O’ Neill [11], who studied the general properties of such class of submanifold.
These submanifolds can be considered as a generalization of the totally umbilical
submanifolds, and constitute a distinguished family in submanifold theory. An
interesting example [2] is provided by a G-equivariant isometric immersion ¢ of a
rank one symmetric space M into an arbitrary Riemannian homogeneous space M.

Recently, B.-Y. Chen and S.-J. Li introduced and studied the notion of contact
number c;(M) of a Euclidean submanifold in [5], and they proved that the contact
number is closely related with the notions of isotropic submanifolds and holomor-
phic curves. In particular, a surface in the Euclidean space R* has contact number
3 if an only it is a non-planar holomorphic curve with respect to some orthogonal
complex structure on R*. On the other hand, explicit examples of non-totally umbil-
ical submanifold M of dimension n in a Euclidean space R*"” with contact number
cy(M) = 4n — 2 are exhibited in [4].
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In this paper we first define in Section 2 the contact number cy(M7') of a
pseudo-Riemannian submanifold M} into the pseudo-Euclidean space R+ and
then we show in Section 3 that the contact number is closely related to the notion
of pseudo-isotropic submanifold. The essential step is the characterization property
of pseudo-isotropy (Lemma 3.3), which reads as the one given by O’Neill [11] in
the Riemannian case, whereas the proof needs to face up to a different background.
Then, we prove that the contact number of any submanifold is at least 2, and it
is at least 3 (respectively, 4) if and only if the submanifold is pseudo-isotropic
(respectively, constant pseudo-isotropic).

Nevertheless, some remarkable differences for the contact number with respect
to the Euclidean case are obtained. In particular, we show that any Lorentz sub-
manifold of the Lorentz-Minkowski space with contact number at least 3, is totally
umbilical. Another difference with respect the Euclidean case is obtained in Sec-
tion 4, where we show that a complete 0-pseudo-isotropic submanifold M} in the
pseudo-Euclidean space RZLZ can be viewed as an expansion of R} into R’;ffl,
which has c;(M]") = oo but, in general, it is not totally umbilical. In particular,
when s = 0 we show (Lemma 4.4) that any pseudo-isotropic non-totally umbilical
submanifold M of the Lorentz-Minkowski space R’f+2 is 0-pseudo-isotropic. The
notion of 0-pseudo-isotropic on codimension-2 submanifolds is related to the notion
of (marginally) trapped surface 10, 13, since the mean curvature vector of such
a submanifold satisfies (H, H) = 0. A classification of complete codimension-2
spacelike submanifolds in the Lorentz-Minkowski space with contact number at
least 3 is also obtained (Theorem 4.5).

2. PRELIMINARIES AND BAsic FORMULAS

Let R" be the (n+d)-dimensional pseudo-Euclidean space with metric tensor
(-,-) of index v given by

n+d—v n+d
i=1 i=ntd—v+1
in terms of the natural coordinate system (z1, ..., z,4+4) of the Euclidean (n + d)-

dimensional space R" 1.

Throughout this paper M will denote an n-dimensional pseudo-Riemannian
submanifold of index s (0 < s < v) which lies into the pseudo-Euclidean space
R+, The submanifolds are assumed to be connected and with dimension n > 2.
Denote by V and V the Levi-Civita connections of M and R"*9, respectively,
and let D stands for the normal connection of M™ in R?*?. Then, the Gauss and
Weingarten formulas of M™ in R"+¢ are given by

(1) VxY =VxY +h(X,Y),
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and
(2) Vx&=—AcX + Dx¢,

for any two vector fields X, Y € X(M?) and any normal vector field ¢ € X+(MD),
where h is the second fundamental form of M and A is the Weingarten en-
domorphism associated to £&. The second fundamental form and the Weingarten
endomorphism are related by (4:X,Y) = (h(X,Y),&).

The covariant derivative VA of h is defined by

3) (Vxh)(Y,Z) = Dx(h(Y, Z)) — M(VxY, Z) — WY,V xZ),

for any vector fields X,Y,Z € X(M'). Sometimes we write (Vxh)(Y, Z) as
(Vh)(Y, Z, X). If we set VOh = h, in general, the kth (k > 1) covariant derivative
V¥ h of h [12] is given by

(VFR) (X1, ..., Xgio) = Dx, o (VFIR) (X0, o Xppr))

“ kel
= (VIR (X1, Vi X Xig).
=1

It is clear that (ikh) is a normal-bundle-valued tensor field of type (0, k + 2). We
simply denote (V*h)(X, ..., X) by (VFh)(X*2).
The equations of Gauss and Codazzi are given, respectively, by

Q) (RIX,Y)Z,W) = (WX, W),hY,Z))— (h(X, Z),h(Y,]V))

6) (Vxh)(Y, Z) = (Vyh)(X, Z),

for vector fields X, Y, Z, W € X(M}).

3. THE CONTACT NUMBER AND PSEUDO-ISOTROPIC SUBMANIFOLS

For a given point p € M and any unit tangent vector v € U,M (i.e., (u,u) =
£1), there is a unique unit speed geodesic y,, (spacelike or timelike) in M through
p satisfying v,,(0) = p, v,,(0) = u. For the same pair (p, u), we define the normal
section (3, at (p,u) as follows. Let Es(p,u) be the affine (d + 1)-subspace in
R™*4 through p spanned by « and the normal space Tpl M7 at p, where the index
0 = v—sifuis spacelike or 6 = v — s+ 1 if u is timelike. Then the intersection of
M? and Es(p,u) gives rise to a unit speed curve (3, (s) defined on an open interval
containing 0 with 3,(0) = p and (3,(0) = w.
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The geodesic 7, and the normal section 3, at (p, u) are said to be in contact of
order k € N if 78)(0) = ﬁfj)(o) fori=1,...,k, where fy?(f) and ﬁq(f) denote the
ith derivatives of v, and (3, in R?"%, respectively, with respect to their arclength
functions.

Definition 3.1. Let M be a pseudo-Riemannian submanifold of the pseudo-
Euclidean space R”*¢. Then M” is said to be in contact of order k if, for each
p € M and unit tangent vector u € U, M, the geodesic v, and the normal section
By at (p, u) are in contact of order k. The contact number cy (M) of M7 is defined
to be the largest natural number £ such that M is in contact of order £ and but
not of order £+ 1. If the submanifold M is in contact of order £ for every natural
number £, the contact number is defined to be co.

We recall the following definition [8]: M [ is called pseudo-isotropicatp € M}
if (h(u, u), h(u,u)) = A(p) does not depends on the choice of the unit tangent vector
u € T,MZ, and M7 is said to be pseudo-isotropic if M is pseudo-isotropic at
each point of M. If A\(p) is also independent of p € M, then M is said to be
constant pseudo-isotropic (denoted by A-pseudo-isotropic).

Example 3.1. Every totally umbilical pseudo-Riemannian submanifold is pseu-
do-isotropic. Thus, for example [12], pseudo-Riemannian spheres

S'(r) = {zeR"!: (z,z)=1r?},
Hg(r) = {fIf S Rgi% : <TI,',.’L'> — —7“2},

and (non-degenerate) n-planes into a pseudo-Euclidean space are constant pseudo-
isotropic submanifolds.

Example 3.2. [1] Expansions of R? into R’;}Ll. Let f: R? — R be a smooth

function. Define the space RZTI as R"*! equipped with the degenerate metric
tensor given by the matrix

The isometric immersion

¢ : RZ - Rgifv ¢($) = (f(x)vxuf(x))v

is a 0-pseudo-isotropic immersion which is full in R’;}Ll (if f is not linear), i.ec.,

the imagen ¢ (RY) is contained in no affine hyperplane of R’;ffl. If we denote by
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(z1,...,x,) the canonical coordinates of R", then the second fundamental form h

becomes
0 0 82f a2f
A a. | = L, j=1,...,n.
" <8xi’ axj) <5xz‘8$j707 0 axz‘axj) » b J peenn

If ¢ is an isometric immersion with parallel second fundamental form, the geodesics
are mapped to parabolas (or line segments), so f must be a quadratic polynomial.
Up to an isometry ongjl, f(@1, .. an) = >0, a;x?, so that p(R?) is an elliptic
or hyperbolic paraboloid, or an orthogonal cylinder over one of these.

Notice that M = 1(IR?) is totally geodesic if and only if f is an affine function,

and it is totally umbilical [9] if and only if f is given by

n

n—s n
f(xl,...,xn):a<2x?— Z x?)—i—Zbixi—i—c,
i=1 i=1

i=n—s+1

with a, by, ..., by, c € R. Furthermore, if 1/ is non-totally geodesic, the first normal
space Im(h) at each point is entirely constituted by null vectors and dim(Im(h)) =
1. As a consequence, the mean curvature vector field satisfies (H, H) = 0.

Lemma 3.3. A pseudo-Riemannian submanifold M} in R is pseudo-
isotropic if and only if we have

(7) <h(u7 u)v h(uv ’U)> =0,

for any orthonormal vectors u,v tangents to M} at each point. Furthermore, if
M? is a pseudo-isotropic submanifold, we have

®) (h(u, w), h(v, 0)) + 2 (h(u, v), h(u, v)) = A(p) (u,u) (v,v),

©) (h(u,w), h(v, w)) +2 (h(u, v), h(u,w)) = 0,
for any orthogonal vectors u, v, w tangents to M ' at each point.

Proof. The set ¥ = UM} = {u € T,M} : [(u,u)| = 1} is a (n —
1)—dimensional submanifold of R"*¢ and 7,¥ = {v € T,M" : (u,v) = 0}.

Now, define the function f: ¥ — R by f(w) = (h(w,w), h(w,w)). Then, for any
v € T,> we have

(10) (df)u(v) =4 <h(u7 u)v h(uv ’U)>

If M} is pseudo-isotropic, then f is constant, and therefore from Eq. (10) we get
(h(u,u), h(u,v)) = 0.
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Conversely, assume that (h(u,u), h(u,v)) = 0 for any orthonormal pair u,v €
UpM. Then, f is the constant function on each connected component of ¥. We
have two cases.

Case (i). s € {0,n}. Then ¥ is connected and (h(u,u),h(u,v)) = 0 for
uwe UM} =%, veT,M! with (u,v) = 0. Thus, f is constant on ¥ and M is
pseudo-isotropic.

Case (ii). Assume 0 < s < n. Let ©T (respectively, ¥7) be a connected
component of {u € T,M} : (u,u) = 1} (respectively, {u € T,M? : (u,u) =
—1}). Then f is constant on X* and X~. Let A (p) (respectively, A~ (p)) de-
note the constant value of f on ¥ (respectively, 7). Since (h(v,v), h(v,v)) =
(v,v)2 X~ (p) for any timelike v € T,M[, then for any w € T,M! we have
w((h(v,v), h(v,v))) = 42~ (p) (v,v)(v, w). But we have also

w((h(v, ’U), h(’l), ’U)>) = 4<h(’l), ’U), h(’l), ’U))>,
and then

(11) (h(v,v), h(v,w)) = A™(p) (v, v) (v, w).

Let 2 be a null vector and take a sequence {v*}rcn of timelike vectors which
converges to x. Then, by continuity and Eq. (11) we get (h(z,x), h(z,w)) =
A (p) (z,z)(xz,w) =0, for any w € T,M}. In particular,

(12) <h($,$),h(.ﬁ(},y)>=0,

for any pair of null vectors x,y. Consider two orthonormal vectors v € ¥ and
v € X7. Then, x = u + v and y = v — v are null vectors, and from Eq. (12) we
have

0= <h((I,‘, .’I,'), h((I,', y)> - )‘+(p) - )‘_(p)
Therefore, At (p) = A~ (p) = A(p), and M is pseudo-isotropic.
On the other hand, notice that for any spacelike or timelike v € T}, M " we have

(13) (h(v,v), h(v,v)) = (v,0)* A(p),

and hence, by continuity, the same equation is satisfied for null vectors. Now, for
any p € M define on T}, M the multilinear function

F(z,y,2,1) = (h(z,), h(z,1)) = A(p) (2,9)(z,1).

rom Eq. (13), for any x € T,M we have B(z) = F(x,z,z,2) = 0, and therefore
B(z +y) + B(z —y) = 0. This equation gives

(14) F(fUanay:y)"‘QF(fUayan;y):O;
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for any x,y € T,M}. If we take x = u, y = v orthogonal vectors, then we obtain
Eq. (8). Substitution of = + y by y in Eq. (14) gives F(z,z,z,y) = 0. Assume
n > 3 and take u, v, w orthogonal vectors. If we set x = v and y = v + w in Eq.
(14) we obtain

F(u,u,v,w)+ 2F(u,v,u,w) =0,

and this is Eq. (9). ]

Remark 3.4. The notion of pseudo-isotropic (indefinite) submanifolds can be
sharped. In fact, it is enough to deal with timelike tangent vectors as the following
argument shows. Assume

(h(u, ), h(u, 1)) = Mu, u)?

holds for any timelike v € T,M. Let v be any tangent vector (of any causal
character) in T, M and consider the curve wu;, given by u; := u + tv, where u is
a (fixed) timelike tangent vector in 7}, M. By continuity, there exists ¢ > 0 such
that (us, uy) < 0 for any ¢t €] — ¢, €], and therefore

(P(ug, we), h(ug, ug)) = My, ut>27

which is an equality between two polynomials of degree 4. Therefore, their coeffi-
cients of same degree coincide and, in particular, it gives

<h(’l), ’U), h(’l), ’U)> = )‘<’U7 ’U>2,

for any v € T, M. Similarly, we can prove that a pseudo-Riemannian submanifol
is pseudo-isotropic if (h(u,u), h(u,u)) = A(u, u)? holds for any spacelike tangent
vector v at a point p € M. Moreover, formulas (8) and (9) in Lemma 3.3 can be
also obtained.

Corollary 3.5. Let M C R be a pseudo-isotropic hypersurface. Then,
M7 is totally umbilical.

Proof.  First, assume M has a definite induced metric. For any u € U,M]
we have (h(u,u), h(u,u)) = A(p), and hence (Ap(yu)u,u) = A(p). By Eq. (7),
(Ah(u,u)u,w = 0 for any v € U,M; orthogonal to u, and therefore Ay, u =
A(p)(u, u)u. Since (u, u) does not change the sign, M is totally umbilical.

Finally, suppose M has an indefinite induced metric. From Eq. (12) (h(z, x),
h(z,x)) = 0 for any null vector z € T,M]. As Tle;1 is 1-dimensional, this
means h(x,z) = 0, and then [6] M is totally umbilical. [ |

As for constant isotropic submanifolds in the Euclidean space [5], we have
the following characterization of the constant pseudo-isotropic submanifolds in the
semi-Euclidean space.
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Lemma 3.6. Let M be a pseudo-isotropic submanifold of R n+d  The follow-
ing assertions are equivalent:
(1) M? is constant pseudo-isotropic.
(2) <A'(§h)(u3)u, v) = 0, for any orthonormal vectors u, v tangent to M }' at each
point.

(3) Aﬁh)(ug)u = 0 for any tangent vector u to M at each point.
Now, from Lemmas 3.3 and 3.6 it can be proved as in the Euclidean case [5],

the following two theorems which relate the contact number c; (M), the pseudo-
isotropic property and the Weingarten endomorphism of the submanifold M.

Theorem 3.7. Let M7 be a pseudo-Riemannian submanifold in R+ Then,
we have
(1) The contact number cy(M7) of M satisfies cy(M7) > 2.
(2) M7 is pseudo-isotropic if and only if c4(M]') > 3.
(3) M7 is constant pseudo-isotropic if and only if ¢ y(M7') > 4.

Theorem 3.8. A pseudo-Riemannian submanifold M [ into a pseudo-Euclidean
space R js in contact of order k (k > 3) if and only if each v € UM is
eigenvector ofA(gjh)(uHQ) forj=0,1,....k—3.

As an consequence of Theorem 3.8 we have the following.

Corollary 3.9. A pseudo-isotropic submanifold with parallel second funda-
mental form in pseudo-Euclidean space satisfies ¢ (M) = oo.

Remark 3.10. Notice that the pseudo-isotropic condition in the Corollary is
essential. In fact, the right cylinder C' in the Lorentz-Minkowski space .3 = R is a
non-pseudo-isotropic surface with parallel second fundamental form, and c;(C) = 2.

Corollary 3.11. A4 totally umbilical submanifold into the pseudo-Euclidean
space satisfies c4(M}') = oc.

For hypersurfaces of the pseudo-Euclidean space we have the following classi-
fication.

Theorem 3.12. Let M be a pseudo-Riemannian hypersurface of R"*1. Then
one of the following cases holds.
(1) es(Mg) =2.
(2) c4(M]) = 0o and M is an open portion of a hyperplane.
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(3) c4y(M?) = oo and M7 is an open portion of a pseudo-Riemannian hyper-
sphere.

Proof. When the contact number c;(M7") > 3, from Theorem 3.7 the hyper-
surface is pseudo-isotropic, and Corollaries 3.5 and 3.1 imply that the hypersurface
is totally umbilical and its contact number is ¢ 4(M") = co. Moreover, M]' is an
open portion of an hyperplane or an hypersphere [12]. ]

With respect to the contact number, the behavior of the Lorentzian submanifolds
in the Lorentz-Minkowski space R7™ is similar to that of the pseudo-Riemanian
hypersurfaces of R?*1. In fact, we have the following.

Theorem 3.13. Let M{' be a Lorentzian submanifold 0fR’f+d. Then one of
the following cases happens.

(1) cy(M}) =2
(2) cy4(M7") = 0o and M7 is an open portion of a Lorentzian n-plane.

(3) cy4(M7") = oo and M7 is an open portion of a De Sitter space S"' contained
in a Lorentzian (n + 1) — plane.

Proof. If c4(M7]) > 3, from Theorem 3.7 M is pseudo-isotropic. Since
TpiM{1 is a spacelike subspace of R7™, then from Eq. (12) we have h(z,z) = 0
for any null vector x, and then M7 is totally umbilical [6]. Corollary 3.11 applies
to give c(M{') = oo, and with a similar argument than [3], it is proved that any
totally umbilical Lorentz submanifold in the Lorentz-Minkowski space is an open
portion of a Lorentzian n-plane or De Sitter space. ]

With similar arguments as in the proof of the last theorem, the following result
can be stated.

Theorem 3.14. Let M} be a pseudo-isotropic submanifold of the pseudo-
Euclidean space R+ with indefinite induced metric, and v = s, or v = s + d.
Then, M} is totally umbilical.

4. CODIMENSION-2 SUBMANIFOLDS

Lemma 4.1. Let M} be a 0-pseudo-isotropic submanifold of R’;jf Then, at

each non-totally geodesic point the first normal space Im(h) is entirely constituted
by null vectors and dim(Im(h)) = 1.

Proof. If M} is a submanifold of RZLQ , the normal space at p € M is a

Lorentzian plane. Let p be a non-totally geodesic point and take a unit vector e; at
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p such that h(ey,e;) # 0. Since (h(e1,e1), h(e1,e1)) = 0, then h(eq, eq) is a null
vector. We can find ey, ..., e, such that {ej,eq,...,e,} is an orthonormal basis
at p. By Eq. (7), (8) and (9) we can prove that h(e;, ;) and h(eq, e;) are linearly
dependent for any 7, j € {1,...,n}, and the result follows. ]

Lemma 4.2. Let M7 be a 0-pseudo-isotropic submanifold of R’;if Then

cy(M) = oo.

Proof. 1f M} is totally umbilical, by Corollary 3.11, ¢;(M]') = co. Assume
Mg is non-totally umbilical. Let p € M be a non-totally geodesic point. By
Lemma 4.1, I'm(h) is a null straight line. Now we prove (VZh)(uw/2) € I'm(h)
for any non-totally geodesic p € M and u € U, M. For this end, take u € U, M.
If h(u,u) # 0, by Lemma 3.6 we have

((Vh)(u®), h(u,u)) = 0,

and then (Vh)(u3) € Im(h). If h(u,u) = 0, take a unit v with h(v,v) # 0. Let
X, Y be local orthonormal extensions of u, v respectively, and satisfying V,, X =
VY = 0 for every w € T,M. Since (h(X,X),h(Y,Y)) = 0, then by Eq. (3)
we obtain

o
I

u((h(X, X), h(Y;Y)))

(Dyh(X,X), h(v,v)) + (h(u,u), D,h(Y,Y))
(V) (u®), h(v,0)) + ((u, w), (V) (v, 0, )
= ((VR)(u®), h(v, ).

Thus (ﬁh)(ug) € Im(h) for any u € U,M}.

By the induction method, suppose (Vh)(u‘*2) € Im(h) for any non-totally
geodesic point p, v € U,M and ¢ = 0,1,2,...,j5 — 1. Take orthonormal u,v €
UpM}' and assume h(v,v) # 0. Let U be the (open) subset of non-totally geodesic
points of the submanifold M[" C RZLQ . It is clear that i # (). Now we extend u, v
to local vector fields X, Y respectively, defined on the open neighborhood O, C U
and satisfying V,, X = V,,Y = 0 for any w € T,M. Then,

(VI 1R) (XY, h(Y,Y)) = 0.
Therefore, Eq. (3) and (4) yield
0 = w(((V7 ) (XY, B(Y,Y)))
= (Du(V/7'R) (X7, h(v, 0)) + (V7 h) (W), Dyh(Y, Y))
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= (VR)(@2), h(v, 0)) + (V7 R) (), (VR) (0%, w))

= ((VIh)(/*?), h(v,0)).

Hence (V7R)(ui2) € Im(h), and in particular ((VIh)(ui*2), h(u, v)) = 0. Thus,
by Theorem 3.8, c;(M]') = oc. |

Theorem 4.3. Let M be a complete O-pseudo-isotropic submanifold in a
pseudo-Euclidean space R’;if . Then, M7 is an expansion of R into R’;‘{l with

cy (M) = oo.

Proof.  From the proof of Lemma 4.2, for any u € U,M; we have that the
vectors (Vh)(u3) € Im(h) and h(u, u) are linearly dependents. This joined to
Codazzi Eq. (6) can be used to show that (Vh)(u, v, w) € Im(h) for any vectors
u,v,w. Thus [1, 7], the codimension can be reduced in such a way that M is
contained in a degenerate hyperplane of R”+2 As this hyperplane is isometric to
R’;J{l, M? is imbedded in RZTI Let : R”+1 — R7 be the projection map on the
first n coordinates. Then 7r(M ) is an open subset of the pseudo-Euclidean space R”
[9]. In consequence, by completeness, there exists a smooth function f: R} — R
such that M? (viewed in R’;jl) can be realized as the set of points (z, f(x)).
Finally, it suffices to note that the map R7T" < RZ7 given by (y1, ..., yns1)

s+1
(Yn+15 Y1y - - -5 Ynt1) 18 an isometric embedding. |

Lemma 4.4. Let My be a non-totally umbilical submanifold 0fR’f+2 with
cy(Mg) > 3. Then, My is 0-pseudo-isotropic.

Proof. Set
V ={p e My : h(u,v) # 0 for some orthonormal vectors u, v € T,M;'}.

Clearly, V is a non-empty open subset which is non-totally umbilical at every point.
Take u, v € T, M such that h(u,v) # 0 and set e; = u, e, = v. We extend e1, e,
to an orthonormal frame {e, €2, ..., e,} at p. Since ¢ 4(Mg) > 3, from Theorem
3.7 there exists A = A(p) € R such that

(15) (h(u,w), h(u,uw)) = A
for any u € U, M. Now we prove that A = 0.

Case (i). Suppose A > 0. Since (h(e1,e1),h(e1,e1)) = A, and the pseudo-
isotropy condition of Eq. (7) yields (h(ei,e1),h(e1,e,)) = 0, we have that
h(e1,e1) # 0 is spacelike and h(eq, e,) is timelike. Let us write

(16) h(el, 61) = 5 €n+1,
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(17) h(e1, en) = p enyo,

where {e1, €2, .. .,€n, €nt1,nia} is an orthonormal frame of R7 "2 (e, 5 is a unit
timelike vector), and § = VA > 0, u = /—(h(e1, en), h(e1,e,)) > 0. On the
other hand, from Eq. (7) we have also that (h(e1,e,), h(en, e,)) = 0. Thus Eq.
(15) and Eq. (17) give h(ey, e,) = £0 ept1. If h(e,, e,) = d €41, then from Eq.
(8) we have

(18) (h(e1,e1), h(en,en)) + 2(h(e1, en), h(e1, en)) = A.

Thus Eq. (16) and (17) yield (h(ey,ey), h(e1,e,)) = 0, which is a contradiction
because p > 0. The case h(ey, e,) = —0 e,4+1 yields a contradiction because Eq.
(18) says p> = —\.

Case (ii). Assume A < 0. As in Case (i), we can reach a contradiction by
writing h(ey,e1) = 0 enyo, h(e1,e,) = i eny1, Where now 6 = v\ p =
\/<h(61, en)v h(elvin»'

Now, let p € V be an umbilical point in the boundary of V and take a se-
quence {pn}nen in MJ which converges to p so that every py is not umbilical.
Now let X be a local unitary vector field around p and consider the function
(h(X, X),h(X,X)). By continuity we have

Ap) = lim (h(X (pn), X (pn)), 1(X (pn), X (pn))) = lim A(pw) = 0.

If V is dense the resul follows. If V is not dense, the set M — V is an open
submanifold of M7 which is totally umbilical, and thus constant pseudo-isotropic.
Let A € R be the pseudo-isotropy constant. Now we take a sequence of umbilical
points converging to a point in the boundary of V), we obtain A = 0. ]

Theorem 4.5. Let My be a complete submanifold of R’f“. Then one of the
following cases holds.
(1) e (M) =2

(2) ex(Mg) =

(3) c4y(M§) = oo and M is a Riemannian n-sphere contained in a spacelike
(n + 1)-plane of RT2.

(4) cy(M§) = oo and M§ is a hyperbolic n-plane contained in a timelike (n+1)-
plane.

oo and M) is a spacelike n-plane.

(5) c4(Mg) = oo and M is a totally umbilical and non-totally geodesic expan-
sion of R™ into jol.

(6) c4(Mg) = oo and M§ in non-totally umbilical expansion of R™ into jol.
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Proof. Assume cy(M{) > 3. Then, by Lemma 4.2 and Lemma 4.4, ¢;(M{) =
oo and hence there exists a constant A € R such that (h(u,u), h(u,u)) = X for any
u € UM'. We distinguish two cases.

Case (a). Suppose M is totally umbilical. Then h(X,Y) = (X,Y)H for
any X,Y € X(Mj'), where H is the mean curvature vector field of M. Thus
(H,H) = A\. Now we have three possibilities for \.

(al) X = 0. If M is totally geodesic then it satisfies assertion (2) in the Theorem,
and if M is not totally geodesic then M is as indicated on assertion (3).

(a2) A > 0. Since M has parallel second fundamental form, the codimension
can be reduced so that M lies in a (n + 1)-dimensional spacelike plane
I1. On the other hand, it is easy to check that P + (£/\) = ¢, where P
is the vector position vector for points of My and ¢ € R’f“. Therefore
(P—c, P—c) = 1/, and then M lives in the De Sitter space S7 (¢, 1/v/\).
Thus M lies in the intersection IT N ST (¢, 1/+/X), which is isometric to
an n-dimensional sphere S, and this means that M satisfies assertion (3).

(a3) If X < 0, M lives in an (n + 1)-dimensional Lorentzian plane II. But
we have also that P — § = ¢ € R*?, and therefore My lies also in an
(n+ 1)-dimensional hyperbolic space H"*! (¢, 1/y/=X). Thus, assertion (4)
follows.

Case (b). Assume M is not totally umbilical. Then by Theorem 4.3 and
Lemma 4.6 the assertion (6) is fulfilled. ]

Corollary 4.6. Let M} be a complete non-totally umbilical pseudo-isotropic
submanifold in the Lorentz-Minkowski space R’f“. Then, My is a non-totally
umbilical expansion of R™ into jol.
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