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Abstract 

The study of Secondary Malignant Neoplasms (SMNs) after radiotherapy is becoming a 

topic of interest nowadays, as a consequence of the higher healing rates and life 

expectancy accomplished with current diagnose procedures and radiotherapy 

treatments.  In the case of modern techniques, there is a tendency to prefer low (i.e. 6 

MV) energies to high ones (e.g. 15 or 18 MV), sometimes to the detriment of treatment 

conformity, as the latter are known to increase equivalent dose to patients due to 

neutron production.  

The Medical Physics Group of the University of Seville, pioneered the development of a 

simple and universal methodology for the estimation of peripheral neutron doses, based 

on the correlation between readings of a SRAM-based detector (in a reference location, 

far from the patient) and those of passive detectors, located inside an adult 

anthropomorphic phantom. This correspondence model directly links detector readings 

(referring to thermal neutron fluence in the room) to equivalent neutron doses at 

specific organs in the patient. One of the main problems of this methodology was the 

need of using the specific SRAM-based digital detector for the characterization of every 

facility. In addition, the passive behavior of plastic and thermoluminiscent devices used 

for ‘in-phantom’ measurements, together with their limitations in these environments, 

restricted the repetition and reliability of some critical points.  

The acquisition of a new prototype of a miniaturized active thermal neutron detector, 

initially designed for nuclear purposes, opened the possibility of improving the existing 

peripheral neutron dose estimation methodology in high-energy radiotherapy. The goal 

of this work was the use of these devices for the validation, improvement and 

generalization of the existing models, in order to make the real time estimation of 

peripheral neutron doses directly available in any facility. The online disposal of thermal 

neutron fluence estimations from the new TNRD detectors (Thermal Neutron Rate 

Detector), allowed the simplification and generalization of this procedure. Thus, making 

it feasible with any thermal neutron detector following a simple characterization 

procedure. Additionally, their active and miniaturized behavior permitted their use in 

both locations ‘in-phantom’ and external (for patient measurements).  

In order to enhace the existing models, further and more precise measurements of real 

radiotherapy treatments were performed with TNRD detectors, ensuring that the two 

existing model locations (i.e. H&N and abdomen) are general enough to cover any 

specific treatment. We thought that at this stage, patient age and anatomy was an 
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important aspect that should be taken into account for second cancer risk estimations, 

being of special importance for children, whose life expectancy and radiosensibility are 

greater. For that, measurements with the new miniaturized active devices were 

performed for three different phantom sizes (child, teen and adult). Once these results 

were implemented, this new methodology was applied to 510 patients, starting the 

generation of an improved database that would allow a more patient specific analysis of 

second cancer risk, as a consequence of neutron contamination.  

Besides, the analytical peripheral photon model simultaneously developed by our group, 

has allowed the generation of a piece of software for the estimation of both peripheral 

doses. This has enabled a quick assessment of photon and neutron peripheral doses in 

clinical routine, from readily available parameters. Estimations of these doses were 

finally evaluated for some of the most common tumor locations, comparing conventional 

techniques and fractionations (3D-CRT, IMRT, VMAT) to newer ones (SBRT, FFF), 

regarding the three main linac manufacturers and energies (6, 10, and 15 MV). As a 

general pattern, hypofractionated modality, 10 MV photon energy and FFF irradiation 

mode have shown as the best alternatives in terms of peripheral dose reduction. Thus, a 

combined use of these options would imply a decrease of second cancer probability. 

Second cancer risk estimations could be easily performed from the here presented 

procedures by the direct use of the existing risk models, established by the international 

organisms (i.e. ICRP or BEIR). The universal methodology presented aims to provide 

an objective additional criterion (Second Cancer Probability, SCP), to be used in 

combination wih the previously existing radiobiological parameters as Tumor Control 

Prrobability (TCP) and Normal Tissue Complication Probability (NTCP), for the choice 

of the best radiotherapy strategy, thanks to its easy implementation in Treatment 

Planning Systems.  
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I. Preface 

1. Radiation-induced secondary cancer 

Cancer represents one of the most important public health problems in 

developed societies. It has been estimated that about one in two men and 

women born today will be diagnosed with some type of cancer in their lifetimes 

(Newhauser et al.,2016; SEER website), being the leading cause of death among 

adults (23% of total deaths in 2012, Siegel et al.,2016). Close to 14 million of new 

cases were diagnosed in the world in 2012, and it is predicted that by 2030, this 

value will rise by 75% reaching nearly 24.6 million cases (Ferlay et al.,2015). The 

technological revolution that has taken place in the medical imaging field and 

diagnosis procedures, have allowed a better and earlier detection of cancer 

pathologies. In addition, the great improvements achieved in treatment 

techniques have led to an increased number of long-term survival patients 

(Coleman et al.,2011), as shown in Figure 1. For instance, the 5 year survival rate 

of cancer in the USA has grown to almost 68% and 83% in adults and children, 

respectively (Newhauser et al.,2016).  

Nowadays, there are three main weapons used to fight cancer disease, namely 

surgery, chemotherapy and radiotherapy. Although these treatment modalities 

are generally used in combination, almost two-thirds of cancer patients receive 

some form of radiation therapy during their treatment (Delaney et al.,2005; 

Jameson et al.,2013). In particular, considering the 10 most frequent cancer 

pathologies (prostate, female breast, lung, colorectal, bladder, non-Hodgkin 

lymphoma, skin melanoma, kidney, ovarian, and uterine), it is estimated that at 

least 50.3% of them are treated with radiotherapy as a part or the totality of the 

treatment (either X-ray based or with charged particles, Siegel et al.,2016; 

Delaney et al.,2005).  
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Figure 1. SEER (Surveillance, Epidemiology and End Results program) database USA 

survival figures after cancer. Figure extracted from AAPM Congress 2015, Anaheim 

(http://amos3.aapm.org/abstracts/pdf/99-27178-365478-110196.pdf). 

 

 

Radiotherapy treatments are based on the use of ionizing radiation beams to 

destroy cancerous cells, obstructing their reproduction capability. The goal of 

this treatment modality is to deliver a high dose to the tumor (defined as 

Planned Target Volume, PTV) while surrounding organs (named Organs At 

Risk, OAR) and healthy tissues remain under certain established dose levels. 

One of the most common radiotherapy techniques, named external 

radiotherapy  (cited hereafter as RT), consists in the use of an external radiation 

source, located outside the patient. This modality remains as the most used one, 

with an estimated number of 7 million cases for which radiotherapy was 

indicated in 2012 and a prediction of 12 million in 2030 (Atun et al.,2015). 

However this dual goal in an ideal scenario, where the PTV receives the 100% 

of the prescribed dose while the rest of the tissues remain at zero, is not feasible. 

This is mainly due to the unavoidable dose deposition at the beam entrance, 

lateral scattering and production of secondary uncharged particles (coming 

http://amos3.aapm.org/abstracts/pdf/99-27178-365478-110196.pdf
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from the interaction of the primary beam with different materials along its 

path).  

The great benefits achieved with new RT techniques have been translated into 

higher healing rates, implying an extension of patient survival. This fact has led 

to a growing concern regarding second cancer incidence among long-term 

survivors, as they are at increased risk to develop treatment-induced side 

effects (Murray et al.,2015a;b; Hall et al.,2003; Xu et al.,2008; Berdnarz et 

al.,2010; Milecki et al.,2009; Trott et al.,2009a; Dörr et al.,2002a;b; Ruben et 

al.,2008; Brenner et al.,2000;2006; Tubiana et al.,2009;Murray et al.,2014; Hall et 

al.,2004; Chargari et al.,2013). These kind of radio-nduced malignancies have 

nothing to do with methastatic ones, coming from primary tumours. In general, 

Second Malignant Neoplasms (SMNs), account for around 17-19% of all cancers 

(Newhauser et al.,2016). As cancer patients have become younger, having thus 

a longer life expectancy after RT treatments, radiation effects are now more 

evident than in the past (Smith et al.,2010; Travis et al.,2003; Chao et al.,2016; 

Hung et al.,2016; Sharma et al.,2008). This increased risk of SMNs in healthy 

tissues as a consequence of RT, may appear usually after a period greater than a 

decade and, in around 10-20% of cases, 30 years after treatment (Tubiana et 

al.,2009; Newhauser et al.,2011; Kumar et al.,2012). This long-term side effect, 

although unusual, is a feared later complication of this “double-edged sword” 

that RT represents. Second cancer risks seem to be higher for tissues receiving 

low doses (≤6 Gy) and highly dependent on the dose deposited outside the PTV 

(Diallo et al.,2009; Dörr et al.,2002b).  

Treatment selection is usually based on several factors (i.e. life expectancy, 

clinical stage and associated toxicities; Robles et al.,2012; Bentzen et al.,2010; 

Shuryak et al.,2009), whereas these non-desired doses aren’t frequently 

considered in detriment of a benefit-risk ratio. Although second cancer risks 

attributable to radiotherapy are small (≈8%), bearing in mind the large number 
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of population treated annually and the overall survival rate, we think that their 

consideration should be mandatory at this step (Kry et al.,2005a; Brenner et 

al.,2003; Nguyen et al.,2015; Berrington et al.,2011; Schenider et al.,2011; 

Grantzau et al.,2015). Particularly, major concern should be taken for pediatric 

and young patients, for which a very large variation in radiation sensitivity can 

be found (around 10 times more for middle–aged than adults in some tissues; 

UNSCEAR 2013; Hall et al.,2002; Lee et al.,2016). 

Even though the International Commission on Radiological Protection (ICRP) 

explicitly considers patient radiological protection in Publication-103: “…in 

radiation therapy it requires delivery of the required dose to the volume to be treated, 

avoiding unnecessary exposure of healthy tissues”, far out-of-field doses are hardly 

ever considered in clinical routine. Additionally, despite the technological 

improvements accomplished in modern RT techniques, such as Intensity 

Modulated Radiation Therapy (IMRT), Image Guided Radiation Therapy 

(IGRT), Volumetric Modulated Radiation Therapy (VMAT) or Stereotactic Body 

Radiation Therapy (SBRT); there are some trade-offs related to peripheral doses. 

Even if they allow higher conformation levels to target volumes and better OAR 

sparing, usually this is at the expense of an increased number of Monitor Units 

(MU) and consequent beam on time (except for hypofractionated techniques), 

compared to conformal radiotherapy (CRT).  Thus, modern techniques may 

require linac energized for longer (even a factor 3-4) than conventional 

modalities, involving an increase in overall patient exposition to unwanted 

doses to healthy tissues, outside the treatment field. These out-of-field doses are 

due to activation, scattered and leakage photons as well as contaminating 

neutrons (the latter for energies ≥10 MV; Xu et al.,2008). A question should be 

pointed out here, considering if the achieved improvement in local tumor 

control worths the compromise of patient protection against radioinduced 
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effects (Timlin et al.,2015; Hall et al.,2006; D’Agostino et al.,2013; Slaz et al.,2012; 

La Tessa et al.,2012; Schneider et al.,2006). 

In addition, actual dose-response relationships for cancer risk predictions are 

mainly obtained from retrospective cohort studies regarding Japan atomic 

bomb incident (risks studied in the range between 0.1 and 2.5 Gy, BEIR VII; 

Gudowska et al.,2014; UNSCEAR 2006; Thomas et al.,2011; Schneider et 

al.,2015).  However, as current RT radiation deliverance mode highly differs 

from this case, long-term epidemiological studies of SMNs incidence in treated 

patients would be highly desirable (Kohandel et al.,2015). This would allow a 

better assessment for the selection of the best treatment strategy, concerning 

patient protection (Claude et al.,2015; Antoni et al.,2015; Eaton et al.,2015; Olch 

et al.,2015; Malick et al.,2015; Murray et al.,2015a; Tubiana et al., 2006; Vaño et 

al.,2011; Trott et al.,2009b).  

Conservative approaches note that around 6-13% of RT patients may develop a 

second malignancy as a consequence of the treatment (Van Leeuwen et al.,2004; 

Hall et al.,2007; Clarke et al.,2005; Berrington de González et al.,2013; Kamran et 

al.,2016), from which at least 5000 cases/year would be due to neutron 

contamination (Hall et al.,1995). Although these values may increase 

considering current cancer predictions previously mentioned (Frankish et 

al.,2003), they are usually not considered due to the long latency periods of 

these malignancies (≥5 years) and the small percentages. Nevertheless, several 

studies have pointed out their concern for those young patients whose free-

cancer survival evolution is expected to be greater than these periods (Lee et 

al.,2016;  Chargari et al.,2016), as the age at exposure remains as an important 

factor in risk modeling.   
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2. Peripheral dose 

Concerning individual radiological protection in RT, patient anatomy can be 

divided into three regions: target area (PTV), OAR (adjacent to the tumor) and 

the rest of the body (Figure 2). Out-of-field doses, affecting mainly the latter 

region are unnecessarily received by the patient as a consequence of scatter and 

leakage photons and contaminating neutrons (E≥10 MV), are usually referred to 

as peripheral doses (PD). There is also a contribution due to activation of 

material present in radiotherapy rooms that may be of relevance for staff, being 

less than 1% of that received by the patient due to PD (Sánchez Doblado et 

al.,1989; Vega-Carrillo et al.,2016). Commercial Treatment Planning Systems 

(TPS) used in clinical routine, are conventionally designed to correctly estimate 

doses up to 1% isodose, leading to a distance of approximately ≤10 cm from the 

field edge, with no consideration of photon PD or neutron contamination. 

 

Figure 2. Patient’s anatomy division regarding radiological protection in RT: (1) target area 

(PTV), (2) OAR (adjacent to the tumor) and (3) rest of the body (receiving PD). 
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Figures for these undesired doses become significant if we consider the increase 

in life expectancy and survival rates of radiotherapy patients and compare them 

to occupational and general dose limits per year (Figure 3). Although they can 

result quite small when compared to in-field doses, PD may cause relevant 

damages if delivered to particularly radiosensitive organs (specifically in the 

case of neutrons), causing around 50% of second cancers (Diallo et al.,2009; 

Sánchez-Nieto et al.,2016). 

 

 

 

 

 

 

 

 

 

Figure 3. Dose estimations received by non-target regions for generic RT treatments, 

compared to annual limits for occupational and general public. Extracted from: Calculation 

Techniques for Determining Non Target Photon, Electron and Neutron Doses, AAPM Annual 

Meeting 2015, Anaheim, CA 16/07/2015, Bryan Bednarz 

(https://www.aapm.org/education/VL/vl.asp?id=4832). 

 

 

Risks associated to a specific radiation dose can be divided in two classes: 

genetic (revealed in the progeny of an exposed individual) and somatic 

(manifested in the exposed individual). The criteria followed for a neoplasm to 

be classified as radiation-induced (second cancer) was originally defined by 

Cahan et al.,1948, and can be summarized into the following points: 

https://www.aapm.org/education/VL/vl.asp?id=4832
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(a) SMNs are found in regions irradiated by primary or secondary RT 

beams. 

(b) SMNs display a different histology, being easily differentiable from 

metastasis. 

(c) Long-term latency period (5-10 years). 

(d) No presence evidence at the time of RT. 

(e) No cancer-prone syndrome. 

The previously mentioned increased in beam on time for new RT techniques 

could lead to an increase in total body irradiation of around 2-3 times, since 

larger volumes of normal tissues can be exposed to lower doses as a 

consequence of the tight dose conformations and severe dose gradients 

required (Schneider et al.,2011; Followill et al.,1997).  

Although several calculation techniques for out-of-field doses (TPS, empirical 

and Monte Carlo) have been developed (Harrison et al.,2013; Voyant et al.,2014; 

Bordy et al.,2013; Zhang et al.,2015; Kry et al.,2005b; Kaderka et al.,2012), to our 

knowledge, none of them has yet established a general model for PD 

estimations in RT treatments. This is due not only to the variability between 

different techniques but also to the difficulty of these peripheral measurements, 

particularly regarding the neutron component. Generally speaking commercial 

TPS (where only photon contribution is considered), use deterministic 

algorithms that provide good dose accuracy in-field and nearby regions, while 

noticeable underestimation for isodoses smaller than 5% can be found. These 

estimations are shown to dramatically deteriorate with increasing distance and 

may lead to errors in the order of 20-80% (Huang et al.,2013; Howell et al.,2015; 

Newhauser et al.,2016). On the other hand, Monte Carlo (MC) simulations need 

of a high level of fidelity for linac modeling, especially when considering doses 

for peripheral zones. In addition, in-field and out-of-field simulations should be 

benchmarked to experimental measurements (Xu et al.,2008; Berdnarz et 
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al.,2010). It is known that these experimental measurements of PD in the clinic 

may be overestimated from real values when made following accuracy 

recommendations (Howell et al.,2015). Thus, the knowledge of the magnitude 

of this inaccuracy might be of important relevance for some specific groups of 

patients, such as pregnant women and children, to avoid compromising 

treatment quality (Lefebre et al.,2014).  

Commercial dosimeters usually employed for both neutron and photon PD 

measurements present several limitations, mainly regarding three features 

(additional problems may be found concerning neutrons, Nath et al., 1986; 

NCRP-79):  

- Radiation field: average photon beam energy spectrum is much lower in 

these peripheral regions. Neutron fluence rates are also difficult to 

evaluate, as a consequence of the large photon to neutron ratio present in 

these environments. 

- Pulse pile-up problems in detectors employing electronic pulse 

measurements. 

- Detector response: correction factors are usually needed for these photon 

low energies to avoid detector over-estimation. Response of neutron 

detectors depends on incident neutron energy and fluence-to-dose 

conversion factors strongly vary with spectra. 

- Special attention is required concerning tissue equivalences.  

Additional problems may be found for superficial locations (i.e. skin), due to 

the presence of stray electrons and higher photon and fast neutron 

contributions.  

Usually peripheral photon, electron and neutron doses from RT (either X-ray or 

proton beams; energy ranging from 4-250 MeV) are in the range of 5 cGy for 

low-dose levels and 5-50 Gy for the intermediate ones (primary target receiving 

≤100 Gy). When compared to other treatment modalities, these dose values may 
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result 5 times those of brachytherapy (regarding peripheral organs), around 100 

times those of conventional radiodiagnosis images and on the order of 

radioimmunotherapy ones (concerning gamma doses; Xu et al.,2008). 

2.1 Photon peripheral dose 

Photon doses delivered outside geometrical field limits and surrounding tissues 

are referred to as Peripheral Photon Doses (PPD). In clinical photon beams, 

these doses are produced by photons originated from: (i) linac head leakage, (ii) 

linac head scatter and (iii) scatter radiation inside the patient (Chofor et 

al.,2012).  

Although this component is the most studied one, as a consequence of the well-

established photon dosimetry procedures, its estimation in peripheral organs is 

complex. Despite the fact that there are some algorithms and software available 

for the calculation of photon absorbed doses (Taddei et al.,2013; Jagetic et 

al.,2013; Van der Giessen et al.,2001; Hauri et al.,2016), to our knowledge there 

was no general model that could be readily applied to any RT treatment. The 

mentioned methods seem to be too narrowly focused, either in terms of 

available energies or treatment field configurations. What is more, although 

there are other studies containing baseline data for specific treatment 

techniques, they seem to be not generalizable to other circumstances.  

As an appropriate study of PD and second cancer risks may consider both 

contributions, our group was also highly interested in the evaluation of these 

PPD. Thus, along the duration of this work, close collaborations have been 

carried out with Dr. Beatriz Sánchez-Nieto for the generation of a clinically 

useful simple PPD model, applicable to any isocentric treatment and usable 

beyond 10 cm far from the field edge (Sánchez-Nieto et al.,2015a;b). This model 

accounts for linac head leakage, patient and linac head scatter, as well as 

activation, if any. 
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2.2 Neutron peripheral dose 

The use of high photon energies is generally preferred to improve treatment 

effectiveness and decrease skin dose in deeply settled tumors. For this purpose, 

linacs up to 25 MeV (primary electron beams) were originally manufactured. 

However, as these photon beams are obtained by terms of electron 

bremsstrahlung in a metallic target with a high atomic number (e.g., tungsten, 

gold) there is an unavoidable neutron production. These primary neutrons are 

approximately isotropic and can penetrate the shielding (usually tungsten or 

lead) in all directions. Additionally, secondary neutrons can be produced in 

photonuclear reactions with the high Z materials that compose linac head for 

photon shielding and collimation purposes (Figure 4). Electronuclear (e,e’n) and 

photonuclear (γ,n) reactions can also take place as a consequence of the 

interaction of high-energy photons (greater than photonuclear reaction 

threshold of the present materials) with Fe and Cu (NCRP-79).  

The minimum energy required to remove one neutron from a nucleus lies 

between 6-16 MeV (6-13 MeV for most stable nuclei, those heavier than carbon), 

for the majority of constituents of RT bunkers. As a consequence, a wide variety 

of short-life radionuclides are generated via photon and neutron activations. In 

order to minimize this contribution, generally materials present in RT facilities 

are chosen to have a negligible neutron production for megavoltage photon 

modalities below 10 MV (Uselmann et al.,2015). Although neutrons can be also 

produced by other reactions as (γ,2n) and (γ,pn), they have  smaller cross 

sections and are thus considered to be less relevant (Sánchez-Doblado et 

al.,1989).  

Different works have challenged the estimation of Peripheral Neutron Doses 

(PND) from a clinical point of view. Although their initial conclusion showed a 

minimal importance for exposed professionals and patients, later publications  
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Figure 4. Sketch of head components of a Siemens Primus linac geometry. The different 

components responsible for photo-neutron production in high energy (>10 MV) are plotted: lead 

(black), tungsten (grey) and steel (light grey). Figure extracted from (Pena et al.,2005). 

 

 

presented a more precise scenario of neutron energy and fluence distribution in 

treatment rooms, related to linac manufacturer, energy and bunker size (Kry et 

al.,2009; Howell et al.,2005;2009; Followill et al.,2003).  

However, as previously mentioned, this is hardly ever considered in clinical 

routine, as there is no commercial TPS that includes information regarding 

neutron contribution. This fact can be justified by the high photon doses 

delivered at the studied locations, compared to the peripheral neutron ones. 

However, PND may become equally important than PPD for some peripheral 

tissues, due to the higher neutron Relative Biological Effectiveness (RBE, Ottolenghi 

et al.,2015). As a consequence, modern RT is mainly oriented to low energy 
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treatments, sometimes to the detriment of conformity and using longer beam-

on times. This is justified by the pretext of avoiding damage to biological tissues 

and preventing from latter complications due to neutrons. 

 

 2.2.1 Evaluation of neutron dose: detectors 

Neutron dose measurement inside radiotherapy rooms is a mandatory task that 

has to be performed accomplishing some requirements (Thomas et al.,1973):  

(i)   Measurement of neutron fluence (n·cm-2) 

(ii) Measurement/simulation of neutron spectrum as a function of energy 

inside the treatment room (n·cm-2·MeV-1·s-1)  

(iii) Measurement of total dose equivalent  

(iv) Study of neutron detector response to other radiations that may be 

present in RT mixed fields 

Neutron energy spectra present in RT environments can be divided into three 

regions: thermal (< 0.4 eV), epithermal (0.4 eV < E < 0.1 MeV) and fast (> 0.1 

MeV). However neutron dosimetry is a very complex task and there is no single 

detector commercially available that can perform all the above detailed 

measurements. Consequently, detector choice must be done regarding the 

specific purpose of the experiment. As neutrons are uncharged particles, these 

devices are based in the detection of particles resulting from their interaction 

with atomic nuclei. The most commonly used neutron devices can be divided in 

two main groups, some of the most typical ones are shown in Figure 5 as an 

example (NCRP-79). 
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(a)  Passive detectors  

These kinds of detectors are the most used ones due to their good response to 

the pulsed nature of RT radiation. However their complex and delayed reading 

procedures make their use non-ideal for research or clinical purposes, where 

measurement repetitivity and online behavior is an important aspect.  

- Activation detectors. These devices are based on the use of specific materials 

that become radioactive when exposed to neutrons (Figure 5a). This behavior 

may result from capture reactions as inelastic scattering; (n,p) (n,α) or (n,2n) 

reactions; nuclear reactions or spallation reactions. Activation samples are 

typically used to characterize energy spectrum and neutron field intensity. 

- Etched Track Detectors. These types of detectors are composed of a particular 

kind of solids that present microscopic radiation damage tracks when irradiated 

with heavy particles. These tracks can be made visible under a microscope in a 

variety of dielectric materials (Figure 5b).  

(b)  Active detectors 

These detectors present an online behavior, highly desirable for research 

purposes. Nevertheless, several problems related to saturation, response 

dependencies and detector size can be found in the existing devices. 

- Ionization Detectors. Ionization chambers, and proportional and Geiger-Müller 

counters, are included here (Figure 5c). They provide large electronic signals 

and good discrimination against a relatively small photon background, being 

usually employed for ambient measurements due to their large size.  

- Diodes. Neutron-induced nuclear reactions can produce measureable changes 

in the electrical properties of various semiconductors (Figure 5d). The most 

common radiation damage is the displacement of lattice atoms, as in the case of 

diode detectors. 
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Figure 5. Passive: (a) Activation foils, (b) track-edge and Active: (c) proportional counters and 

(d) diode detectors. 

 

Passive detectors require considerable processing and analyzing times while 

active counters show signal saturation and pile-up due to the pulsed nature of 

linac radiation. Therefore, methods traditionally used for neutron evaluation 

have been the first ones, as recommended by the American Association of 

Physicists in Medicine (AAPM) and the National Council on Radiation 

Protection & measurements (NCRP, Nath et al.,1986). However, our group 

succeeded in the introduction of a new active detector in RT environments for 

peripheral neutron dose estimation purposes (Gómez et al.,2010a; further 

details can be found on section 2.4.2). 

 

 

 

(a) (b) 

(c) (d) 
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 2.2.2 Evaluation of neutron dose: calibration sources 

As for any other detectors, neutron devices have to be calibrated (and tested in 

terms of stability) against reference neutron sources to ensure appropriate 

estimations. A wide variety can be employed for this purpose (NCRP-38;151): 

- Natural radioactive neutron sources type (α,n) or (γ,n). In the first case, the alpha 

emitter is mixed with the target material, being the most common ones 210Po, 

239Pt and 241Am, usually combined with Be. The latter are generally surrounded 

by the material in which neutron reaction takes place. 

- Spontaneous fission neutron sources. They present small mass and a fission-like 

spectrum with relative low gamma-ray yield. Special caution must be taken 

when manipulating, as many alpha rays are produced per neutron. A nuclide of 

special interest is 252Cf. 

- Constant voltage accelerators. Used to produce high voltage proton beams by 

mechanical transportation of charge using a belt (Van der Graaff accelerator) or 

other alternative systems that imping into a specific target to produce neutrons. 

Large number of neutrons (>1022 s-1) can be achieved depending on incident 

beam and target nature. In some cases, like PTB laboratory (Physikalisch-

Technische Bundesanstalt), monoenergetic beams can be achieved in the range 

of 24 KeV-19 MeV. 

- High-frequency positive ion accelerators (including cyclotron, synchrocyclotron, 

proton synchrotron and heavy ion linear accelerators). These pulsed beams can 

produce a neutron spectra spread over a wide range of energies. 

- High-frequency electron accelerators (including circular betatron and synchrotron and 

linear accelerators). Although primary radiation are X-rays, these accelerators can 

produce large numbers of neutrons depending on target nature, by terms of 

(γ,n) reactions.  
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- Nuclear reactors. Here neutron production occurs as a result of the fission 

process, achieved by a definite arrangement of fuel (uranium or plutonium), 

moderator (light or heavy water, beryllium or graphite) and neutron absorbers. 

Neutron energies range from thermal to over 15 MeV, with many gamma rays 

present.  

Some studies have already pointed out the importance of primary and 

secondary reference neutron fields for calibration of these instruments as 

necessary for advances in research methodologies (Newhauser et al.,2016). An 

additional problem concerning the use of neutron detectors in radiotherapy 

environments is the great change of the neutron spectra with increasing depth 

in tissue. This can generate misleading in readings of some detectors when used 

for different locations for ‘in-phantom’ measurements. Thus, the ideal choice for 

neutron measurements in clinical environments would be a combined use of 

different devices. Besides, the variable attenuation and scattering that neutrons 

undergo when trespassing human body implies the need of MC simulations to 

fully determine neutron fluences at any point.  MCNPX code is typically used 

to simulate neutron spectra inside RT rooms and patients. Calculation of this 

neutron spectrum may need information related to bunker and phantom 

geometries as well as linac composition, in order to obtain the most realistic 

photoneutron spectrum possible. Moreover, neutron photoproduction strongly 

depends on nominal energy of initial electrons, and a whole commissioning 

process, with accurate information about linac head composition is also 

desirable (González-Soto et al.,2011). Thus, in order to provide adequate PND 

estimations, data should be based on a combination of both experimental 

measurements and simulations in air and phantom locations. 
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2.3 Equivalent neutron doses and risk evaluation 

As previously stated, the RBE factor highly depends on radiation type (e.g., 

photons, neutrons, electrons) as well as particle energy, dose and biological 

endpoint. Peripheral dose estimations previously detailed represent a former 

step for the evaluation of Second Cancer Probability (SCP) related to 

radiotherapy treatments. Photoneutron spectrum varies along the patient, 

presenting thermal, epithermal and fast neutron fluence components; the latter 

especially important for superficial points and decreasing for deeper positions, 

due to neutron thermalization. In consequence, for an adequate organ neutron 

dose estimation, experimental measurements and MC simulations should be 

performed for different locations and depths in anthrophomorphic phantoms. 

However, as previously explained, there is no single detector able to measure 

total neutron fluences and they are usually estimated in terms of the thermal 

component, which is the simplest one to measure.  

For PND estimations in radiotherapy environments, dose equivalent at a point 

and organ-equivalent dose are the most significant magnitudes (Romero-Expósito 

et al.,2016). The first one can be defined as follows:  

𝐻𝑇 = 𝐷 · 𝑄 = ∫ ∫ 𝑄(𝐿𝐸𝑇) · 𝐷𝐿 · 𝑑𝐿 ·
𝑑𝑚

𝑚𝐿𝐸𝑇𝑚
    (eq. 1) 

where DL represents absorbed dose, Q is the quality factor for the specific 

radiation and integrals range over  unrestricted Linear Energy Transfer (LET) 

and mass of the studied organ (m). Although Q factor is difficult to evaluate 

due to its dependence on particle energy, recent publications (Romero-Expósito 

et al.,2016) demonstrated that dose equivalents calculated using Q and the 

much simpler radiation weighting factor wR (introduced by ICRP-103) are 

compatible. Thus eq. 1 can be rewritten as: 
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𝐻𝑇 = ∑ 𝑤𝑅 · 𝐷𝑇,𝑅𝑇    (eq. 2) 

According to ICRP definition, Equivalent Dose (H [Sv]) is a protection quantity 

calculated as the averaged absorbed dose (D [Gy]) in an organ or tissue T 

multiplied by radiation weighting factor wR (ICRP-103). For low-dose levels, 

this factor is used as a conservative and simplified measure of RBE (Figure 6), 

taking into account different particle nature, concerning radiobiological effect 

(wR(photons/e)=1, wR(neutrons)=2.5-20 depending on their energy). On the 

other hand, Effective Dose (E [Sv]) corresponds to the mean dose in organs or 

tissues of the whole human body, weighted by their radiosensitivity. This 

quantity is usually employed to indicate whole-body stochastic risk.   

 

 

 

 

Figure 6. Different radiation weighting factors and dependence with neutron energy. 

Extracted from: 

http://www.eurados.org/~/media/Files/Eurados/events/7thwinterschool/4_Menzel%20Hans_Cu

rrent%20Approach%20%20to%20Radiation%20Quality%20Specification%20in%20Radiatio

n%20Protection.pdf?la=en. 

http://www.eurados.org/~/media/Files/Eurados/events/7thwinterschool/4_Menzel%20Hans_Current%20Approach%20%20to%20Radiation%20Quality%20Specification%20in%20Radiation%20Protection.pdf?la=en
http://www.eurados.org/~/media/Files/Eurados/events/7thwinterschool/4_Menzel%20Hans_Current%20Approach%20%20to%20Radiation%20Quality%20Specification%20in%20Radiation%20Protection.pdf?la=en
http://www.eurados.org/~/media/Files/Eurados/events/7thwinterschool/4_Menzel%20Hans_Current%20Approach%20%20to%20Radiation%20Quality%20Specification%20in%20Radiation%20Protection.pdf?la=en
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As previously mentioned, the main knowledge regarding ionizing radiation 

effects on humans comes from atomic-bomb survivors, who suffered acute 

radiation exposures over a very short period of time. However, this exposure 

implied different biological damage mechanisms than those generated by 

radiotherapy, concerning low doses delivered in non-prolonged exposures 

separated in fractionated intervals. In consequence, there is still great debate on 

how this relationship can be extrapolated to radioinduced SMNs. SCP due to 

peripheral neutron and photon doses can be calculated using eq. 3, taking 

special attention to the Dose and Dose-Rate Effectiveness Factor (DDREF) for 

neutron contribution (Expósito et al.,2013): 

𝑆𝐶𝑃 = 𝜆 · 𝑤𝑅 · 𝐷   (eq. 3) 

where Equivalent doses (𝑤𝑅 · 𝐷) are multiplied by λ risk factors, established by 

ICRP-103 or BEIR IV (Biological Effects of Ionizing Radiation) models. This 

second cancer risk estimation factors are derived from the Lifetime Attributable 

Risk (LAR), representing the probability of an individual to develop (or die) 

from a disease associated to the irradiation. LAR values are obtained from the 

ERR (Excess Relative Risk: rate of an effect in an exposed population divided by 

the rate of the effect in an unexposed population minus 1) or EAR (Excess 

Absolute Risk, rate of an effect in an exposed population minus that of the effect 

in an unexposed population) over the expected lifetime. 

Currently existing epidemiological data have shown that an exposure above 50-

100 mSv can produce an increase on SCR among two of the most common 

cancer sites within 30 years after the RT treatment (Travis et al.,2003; Hung et 

al.,2016).  
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2.4 Peripheral neutron dose models 

The project lead by the Medical Physics Group of the University of Sevilla was 

based on the estimation of neutron equivalent dose in organs of patients 

undergoing high energy (≥10 MV) RT, by terms of a correlation model. This 

methodology associates readings from a neutron digital detector (located in the 

room, far from the patient) to equivalent doses at different locations inside an 

anthrophomorphic phantom.  

One of the main problems was finding appropriate coefficients that correlated 

measured neutron fluences with equivalent doses at any point. Although ICRU 

Report 57 provides factors for the estimation of ambient dose equivalent H*(10), 

personal dose equivalent in a slab phantom (for several incidence angles) and 

effective dose E (for complete body external irradiation at some specific 

geometries), these conditions are far from that of RT treatments. However the 

group succeeded in the implementation of a methodology for the systematic 

evaluation of these equivalent doses (eq.2) by the convolution of normalized 

Monte Carlo neutron spectra with the kerma factor (k, Siebert et al.,1995), 

radiation weighting factor (wR, ICRP-103) and measured thermal neutron 

fluences  (Φth) at every phantom point (see 2.4.3). Neutron equivalent doses 

were then correlated to readings from a SRAM-based online digital detector 

(Gómez et al.,2010b; Domingo et al.,2010a; Sánchez-Doblado et al.,2012) used to 

estimate thermal neutron presence in the room. Before generating this 

methodology, several topics here summarized had to be addressed: 

2.4.1 SRAM detector 

Introduced by our group, this device is based on the neutron-induced Single-

Event Upset (SEU) phenomenon that takes place in Static Random Access 

Memories (SRAM) when radiation LET overcomes their threshold (Vázquez-
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Luque et al.,2013; NCRP-151). In addition to the active behavior, its high photon 

rejection makes this device especially useful in RT facilities. 

This detector (Figure 7) was present during all the experiments performed to 

generate the neutron equivalent dose models, located inside the treatment room 

in an external position considered as the reference, as detailed in Figure 8 

(Romero-Expósito et al.,2015).  A previous exhaustive study was performed in 

order to identify the most suitable location for this device inside the treatment 

room in order not to disturb the patient and obtain a uniform thermal neutron 

dose response, for all the possible bunker configurations (Jiménez-Ortega et 

al.,2011). 

This allows the later correlation of different phantom measurements to detector 

readings at the reference location, performed during patient treatments. The 

goal was the direct estimation of organ doses by terms of a single measurement 

with the active detector located inside the room, during at least one of the RT 

sessions.  

 

 

Figure 7. SRAM based detector (a) exterior and (b) interior (128 SRAM memories). 
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Figure 8. Detector reference location in an example of the usual RT bunkers geometry. 

 

2.4.2 Monte Carlo simulations 

To characterize neutron spectra at measuring points, a detailed study of 

photoneutron field in the radiotherapy treatment room and inside each 

phantom point was performed by terms of Bonner Sphere Spectrometers 

(Domingo et al.,2009;2010b) and MC simulations (González-Soto et al.,2012a;b). 

A combination of both data was used to obtain the normalized neutron spectra 

at each calculation point. Full Monte Carlo simulations were carried out for a 

Siemens Primus linac (Hospital Universitario Virgen Macarena, Sevilla) (Figure 

9).  

Although the thermal component of total neutron fluence resulted almost 

uniform in the treatment room, fast component demonstrated to be inversely 

proportional to the square of the distance to the source. Dependences of these  
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Figure 9. MCNPX simulation of fast (up) and thermal (down) neutron fluence distributions 

inside the reference bunker at beam source (left) and patient (right) plain levels. Extracted from 

González-Soto et al. 2012a. 

 

 

spectra with several parameters, such as field size, linac energy and 

manufacturer, were evaluated and compared to experimental measurements 

(Sánchez-Doblado et al.,2012).  

Simulations and experimental measurements sagreeded in different neutron 

production for each manufacturer, with small dependences on neutron 

spectrum regarding linac energy (affecting only the total number of neutrons 

generated). Neutron spectra demonstrated to be independent of the field size 

(ranging from 2x2 cm2 to 20x20 cm2) and gantry angle incidence for midline 

points. Differences found for other positions were considered as negligible, 

bearing in mind the circular geometry of usual RT treatments around the 

isocenter. Finally, a variation in neutron spectra was found for the studied 

points when considering different treatment locations.  
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Taking into account these results, two generic models1 were performed for 

Head and Neck (H&N) and abdomen locations, grouping the majority of high-

energy pathology locations. Normalized neutron spectrum inside the phantom 

{𝜑𝑖,𝑗(𝐸)}, are shown for some calculation points in Figure 10 for both treatment 

locations, being valid regardless of nominal energy, machine manufacturer, 

field size and gantry angle.  

 

 

Figure 10. Neutron fluence spectra simulated inside NORMA phantom using a Siemens 

Primus linac in 15 MV for H&N (red) and abdomen (blue) conformal treatments1 for 

six representative points. Plot extracted from Sánchez-Doblado et al.2012. 

 

In order to model the dependence of neutron fluences with room size, MC 

simulations were also performed for different bunker geometries, obtaining a 

fitting function where one of the bunkers of Hospital Universitario Virgen 

Macarena was used as the reference (Sánchez-Doblado et al.,2012). 

                                                           
1
Conformal treatments consisting on 8 equispaced irradiations (every 45º) of 125 MU in 10x10 cm

2
 fields 

with source to axis distance of 100 cm (SSD= 93 and 91 cm respectively for H&N and abdomen 
locations). Isocenter location is represented as H and A in Figure 7.   



I. Preface                   2. Peripheral dose: 4. Peripheral neutron dose models 

26 
 

2.4.3 Anthrophomorphic phantom measurements. NORMA phantom 

An anthrophomorphical adult phantom was designed to mimic neutron 

interaction with human body. In order to correctly simulate this behavior of 

human tissue, several materials were previously studied (Domingo et al.,2011). 

Finally, polyethylene was chosen as a surrogate of human tissue and low-

density wood was used to simulate lungs (Figure 11). For organ dose 

estimation, sixteen accommodations for passive detectors (plastic and 

thermoluminiscent, TLD) were chosen as representative for organ location in 

the human body (Sánchez-Doblado et al.,2012). Correspondence among the 16 

NORMA measuring points and patient organs for is shown in the Table of 

Figure 11. These correspondences were done by comparing NORMA 

anthrophomorphic phantom to the reference mathemathical one, named Cristy. 

2.4.4 Neutron equivalent doe in organ and second cancer risk estimation 

Neutron equivalent doses for each point in NORMA phantom were evaluated, 

from eq.2, considering kerma approximation2 and using previously mentioned 

convolution procedure, described in the following equation: 

𝐻𝑇 = 𝛷𝑡ℎ ∫ 𝑘(𝐸) · 𝜑(𝐸) · 𝑤𝑅(𝐸)𝑑𝐸
𝐸

        (eq. 4) 

 

 

                                                           
2
Absorbed dose can be approximated by factor kerma as follows: D=k·Φ. Equivalent dose can be then 

calculated by:  HT=wR·D introducing neutron radiation weighting factor (wR; ICRP-103). Differences 
between dose equivalent and equivalent doses are much smaller than neutron measurement 
uncertainties making this approximation as acceptable for this purpose (Romero et al.,2016) 
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Figure 11. Scheme of the NORMA phantom composition and point location. Table in the right 

correlates these points with evaluated patient organs. Figure modified from Sánchez-Doblado et 

al.2012; Expósito et al.,2013. 

 

where: 

- Φth: thermal neutron fluences measured by the passive detectors located 

inside the phantom 

- k(E): kerma factor for ICRU tissue (Siebert et al.,1995) 

-    𝜑(E): MC neutron fluence energy spectra, normalized to the thermal 

contribution 

-   wR: energy-dependent radiation weighting factor from ICRP-103 
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Two types of passive detectors (PADC and TLD) were used for the 

measurement of neutron fluences at the 16 i-points inside NORMA for the two 

j-studied treatments (Sánchez-Doblado et al.,2012). Due to their different 

sensitivity to thermal, epithermal and fast components, a combination of both 

readings was used to correctly rescale total neutron fluence Φ from MC 

simulations, depending on treatment location and specific point. 

The methodology established by this group for peripheral neutron dose 

calculation, was designed to directly estimate SCP to 13 organs from the total 

number of high-energy MU received by the patient during the whole treatment, 

differentiating between two different treatment locations (Sánchez-Doblado et 

al.,2012; Expósito et al.,2013). A linear relation depending only on facility 

characterization, in terms of neutron production, was obtained. Thus, a simple 

commissioning for every facility is needed. This procedure consists in 3 single 

measurements at the reference location with a SRAM-based detector (Romero et 

al.,2015). Thus SCP, in cases per 1000, for an organ -k using model –j, can be 

calculated as follows (Sánchez-Doblado et al.,2012): 

[𝑆𝐶𝑃]𝑘,𝑗 (
𝑐𝑎𝑠𝑒𝑠

1000
) = 𝑐 (

𝑒𝑣𝑒𝑛𝑡𝑠∗

1000
) · 𝑁(𝑀𝑈) · 𝑠 · [

[𝑔]𝑘,𝑗(
𝜇𝑆𝑣

𝑒𝑣𝑒𝑛𝑡
)·[𝜆]𝑝,𝑘(% 𝑝𝑒𝑟 𝑆𝑣)

10
] (eq. 5) 

where: 

- c represents the characterization factor, obtained for each facility by 

following the procedure detailed in Romero-Expósito et al.,2015. This 

factor has two dependencies: one in terms of detector used, which has to 

be referred to events of the reference device (FC) and the other related to 

bunker surface (FA), taking into account the effect of room size on 

thermal neutrons distribution.  

- N is the total number of high energy MU delivered in one session of the 

treatment. 
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- s is the total number of sessions that contain high energy along the whole 

treatment. 

- gk,j  are the factors that correlate neutron equivalent dose in organ -k (μSv) 

to events of the digital reference detector for each treatment –j (Table I). 

- 𝜆𝑝,𝑘 risk factors for organ -k tabulated by -p protocol (BEIR VII or ICRP-

103), that correlate neutron doses to second cancer risk probabilities.   

- factor 10 was introduced to express the result in cases per 1000. 

According to this expression, the previously mentioned locations were 

considered to encompass the most common RT treatments. Then, gk,j factors 

were estimated from the combination of MCNPX simulations and passive 

detectors readings, giving values presented in Table I. 

 

Table I. Neutron equivalent dose in organ (μSv) per event at the SRAM-based detector, 

corrected by the area factor at digital device (gk,j), for the two general treatments. Sex is 

considered when selecting affected organs. Extracted from (Sánchez-Doblado et al.2012; 

Expósito et al.,2013). 
 

Organ Head Treatment Abdomen treatment 

Thyroid 0.71 ± 0.21 0.37 ± 0.11 

Esophagus 0.45 ± 0.13 0.65 ± 0.19 

Lung 1.32 ± 0.40 2.22 ± 0.67 

Breast 0.66 ± 0.20 1.62 ± 0.49 

Stomach 0.22 ± 0.07 0.55 ± 0.16 

Liver 0.23 ± 0.07 0.69 ± 0.21 

Colon 0.05 ± 0.01 0.21 ± 0.06 

Urinary bladder 0.27 ± 0.08 1.11 ± 0.33 

Ovary 0.05 ± 0.01 0.21 ± 0.06 

Skin 2.64 ± 0.79 2.64 ± 0.79 

Bone surface 0.50  ± 0.15 0.96 ± 0.29 

Red marrow 0.57  ± 0.17 1.90 ± 0.57 

Remainder 0.38 ± 0.11 0.41 ± 0.12 

 

 

These models allow the estimation of SCP (cases per 1000) for 13 organs for two 

different treatment locations. However, the appearance of new online active 
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miniaturized thermal neutron detectors, open the door to further investigations 

in order to improve and generalize these models. The advantage of the new 

detectors chosen, named TNRD (Thermal Neutron Rate Detector), was the 

possibility of performing online measurements at external and ‘in-phantom’ 

locations, directly in terms of thermal neutron fluences with the same device 

(Bedogni et al.,2014).  This would allow the generalization of the established 

methodology to be expressed in terms of thermal neutron fluence, without the 

need of referring data to the reference detector (in terms of SEU, Gómez et 

al.,2010b; Domingo et al.,2010a; Sánchez-Doblado et al.,2012). In addition, the 

active and miniaturized behavior would allow the verification and optimization 

of these models, as well as the introduction of patient anatomy and treatment 

technique influences (different locations and available techniques).   
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II. Hypothesis and objectives 

 
The acquired new miniaturized active thermal neutron detectors (TNRD), 

initially designed for nuclear purposes, can be used for patient dosimetry in 

radiotherapy. The use of these devices for peripheral neutron dose estimations 

would be useful not only for online patient measurements following the 

previously established methodology, but also for ‘in-phantom’ measurements. 

This would allow the improvement of the previously existing models, 

consisting on Head & Neck and abdomen locations for adult phantom, to more 

patient specific ones, including patient size. This methodology can be also 

generalized to be expressed in terms of thermal neutron fluences, thanks to its 

dual use. This would represent a previous step to model implementation in 

Treatment Planning Systems for risk evaluation in clinical routine.  Peripheral 

neutron and photon doses could be then considered as an objective decision 

tool for treatment selection strategy.  

 

Thus, the main objectives of this work are: 

1. Validation and characterization of the new TNRD thermal neutron 

detectors with the previously existing ones for their use in radiotherapy 

environments for both patient and ‘in-phantom’ measurements. 

2. Guarantee the validity of the existing models by terms of the new 

existing detectors. 

3. Adapting detectors setup to clinical environments considering 

electronics capability, as well as improving photon rejection for 

radiotherapy backgrounds. 

4. Enhancement of the existing models ensuring the reproducibility of ‘in-

phantom’ measurements.  
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5. Generalization of the currently existing models for peripheral neutron 

dose estimations, to express them directly in terms of thermal neutron 

fluence. Introduce patient dimensions by measuring different phantom 

sizes, performing patient measurements and comparing estimations for 

specific real cases. 

6. Clinical implication: evaluation of peripheral doses (neutron and photon) 

for different treatment locations, techniques, energies and linacs. 

Establishing a model that can be applied in the clinic for peripheral dose 

assessment and second cancer risk estimations.  
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III. Thesis core 

This section describes the body of this work, firstly introducing the necessity and 

purpose of each experiment. Then, a brief description of the methodology and 

measurements carried out will be presented. Finally, a selection of the main 

related publications concerning each topic will be added to illustrate 

accomplished results and conclusions.  A total of six full papers have been added 

within the body of the text (framed and highlighted in light beige) in this 

chapter, being published, accepted or sent to journals in the first tercil. In 

addition, seven short publications containing partial results, also published in 

indexed journals and two in the World Congress on Medical Physics & 

Biomedical Engeneering as full paper, have been included in the Appendix.  

 

1. Introduction 

 
(A)  Characterization of a new active thermal neutron detector 

The newly acquired Thermal Neutron Rate Detector (TNRD) is a miniaturized 

active thermal neutron detector initially designed for nuclear purposes. 

Therefore former to its introduction for peripheral dose measurements, the 

acquired prototypes had to be tested and adapted for clinical routine. For that: 

(i) Detectors were irradiated under several conditions in order to verify 

their adequate response in RT environments. TNRD readings were 

correlated to those of the SRAM-based reference detector, in order to 

establish a calibration factor. In addition, as pulsed neutron signals 

have to be measured under an intense photon background, linear 

response and reproducibility were studied under these specific 

conditions (Terrón, Irazola et al.,2014, Appendix A.1). 
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(ii) TNRD ‘external’ thermal neutron measurements, were compared to 

those of the reference detector by using the established methodology 

for the online assessment of second cancer risk in radiotherapy patients 

(Irazola et al.,2014a, Appendix A.2).  

 

(iii) In order to use these devices for the enhancement of the existing 

models, consisting in the correlation among readings of a reference 

detector (located in the room) and neutron dose estimations in several 

phantom points (Sánchez-Doblado et al.,2012; Expósito et al.,2013), ‘in-

phantom’ measurements had to be performed with TNRD devices. 

Preliminary results were compared to those of TLD devices, previously 

used for this purpose (Sánchez-Doblado F, Irazola L et al.,2014, 

Appendix A.3). 

 

(iv) Thermal neutron fluences were evaluated with TLD and TNRD 

detectors in all the phantom points for the two general treatments 

(H&N and abdomen), as well as a real IMRT one. Once both ‘external’ 

and ‘in-phantom’ uses of TNRD detectors were validated against 

reference detectors, we were able to ensure the use of these new devices 

for the final purpose of improving the existing peripheral neutron dose 

models. These global results, regarding TNRD use in radiotherapy 

environments, were published in Medical Physics journal (Irazola et 

al.,2014b, Section III.2.A). 

 

(B) Limitations and solutions of TNRD detectors in radiotherapy environments  

The prolonged use of TNRD devices for ‘external’ and ‘in-phantom’ 

measurements in clinical routine, showed several incongruences in detector 

response over time: 
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(i) A different loss in sensitivity to thermal neutron fluences was noticed 

for each one of the six available TNRD detectors after 9 months of 

continuous use. Meaning a possible different detector ageing in time, 

we decided to recalibrate them in a new thermal neutron source 

available at INFN, Frascati (Bedogni et al.,2016). In addition, we 

thought that having the option of periodically verify their stability 

under an external neutron source would be highly desirable. The 

neutron beam available at Centro Nacional de Aceleradores (CNA, 

Sevilla), seemed to be a good option, considering the proximity of this 

facility and its relation to the University of Seville. Several 

measurement tests and MCNPX simulations were performed in order 

to achieve an appropriate thermal neutron beam and detector setup. 

The goal was to obtain a stable beam that provided thermal neutron 

fluences in the order of those from calibration conditions at detector 

location, avoiding photon presence as much as possible. Preliminary 

results were published as a short work in Radiother Oncol (Praena et 

al.,2015). Final configuration concerning not only the validation of this 

source for the study of TNRD stability verification, but also bringing to 

light the possibilities available at the Pelletron Tandem accelerator of 

CNA, was published as a full article in Applied Radiation and Isotopes 

(Irazola et al.,2016a, Section III.2.B.1).  

 

(ii) Uncertainties introduced by the possible loss of signal, as a 

consequence of the necessary cable extension and/or cable irradiation 

throughout ‘in-phantom’ measurements may also represent a minor 

problem. Initial TNRD cable length showed problems when trying to 

reach different NORMA phantom points at the same time. Thus, we 

decided to elongate them and improve device electronic to make it 
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more compact and robust for clinical purposes. However this increase 

in cable length could lead to a decrease on TNRD signal, due to the 

small value of neutron fluences that are being measured. We first built 

an adaptor to test devices with both, original and extended lengths 

under the same irradiation conditions.  The other problem that we 

noticed was the inevitability of cable irradiation when measuring at 

different locations inside the phantom at the same time. To quantify 

how this fact can affect TNRD response, we decided to perform the 

same measurements with and without cable irradiation. Setup was 

chosen to irradiate either none of the cable or the maximum possible 

length. Main results obtained for the exhaustive study performed, 

regarding influence of these two parameters, were published on the 

World Congress on Medical Physics & Biomedical Engeneering as a full 

paper (Irazola et al.,2015a, Appendix B.1).  

 

(iii) The odd behavior found in TNRD signal when performing 

measurements under ‘critical’ conditions (in terms of photon 

background), made us think that detector readings were not completely 

reliable in clinical environments. TNRD detectors are mainly based on 

the combination of two solid state devices, one of which is sensitized to 

thermal neutrons. Neutron component is thus obtained from the 

substraction of both readings. Theoretically differences in terms of 

photon sensitivity among the devices had already been reduced in the 

manufacturing process to maximize photon rejection. However, due to 

the uncertainty related to real photon rejection of the detectors, we were 

not able to quantify and thus, correct the over- or under-estimation in 

their readings. This fact is of particular interest for our purpose, since 

we’re measuring small neutron signals under an intense photon 

background. Additionally, the broad range of circumstances that can 
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take place in clinical environments (facility, detector location, energy, 

etc.), make photon rejection uncertainties of TNRD readings 

unpredictable. As a first step we decided to evaluate its photon 

rejection capability under different photon fields and 

irradiation/detector conditions to verify dependencies. For that, 

measurements in a pure photon source as 60Co were firstly performed 

to ensure that their sensitivity to photons was a real problem. In 

addition, to quantify its contribution in clinical environments and 

dependence in energy, several tests were performed in 6 MV for clinical 

linacs (were a negligible neutron contribution is expected). Finally, 

directional dependence on detector response to photons, concerning 

gantry incidences, was also evaluated. These preliminary results were 

published as short works in Radiotherapy and Oncology (Irazola et 

al.,2015b; Terrón, Irazola et al.,2015; Irazola et al.,2015c, Appendix B.2-

4).  

 

(iv) Theoretical approaches, considering detector composition together with 

the observed irregular inconsistencies found, made us think that 

noticed TNRD photon rejection problems under critical conditions in 

clinical environments could be minimized. As devices are based on the 

subtraction of the signal of the non-chemically treated solid state device 

to that of treated one, the idea was quantifying photon final 

contribution to detector readings (representing differences in terms of 

photon sensitivity of the devices), in order to later correct the values. 

For that, a simple procedure leading to an improvement of neutron-to-

photon discrimination capability of TNRD detectors in radiotherapy 

environments was proposed, consisting of the use of a neutron absorber 

material based on a borated rubber. Paper was sent to Applied 

Radiation and Isotopes (Irazola et al., 2016b, Section III.2.B.2).  
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(v) However, as this procedure implies not only the acquisition of the 

mentioned material but several modifications in detector setup (e.g. 

phantom accomodations for detector location), we thought of an easier 

and more universal method, consisting on the use of low-energy (i.e. 6 

MV) measurements to evaluate this photon contribution. Paper was 

sent to Radiation Measurements (Irazola et al.,2016c, Section III.2.B.3).  

 

(C) Neutron peripheral dose model improvements 

Once the detector was validated and its implementation in clinical routine 

demonstrated as reliable, with the previously mentioned problems solved, we 

were able to use TNRD for their final purpose of enhancing peripheral neutron 

dose models in high-energy radiotherapy treatments. One of the main 

advantages of these devices is its small size, which allows their use for both 

‘external’ and ‘in-phantom’ measurements. This, together with their online 

behavior, permits not only the verification and improvement of the existing 

models (Head & Neck and abdomen), but also the generation of new ones 

regarding different phantom sizes (apart from adult ones).   

(i) As a first step, previous existing models (Head & Neck  and abdomen) 

were validated with TNRD detectors, evaluating which points are the 

most troublesome ones (Irazola et al.,2014c). In addition, considering 

the  goal of this work consisting of the implementation of a simple tool 

for patient risk estimation in commercial TPS, we evaluated the 

implemented script, containing the old version for peripheral neutron 

dose assessment, by comparing theoretical estimations to those 

obtained with TNRD (García Hernández et al.,2015). Results seemed to 

be in concordance, allowing the direct implementation of future 

enhanced models in TPS (Irazola et al.,2015d, Appendix C.1).  
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(ii) Then in order to validate the general behavior of these models, real 

treatments were measured with TNRD detectors inside the 

anthropomorphic phantom and compared to estimations obtained 

with the two generic models (Irazola et al.,2016d, Appendix C.2).  

 

(iii) Once the generality of these models has been proved and as it involves 

a global methodology (previously validated for all the existing linac, 

Sánchez-Doblado et al.,2012), we were in the position of improving the 

existing models. As a first step, the generalization of the methodology, 

in order to make it usable for any thermal neutron detector (the 

previous one was expressed in terms of SEU events of SRAM 

detectors) was a mandatory task. This was feasible thanks to the direct 

thermal neutron fluence estimations provided by TNRD devices for 

both locations (external and ‘in-phantom’), being able thus to directly 

correlate ‘external’ reference thermal neutron fluence measurements to 

peripheral doses at patient organs. Then conflictive points were 

evaluated, improving some of the previously established correlation 

factors. Finally, in order to take into account patient anatomy, which 

represents an important aspect concerning specific cohorts of patients 

(e.g. children or pregnant women), TNRD measurements were 

performed for the three acailable phantom sizes (child, teen and adult). 

Thus an enhanced global model that takes into account patient 

anatomy was established. This methodology is now available for any 

facility and thermal neutron detector. These improved models were 

employed for the evaluation of 510 measured patients, comparing the 

obtained results to those of the simple old models. Paper was sent to 

Physics in Medicine and Biology (Irazola et al., 2016e, Section III.2.C).  
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(D) Peripheral dose in clinical cases 

As a final step, we wanted to clinically validate the use of these improved models 

for the assessment of peripheral neutron doses. However in order to perform 

suitable cancer risk estimations, the consideration of both photon and neutron 

contributions to peripheral doses, is advisable (Sánchez-Nieto et al.,2016). Thus, 

our group has been working in parallel on an analytic peripheral photon dose 

model, valid for any isocentric technique and usable beyond 10 cm from the field 

edge (Sánchez-Nieto et al.,2015a). This allowed the global estimation of 

peripheral photon and neutron doses in order to have additional objective 

comparison parameters between different RT techniques. 

(i) An initial study, based in prostate pathology was performed to 

compare photon and neutron peripheral doses for inverse and forward 

IMRT and 3D-CRT in low (6 MV) and high (15 MV) energies, at 7 

relevant organs (Irazola et al.,2015e), using former versions of both 

methodologies. Obtained results together with the recent interest in 

hypofractionacted techniques, such as SBRT (Stereotactic Body 

Radiation Therapy), made us reflect on the necessity of deeper studies, 

containing these modalities as well as those avoiding the use of 

flattening filter (FFF). A preliminary study was performed for a lung 

case, comparing conventional techniques and fractionation (3D-CRT) 

to modern (IMRT and VMAT) and hypofractionated ones (SBRT), with 

and without the use of flattening filter (FF) for three different linac 

manufacturers (Siemens, Varian and Elekta) and energies (6, 10 and 15 

MV) (Irazola et al.,2016f, Appendix D).  
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(ii) Due to the scientific interest on this topic and the growing amount of 

publications related to hypofractionated techniques, we decided to 

perform a more exhaustive study. For that, we extend it to other 

pathologies, selecting the ten most common SBRT treatment types. The 

same CT contours and planning parameters were considered. Due to 

the general aspect and easy implementation of both models, thanks to 

the ready availability of input parameters, both peripheral doses 

(neutrons and photons) were directly calculated in a homemade 

Matlab script, which would be ideally transferred into a commercial 

TPS in the close future. The use of these data, either in terms of 

peripheral doses or second cancer risk probability would provide an 

objective parameter for the selection of the best treatment strategy, 

regarding patient anatomy and treatment characteristics (in terms of 

energy used and type of fractionation). Paper will be sent to Radiation 

Oncology (Irazola et al.,2016g, Section III.2.D). 
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2. Publications 

 

(A) 

 

A new online detector for estimation of peripheral neutron equivalent dose in 

organ 

 

Irazola et al., Med Phys 2014;41:112105 

 

Abstract 

Purpose: Peripheral dose in radiotherapy treatments represents a potential 

source of secondary neoplasic processes. As in the last few years, there has been 

a fast-growing concern on neutron collateral effects, this work focuses on this 

component. A previous established methodology to estimate peripheral 

neutron equivalent doses relied on passive (TLD, CR39) neutron detectors 

exposed in-phantom, in parallel to an active [static random access memory 

(SRAMnd)] thermal neutron detector exposed ex-phantom. A newly 

miniaturized, quick, and reliable active thermal neutron detector (TNRD , 

Thermal Neutron Rate Detector) was validated for both procedures. This first 

miniaturized active system eliminates the long postprocessing, required for 

passive detectors, giving thermal neutron fluences in real time.  

Methods: To validate TNRD for the established methodology, intrinsic 

characteristics, characterization of 4 facilities [to correlate monitor value (MU) 

with risk], and a cohort of 200 real patients (for second cancer risk estimates) 

were evaluated and compared with the well-established SRAMnd device. 
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Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy 

treatments through 16 strategic points inside an anthropomorphic phantom. 

Results: The performed tests indicate similar linear dependence with dose for 

both detectors, TNRD  and SRAMnd, while a slightly better reproducibility has 

been obtained for TNRD  (1.7% vs 2.2%). Risk estimates when delivering 1000 

MU are in good agreement between both detectors (mean deviation of TNRD  

measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with 

differences always smaller than 0.08 cases per 1000). As far as the in-phantom 

measurements are concerned, a mean deviation smaller than 1.7% was 

obtained.  

Conclusions: The results obtained indicate that direct evaluation of equivalent 

dose estimation in organs, both in phantom and patients, is perfectly feasible 

with this new detector. This will open the door to an easy implementation of 

specific peripheral neutron dose models for any type of treatment and facility.  

 

1. Introduction 

It is widely known the paradoxical fact that ionizing radiations, while being an 

effective therapeutic mean to fight cancer, also represent a potential source of 

new neoplasic processes. The study of risks associated to certain dose 

distributions is usually limited to the areas surrounding the tumor. However 

the rest of the body is similarly affected by the radio-induced toxicity with dose 

values that, although initially were considered insignificant, can be of the order 

of the ones that may affect any exposed professional. Although they have rarely 

been considered in the clinical routine of the institutions around the world, in 

the last few years, there has been a fast-growing concern about the peripheral 

radiation dose, outside the treatment volume, that patients receive additionally 

and unnecessarily.  
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Although in the case of photons (the main radiation contribution to the 

peripheral dose), there are well-known dosimetric mechanisms, there is not any 

comparable system to measure the neutron contribution (Xu et al., 2008). We 

have focused our studies on the latter, as it was the least analyzed because of its 

great complexity.  

During the last few years, some neutron detectors were developed and 

numerous experimental tests were done with medical linacs. The first results 

obtained with an active neutron detector, based on Static Random Access 

Memory (SRAMnd), indicated that the estimation of neutron dose in patients 

could be feasible (Gómez et al., 2010; Sánchez-Doblado et al.,2012). A first study 

on risk estimation for 1377 patients in 50 international facilities has been carried 

out for the 14 most frequent pathologies and 15 linac models (which virtually 

represent the totality of the existing machines; Expósito et al.,2012). 

The methodology presented in Sánchez-Doblado et al., 2012, is not restricted to 

a specific detector but applicable to any other. For example, to the new digital 

diode-based detector introduced by Guardiola et al.,2013. The aim of the 

present work is the validation of a novel miniaturized active digital detector 

named TNRD (Thermal Neutron Rate Detector), developed by Bedogni et al.2014, 

for its use in a clinical environment. The great advantage of this device is its 

dual use, both as online detector in clinical routine and for in-phantom 

measurements, due to its reduced size. 

2. Material and Method 

2.A. Digital detector TNRD  

The new thermal neutron detector, developed by the NESCOFI@BTF project 

(Scientific Commission V, INFN-LNF, Italy) is based on a commercial solid-

state device sensitized to thermal neutrons through a customized physical-



III. Thesis core   2. Publications: (A) A new online detector for estimation of 
perihpheral neutron equivalent dose in organ 

46 
 

chemical treatment. Details on design and composition of the detector can be 

found in Bedogni et al.,2014. With an active area of 1 cm2 and overall 

dimensions of approximately 1.5 x 1 x 0.4 cm3, it linearly responds in terms of 

thermal neutron fluence rate from 10 up to 106 cm-2·s-1. The TNRD signal is 

amplified in a low-voltage electronics module and sent to a PC-controlled 

programmable ADC. The control software was developed in LabView© (2010 

National Instruments), by the Politecnico di Milano. Compared to the SRAMnd 

detector (Gómez et al.,2010), the TNRD can correctly measure lower intensity 

fields. The TNRD output is a DC voltage directly proportional to the thermal 

neutron fluence rate (Bedogni et al.,2014). The calibration factor is obtained for 

every TNRD by exposing it in a reference thermal field at INFN-Frascati. The 

detector-to-detector response variability is in the order of ±5% (1SD). An 

additional uncertainty contribution is needed to account for the dependence of 

the TNRD response from the energy and direction distribution of the incident 

field, so that a 10% overall uncertainty for the TNRD response was estimated.  

2.B. Li thermoluminiscence dosimeters 

Standard 6LiF/7LiF pairs of TLD-600/TLD-700 (3 × 3 × 0.9 mm3 chips) dosimeters 

were used as an independent system to validate the thermal neutron fluences, 

obtained with TNRD detectors in different points inside a NORMA phantom 

(Sánchez-Doblado et al.,2012). Conventional neutron calibration was performed 

at Physikalisch-Technische Bundesanstalt in scattered neutron reference 

radiation fields, produced by a bare 252Cf and a D2O-moderated 252Cf neutron 

source and for gamma, using a 137Cs calibration source at a secondary standard 

dosimetry laboratory in CIEMAT (Centro de Investigaciones Energéticas 

Medioambientales y Tecnológicas).  
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On the basis of the results of glow curve analysis, thermal neutron fluences 

were obtained using the differences between TLD-600 and TLD-700 readings 

for each measured point in NORMA and the calibration factors as follows: 

             𝜙𝑖,𝑗
𝑇𝐿𝐷 = 𝑓600/700

𝑛 [𝑅600
𝑖,𝑗

− 𝑘𝑅700
𝑖,𝑗

]              𝑘 =
𝑓600

𝛾

𝑓700
𝛾⁄        (eq. 1) 

Where the calibration factors used are 𝑓600/700
𝑛 = 465𝑛 · 𝑐𝑚−2 (12%, k=2) for 

neutrons and 𝑓600
𝛾

= 1.86𝑥10−4𝑚𝐺𝑦 · 𝑎𝑢−1 (8%, k=2) and 𝑓700
𝛾

= 1.99𝑥10−4𝑚𝐺𝑦 ·

𝑎𝑢−1 (10%, k=2) for gammas. The global uncertainty for these procedures has 

been estimated at 15%. 

In order to validate TNRD for its use in the methodology established by 

Sánchez-Doblado et al.,2012, it was compared to both: the active SRAMnd 

detector, used for ex-phantom measurements in clinical routine and passive 

ones (here TLD), which are used for in-phantom measurements, to generate risk 

models.  

2.C. TNRD validation for clinical use  

First, the “reference factor”, defined as the quotient between the SRAMnd and 

the TNRD readings (unit: V-1·s-1), was studied by exposing the devices under the 

reference irradiation conditions in a linac: 10x10 cm2 field, 0° gantry angle and 

1000 Monitor Units (MU), and detectors located in front of the gantry axis, close 

to the wall (Figure 1) as recommended in Jíménez-Ortega et al.,2011 (reference 

position for patient measurements). Thus, once this factor is obtained [with a 

better accuracy than in (Terrón et al., 2014) by increasing the number of 

measurements], measurements can be performed in any facility by applying the 

methodology established in Sánchez-Doblado et al.2012, to estimate patient 

neutron equivalent dose in organ.  
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Figure 1. (a) SRAMnd and TNRD detectors (the metallic box is the detector based on SRAM, 

while the black one is the new detector TNRD presented in this paper) and (b) Location of the 

detectors in the treatment room when NORMA phantom is used (Sánchez-Doblado et 

al.2012). The insert shows how TNRD detector is placed inside the phantom. 

 

 

(a) 

(b) 
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As previously mentioned (section 2.A), intrinsic characteristics of TNRD 

detector had already been studied under a pure neutron beam by the 

manufacturer. However this device is also sensitive to the photon component, 

which is highly present in radiotherapy environments, thus its validation under 

clinical conditions becomes essential. Reproducibility and linearity were 

studied in this environment and compared to the previously used SRAMnd 

device. A series of 18 measurements were performed with TNRD and SRAMnd 

detectors, under the above-mentioned reference irradiation conditions during 

six days (3 each day).  Readings were corrected for linac stability by means of 

an ionization chamber placed inside the photon beam (this was not considered 

in previous measurements; Terrón et al., 2014). Linearity was studied for two of 

the detectors, in an extended range of typical monitor units (MU) of 

radiotherapy treatments (25 to 4000 MU) measured under the defined reference 

conditions. This study allows the knowledge of the minimum reliable 

measureable fluence.  

The next step was to compare their capabilities for facility characterization and 

patient measurements, for which this new detector would be useful from a 

clinical point of view.  

Characterization procedure (Expósito et al.,2013), was done for TNRD and 

SRAMnd in four different linacs (Terrón et al.,2014) (nominal energies ranging 

from 15 to 18 MV) in Hospital Universitario Virgen Macarena (HUVM) in 

Sevilla and Santa Maria delle Croci Hospital (SMCH) in Ravenna.  

By applying the reference factor to the readings of the TNRD, located in the 

reference position, neutron equivalent dose in organs was assessed as proposed 

in (Sánchez-Doblado et al.,2012). A cohort of 200 real patients from the 4 

facilities, were evaluated in terms of second cancer risk with both detectors. 

Estimates were done by two alternative methods. The first one uses the models 
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obtained during the characterization of each facility, as a function of the 

delivered MU for each patient treatment. The second one makes the estimations 

by applying the methodology established in Sánchez-Doblado et al.,2012 to the 

direct readings from the detectors, placed in the treatment room during patient 

irradiation.  

2.D. TNRD validation for in-phantom measurements  

The added new possibility of in-phantom measurements with an active detector 

for the first time has to be validated with the well-established methodology of 

classical passive detectors, sensitive to thermal neutrons [here TLDs; Sánchez-

Doblado et al.2012]. Measurements were performed in a Siemens Primus linac 

at HUVM with detectors located inside the NORMA phantom [Sánchez-

Doblado et al.2012 (Figure 1b)], to confirm their viability. Three treatments were 

considered: 

(i) Head and neck, eight beam incidences (at 0°, 45°, 90°, 135°, 180°, 225°, 

270°, 315°), 10 × 10 cm2 field size, 1000 MU, isocenter in the middle of 

the head. 

(ii)  Abdomen, same beam incidences, same field size and number of MU 

as in i, isocenter in the middle of abdomen, just in the border of the 

lower lungs. 

(iii) Prostate IMRT, seven beam incidences (at 0°, 52°, 95°, 156°, 204°, 265°, 

308°), 420 MU, isocenter at the prostate level. 

3. Results and discussion 

3.A. TNRD validation for clinical use  

A mean reference factor of 53.55±1.54 events/V·s (1SD) has been obtained for the 

TNRD detector with respect to the SRAMnd, used as a reference. 
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The uncertainty in reproducibility of neutron fluence measurements, 

normalized to the mean value along the days, is lower than 1.7% (1SD) for 

TNRD, which is slightly better than the 2.2%(1SD) obtained for the SRAMnd 

detector.  

A well-fitting linear regression model (R2=0.9999) was obtained without 

saturation effects observed, for both detectors. Figure 2 shows the mean 

standard deviation (error bars for variations among both detectors used) for 

two of the six available TNRD detectors, as a function of thermal neutron 

fluence (logarithmic representation) in the typical radiotherapy treatment 

range. We can estimate that, considering an uncertainty over 5%, the minimum 

reliable thermal neutron fluence is about 0.19 x105/cm2, corresponding to 

approximately 5 MU in this reference conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Average Standard Deviation (%SD) with the variation between two of the six 

TNRD detectors represented as error bars, as a function of thermal neutron fluence (x105/cm2) 

in logarithmic representation. 
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The risk specific models for the four studied cases (sex and treatment site 

combinations) were generated for each facility. Using average values for risk 

estimates when delivering 1000 MU, in the four possible situations for the 4 

studied facilities, obtained mean deviation of TNRD measurements with respect  

to the ones of SRAMnd is 0.07 cases per 1000. Differences were always smaller 

than 0.08 cases per 1000.  In consequence, TNRD represents a good alternative 

to the previous detector.  

Figure 3a and 3b show the Total Risk of acquiring a second cancer (cases per 1000) 

estimated from the characterization of one of the 4 studied facilities (lines) and 

for the TNRD [3a] and SRAMnd [3b] direct measurements (symbols). The good 

agreement between these two alternatives (TNRD vs. SRAMnd) can be observed 

in this example.  

3.B. TNRD validation for in-phantom measurements 

Figures 4a-c show the good results for in-phantom measurements with TLD 

and TNRD. Note that, for each treatment type, there are some missing points, 

which were inside the photon treatment field and, therefore, were not 

considered (they are not reliable as they are performed under an intense photon 

field; however, this does not represent a problem as interest is focused on 

peripheral dose). 

4. Conclusions 

A new miniaturized active online thermal neutron detector named TNRD, has 

proven itself as a good alternate to previously necessary active and passive 

detectors for patient-related neutron dosimetry (SRAMnd), and second cancer 

risk assessment in radiotherapy (TLD, CR-39). This device has been validated 

and set-up. We can conclude that it is equally acceptable for patient 

measurements, being not only slightly more reproducible and sensitive than the  
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Figure.3. Comparison of experimental (symbols) and estimated (line) Total Risk, cases per 

1000, for radiotherapy patients in one of the four studied facilities, obtained by (a) TNRD and 

(b) SRAMnd procedures. 
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Figure.4. Thermal neutron fluence (x106 cm-2) obtained by the new digital detector TNRD 

compared to TLD readings, in the 16 NORMA phantom points, for the three treatments.  
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well- established SRAM-based digital device, but also because it can be used for 

in-phantom measurements, which was not possible for the previous 

device.TNRD will allow the expression of reference measurements in terms of 

physical magnitude (neutron fluence) instead of events, as used in the previous 

methodology.  Moreover, the new device is built with low cost commercially 

available materials, using modest electronics. In addition, TNRD could offer the 

possibility of measuring, at the same time, photon component of peripheral 

dose, although further investigation is needed for these two functionalities.  

TNRDs, can be used in the reference ex-phantom position to estimate 

equivalent dose in organs. Additionally, given its reduced volume, the TNRD 

can be used in-phantom, in conjunction with location-specific neutron spectral 

information, for the direct estimation of neutron peripheral doses. This will 

allow to: 

- improve the existing general risk models (developed so far for head & neck 

and abdomen, in the case of adult size)  

- produce new specific models, for different pathologies and treatment 

techniques.  

This opens the door to the implementation of these models for peripheral 

neutron dose in the context of treatment planning systems. 
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(B.1) 

 

Using a Tandem Pelletron accelerator to produce a thermal neutron beam for 

detector testing purposes 

 

Irazola et al., Appl Radiat Isot 2016;107:330-334 

 

Abstract 

Active thermal neutron detectors are used in a wide range of measuring devices 

in medicine, industry and research. For many applications, the long-term 

stability of these devices is crucial, so that very well controlled neutron fields 

are needed to perform calibrations and repeatability tests. A way to achieve 

such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator 

available at the CNA (Seville, Spain), is reported here. This paper shows 

thermal neutron field production and reproducibility characteristics over few 

days. 

1. Introduction 

Achieving stable thermal neutron beams for calibrating and testing thermal 

neutron detectors is an important challenge in a number of fields where 

ionizing radiations are employed. Traditionally, metrology-grade thermal 

neutron fields are obtained by moderating radionuclide sources of 252Cf or 

241Am–Be, with large polyethylene or graphite blocks. An example is the 

SIGMA facility of IRSN France (Muller et al.,2003; Lacoste et al.,2007). However, 

most of the existing facilities were decommissioned because their internal 



III. Thesis core                           2. Publications: (B.1) Using a Tandem Pelletron accelerator to produce a 
thermal neutron beam for detector testing purposes 

60 
 

sources were too old to guarantee a safe operation. In addition, achieving large 

radionuclide sources for new facilities has became unfeasible for both 

economical and safety reasons. As a consequence, the scientific community is 

searching for alternative sources of thermal neutron fields. Exploiting the 

7Li(p,n) reaction at near-threshold proton energies is a good option because 

established nuclear data are available and very low-energy neutrons can be 

achieved, thus requiring very reduced amount of additional thermalizing 

material.  

The 3 MV Tandem Pelletron accelerator13 (Praena et al.,2013) at CNA (Centro 

Nacional de Aceleradores, Sevilla, Spain) was used for this purpose. Some 

sheets of lead were added to reduce the photon field and a few cm of thick 

polyethylene moderator was adopted as moderator. 

The field was monitored, over three days of operation, using (a) a proton 

current integrator connected to the target backing, and (b) the active thermal 

neutron detector called TNRD (Thermal Neutron  Rate  Detector) (Bedogni et 

al.,2014), used in medical physics (Irazola et al.,2014; 2015b) to estimate neutron 

equivalent doses to peripheral organs for oncological patients treated with 

medical accelerators (Expósito et al.,2013), using the methodology established 

by Sánchez-Doblado et al.,2012, Gómez et al.,2010 and Romero-Expósito et 

al.,2015. 

2. Material and method  

2.1 TNRD neutron detector 

Figure 1 shows the TNRD detector, developed by INFN-LNF, Italy (Bedogni et 

al., 2014). This detector is based on a low-cost commercial solid-state device 

sensitized to thermal neutrons through a customized physical–chemical  

                                                           
1
 http://www.pelletron.com/negion.htm 

http://www.pelletron.com/negion.htm
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Figure 1. One of the TNRD detectors (marked with a white box) and associated six electronics 

channels.  

 

treatment. Its active area is 1 cm2 and the overall dimensions are approximately 

1.5 x 1 x 0.4 cm3 . It linearly responds in terms of thermal neutron fluence rate 

from 102 up to 106 cm-2 s-1. TNRD signal is amplified in a low-voltage electronics 

module and sent to a PC-controlled programmable ADC. Control software was 

developed in LabView© (2010 National Instruments). TNRD output is a DC 

voltage directly proportional to the thermal neutron fluence rate. Every TNRD 

is individually calibrated. The accuracy of the detector is within 75%, or better, 

for the fluence rate interval from 500 up to 106 cm-2 s-1 (Bedogni et al.,2014). 

Additional uncertainty terms should be added, in practical measurements, if 

the neutron field has unknown direction distribution and is superposed to an 

intense gamma component. The parasitic response of TNRD to photons has 

been additionally evaluated (Terrón et al.,2015; Irazola et al.,2015a,c). The 
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reproducibility of TNRD, previously assessed using a constant thermal field 

from a moderated 241Am–Be source, is ±1.2% over a time interval of days. 

2.2 Neutron spectrum determination 

The 7Li(p,n)7Be reaction has been studied in terms of total neutron yield, energy 

and angle distribution of the secondary neutrons as a function of the target 

thickness and projectile energy (Yu et al.,1998; Lederer et al.,2012). A 

FORTRAN code was written to generate the angle – and energy – distribution 

of neutrons based on analytical description of experimental data (Lee et 

al.,1999). MCNPX (v2.5) (Pelowitz et al.,2005) was used for their transport. 

ENDF/B-VII.0 and ENDF/ B-VI were used for particle-production and transport 

data and photoatomic data, respectively. The neutron spectra generated by 

7Li(p,n)7Be at 1912 keV, which is used in the present experiment, was 

successfully modeled previously by Praena et al.,2013. The method of 

modelization, FORTRAN code for generation and MCNPX for transport, was 

also checked with neutron spectra emitted at different angles by the 7Li(p,n)7Be 

reaction near-threshold, Praena et al.,2014. MCNPX was also used to determine 

the optimal thickness of lead needed to reduce the parasitic photon field, due to 

the 477 keV photons from 7Li(p,n)7Be reaction. This value was fixed to 2.55 cm 

(17 lead sheets of 1.5 mm each), located 0.4 cm after the target. To thermalize 

the field, an optimized 2.2 cm thick polyethylene sheet was added immediately 

after the lead. Lateral size of both pieces was 20x20 cm2. TNRD detector was 

then placed in an aluminum support 3.5 cm after the polyethylene block 

(Praena et al.,2015). This is the conventional point of test. The complete setup is 

shown in Figure 2.  

Figure 3a shows simulated angle-integrated primary neutron spectrum at 

source position while Figure 3b displays the simulated neutron spectrum at 

detector position. It can be noticed that only neutrons of energy below 1 eV  
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Figure 2. (a) Experimental setup aligned following the lithium target by using a fixed laser. 

(b) Detail of TNRD setup consisting on: a 2.55 cm lead layer and a 2.2 cm polyethylene (Ply) 

layer (both of 20x20 cm2) located between the lithium target and the detector (distance of 

approximately 8.9 cm). Inset shows TNRD location in the aluminum support. 

(a) 

TNRD 

detec

tor 

Pb 

Ply 

laser 

TNRD 
setup 

(b) 
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Figure 3. (a) Simulated neutron unitary spectrum: (a) at source position with 7Li(p,n) reaction 

at Ep=1912 keV and (b) at TNRD position using 2.2 cm polyethylene and 2.55 cm lead filters. 

Inset shows how the majority of neutrons below 1 keV have an energy lower than 1 eV. 

(a) 

(b) 
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reach TNRD. Neutron spectra were obtained with a MCNP tally 4 which 

calculates de flux (n/cm2) averaged over the lithium target (a) TNRD detector 

(b) normalized to total number of neutrons generated in the simulation. 

2.3 Proton accelerator and target  

The neutron beam was obtained from the CNA 3 MV Tandem Pelletron 

accelerator at 917 kV nominal voltage. Figure 4a shows the final part of the 

Basic Nuclear Physics (FNB) Tandem accelerator line, used in this experiment. 

It consists on a vacuum pipe housing a copper backing as cooling system. This 

backing holds a 50 μm thickness aluminum foil and the lithium target layer. 

The dimensions of this piece are 3x3x0.8 cm3 with a centered cylinder hole of 1 

cm of diameter and 0.75 cm height, used to place the lithium layer (380 μm 

thickness). To prevent target melting, the copper support contains an internal 

cooling water circuit. Proton current on the lithium target was measured by 

connecting the copper backing to an Ortec Digital Current Integrator (Model 

439). The nominal reproducibility of the electrometer is ±0.01%. Proton current 

could be varied up to about 2 μA, corresponding to a thermal neutron fluence 

of about 2500 cm-2 s-1 at the point of test.  

To prevent non-target contributions to the measured proton current, a double 

collimator system consisting of two rings, one in copper and the other in 

Teflon® (connected through two ceramic screws, as shown in Figure 4b), was 

used. Collimators and target holder have external diameter of 3 cm. Internal 

diameter is 1.1 cm for copper ring and 1 cm for Lithium target and Teflon® 

ring. 

Beam focusing (Figure 4c) was checked using a ViewPort24 (DN 40 CF) device 

coupled with a luminescent quartz screen. 

                                                           
2
 https://www.pfeiffer-vacuum.com/productPdfs/420GSG040.en.pdf 

https://www.pfeiffer-vacuum.com/productPdfs/420GSG040.en.pdf
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Figure 4. (a) Experimental setup at the 3 MV Tandem Pelletron accelerator at CNA 

(Seville), (b) copper-Teflon® disc used to estimate the current directly reaching the lithium 

target (blurred of the image is due to the fact that target has to be manipulated inside an 

Argon chamber to avoid lithium oxidation) and (c) monitor screen detail of the neutron 

beam collimated in the ViewPort. 

(a) 

(b) 

(c) 
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3. Measurement results 

Measurements were performed during 3 different days. Every day, the 

accelerator setup (focalization, energy and proton current values) was fixed. In 

this phase, TNRD reading was observed as a function of the nominal proton 

energy, allowing to identify the reaction threshold (1880 keV) and to verify the 

energy calibration of the accelerator. Energy was then increased to the project 

value of 1912 keV. The proton current was tuned to achieve values of thermal 

neutron fluence in the order of 2x103 cm-2s-1. The three series of 15 min 

measurements performed in this condition are shown in Figure 5. For every 

measurement, the 15 min-time-integrated reading of the TNRD (termed TNRD) 

and of the proton current monitor (termed Q) were collected. The ratio between 

these two quantities, termed TNRDn, is the normalized TNRD reading. These 

quantities are reported in Table I for all measurements. The column s% reports 

the standard deviation of the measurements collected during each day. As 

expected, s% values for Q are slightly lower than for TNRD, meaning that the 

proportionality between proton current and thermal neutron fluence rate at the 

point is slightly perturbed by other beam-related sources of in fluence 

(positioning, focus, energy constancy). The impact of these sources of influence 

on the beam reproducibility may be estimated from the values of s% for TNRDn. 

These values, ±3.5%, ±2.2% and ±1.7%, have been corrected by subtracting in 

quadrature the TNRD reproducibility (±1.2%), obtaining ±3.3%, ±1.9% and 

±1.2%. Every measurement day is characterized by a different average value of 

TNRDn (±1.24, ±1.31 and ±1.21), indicating that each time the accelerator is 

turned on and regulated, a slightly different point of work is achieved. Thus, 

the global inter-day uncertainty obtained for the thermal neutron beam is 

±4.0%, taking into account TNRD reproducibility. The availability of a reliable 

thermal neutron monitor, in parallel to the proton current measuring device, 

will be a mandatory condition to achieve reproducible irradiation conditions on  



III. Thesis core                           2. Publications: (B.1) Using a Tandem Pelletron accelerator to produce a 
thermal neutron beam for detector testing purposes 

68 
 

 

Table I. TNRD readings, accumulated charge (Q) and TNRDn values along the three 

measurement days. 

 

this thermal neutron field. When irradiating generic devices in routine 

condition, the thermal neutron detector could be permanently positioned at a 

given angle from the target (different from 0°), or embedded in the moderating 

block, in order not to perturb the device under test. This would allow providing 

the exact value of thermal fluence delivered to a sample during a given 

exposure, with uncertainties comparable with the TNRD reproducibility. 

Rough estimation of the thermal field homogeneity was performed with 

additional acquisitions by shifting the TNRD, 3 mm vertically and, successively, 

3 mm laterally, from the conventional point of test. This shift was much larger 

than the positioning uncertainty guaranteed by the laser-based alignment  
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Figure 5. On-line monitoring of the normalized ratio: (signal in V·s per accumulated charge in 

C) due to the thermal neutron fluence for each measurement. The number in the right part of 

each graph represents the global ratio among the whole measurement. 
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system (<1 mm). The corresponding TNRDn values differed by less than 1% 

from the value at the point of test.  

An additional test was performed by rotating the TNRD of about ±20°. The 

observed decrease in the TNRDn value was about 7%, fully coherent with a 

cosine correction with angle 20°. This indicates that the angular distribution of 

the emitted thermal neutrons is nearly monodirectional. It is therefore clear that 

a good detector orthogonality is crucial for reproducible irradiation condition. 

4. Conclusions 

A thermal neutron test facility was achieved at the 3 MV Tandem Pelletron 

accelerator at CNA. A specific combination on proton energy, target thickness, 

lead shield and polyethylene moderator was studied to achieve an almost pure, 

photon-free, thermal field at the conventional point of test. Values of thermal 

neutron fluence rate up to 2x103 cm-2s-1 can be easily achieved. The 

reproducibility of the thermal neutron beam was estimated in ±4%, over three 

days of operation, using a proton current integrator fixed on the target backing, 

and a TNRD -type miniaturized thermal neutron detector placed at the point of 

test. As expected, the proportionality between the proton current and the termal 

neutron fluence rate, is perturbed by a complex set of beam-dependent factors  

of influence. These factors limit to about ±3% the reproducibility of the thermal 

field at the point of test. However, this facility can still be used to deliver 

accurate values of thermal neutron fluence, if a thermal neutron detector is 

permanently adopted in parallel to the proton current monitor. Embedding this 

detector in the moderator, in a peripheral position with respect to the 0° 

direction, would constitute a convenient option. Additional experiments are 

planned to (a) estimate the overall accuracy of the delivered thermal neutron 

fluence with a couple of TNRDs, one embedded in the moderator (monitor) and 

another at the point of test, (b) evaluate the spatial homogeneity of the thermal 
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field over the whole area of the moderating plate, (c) measure the associated 

photon field with a reference instrument calibrated in air-kerma, and (d) 

establish metrologic traceability to a primary metrology Institute, for the value 

of thermal neutron fluence rate. After completing these actions, the studied 

field could be used in practice as thermal neutron calibration facility. Main 

advantages of this facility are:  

– The spectral purity, meaning that the field is not contaminated by fast 

neutrons;  

– Absence of radioactive sources, with considerably less safety problems with 

respect to radionuclide-based thermal fields.  

– The installation of a continuous beam monitor will allow to use the facility 

with both rate-meter type or integration-type detectors. 
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Improving the neutron-to-photon discrimination capability of detectors used 

for neutron dosimetry in high energy photon beam radiotherapy  

 

Irazola et al., Appl Radiat and Isot, in press 

 

Abstract  

The increasing interest of the medical community to radioinduced second 

malignancies due to photoneutrons in patients undergoing high-energy 

radiotherapy, has stimulated in recent years the study of peripheral doses, 

including the development of some dedicated active detectors. Although these 

devices are designed to respond to neutrons only, their parasitic photon 

response is usually not identically zero and anisotropic. The impact of these 

facts on measurement accuracy can be important, especially in points close to 

the photon field-edge.  

A simple method to estimate the photon contribution to detector readings is to 

cover it with a thermal neutron absorber with reduced secondary photon 

emission, such as a borated rubber. This technique was applied to the TNRD 

(Thermal Neutron Rate Detector), recently validated for thermal neutron 

measurements in high-energy photon radiotherapy. The positive results, 

together with the accessibility of the method, encourage its application to other 

detectors and different clinical scenarios. 
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1. Introduction 

New radiotherapy techniques, such as those with intensity modulation of the 

beam fluence, reduce the amount of healthy tissue exposed to high radiation 

doses. However, these techniques are usually associated to a greater demand in 

terms of Monitor Units (MU), which implies an increase of the out-of-field 

doses (also called peripheral doses; Xu et al.,2008).  The latter, together with 

increment of the low-dose volumes and the larger survival after radiotherapy 

treatments, have made the incidence of late effects, such as second malignant 

neoplasms more relevant. Therefore, an important number of dosimetry studies 

have been conducted to determine peripheral doses more accurately. These 

doses have two main components: leakage/scattered photons and neutron 

contamination. Since dosimetric methods for photon doses are well-known 

(Sánchez-Nieto et al., 2015; Taddei et al.,2013), our group has focused on the 

neutron component, and established a methodology to estimate neutron 

peripheral doses (Sánchez-Doblado et al., 2012; Expósito et al., 2013, Romero-

Expósito et al.,2015; Vázquez-Luque et al.,2013). This procedure was developed 

for a particular thermal neutron detector (Gómez et al., 2010) but applicable to 

any other (Guardiola et al., 2013; Bedogni et al., 2014). 

Specifically, the methodology by Sánchez-Doblado et al., 2012 was applied to a 

TNRD (Thermal Neutron Rate Detector) detector, designed and developed by 

Bedogni et al., 2014 and thus characterized for neutron peripheral dose 

measurements in radiotherapy environments. The TNRD showed satisfactory 

performances in terms of user friendliness and high sensitivity (Irazola et 

al.,2014). Nevertheless, recent experiments with the detector located ‘in-

phantom’ close to the border of the field, indicated the need for further 

investigations in relation to unexpected behaviors. A comprehensive analysis 

on the electronic, cable length and detector ageing, as possible causes for the 

rear events, was carried out. However, it turned out to be related with photon 
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rejection issues and detector anisotropy under some critical conditions (Irazola 

et al., 205a;b;c; Praena et al.,2015; Irazola et al.,2016). These parasitic effects were 

indeed directly observed during exposures with 60Co and 6 MV Linac (Terrón et 

al.,2015), where no neutrons are present.  However, a methodology for the 

neutron-to-photon discrimination in TNRD readings during high-energy 

photon radiotherapy has yet to be found.  

This paper proposes a simple method to estimate photon contribution to TNRD 

readings by covering the detector with a thermal neutron absorber (with 

reduced secondary photon emission), such as a borated rubber. For the present 

work a commercial material, called Flex-Boron® 

(http://www.deqtech.com/Shieldwerx/Data_Sheets/SWX-238.pdf), was used. This 

material (Gómez et al.,2010; D’Mellow et al.,2007) is expected to reduce incident 

thermal neutron field to less than 1%. Thus, the pure thermal neutron reading 

of a detector can be obtained by subtracting the reading of the rubber-covered 

detector to the uncovered one.  

2. Material and method     

2.1 TNRD detector 

TNRD detector, developed by Bedogni et al., 2014 in the framework of the 

NESCOFI@BTF project (2011-2013, Scientific Commission V, INFN-LNF, Italy), 

is based on a low-cost commercial solid-state device made sensitive to thermal 

neutrons through a customized physical–chemical treatment (mainly consisting 

on a 6Li deposition layer). Its active area is 1 cm2 and its overall dimensions are 

1.5 cm x 1 cm x 0.4 cm (Figure 1). Its output is a DC voltage, which is 

proportional to the thermal neutron fluence rate (for this reason the device is 

called "rate detector"). This signal is amplified in a low-voltage electronics 

module especially developed by the project team. The amplified output is sent 

to a programmable ADC (NI USB-6218 BNC, 16 bit, up to 250 kilo samples per 

http://www.deqtech.com/Shieldwerx/Data_Sheets/SWX-238.pdf
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second) controlled by a PC through a LabView application. TNRD has a linear 

response to thermal neutron fluence rates exposures from 102 up to 106 cm-2·s-1. 

Every single TNRD (Figure 1) is individually calibrated by exposing it to a 

suitable reference thermal field (Bedogni et al.,2016). Detector-to-detector 

response variability is of the order of ±5% (1 SD). 

 

 

Figure 1. TNRD (Thermal Neutron Rate Detector). 

 

2.2 The borated rubber 

Firstly, the photon absorption of borated rubber was characterized in relation to 

equivalent water material (a common surrogate of human tissue). Results 

showed that 0.32 cm (ρ=1.64 g/cm3) of rubber presented the same photon 

attenuation as 0.5 cm of polystyrene (ρ=1.05 g/cm3) usually employed. This 

equivalence is independent of the primary photon field energy, since the out-of-

axis photon spectrum is mainly composed by photons below 0.5 MeV 

(D’Mellow et al.,2007; Chofor et al.,2012). In addition, due to the high neutron 

capture cross section of 10B, the borated rubber acts as an efficient neutron 

absorber (Guardiola et al.,2013; http://www.johncaunt.com/shielding/neutron-

shielding/jc238/) ,with a nominal thermal neutron transmission factor of 3.8 x10-3.  

Two layers of Flex-boron® (5 cm x 20 cm) were used to cover above and below 

the set of five detectors used here.   

http://www.johncaunt.com/shielding/neutron-shielding/jc238/
http://www.johncaunt.com/shielding/neutron-shielding/jc238/
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2.3 Irradiation tests 

Exposures were performed in a Siemens Primus Linac (6 and 15 MV) at 

Hospital Universitario Virgen Macarena, Seville (Spain) for a 40x10 cm2 field 

and 300 MU (1 MU delivers 1 cGy under reference conditions, e.g. 10x10 cm2, 

gantry 0º, source-axis distance 100 cm, depth of maximum for each energy in 

water). The following test were performed: 

(a) Free-in-air measurements 

During the irradiation of the patients, thermal neutron measurements are 

performed with bare detectors located in front of the couch, at about 3 m 

distance (Expósito et al.,2013; Figure 2). Neutron peripheral dose estimations 

are done from detector readings following the methodology established in 

Sánchez-Doblado et al., 2012. Under this conditions, it is expected a minimal 

photon contribution to the detector reading and a low directionality 

dependence for the detector. This assumption was tested under an adverse 

clinical scenario representative of a breast treatment. It consisted of four beams 

of high (15 MV) and low (6 MV) energy, applied alternatively using 122° and 

300° incidence angles for each energy. 8 MU and 168 MU for the high and low 

energy beams were used, respectively.   

(b) In-phantom measurements at different distances 

Out-of-field photon doses were determined with a PTW Farmer® ion chamber 

30013 (operated at -250 V) and a PTW Unidos electrometer. Measurements were 

carried out at a set of positions from 0.1 to 2 m from the border of the field, with 

0º gantry incidence (perpendicular to the treatment couch). Ion chamber and/or 

five TNRD detectors were inserted in a set of plastic layers (30x30 cm2) 

simulating ‘in-phantom’ attenuation; patient scatter was mimicked with 

additional plastic material (Figure 3). 
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Figure 2. TNRD location for patient measurements (free-in-air). 

 

Two different settings inside the (8 cm thick) phantom were used: one where 

the ion chamber and the TNRD detectors were placed together at mid depth of 

the plastic phantom (insert i in Figure 3) and the other one where the TNRD 

detectors were placed (insert ii in Figure 3) between borated rubber layers (Flex-

boron®) with the equivalent replaced plastic thickness (see section 2.2). 

“Plastic” and “borated” measurements were carried out at low energy (6 MV), 

where neutron presence is negligible and at high energy (15 MV). 

(c) In-phantom measurements at different beam incidence angles  

In order to evaluate TNRD anisotropic response, two specific field-edge 

distances (0.15 and 0.35 m) were measured for 14 different beam angle 

incidences, covering 360°.  
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Figure 3. (a) Set up for the photon sensitivity study for measurements outside the treatment 

field (0.1 to 2 m from the field edge) for five of the devices. Additional plastic material has been 

used to simulate patient scatter. TNRD detectors were placed as shown in insert (i) with Flex-

boron material above and below and (ii) with an ionization chamber location for photon dose 

estimations when plastic is used. Figure (b) represents a schema of detector location in the slab 

phantom. 

 

3.  Results and discussion 

3.1 Free-in-air measurements 

Figure 4a shows the time-dependent TNRD reading for the selected clinical 

scenario. Detector "baseline" is represented by the red dashed line. The α and β 

peaks correspond to the neutron signal from the 15 MV beam. Inserts show a 

zoom of TNRD readings when: (4b) no beam is present and (4c) only the 6 MV 

beam is on (negligible neutron presence). The behavior of TNRD readings 

showed in insert (4c), indicates that photons induce baseline oscillations but, as 

expected, their average is null in practice. 

It should be noted that, due to the anisotropic response of the detector, the 

point where a photon-induced secondary electron is generated would affect the  
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Figure 4. (a) TNRD signal during the free-in-air measurement for a real breast treatment 

case, combining 6&15 MV. Baseline is represented by the red dashed line. Insert (b) and (c) 

show a zoom of TNRD signal for no beam and 6 MV beam, respectively. 

 

 

charge collection event, which may result in a positive or negative pulse. 

The internal structure of the detector was designed so that the convolution 

of these signals yields a zero-average voltage level in photon fields. By 

contrast, in neutron fields, the average level is a positive value proportional 

to the fluence rate. This TNRD behavior makes it valid during patient 

irradiation (free-in-air measurements) where photon contribution is slight 

compared with neutron one. However, problems in photon rejection can 

become more important when photon background increases as during “in-

phantom” measurements (see later on). 
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3.2 In-phantom measurements at different distances 

Figure 5 reports TNRD readings for "plastic" and "borated" measurements with 

6 MV. Photon doses at each measurement point were known as detectors were 

exposed together with the ion chamber (see 2.3a). As expected, in absence of 

neutrons, both readings coincide within uncertainties. That is, borated rubber 

does not introduce perturbation to photon attenuation. 

Similarly, Figure 6 shows "plastic" and "borated" measurements in 15 MV. The 

line represents neutron signal (obtained as the following subtraction: "plastic" - 

"borated"). As expected, the parasitic photon signal gains relevance at short 

distances (≤ 0.3 m from the field-edge). Percentage of photon to total signal it 

ranges from 3.7% at 2 m up to 26% at 0.15 m. 

3.3 In-phantom measurements at different beam incidence angles  

Figure 7a shows TNRD "borated" readings for fourteen different beam 

incidences (Figure 7b) at two border of the field to detector distances. As 

expected from previous experiences (Irazola et al.,2015c), photon component 

compensates for complementary angles. Thus, its influence is almost negligible 

if “balanced” incidence angles (uniformly covering 360º) are used. This is a 

usual approximation used in conventional radiotherapy treatments that was 

also used in Irazola et al.,2014. There is an important angular photon 

dependence of TNRD devices, being clearly different for beam incidences 

comprised in the range (280º-75º) or (250º-105º). This problem would be solved 

with the use of the proposed methodology. However, when bare detectors are 

used for these measurements in “balanced” treatments, due to the almost 

complementary TNRD response, the parasitic averaged photon contribution 

found was -4.4% at 0.15 m and +1.5% at 0.35 m, being lower for further points.  
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Figure 5. "Plastic" and "borated" measurements in a 6 MV field, with field-edge distances 

from 0.1 to 2 m. Photon doses were determined with a Farmer ionization chamber. 

 

Distance to the field edge (m)

T
N

R
D

 (
V

·s
)

0

50

100

150

200

"plastic"

Neutron (subtraction)

"borated"

Photon dose (cGy)

1.67 0.48 0.24 0.12 0.08

0 0.2 0.4 0.6 0.8 21 1.2 1.4 1.6 1.8

 

Figure 6. Neutron contribution (lines) to TNRD readings for 15 MV. Grey + white bars 

correspond to “plastic” readings for different field edge to detector distances (lower axis) and 

corresponding photon doses estimated with the Farmer ionization chamber (upper axis). Photon 

estimates (white areas) have been obtained by terms of 15 MV readings when the detector is 

covered with borated rubber material. Error bars have been estimated considering both 

uncertainties. 
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Figure 7. (a)Photon contribution to TNRD readings, estimated by measuring with Flex-boron 

material (in 15 MV) for different gantry incidences, at two different field edge-detector 

distances (d= 35 cm red and d= 15 cm black). (b) Gantry angle schema for the studied 

incidences. Complementary angles are represented with the same color. 
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4. Conclusions 

This work showed a simple methodology to improve the photon rejection in 

thermal neutron detectors used in medical physics for the measurement of 

neutron equivalent doses in peripheral organs, during high-energy 

radiotherapy treatments. The importance of such measurements increased in 

recent years, in correspondence with the introduction of modern radiotherapy 

techniques, implying a higher demand of MU with respect to conventional 

ones.  

The use of TNRD detectors in peripheral neutron dose estimations showed 

some problems related with photon rejection. Thus, a methodology to improve 

neutron-to-photon discrimination capability of TNRD detector has been 

established, applicable to any other thermal neutron detector. It consists in the 

use of two borated rubber layers covering the detector with an equivalent 

thickness in terms of photon absorption. The "borated" measurement directly 

gives the photon contribution of the detector reading, whilst the thermal 

neutron contribution is given by the difference: "plastic" - "borated".  

Tests with TNRD detector showed that this methodology is not needed when 

detector is located far from the field-edge (such as the here mentioned free-air 

patient measurements) while its importance is clear for closer distances (≤ 0.3 

m). This parasitic signal decreases from 26% at 0.15 m up to 3.7% at 2 m, where 

100% is the "bare" reading.   

Angular incidence is also an important fact due to the anisotropic response of 

the detector, solved with the use of borated rubber. Nevertheless, when a 

treatment is carried out with “balanced” incidence angles (uniformly covering 

360º in terms of delivered MU), the overall effect is reduced to ≤ 1.5% further 

than 0.35 m. 
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A further activity, especially intended to generalize this technique and to 

extend it to other groups, could be the development of equivalent plastic and 

borated bags exactly containing the detector. This would completely shield the 

detector and, at the same time, reduce to the minimum extent the photon field 

perturbation.  
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Abstract  

One of the major causes of secondary malignancies after radiotherapy 

treatments are peripheral doses, known to increase for some newer techniques 

(such as IMRT or VMAT). For accelerators operating above 10 MV, neutrons 

can represent important contribution to peripheral doses. This neutron 

contamination can be measured using different passive or active techniques, 

available in the literature.  As far as active (or direct-reading) procedures are 

concerned, a major issue is represented by their parasitic photon sensitivity, 

which can significantly affect the measurement when the point of test is located 

near to the field-edge. This work proposes a simle method to estimate the 

unwanted photon contribution to these neutrons. As a relevant case study, the 

use of a recently neutron sensor for “in-phantom” measurements in high-

energy machines was considered. The method, called “Double Energy Photon 

Subtraction” (DEPS), requires pairs of measurements performed for the same 

treatment, in low-energy (6 MV) and high energy (e.g. 15 MV) fields. It assumes 

that the peripheral photon dose (PPD) at a fixed point in a phantom, 

normalized to the unit photon dose at the isocenter, does not depend on the 
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treatment energy. Measurements with ionization chamber and Monte Carlo 

simulations were used to evaluate the validity of this hypothesis. DEPS method 

was compared to already published correction methods, such as the use of 

neutron absorber materials. In addition to its simplicity, an advantage of DEPs 

procedure is that it can be applied to any radiotherapy machine. 

 

1. Introduction 

New radiotherapy (RT) techniques, such as those based on beam fluence 

intensity modulation, are known to provide higher healing rates and larger 

survival after treatments. However, this increase in life expectancy has brought 

to light some late effects such as second malignant neoplasms. Although these 

techniques provide a greater degree of conformity, they are also known to 

increase peripheral doses (PD) due to their higher demand of Monitor Units 

(MU) and to dose escalation strategies, usually associated to these modern 

techniques (Xu et al.,2002). PD are mainly composed of two different 

contributions: leakage/scattered photons and neutrons. While photon 

peripheral doses have been widely investigated (Van der Giessen et al.,2001; 

Sánchez-Nieto et al., 2015; Jagetic et al.,2015), neutron contamination has been 

largely undervalued.  

In previous works, this group established a method to infer peripheral neutron 

doses, estimated from in-phantom thermal neutron measurements. (Gómez et 

al.,2012; Sánchez-Doblado et al.,2012; Expósito et al.,2013; Romero-Expósito et 

al.,2015). These neutron doses have been used to assess secondary cancer risks. 

On this basis, different treatment strategies can be compared and precious 

contribution can be given to the process of choosing the best treatment for a 

given clinical case. 
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A recently developed thermal neutron detector named TNRD (Thermal Neutron 

Rate Detector, Bedogni et al.,2014), was successfully used for these in-phantom 

thermal neutron measurements (Irazola et al.,2014). The detector is based on 

solid-state devices which thermal neutron response is enhanced using 6Li 

radiators. Although the detector was designed to minimize the response to 

photons, this effect cannot be neglected when the measurement point is located 

near the field-edge, i.e. under intense photon background (Terrón et al.,2015; 

Irazola et al.,2015c). Overestimating thermal neutron fluence in peripheral 

organs could lead to systematic errors in calculating secondary cancer risks, 

with potential impact on the clinical decisions.  

Thus, a thorough study was performed to better understand these effects on the 

TNRD reading (Irazola et al., 2015a; Praena et al., 2015; Irazola et al., 2016; 

Irazola et al., 2015b; Terrón et al., 2015; Irazola et al., 2015c).  

The method proposed in this work, called “Double Energy Photon Subtraction” 

(DEPS), derives from the hypothesis that photon doses to peripheral points are 

energy independent in the megavoltage range (Mazonakis et al.,2008). Under 

this assumption, the pure photon contribution to the TNRD reading could be 

estimated from measurements at a treatment energy where no (or very little) 

neutrons are produced, such as 6 MV. The same treatment delivered at higher 

energy will thus produce an over-reading in the detector, due to neutron 

contribution. Clearly, the machine calibration must be the same for both 

energies.  

2. Material and method 

2.1 TNRD detector 

TNRD detector (Bedogni et al., 2014) is based on a low-cost commercial solid-

state device made sensitive to thermal neutrons through a customized physical–

chemical treatment. Its active area is 1 cm2 and its overall dimensions are 1.5 cm 
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x 1 cm x 0.4 cm. TNRD output is a DC voltage, which is proportional to the 

thermal neutron fluence rate (for this reason the device is called "rate detector"). 

This signal is amplified in a specifically developed low-voltage electronic board. 

The amplified output is sent to a programmable ADC (NI USB-6218 BNC, 16 

bit, sampling rate up to 2.5x105 samples per second) controlled by a PC through 

a LabView application developed by the Politecnico di Milano. TNRD linearly 

responds to thermal neutron fluence rates from 102 up to 106 cm-2·s-1. Every 

detector is calibrated in terms of thermal neutron fluence in a reference thermal 

field (Bedogni et al., 2016). Detector-to-detector response variability is in the 

order of ±5% (1 SD). An additional uncertainty term of about 10%, applicable in 

clinical conditions, was estimated by Irazola et al., 2014.  

2.2 DEPS Method 

The DEPS method is based on the hypothesis that photon doses to peripheral 

points are energy-independent in the megavoltage range (Mazonakis et 

al.,2008). Under this assumption, the pure photon contribution to the TNRD 

reading could be estimated from measurements at a treatment energy where no 

(or very little) neutrons are produced, such as 6 MV (hereafter called "low-

energy" beam). The same treatment delivered at higher energy (15 MV in this 

work) will thus produce an over-reading in the detector, due to neutron 

contribution. Clearly, the machine calibration must be the same for both 

energies. This energy-independence of PPD was tested by Monte Carlo 

simulations and measurements, as described below.  

2.2.1 Monte Carlo simulations 

Monte Carlo simulations have been used to compute mean energy of the 

photon spectra for both nominal energies, from the isocenter to 55 cm. EGSnrc 

Monte Carlo user code BEAMnrc (Kawrakow et al., 2011; Rogers et al., 2011) 

was used to simulate 6 and 15 MV photon beams from a Siemens Primus linac. 
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The following BEAMnrc/EGSnrc transport parameters were employed: NIST 

for bremsstrahlung cross sections; EXACT as boundary crossing algorithm and 

PRESTA-II as electron-step algorithm. For bremsstrahlung angular sampling, 

the leading term of Koch-Motz distributions was chosen; electron and photon 

cutoff energies were 0.512 MeV (0.001 MeV kinetic energy) and 0.001 MeV, 

respectively. Electron range rejection, with an energy cutoff of 2.0 MeV, was 

implemented. Bremsstrahlung splitting was activated to obtain the first Phase 

Space Data (PSD) file for the 6 MV case. The PSD files corresponding to each 

aperture were obtained below the MLC for a 10x10 cm2 field in a plane located 

10 cm depth (SSD=100 cm) in a water block (60x60x30 cm3). The number of 

primary histories launched from the source in the PSD was 5 and 50 million for 

the 6 and 15 MV cases respectively, chosen to satisfy a spatial density of 105 

particles/cm2 and trying to avoid latent uncertainty in order to obtain an 

adequate level of statistical accuracy. For out-of-field energy distribution 

comparison, the fact that simulations were performed with the information 

provided by the manufacturer (incomplete in terms of external shielding) could 

result in a minor overestimation that is not expected to distort our results. As 

the out-of-field statistics are lacking, several simulations with different initial 

seeds were performed. The mean photon energy was regarded as a relevant 

quality index for the photon spectra in peripheral points. 

Simulated mean energies at different distances from the field-edge can be used 

to identify the proper calibration factor for ionization chambers (IC). 

2.2.2 Farmer ionization chamber measurements 

An IC based dosimetry system (PTW 30013 IC operating at -250 V and a PTW 

UNIDOS® electrometer) was used. Measurements for low- and high-enegy 

beams were taken by varying the field-edge distance from 0.1 to 2 m. The IC 

was allocated in a plastic insert, sandwiched between 8 cm of polystyrene and 
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with additional blocks of plastic mimicking patient scatter. Irradiations were 

performed in a Siemens Primus linac for a 40x10 cm2 field (in order to fully 

cover the 6 available TNRD devices, accounting for scattering), delivering 300 

MU (dose rate of 300 MU·min-1) with gantry angle at 0º.  

2.2.3 Irradiations with TNRD 

TNRD measurements at low- and high-energy, were performed under the same 

setup and irradiation conditions as those previously described for the IC 

(section 2.2.2). The photon contribution to TNRD readings at a peripheral point 

was measured using the 6 MV beam. Then, neutron contribution to TNRD 

readings, TNRD-n, was calculated by subtracting the low-energy reading from 

the high-energy one.  

To validate the DEPS method, TNRD-n values were directly compared with 

those obtained with a different method adopting a Flex-boron® filter to remove 

the thermal neutron component (Irazola et al.,2016).  

3. Results and discussion 

3.1 Monte Carlo simulations: results 

Figure1 depicts mean photon energy computed by Monte Carlo simulations. At 

the isocenter the mean energy is 1.4 and 3.2 MeV for the 6 and 15 MV fields, 

respectively. At peripheral points (≥10 cm to the field edge), the mean photon 

energy is 280 keV with ±10% maximum variation when the beam is changed 

from 6 MV to 15 MV. The corresponding variability in the mass energy 

absorption coefficient (μen/ρ) for Silicon is smaller than ±1.1%, implying no 

effect on the TNRD photon response (Terrón et al., 2015).   

The energy response of the IC is also flat in this energy range (Shani, 2000; Aird 

et al.,1972; Andreo et al.,2006). 
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Figure 1. Photon mean energy of the spectra, in water, computed by Monte Carlo for distances 

ranging from 0 to 55 cm far from the isocenter in a Siemens Primus linac in 6 and 15 MV. 

 

3.2 Results from Farmer IC measurements 

Figure 2 shows the readings of the IC at 6 and 15 MV as the field-edge distance 

varies from 0.1 to 2 m. Readings have been normalized to the 15 MV case at 0.1 

m. The corresponding absorbed dose for 300 MU ranges from 0.07 cGy (at 2 m) 

to 4.00 cGy (at 0.1 m).  

The plot experimentally demonstrates that PPD does not depend on beam 

energy.   
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Figure 2. Normalized Farmer ionization readings obtained for the studied field edge-detector 

distances (0.1 to 2 m) in 6 and 15 MV.  

 

3.3 TNRD results 

Figure 3 shows TNRD signals at 6 and 15 MV for the studied field-edge 

distances. For the high-energy case, both photons and neutrons contribute to 

the reading of the detector (solid dots) whereas for the low-energy beam TNRD 

only sees photons (hollow triangles). 

TNRD readings in 6 MV can be subtracted from those of the 15 MV case 

(containing photon and neutron signals), in order to obtain the neutron 

contribution (TNRD-n). 

Figure 4 compares the TNRD-n values with those obtained with a different 

method, adopting a Flex-boron® filter to remove the thermal neutron  
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Figure 3. Global TNRD measurement in high (photon+neutron represented as solid dots) and 

low (photon, hollow triangles) energies for the studied distances. All measurements refer to 300 

MU. TNRD axis readings correspond to thermal neutron fluences up to around 18 x106 n·cm2, 

depending on detector calibration factor. 
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Figure 4. Neutron contribution to TNRD reading at 15 MV obtained by Flex-Boron (black) or 

DEPS method (white). All measurements refer to 300 MU. TNRD axis readings correspond to 

thermal neutron fluences up to around 16 x106 n·cm2, depending on detector calibration factor. 
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component (Irazola et al.,2016). In the latter case, a pair of exposures at 15 MV 

are performed for every field-edge distance: one with the TNRD covered with 

Flex-boron®, the other uncovered. Again, the neutron contribution is obatined 

by subtraction.  

Differences are smaller than uncertainties of the estimations, proving that the 

two methods are equivalent. 

4. Conclusions 

This work proposes a simple method to correctly estimate the thermal neutron 

reading of active thermal neutron detectors used ‘in-phantom’ for peripheral 

neutron dose experiments in high-energy RT. Despite these detectors are 

designed to reject photons, their photon response cannot be neglected when the 

measurement point is near to the field-edge.  

The method is called “Double Energy Photon Subtraction” (DEPS) and relies on 

the hypothesis that photon doses to peripheral points are energy independent 

in the megavoltage range. Under this assumption, the pure photon contribution 

to the detector reading is estimated from measurements at a treatment energy 

where no (or very little) neutrons are produced, such as 6 MV. Measurements at 

low (6 MV) and high (15 MV) energies are performed under the same setup. 

The neutron contribution to detector reading is obtained by subtracting the low 

energy reading from the high energy one. 

Monte Carlo simulations, as well as ion chamber measurements were used to 

validate the basic assumptions of DEPS method. This was applied to the 

recently developed thermal neutron detector TNRD. Experiments were 

performed by varying the field-edge distance from 0.1 to 2 m. The results were 

succesfully compared with those obtained by another method, based on Flex-

Boron filters.  
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The DEPS approach represents a simple and universal correction method, 

usable at any high energy facility equipped with low energy (i.e. 6 MV). It offers 

an operative procedure without the need of any extra specific material, setup 

modifications for ‘in-phantom’ accommodation of the detectors and avoiding 

the necessary dismantling and re-assembling of this setup for each pair series of 

measurements.  
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Neutron model upgrade for peripheral neutron dose assessment evaluated in 

510 radiotherapy patients   

 

Irazola L, et al. Sent to Phys Med Biol 

Abstract  

Purpose: Neutron peripheral contamination in high-energy radiation therapy 

implies an increase on secondary radiation-induced cancer risk. Although 

Peripheral Neutron Dose (PND) has been studied in organs, few studies have 

been done regarding patient size. This work aims to improve an existing 

methodology for adult patient PND estimations in several aspects, mainly to 

generalize it to teen and child. 

Methods: As a first step we proposed the generalization of the existing 

methodology to be expressed in terms of thermal neutron fluence in the room, 

being thus measurable with any thermal neutron detector. Then, dose-to-point 

measurements were performed with active miniaturized thermal neutron 

detectors and compared to those of the previous used passive (TLD) devices for 

three phantom sizes (adult, teen and child) and two common treatment 

locations (H&N and abdomen). The objective was to improve these models by 

introducing patient anatomy with the consideration of individual weight and 

height. Finally comparison between estimations and measurements, as well as 

validation against the old model, was carried out for 510 measured patients.  

Results: Good agreement was obtained between TNRD and TLD measurements 

for the studied phantom points. A parameterized extended model, accounting 

for patient anatomy and usable with any thermal neutron detector has been 
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achieved. Concordance found between experimental and theoretical 

estimations makes us confident for later implementation in treatment planning 

systems. Comparison among old and new models shows no significant 

differences for adult case, although important underestimation (34.1% in 

average) of the old model can be observed regarding child case.  

Conclusions: An improved generalization of an existing model for PND, 

considering patient anatomy has been validated and used in real patients. The 

methodology results easily implementable in clinical routine, thanks to the 

ready availability of input parameters (patient height and weight, number of 

high-energy MU and characterization of the facility in terms of neutron 

production).  

1. Introduction 

Modern radiotherapy techniques such as Intensity Modulated Radiotherapy 

(IMRT) and Volumetric Modulated Arc Therapy (VMAT), although minimizing 

acute and late side effects of radiation exposure, are known to increase 

peripheral doses when compared to conventional treatments as conformal 

radiotherapy (3D-CRT) (Hall et al.,2003; Kry et al.,2005; Howell et al.,2006; 

Ruben et al.,2008). Besides as additional neutron contamination is produced 

when using energies greater than 8 MV (NCRP-79, Nath et al., 1986), several 

discussions have been conducted concerning if these techniques should be 

administered in high energies (Followill et al., 2007).  The increase of out-of-

field radiation doses and corresponding growth of radio induced secondary 

malignancies has been widely studied recently (Diallo et al.,2009; Newhauser et 

al.,2011; Harrison et al.,2013). Many groups have conducted their investigations 

in the modeling of peripheral photon and neutron doses (Jagetic et al.,2015; 

Sánchez-Nieto et al.,2015). However, the majority of these studies are focused 
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on peripheral photon doses, with less works reporting neutron component in 

high-energy photon radiotherapy.  

As the main source of photoneutrons is found in linac head (Pena et al.,2005), 

patient lying on the couch below the machine, receives an almost total-body 

neutron dose. This fact, together with the great complexity of neutron 

measurements in radiotherapy environments (where a high photon background 

is present) make that the study of neutron spectrum variations with depth in 

tissue, where sensitive organs are located, has to be usually done with Monte 

Carlo simulations (Xu et al.,2008). Thus, additional data would be necessary to 

study patient-specific scenarios. Despite the lower neutron-absorbed dose 

values compared to photon ones (Kry et al.,2005), neutron radiation weighting 

factor can make this component to be similar, in terms of tissue damage, for 

some specific locations (Berdnarz et al.,2009). In addition, despite the 

controversy related to carcinogenic risk of secondary neutrons, these doses are 

hardly ever considered in current clinical routine, as they are not contemplated 

in conventional radiotherapy treatment planning systems (TPS) and no general 

models are widely available. These doses become of major importance for 

specific group of patients such as child (Diallo et al.,2009) or pregnant women 

(Stovall et al.,1995). For instance, in child survivors, morbidity and mortality 

risks remain high beyond the fourth decade of their life (Armstrong et al.,2013), 

causing even more deaths than primary malignancies in some pediatric cancers 

(Tubiana et al.,2009). Although some studies suggest that secondary cancers 

remain rare in adult patients (representing around 8% of solid cancers in adult 

patients overcoming at least one year after RT), it has been shown that cancer 

recurrence is the main cause of death in child patients, representing around 67% 

of all deaths, from which 21.3% can be attributed to treatment related causes, a 

12.7% due to including secondary malignancies (Chargari et al.,2016). In 

addition, the knowledge of properly generated dosimetric data is essential to 



III. Thesiscore 2. Publications: C. Neutron model upgrade for peripheral neutron dose assessment 
evaluated in 510 radiotherapy patients 

 

106 
 

establish a reasonable assessment of low dose risk estimates in radiotherapy 

(Diallo et al.,2009). 

The methodology proposed by our group (Gómez et al.,2010; Sánchez-Doblado 

et al.,2012; Expósito et al.,2013) provides a systematic estimation of neutron 

organ-equivalent doses at 12 organs for patients undergoing high energy 

external photon beam radiotherapy. However, despite the simplicity of this 

method, it requires the characterization of the facility in terms of neutron 

production by a specific SRAM-based detector, or the use of general values 

tabulated for each linac model (Sánchez-Doblado et al.,2012). In consequence, a 

more universal methodology would be desirable for this procedure. This model 

enables the consideration of patient sex and treatment location, namely head 

and neck (H&N) or abdomen. Once methodology was clinically validated 

(Expósito et al.,2013), we thought that a more general procedure being also 

more patient-specific would be highly desirable for clinical routine. Second 

Cancer Probability (SCP) estimation represents a step further in peripheral dose 

studies and some uncertainties remain regarding these magnitudes based on 

data from the Japanese atomic bomb survivors and the RBE of neutrons 

(Newhauser et al., 2016). However, recent studies have established the pass 

from neutron dose to risk by the direct use of tabulated values (Expósito et 

al.,2013), we have focused this study in the enhancement of neutron dose 

assessment, which would allow a direct estimation of SCP by only applying 

these factors, choosing the more convenient protocol. Former to the 

improvement of the existing models, we wanted to ensure that these two model 

locations were general enough to cover real treatment ones. For that, the 

goodness of these models was previously evaluated in real treatments, giving 

good concordance with TNRD estimations (Irazola et al.,2016).  
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The goal of this work is the improvement of the previously existing 

methodology for PND estimation to organ, in order to make it more global and 

customized. We aimed to generate further patient-specific (regarding anatomy) 

neutron organ dose models that can be used in any facility, by terms of a simple 

characterization of linac neutron production, which can be easily performed 

with any thermal neutron detector. These new models will be used to compare 

calculated and measured peripheral neutron organ-equivalent doses for 510 

patients, evaluated against results obtained with the old methodology. 

2. Material and method 

A thermal neutrons-sensitive detector called TNRD (Thermal Neutron Rate 

Detector) was used. This neutron detector was initially designed by INFN-LNF 

(Italy; Bedogni et al.,2014) for nuclear purposes. The device is based on a low-

cost commercial solid-state device sensitized to thermal neutrons through a 

customized physical-chemical treatment, with overall dimensions of 

approximately 1.5x1x0.4 cm3 (active area of 1 cm2). Further details on its 

composition can be found in (Bedogni et al.,2014). Those detectors respond 

linearly to any thermal neutron fluence rate in the range of 10 up to 106 cm-2·s-1 

neutrons and show detector-to-detector response variability of the order of ±5% 

(1SD). However, for clinical environments an additional source of uncertainty, 

coming from beam angular entry and energy dependences had to be 

considered. Therefore, a global uncertainty of 11% was estimated by Irazola et 

al.,2014 for these devices in radiotherapy environments. Encompassing this 

value with procedure own incertitude, a global uncertainty of around 15% was 

establish for model generation methodology.  

One advantage of the TNRD detectors is their online-features, which greatly 

ease the processes of model improvement for which repeated measurements 

have to be usually made. Additionally, the reduced size of these active 
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detectors allows not only ‘external’ (as used during the development of the 

neutron equivalent dose estimation model in Sánchez-Doblado et al.,2012) but 

also and ‘in-phantom’ measurements. TNRD thermal neutron fluence 

estimations are obtained in compliance with ISO 8529-1. 

2.1 Facility neutron fluence characterization 

The original methodology (Sánchez-Doblado et al.,2012) relied on the 

correlation between neutron production (expressed as single events upset (SEU) 

of a SRAM-based neutron detector) and the neutron equivalent dose to 

peripheral organs. The latter required the neutron detector to be present during 

patient irradiation. 

Romero-Expósito et al.,2015 proposed a generalization of that methodology by 

characterizing the facility, in terms of photoneutron production, so that the 

presence of the detector was not required posteriorly during patient 

irradiations. For this, the previous determination, under certain reference 

conditions, of a characterization parameter (in units of events per MU, termed 

c) was required. The former parameter, escalated by the MU used during 

specific irradiations, correlated with neutron equivalent dose to organs. This 

neutron characterization should be done just once (e.g., during linac 

commissioning). 

A further step in the generalization of the neutron dose estimation 

methodology involves the characterization of the facility in terms of thermal 

neutron fluence. Therefore, the implementation of the neutron dosimetry 

methodology in any facility could be carried out by characterizing it by means 

of any thermal neutron detector.  

This involves the estimation of the characterization parameter (c*) in units of 

neutrons per cm2 and MU using eq.1 with the neutron detector outside the 
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beam (in front of the gantry and close to the bunker wall) under reference 

conditions (i.e., gantry angle at 0º, field size of 10×10 cm2) as proposed in 

(Romero-Expósito et al.,2015). 

𝑐∗ =
𝛷𝑡ℎ·𝐹𝐵

𝑀𝑈
      (eq.1)        

where: 

-  𝛷𝑡ℎrepresents the accumulated thermal neutron fluence in the reference 

location and irradiation conditions;  

- MU is the total number of high energy MU delivered (usually 1000 MU) 

- FB is a factor accounting for the ratio from the bunker volume, with a 

floor area of A (m2), to a reference one with a floor area of 64.6 m2. This 

factor was modeled as 𝐹𝐵 = 1 (0.46 + 34.13/𝐴)⁄   calculated from that 

described in in (Sánchez-Doblado et al.,2012) 

In the present work, the TNRD detectors will be used for the implementation of 

this upgraded methodology together with the incorporation of patient’s size.  

2.2 In-phantom measurements 

Three anthropomorphic NORMA phantom models (Figure 1) were available to 

cover several patient ages (child teen and adult). Phantoms were manufactured 

in polyethylene whereas low-density wood was used for simulating the lung 

tissue. 16 customized detector holes were distributed along each phantom, at 

different depths, representing relevant cancer-at-risk organ locations for the 

estimation of equivalent dose in organs. Table I lists the point(s) used for organ 

dose investigation, extended from that of Sánchez-Doblado et al.,2012.        

Firstly, a validation of the use of the model by Sánchez-Doblado et al.,2012, 

with TNRD was carried out for the adult phantom. Afterwards, the 
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generalization of the existing model to account for different patient sizes was 

carried out. 

The same irradiation conditions as those of the original model (Sánchez-

Doblado et al.,2012) were used: 

(i) Abdomen treatment: eight beam incidences (at 0º, 45º, 90º, 135º, 180º, 225º, 

270º, 315º), 10x10 cm2 field sizes, 15 MV, isocentre at point A (Figure 1) 

(ii) Head and neck treatment: the same beam incidences, field sizes and energy 

than in (i), isocentre at point H (Figure 1) 

Irradiations were set to 1000 monitor units (MU) with a dose rate of 300 

MU·min-1 and were carried out with a Siemens Primus linac. 

2.2.1 Model generalization for its use with thermal neutron detectors  

In order to use of TNRDs detectors in the methodology established by Sánchez-

Doblado et al.,2012 a comparison between thermal neutron fluences measured 

with passive detectors (TLDs and PACD, Poly Allyl Diglycol Carbonate) during 

model development and those of TNRDs was carried out for the adult phantom. 

Previous to this comparison, passive detector fluence values were corrected to 

account for the differences in the cut-off energies used during the calibration 

procedures for both types of detectors (Irazola et al.,2014). 

Model in Sánchez-Doblado et al.,2012, encompassed average values for a wide 

range of available combinations of linacs and energies; thus, model estimations 

were associated to an uncertainty of around 30%. It will be assumed that 

agreement, within uncertainties, of both sets of fluence measurements will 

imply that the generalized model (in terms of thermal neutron fluence) is also 

applicable to any linac.   
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The agreement between these results and those of the previous models, 

together with the previously generalized characterization procedure to be 

performed in terms of thermal neutron fluence (eq.1), allows the use of this 

methodology with any thermal neutron detector, instead of being expressed in 

terms of events (Sánchez-Doblado et al.,2012). 

 

Table I.  NORMA´s optimized detector locations specific to 14 radiosensitive internal organs. 

Modified from Sánchez-Doblado et al.,2012, adding two extra organs*. 

 

k Organ NORMA Points 

1 Thyroid 4 

2 Oesophagus 4,9,16 

3 Lung 7,8 

4 Breast 5,6,15 

5 Stomach 9,11,16 

5 Liver 9,10,11,16 

6 Colon 11,12 

7 
Urinary 

Bladder 
10 

8 Ovary 11,12 

9 Skin 15 

10 Bone surface 1,3,9,12,13,14,15 

11 Marrow 9,12,15 

12 Remainder All except 7,8,15 

13 Prostate* 11,12 

14 Uterus* 11,12 
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Figure 1. NORMA Phantom models to cover adult, teen and child sizes and points locations specific to 14 cancer-at-risk organs (Table I). Figure 

modified from Sánchez-Doblado et al.,2012; González-Soto et al.,2012. 
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2.2.2 Model generalization to account for patient size 

(a) Thermal neutron fluence measurements for the three phantom sizes 

The already available Thermal neutron fluences (Sansaloni et al.,2011), measured with 

TLDs, were to be confirmed with the new TNRD devices for the three phantoms and 

irradiation sets above described (for abdomen and H&N locations) in the 16 points. 

Both uncertainties were estimated at 15%, as measurements were carried out using the 

same linac. 

 (b) Organ-equivalent neutron dose model  

The previously mentioned methodology (Sánchez-Doblado et al.,2012)  is based on the 

convolution at the 16 points of the normalized Monte Carlo neutron fluence energy 

spectra with the kerma factor for ICRU tissue (k) (Siebert et al.,1995) and 

energy-dependent radiation weighting factor from ICRP-103 (wR).  

The same convolution approach to estimate the neutron-equivalent dose in an 

organ k, estimated from average of measured points i of a patient undergoing a 

treatment j (Sánchez-Doblado et al.,2012; Romero-Expósito et al.,2016), but 

using directly the thermal neutron fluence (Φth), is now proposed as follows:  

𝐻𝑖,𝑗 = 𝛷𝑖,𝑗
𝑡ℎ · 𝐹𝑖,𝑗 (eq.2) 

where: 

-  𝛷𝑖,𝑗
𝑡ℎ is the accumulated thermal neutron fluence (n·cm-2), corrected by 

bunker size parameter (FB, firstly introduced in eq.1), at any point (i) for 

any treatment (j)  

- Fi,j are the neutron-equivalent dose transformation factors, for each 

NORMA point i and for type of treatment j, considering total neutron 
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spectra 𝜑𝑖,𝑗(𝐸), radiation weighting factors 𝑤𝑅(𝐸) and kerma factor 

(k(E)).  

Therefore, eq.2 can be used to estimate the neutron-equivalent dose in an organ 

k (from the averaged values of measured i-points) of a patient undergoing a j-

treatment from the thermal neutron fluence at that point (provided, in this case, 

by the TNRDs detector).  

In order to introduce the facility characterization (section 2.1) in the expression, 

the {𝛷𝑖,𝑗
𝑡ℎ} matrix data were correlated to thermal neutron fluences measured 

with the TNRD detector located at reference position in the bunker, R (Sánchez-

Doblado et al.,2012).  If Mi,j represent those correlation coefficients, eq.3 can be 

then rewritten as follows: 

 𝐻𝑖,𝑗(µ𝑆𝑣) = 𝑅 · 𝑀𝑖,𝑗  (eq.3) 

where: 

- R (x106 n·cm-2) is the accumulated thermal neutron fluence at the reference 

location inside the bunker during a treatment. In practice, R value can be 

estimated using either: 

o the characterization approach (Rcal = c*·MU) which makes use of 

the specific MU used for the irradiation,  

o or directly measuring thermal neutron fluence at the reference 

location during the irradiation (Rmeas) and correcting it by bunker 

surface factor (𝐹𝐵). 

- Mi,j (µSv·10-6 n-1·cm2) represent the corresponding Hi,j values from eq.3 per 

thermal fluence of the reference detector (establishing a correlation among dose 

equivalent at every i-point and reference thermal neutron measurement in the 

treatment room). It allows the direct estimation of neutron dose equivalent at 
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the studied i-points for the desired j-treatment location by the only knowledge 

of thermal neutron contamination in the reference location for the studied 

treatment. 

In order to evaluate organ-equivalent neutron doses to the 12 k-organs detailed 

in Table I, we used the same point to organ aggrupation than those established 

in Sánchez-Doblado et al.,2012 to go from the Mi,j dose-to-point factors to the 

Mk,j organ-to-dose factors that govern the model (correlating organ-equivalent 

dose to reference thermal neutron fluence in the room, R). 

(c) Organ-equivalent neutron dose model considering patient dimensions 

Finally, in order to consider different patient anatomy (height and weight), the 

Body Surface Area (BSA) concept, introduced by Du Bois et al.,1916, was 

considered. Accordingly, the height and weight of a patient were combined in a 

single BSA parameter (termed HW from now onwards) as follows: 

𝐻𝑊 (𝑚2) = 0.007184 · ℎ0.725 · 𝑤0.425   (eq.4) 

where h and w stand for patient height (cm) and weight (kg)  respectively. 

Then, the HW parameter was used as a surrogate for mapping for each patient 

distances form the organ to the source as well as the depth of the i-points, 

corresponding to each k-organ. The later mainly affects to the neutron spectra at 

the point. 

Thus, the neutron equivalent dose to the k-organ during the j-treatment can be 

calculated from the following equation: 

[𝐻]𝑇
𝑘,𝑗(𝜇𝑆𝑣) = 𝑅 · [𝐸(𝐻𝑊)]𝑘,𝑗 (eq.5) 

where:  
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- 𝑅 can be either estimated a priori (using facility characterization 

approach) or directly measured (eq.4)  

- E(HW)k,j, is the corresponding equation for organ–k in j–treatment 

regarding patient size (obtained from fitting corresponding Mk,j 

parameters with HW values). Thus expressed in terms of (µSv·10-6 n-

1·cm2). 

2.3 Clinical application: neutron equivalent dose estimations in 510 patients 

Organ-equivalent doses for a cohort of 510 patients were computed by applying 

the generalized methodology and using the new TNRD detector in the reference 

position. For a 240-patients subgroup, patient-specific results (regarding weight 

and height) were compared to the doses estimated with the original 

methodology, as all of them are adult patients. Comparison for the whole group 

between the experimental measurements (Rmeas) and theoretical estimations (Rest) 

were also carried out. Patients were divided in four groups attending the 

location of the pathology (see Table II).  

 

Table II. Group distribution of the 510 patients according to location of the tumour (Pelvic: 

bladder, cervix, colon, endometrium, ovary, prostate, rectum, uterus, vesicle and vagina; H&N: 

brain, pharynx, larynx, oesophagus, head, neck; Thorax: lung, lymphoma, gastric) 

 

Pathology Patients 

Pelvic 203 

Breast 199 

Head & Neck 55 

Thorax 53 
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As retrospective studies do not always count with specific patient size data, the 

direct use of the Mk,j coefficients (available for three size options) should 

represent an improvement with respect to the original model. 

Finally, the case of an abdominal tumor in a child was simulated (900 MU of 15 

MV, as part of a treatment combined with 6 MV). Neutron equivalent dose to 

organs were estimated with the original (adult) and generalized (introducing 

corresponding child dimensions) models.  

3. Results and discussion 

3.1 In-phantom measurements 

3.1.1 Model validation 

Figure 2 depicts thermal neutron fluences measured with TNRDs inside 

NORMA and those obtained with passive detectors (extracted from Sánchez-

Doblado et al.,2012) for the head and neck model.  Error bars are displayed 

according to the estimated uncertainties. 

Results show agreement within uncertainties, except for skin (#15) and 

mediastinum (#16) point. At the first one, the fast and epithermal components 

of the spectrum are higher and passive detectors such as plastics PACD and 

TLDs, used to generate the original model, may be sensitive. This is not the case 

of TNRD detectors, which are essentially sensitive to the thermal neutron 

component. The case of point #16 (mediastinum) seems to be related to an 

incorrect estimation of the fluence (there is a low density material to both sides 

of the point) with the passive detectors, since this behavior was not found in 

later results. 
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3.1.2 Model generalization to account for patient size 

(a) Thermal neutron fluences for the three phantom sizes 

Figure 3 depicts the thermal neutron fluences measured with the TNRDs and 

the available TLDs measurements (from Sansaloni et al.,2011) for the three 

phantom sizes and both treatment types studied.  

In 83% of the measurements points, both sets agreed within uncertainties. 

Points close to the field-edge (i.e., ≤ 5cm) systematically showed the greatest 

differences (i.e., point #11 for the adult and teen phantoms as well as points #7 

and #8 for the child phantom, all during abdominal irradiation). This is due to 

the very intense photon field which might induce greater uncertainties both in 

TLDs and TNRDs (Irazola et al.,2015; Irazola et al.,2016). For those points, 

thermal neutron fluence was assumed to be the average from both types of 

detectors. For the case of points inside the treatment field (#1, #2 and #3 for the 

H&N case and #9 and #10 for the abdomen one), for which none of the two 

types of detectors offer a proper performance, thermal neutron fluence from 

previous MC simulations (Pena et al.,2005) were considered. Finally, in the case 

of symmetric points such as breast, lungs and legs, the odd values (Table I) 

have been chosen for both (average deviation of 1.7%). 

After all these considerations, Mi,j factors were established. 

(b) Organ-equivalent neutron dose model  

Mk,j were obtained by averaging the Mi,j values according to the locations 

specific, to each of the 14 radiosensitive internal organs, which are listed in 

Table I. Results are presented in Table III. 
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Figure 2. Thermal neutron fluences for H&N. Circles correspond to measurements with 

TNRD detectors inside NORMA. Triangles represent passive detector measurements from 

Sánchez-Doblado et al., 2012, corrected by differences in cut-off energies. 

 

 

By using eq.3, the Mk,j  factors allow the estimation of the organ-equivalent (k) 

neutron doses from the only knowledge of factor R, which can be either 

estimated from the characterization procedure or directly measured. For the 

former case, the number of high energy MU of the specific treatment is also 

required.  
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Figure 3. Comparison of thermal neutron fluences measured with TNRD for the 3 NORMA phantoms  and 2 generic type of treatments (Abdomen and 

H&N) with previous data from TLD thermal neutron fluences (Sansaloni et al.,2011): (a) Adult abdomen, (b) Adult H&N, (c) Teen abdomen, (d) Teen 

H&N, (e) Child abdomen and (d) Child H&N. Corrected by differences in cut-off energies. 
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Table III. Mk,j (µSv·10-6n-1·cm2) represent relationship between reference thermal neutron 

fluence in the treatment room (R) and organ neutron dose equivalent (𝐻𝑇
𝑘,𝑗

= 𝑀𝑘,𝑗 · 𝑅). Factor 

10-3 was included for a better visualization of significative figures. 

 

Organ 

Mk,j (x10-3) [µSv·10-6n-1·cm2] 

Adult Teen Child 

Abdomen H&N Abdomen H&N Abdomen H&N 

Thyroid 145.20 358.10 314.63 472.91 388.15 500.19 

Oesoph 311.28 253.39 492.42 398.28 679.35 484.16 

Lung 735.23 460.13 884.57 710.30 606.20 873.52 

Breast 956.20 426.05 1318.66 964.40 2116.95 1419.93 

Stomach 271.75 136.04 414.22 247.64 574.98 332.93 

Liver 320.16 136.23 455.61 256.62 591.39 336.87 

Colon 76.64 21.10 178.39 73.01 246.45 136.17 

Bladder 465.38 136.80 579.76 283.58 640.61 348.68 

Ovary 76.64 21.10 178.39 73.01 246.45 136.17 

Skin 2503.98 919.14 2229.71 823.54 3410.45 1500.56 

Bone 517.27 278.671 591.50 350.04 870.02 517.43 

Marrow 1074.91 419.27 1107.66 480.74 1640.29 803.09 

Remainder 181.85 168.32 388.72 383.99 571.06 488.11 

Prostate 76.64 21.10 178.39 73.01 246.45 136.17 

Uterus 76.64 21.10 178.39 73.011 246.45 136.17 
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(c) Organ-equivalent neutron dose model considering patient dimensions 

The HW parameter for each phantom size was calculated so that the functions 

E(HW)k,j describing the Mk,j values as a function of the HW parameter were 

estimated for the abdomen and H&N as follows: 

 

[𝐸]𝑘,𝑎𝑏𝑑 = 10−3 ·

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(−214.1𝐻𝑊 + 563.9)𝑡ℎ𝑦𝑟𝑜𝑖𝑑

(−309.2𝐻𝑊 + 900.7)𝑜𝑒𝑠𝑜𝑝ℎ𝑎𝑔𝑢𝑠

(−834.9𝐻𝑊2 + 2420𝐻𝑊 − 808)𝑙𝑢𝑛𝑔

(1496𝐻𝑊2 − 5153.8𝐻𝑊 + 5314)𝑏𝑟𝑒𝑎𝑠𝑡

(−253.4𝐻𝑊 + 753.3)𝑠𝑡𝑜𝑚𝑎𝑐ℎ

(−228.3𝐻𝑊 + 755.7)𝑙𝑖𝑣𝑒𝑟

(−146.3𝐻𝑊 + 359.4)𝑐𝑜𝑙𝑜𝑛

(−152.9𝐻𝑊 + 762.8)𝑏𝑙𝑎𝑑𝑑𝑒𝑟

(−146.3𝐻𝑊 + 360)𝑜𝑣𝑎𝑟𝑦

(3133.5𝐻𝑊2 − 9453.6𝐻𝑊 + 9019.1)𝑠𝑘𝑖𝑛

(581.4𝐻𝑊2 − 1916.1𝐻𝑊 + 2042.2)𝑏𝑜𝑛𝑒

(1235𝐻𝑊2 − 3911.1𝐻𝑊 + 4000.1)𝑚𝑎𝑟𝑟𝑜𝑤

(−330𝐻𝑊 + 814.2)𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

(−146.3𝐻𝑊 + 360)𝑝𝑟𝑜𝑠𝑡𝑎𝑡𝑒

(−146.3𝐻𝑊 + 360)𝑢𝑡𝑒𝑟𝑢𝑠 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  𝑎𝑛𝑑 

  [𝐸]𝑘,𝐻&𝑁 = 10−3 ·

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(−128.3𝐻𝑊 + 618.4)𝑡ℎ𝑦𝑟𝑜𝑖𝑑

(−200.1𝐻𝑊 + 641.6)𝑜𝑒𝑠𝑜𝑝ℎ𝑎𝑔𝑢𝑠

(−356.6𝐻𝑊 + 1149.9)𝑙𝑢𝑛𝑔

(−844.8𝐻𝑊 + 2046.9)𝑏𝑟𝑒𝑎𝑠𝑡

(−168.4𝐻𝑊 + 460.1)𝑠𝑡𝑜𝑚𝑎𝑐ℎ

(−172.9𝐻𝑊 + 470.4)𝑙𝑖𝑣𝑒𝑟

(−95.7𝐻𝑊 + 202.6)𝑐𝑜𝑙𝑜𝑛

(−186.5𝐻𝑊 + 501.4)𝑏𝑙𝑎𝑑𝑑𝑒𝑟

(−95.73𝐻𝑊 + 202.6)𝑜𝑣𝑎𝑟𝑦

(1726.7𝐻𝑊2 − 5281.3𝐻𝑊 + 4649.6)𝑠𝑘𝑖𝑛

(319.06𝐻𝑊2  −  1091.1𝐻𝑊 +  1192.8)𝑏𝑜𝑛𝑒

(700.71𝐻𝑊2  −  2272.9𝐻𝑊 +  2186.3)𝑚𝑎𝑟𝑟𝑜𝑤

(−280.3𝐻𝑊 + 715.1)𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

(−95.73𝐻𝑊 + 202.6)𝑝𝑟𝑜𝑠𝑡𝑎𝑡𝑒

(−95.73𝐻𝑊 + 202.6)𝑢𝑡𝑒𝑟𝑢𝑠 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Those expressions are to be used in eq.5 for organ-equivalent dose estimation.  
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Figure 4 depicts a selection of the qualitative behavior found for the fitting 

functions.  

Figure 4. Selection of some representative fitting curves for Abdomen and H&N cases 

considering the patient size parameter (HW)  for: (a)  Thyroid and (b) Prostate (similar to  the 

fitting behavior obtained for oesophagus, stomach, liver, colon, bladder, ovary, remainder and 

uterus); (c) Skin (similar to breast, bone and marrow) and special case of (d) Lung. 

  

As expected, for the majority of the organs, the equivalent dose decreases when 

patient size increases, either due to a higher height (implying further distance 

from the source) or to a greater weight (entailing higher neutron thermalization 

and decrease in the neutron fluence). 

However skin (or organs containing this point for calculation as breast, bone 

and marrow) showed a different pattern. That behavior can be explained 

trough the two confounding factors. In small patients (i.e., HW < 1.5 m2), the 
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higher dose is mainly due to the greater fast-neutrons component which 

decreases with the inverse square law of the distance to the source. In patients 

with HW > 1.5 m2 the fast neutron component should be lower but seems to be 

compensated by the higher surface exposed to neutron radiation. 

Equivalent dose to lungs during abdominal irradiation also shows a particular 

dependence with patient size. During this irradiation part of the lungs lays 

inside the treatment field (isocenter in point A, Figure 1), which has been shown 

to be representative of treatments in the abdominal area (Irazola et al.,2016a). 

The measured TNRD thermal neutron fluences showed Figures 3a, 3b a,d 3c are 

in agreement with MC simulations (Figure 5). The final behavior of the fitting 

curve can be understood as a result of the balance of the thermal and fast 

neutron component.   

Thus, starting from different behavior of the neutron fluence components: 

thermal (increasing with) and fast (decreasing with phantom size).   

This option is especially useful for retrospective studies for which not all the 

patient information (height or weight) is available, using as a first 

approximation patient age to choose the most adequate phantom size. This 

would improve peripheral neutron dose estimation, especially in the case of 

child patients. 

 

 

Figure 5. Monte Carlo simulation of neutron spectra for abdomen treatment location for the 

three phantom sizes (González-Soto et al.,2012), lethargy representation.  
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3.2 Patient estimations 

Figure 6 depicts average organ-equivalent neutron doses estimated with the 

original and the generalized (eq.5) models for 240 patients in three organs.  

Those organs (thyroid, liver and marrow) were just selected for illustrative 

purposes. Differences among these values represent improvements in thermal 

neutron estimations at some points thanks to TNRD capabilities and the added 

modification of including patient size (HW). As a general behavior previous 

values seemed to overestimate the dose (in agreement with results from Figure 

2).  

In order to evaluate the goodness of the Mk,j values for retrospective studies (or 

other cases where there is no information about patient size), measurements 

and theoretical estimations for organ-equivalent neutron doses for the 510 

studied patients were compared. As all the patients are adult-aged, Mk,j adult 

values (abdomen and H&N models) were chosen for this purpose. Results are 

plotted in Figure 7. As expected, as all patients included in the study were 

adult, no high deviations were found between methodologies. Nevertheless, 

greater deviations should be expected for young patients due to the higher 

differences in height and weight from the adult NORMA phantom. For the 

chosen example (Figure 8), the old model underestimated in average the organ-

equivalent doses by 34.1% (assuming that the new model provides the correct 

patient-size estimation).   
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Figure 6. Comparison between organ-equivalent neutron doses estimated with the old (white) 

and the new (black) models for 240 patients in three organs: (a) Thyroid, (b) liver and (c) 

marrow for the four studied pathologies. 
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Figure 7. Comparison of measurement and theoretical estimations (Mk,j factors for 

adult) for organ-equivalent doses for the 510 studied patients. 
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Figure 8. Comparison of peripheral doses for an abdomen location child treatment case 

calculated with the old model and the new one (considering patient size). 

 

Concerning SCP, as we are working in low-dose range (e.g. <2.5 Gy), linear 

models could be used for this purpose (Schneider et al.,2005). Thus, eq.5 can be 

employed for SCP estimates by using tabulated coefficients from ICRP-103 or 

BEIR-VII (sex- and age-at-exposure- specific) protocols: 

𝑆𝐶𝑅 = 𝐻𝑘,𝑗 · 𝜆𝑘     (eq.6) 

where 𝐻𝑘,𝑗 are peripheral neutron doses for organ -k in the specific model -j and 

𝜆𝑘  are the organ risk factors from ICRP-103 or BEIR-VII protocols.   
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4. Conclusions 

The use of the new online thermal neutron miniaturized active TNRD detectors, 

for peripheral neutron dose assessment, has allowed the improvement of 

existing models for organ-equivalent neutron dose estimation in any facility.  

Several aspects have been enhanced: 

- Characterization of the facility has been established in terms of thermal 

neutron fluence instead of the events of the previously used SRAM-

based detector, generalizing the methodology to any thermal neutron 

detector.  

- The online behavior of TNRD detector, has simplified the procedures 

followed for model enhancements. 

- Models have been modified to be more patient-specific, introducing 

weight and height to better evaluate organ-equivalent neutron doses, 

which results especially relevant for children cases.   

A universal methodology for peripheral neutron organ-equivalent doses 

estimation has been established. It only requires the characterization of the 

facility in terms of thermal neutron fluence, the total number of high energy 

MU delivered and patient size (height and weight). Finally these models have 

been validated by the comparison of estimations from the existing models to a 

cohort of 510 patients. This would be useful for future second cancer risk 

evaluation and its implementation in TPS. 
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Abstract  

Purpose: Recently there has been a growing interest in Stereotactic Body 

Radiation Therapy (SBRT) and Flattening Filter Free (FFF) irradiation 

techniques. The high local control rates achieved and the “low-dose” radiation 

delivered to the near out-of-field regions, together with the hypofractionation, 

are expected to reduce doses beyond the target. The aim of this work is to 

determine the impact of SBRT modality in peripheral doses, when compared to 

other ones, such as 3D-CRT, IMRT and VMAT.  

Methods: Photon and neutron peripheral doses at large distances from the 

field-edge (beyond 5% isodose) have been estimated using two analytic models, 

operating from readily available parameters. Ten real treatments, including the 

most common pathologies treated with SBRT have been evaluated. Different 

techniques (3D-CRT, IMRT, VMAT and SBRT) and energies (6, 10 and 15 MV) 

for Varian (including FF and FFF modalities), Siemens and Elekta linacs have 

been considered, leading to 144 treatment plans, whose peripheral doses have 

been compared.  

Results:  Comparison between modalities showed an important decrease of 

peripheral doses for SBRT respect to more conventional fractionations, being 

more evident when tumor size is highly diminished respect to the other 
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techniques. In addition, the use of FFF irradiation mode implies an extra 

reduction, especially when used at 10 MV.  

Conclusions: The obtained results for peripheral doses suggest that 

hypofractionated modality in 10 MV using FFF mode, could represent the best 

compromise between dose delivery efficiency and peripheral doses reduction. 

The implementation of second cancer risk estimations to TPS, based in the here 

presented methodology, could mean the addition of an important parameter for 

best treatment plan selection.  

1. Introduction 

In recent times there has been a growing concern on peripheral dose (PD) 

estimation in external radiotherapy. This issue is attributable to the larger 

cancer incidence as well as to the higher survival rates. These unwanted 

outlying doses are associated to an increased risk of Second Malignant 

Neoplasms (SMNs) in cancer survivors (Xu et al.,2008). Additionally, an 

accurate knowledge of out-of-field doses is of major importance for a specific 

range of population such as children, pregnant patients and those with 

implantable electronic devices, which are becoming more and more usual 

(Cardenas et al.,2015). PD in radiotherapy treatments are due to scatter, leaf 

transmission, radiation head leakage and neutron contamination.  

An escalation of these PD, as a consequence of beam-on-time increase, has been 

noticed in newer techniques such as Intensity Modulated RadioTherapy (IMRT) 

and Volumetric Modulated ArcTherapy (VMAT) (Kry et al.,2005a). Compared 

to conformal radiotherapy (3D-CRT), modern modulated modalities use a 

greater number of treatment fields and monitor units (MU) to accomplish 

highly conformal dose distributions around the target volume. This generally 

leads to an increase of the portion of normal tissue exposed to “low-doses”. At 

distances close to the field-edge (e.g. <10 cm), PD is mainly due to photon 

patient scatter, while when getting further, photon scatter from linac head 
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becomes more important. Finally, photon leakage component dominates at 

distances ≥30 cm approximately (Benadjaoud et al.,2012; Joosten et al.,2011). In 

addition, when high photon energies are used (≥10 MV), neutron contamination 

should be also considered for second cancer risk estimations (Kry et al.,2005b). 

Latterly there has been an emergent interest on Stereotactic Body Radiation 

Therapy (SBRT) as an alternative method to conventional fractionation for a 

wide range of primary and metastatic lesions. Clinical studies have pointed it 

out as an effective technique, which allows the deliverance of ablative radiation 

doses in few fractions with excellent local control (up to 88-92% in lung cases) 

for patients suffering from pathologies unfit for surgery or conventional 

techniques (Ong et al.,2010; Demaria et al.,2012). Thus, this technique is 

expected to show potential therapeutic advantage, regarding “low-doses” 

delivered to tissues outside the target. However, although there are several 

clinical results demonstrating the great local control achieved with minor 

toxicities (Rubio et al.,2013; Martin et al.,2010; Kirkpatrick et al.,2014; 

Timmerman et al.,2007), longer follow-ups are needed to evaluate latter 

implications.  

In addition, the combination of this hypofractionated modality with medical 

accelerators operating in flattening filter free mode (FFF) is becoming more 

frequent. The interest behind this combination is the incorporation of the 

reduction in out-of-field doses (obtained with FFF mode) to SBRT modality, 

given that the latter guarantees a high local control rate (Huang et al.,2015; 

Prendergast et al.,2013). The time reduction achieved in treatments using this 

linac operation mode is of special interest for SBRT modality, where respiration 

control while delivering is of great importance due to the highly fractionation 

employed (Prendergast et al.,2013; Fu et al.,2004; Stathakis et al.,2009). 

According to several studies (Irazola et al.,2015; Cashmore et al.,2008; Kragl et 

al.,2011; Kry et al., 2007) a lower neutron contamination and less Multi Leaf 
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Collimator (MLC) leakage is expected for this operation mode. Furthermore, 

some research suggests that the use of FFF mode could lead to lower incidence 

of SMNs (Cashmore et al.,2011).  

 Although PD coming from conventional radiotherapy have been widely study, 

there are a limited number of works concerning SBRT and FFF modalities 

(Kragl et al.,2011,  Prendergast et al.,2013; Fu et al.,2004; Stathakis et al.,2009; Xu 

et al 2008; Xie et al.,2014). There are several comparisons between newer 

techniques and conventional ones (3D-CRT, IMRT or VMAT) in terms of dose 

conformity and delivery times (Benadjaoud et al.,2012; Huang et al., 2015; Ong 

et al.,2010). However, to our knowledge, there are no comparative studies 

(Irazola et al.,2016) in terms of photon and neutron peripheral doses, including 

SBRT (Kragl et al.,2011; Murray et al.,2015; Schneider et al.,2010). The purpose 

of this work is the estimation and comparison, in terms of PD, of SBRT with 

conventional fractionation techniques as 3D-CRT, IMRT and VMAT, in normal 

and FFF modes. The main pathologies treated in SBRT modality have been 

selected for this peripheral dose study (Scorsetti et al.,2015). We did not 

consider the impact of Image-Guided Radiotherapy (IGRT) on PD estimations, 

as this will vary with the technique employed. 

2. Material and method 

2.1 Patient selection 

Ten patients previously diagnosed with primary or metastatic lesions, treated 

following currently existing SBRT protocols, were selected for this study. The 

choice was done for different tumor sizes and locations, in order to encompass 

all the pathologies sensitive to be treated with SBRT (Scorsetti et al.,2015; 

Irazola et al.,2016). Thus, the most common cases treated in this technique such 

as lung, prostate, paravertebral, brain, oligo-metastatasis, breast, adrenal, 

hepatic or breast; multiple and single lesions have been evaluated.   
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2.2 Target and OAR delineation 

Delineation has been done by expertise radiation oncologists by contouring all 

the phases from 4D-CT images for lung cases and from 4D-PET for the hepatic 

ones. MRI has been used for brain lesions, while combined CT and PET images 

were used for the oligo-nodules case. The rest of the treatments were delineated 

using conventional CT images. All patients were treated in supine position 

using either vacuum bags, immobilization masks or a custom-model cradle 

system (ExaCradle©).  The Gross Tumor Volume (GTV) has been chosen 

accounting for tumor motion. Then Internal Target Volume (ITV) was created 

for SBRT plans by combining GTV phases. In the case of conventional 

treatments, Planning Target Volume (PTV) was conservatively designed by 

adding different margin expansions from the Clinical Target Volume (CTV) for 

each case, in order to account for positioning uncertainties and potential tumor 

shifting.  

Organs At Risk (OAR) contouring and dose prescriptions and limits, have been 

performed by the same expertise following AAPM TG-101 (Benedict et al.,2010) 

guidelines for SBRT modality and QUANTEC (RTOG., 2010) protocols for 

normal fractionations.  

2.3 Treatment plans  

All clinical cases were planned using several techniques and energies, 

according to the clinically viable options (3D-CRT, IMRT, VMAT and SBRT 

modalities in 6, 10 and 15 MV) for the three main linac manufacturers (Elekta, 

Siemens and Varian). Additionally, FFF mode for 6 and 10 MV was used when 

available. For SBRT modality most clinically acceptable option has been chosen 

among the available techniques (between 3D-CRT, IMRT or VMAT). Table I 

summarizes characteristics of all the studied plans. The same dosimetric 

constraints (in percentage) were considered in all the facilities for OAR sparing 
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and PTV coverage. As an example, OAR and PTV dosimetric results for the 

single-lesion hepatic case (treated in 10 MV) is shown in Figure 1 comparing  10 

MV 3D-CRT and SBRT plans in terms of Dose Volume Histogram (DVH) for 

one of the facilities (Varian TrueBeam) to ensure a virtually identical PTV 

coverage and OAR sparing.  

 

 

 

 Figure 1. (a) Comparison, for a single-lesion hepatic case, of PTV dimensions for an SBRT 

modality (pink) and a conventional fractionation scheme (blue). Comparison of DVH obtained 

in SBRT (dashed) and conventional (solid) fractionations (10 MV) for (b) target volumes and 

(c) liver (yellow) and heart (blue) OAR. 
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Table I. Summary of treatment plans, modalities and energies used, dose prescription and target volume size studied*. 

Case Pathology Technique Energy Dose per fraction (Gy) N fractions ITV (cm3) PTV (cm3) 

1 
Lung simple 

(primary) 

3D-CRT 

IMRT 

VMAT 
6, 

6 FFF 

2 33 
16.92 76.35 

SBRT 20 3 

2 

Lung 2 

lesions 

(metastatic) 

SBRT 
6, 

6 FFF 
10 5 5.32** 10.26** 

3 

Multiple 

brain 

metastasis 

3D-CRT 6, 

6 FFF 

4 5 
0.11** 

 

1408 
SBRT 6 5 

4 
Prostate 

(primary) 

3D-CRT 
6, 6 FFF, 

10, 10 FFF, 

15 

1.8 42 

138.46 191.73 
IMRT 

VMAT 
2.6 29 

SBRT 7.25 5 

5 

Hepatic 3 

lesions 

(metastatic) 

SBRT 
6&15, 10, 

10 FFF 
20 3 7.09** 26.51** 

6 

Oligo-

nodules 

(primary) 

3D-CRT 

IMRT 

VMAT 

VMAT 

6, 6 FFF,  

10, 10 FFF,  

15 

PTV1: 2 

PTV2: 2 

33 

25 
294.3 421.13 

 
SBRT PTV1: 7.5 PTV2: 5 6 

7 
Breast 

(primary) 

3D-CRT/ 

IMRT/VMAT 6, 6 FFF 
2 25 

16.92 
76.35 

SBRT (partial) 3.85 10  

8 
Hepatic 

(primary) 

3D-CRT/ 

IMRT/VMAT 

 

6&15, 10, 

10 FFF 

2 
35 

8.15 19.13 
 

SBRT 15 3 

9 
Kidney 

(metastatic) 
SBRT 

6, 6 FFF, 10, 

10 FFF, 15 
10 4 4.28 14.65 

10 
Paravertebral 

(metastatic) 

CRT (reirrad) 6, 6 FFF, 10, 

10 FFF, 15 

8 3 
16.92 76.35 

SBRT 9 3 

        *FFF modes were not used for 3D-CRT modality as we consider as not a realistic case. The rest of the treatment plans were calculated for all the mentioned energies for each technique.  

       ** Averaged values considering all the lesions.
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Plans were calculated in Pinnacle -v.9.10- (Monaco -v.2.03- was used in the case 

of Elekta Axesse) Treatment Planning Systems (TPS) and delivered using a 

Simens Oncor (except VMAT technique), Elekta Synergy/Axesse and Varian 

TrueBeam linacs. FFF photon mode was only available for the later (Varian 

Medical Systems, Inc, Palo Alto, CA), equipped with a millennium multileaf 

collimator.  

In order to illustrate the advantage of the FFF operating mode for each 

modality, a comparison of averaged irradiation times ratios of FF to FFF 

irradiation modes are shown in Table II, for prostate, oligo-nodules, breast and 

lung cases. Our results are in agreement with previous reports (Prendergast et 

al.,2013) that suggested the higher efficiency for SBRT treatments using FFF 

mode when compared to conventional fractionations. FFF for conformal 

technique was not considered as it lacks from clinical sense. As previously 

mentioned, the main advantage of the reduction IN delivery time would be the 

lower intra-fraction motion (Prendergast et al.,2013). The greatest time 

reduction is obtained for the 10 MV FFF modality.  Note that reduction in time 

(from 6 to 10 MV) is not proportional to the dose rate increase (1400 to 2400 

MU/min) due to limitations in the leaf motion velocity.  

2.4 Peripheral dose calculation 

In the present work, two models for the estimation of photon and neutron 

peripheral equivalent doses for some of the most relevant cancer-at-risk organs 

have been used. They provide doses outside beyond the region where the 

accuracy of commercial TPS is questioned and where no CT data is usually 

available (typically outside the 5% isodose, representing around 10 cm from the 

field-edge; Howell et al.,2010; Sánchez-Nieto et al.2015a). The knowledge of 

these PD would allow the assessment of second cancer risk in the studied 

techniques.  
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Table II. Average irradiation times ratios and MU achieved in FF and FFF modes of the 

Varian linac for the prostate, oligo-nodules, breast and lung cases. 

Treatment modality Energies (MV) Time factor 

SBRT 
10 / 10 FFF 2.2 

6 / 6 FFF 1.8 

VMAT 
10 / 10FFF 1.2 

6 / 6 FFF 1.2 

IMRT 
10 / 10FFF 1.3 

6 / 6 FFF 1.2 

 

2.4.1 Photon Equivalent Dose 

The analytical model described in Sánchez-Nieto et al.2015a has been employed 

for the evaluation of Photon Peripheral Doses (PPD), accounting for leakage 

and scatter contributions. In this model, the first component is considered as a 

constant value while the latter is obtained from a simulated virtual isotropic 

source that decreases with an inverse-square law and an exponential 

attenuation, based on the proportion of air and tissue traversed. Thus, photon 

dose to points can be estimated by terms of the following expression: 

𝑃𝑃𝐷(𝑥, 𝑧, 𝑓, 𝜖)  =  𝐴 + 
𝐵

𝑥2
𝜖𝐹(𝑓)𝑒−𝑟𝑒𝑓𝑓       (eq.1) 

Where: 

- A represents the constant leakage component, which has been obtained 

from each manufacturer for the studied linacs and energies. 

-  The second term accounts for scatter radiation in linac head. B is a 

constant value, fixed by the model and x represents distance from the 

calculation point to the treatment isocenter. Exponential term accounts 

for the weighted average of linear attenuation coefficients for distance 
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traversed by the radiation (in air and tissue). Additional correction 

factors account for treatment efficiency 𝜖 (in terms of MU) and field size 

𝐹.  

Equivalent dose to organs is then evaluated as the integration of point PPD, 

calculated along organ length. Further details of this model can be found in 

(Sánchez-Nieto et al.,2014;2015a;b; 2016a; 2016b). 

For field size estimation, tumor size (x and y) for PTV and ITV volumes at 

isocenter location were used. In the case of multiple lesions, the average volume 

values were considered as representative of a single tumor size positioned at 

the depth of the center of mass of all lesions.  

2.4.2 Neutron Equivalent Dose 

Peripheral Neutron Dose (PND) model used in this work is also based in dose 

to point estimations (Sánchez-Doblado et al.,2012). Organ doses are calculated 

from point averaged values, calculated from clinically relevant points estimated 

inside an antrophormorphic phantom. Dose equivalent have been obtained 

regarding Monte Carlo simulations, ICRP-103 radiation weighting factors and 

thermal neutron detector measurements at 16 selected points for two different 

models, namely Head & Neck and Abdomen (Sánchez-Doblado et al.,2012; 

Expósito et al.,2013; Irazola et al.,2014b; Irazola et al.,2016b). These neutron 

doses are correlated to thermal neutron readings of a digital detector (located in 

the room, far from the patient). Thus, this methodology allows direct estimation 

of peripheral neutron doses for any facility by the only knowledge of the 

number of high energy MU (≥10 MV) of the specific treatment (Irazola et 

al.,2016a). For that, it only requires the commissioning of the facility in terms of 

neutron production by a simple characterization procedure (Romero-Expósito 

et al.,2015; Irazola et al.,2014a; Irazola et al.,2014b; Irazola et al.,2016b). PND can 

be estimated as follows: 
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𝑃𝑁𝐷𝑘,𝑗 = 𝑐∗ · 𝑀𝑈 · 𝑀𝑘,𝑗  (eq.2) 

Where: 

-  c* is the facility characterization factor in terms of neutron production.  

This factor can be either estimated from tabulated values for all the 

available linacs (Sánchez-Doblado et al.,2012) or by direct measurement 

(Romero-Expósito et al.,2015; Irazola et al.,2016c). 

- MU is the total number of high energy MU of the specific treatment.  

- 𝑀𝑘,𝑗 are the organ (k) and treatment (j) dependent correlation coefficients 

extracted from Irazola et al.,2016b (updated from 𝑔𝑗
𝑘 factors calculated in 

Sánchez-Doblado et al.,2012). 

A modified version of Periphocal software (Sánchez-Nieto et al.,2015;2016) has 

been used for PD calculation. Photon leakage parameters used were provided 

by the manufacturer. Regarding neutron dose calculations, a previous 

commissioning (Romero-Expósito et al.,2015), in terms of neutron production, 

was performed at each of the installations involved in this study. Uncertainties 

of these estimations, using the here described methodologies, are around ±25% 

and ±30% in the case of photons and neutrons, respectively. As previously 

explained, these models are used for calculations beyond 5% isodose where TPS 

estimates (in the case of photons, as neutrons are never considered in 

conventional radiotherapy TPS) are not reliable.  

The estimation of these peripheral doses opens the door to second cancer 

probability (SCP) estimations. This additional parameter should be used in 

combination with TCP and NTCP parameters for the best treatment strategy 

selection. As total PD obtained remained below 4 Gy, the linear no-threshold 

(LNT) models can be applied for this purpose (Schneider et al.,2015; Chargari et 
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al.,2016) as an acceptable qualitative approach (Schneider et al.,2010). For 

illustrative purposes, only SCP calculations for the prostate case were included. 

3. Results and discussion 

Firstly, we aimed to compare PDs among the 4 studied techniques (3D-CRT, 

IMRT, VMAT and SBRT) at low and high energies. As an example, doses (mSv) 

for the 14 representative organs chosen are shown in Figure 2 for lung (6 MV), 

paravertebral (10 MV) and prostate (15 MV) cases for Varian TrueBeam linac. 

Organs without dose information were either because laid within the 10 cm 

margins or had been excluded regarding patient sex.  

All clinical cases studied led to the lowest PD for the SBRT modality with 

respect to conventional fractionation techniques. As suggested in previous 

publications (Irazola et al.,2016a), this could be due not only the lower doses 

used for SBRT modality but to differences found in target volumes (Table I). For 

some of the calculated scenarios, 3D-CRT (standard fractionated modality) led 

to lower PDs than IMRT and VMAT, which showed similar values.  

Next step was the evaluation of differences between low and high energies. To 

illustrate the obtained results, paravertebral and adrenal cases for 6, 10 and 15 

MV in SBRT modality for the Varian linac were chosen. Figure 3 depicts PDs 

obtained at the same previously mentioned selected organs.  
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Figure 2. Comparison of PD for 14 representative out-of-field organs in: (a) lung 6 

MV, (b) oligo-nodules 10 MV and (c) prostate 15 MV cases using the 4 possible 

treatment modalities. Polar axis is displayed in logarithmic scale, representing doses 

ranging between 17 mSv-1.3x103 mSv, 0.3 mSv-5x103 mSv and 3 mSv-3.7x103 mSv, 

respectively. Curves overlapping do not permit see all the options in some graphs. 
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Figure 3. Comparison of PD for 14 representative out-of-field organs in SBRT modality for (a) 

paravertebral and (b) adrenal cases in 6, 10 and 15 MV in SBRT modality for Varian linac. 

Polar axis is displayed in logarithmic scale, representing doses ranging between 5 mSv-600 

mSv and 2.5 mSv-1.4x103 mSv respectively. 
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As a general behavior, 10 MV has shown as the best option in terms of PD, 

followed by 6 and 15 MV respectively. However, the impact on PD of photon 

leakage (which is different for each vendor) could invert this result in some 

cases, as larger leakage can compensate the usually lower number of MU of the 

15 MV plans. Figure 4 depicts PDs for the SBRT prostate for the Siemens linac. 

In this case, leakage parameters are similar for 6 and 15 MV for this machine; 

which is not the case for the Varian one (that seems to be highly optimized to 

reduce leakage for low energy modalities).  
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Figure 4. PDs for 11 representative out-of-field organs in all the available energies of the 

Siemens linac (6 and 15 MV) for the prostate SBRT plans. Polar axis is displayed in 

logarithmic scale, representing doses ranging between 19 mSv-1.5x103 mSv. 
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As we have previously explained, FFF mode seems to be a better option than 

conventional (FF) one. Then we decided to compare PD of these two modalities 

in the two energies available (6 and 10 MV). As an example, Figure 5  shows PD 

for the three-lesion hepatic case (6 MV) and PD for the adrenal (10 MV) case in 

Varian linac. The same data have been used to compare 6 and 10 MV in FF and 

FFF modalities (Figure 6).  

Finally, we aimed to evaluate the performance of the combined energy 

modalities (6&15 MV) in terms of PD. Values were compared to those obtained 

when using 10 MV in both FF and FFF modalities. This comparison is shown in 

Figure 7 for the single-lesion hepatic case in SBRT modality in Varian TrueBeam 

linac.  

Obtained results suggest the good compromise obtained when using 10 MV 

and FFF mode combination with respect to other modalities. When this 

modality is not available/usable, 10 MV has shown as the best option in terms 

of PD reduction, followed by 6 MV in FFF mode and 6 MV. 

In order to highlight the importance of this modern hypofractionation 

technique, we wanted to compare performance of one of the treatments when 

no SBRT is available and conventional fractionation has to be used. For that, we 

chose the brain case, where if this modality is not viable, usually a whole brain 

irradiation is performed (Figure 8a). This image shows size and location of the 8 

lesions (green one is repeated) in the whole brain contour. Obtained PD results 

are shown in Figure 8b for both cases. As expected, lower PD are observed 

when irradiating lesions separately in SBRT modality than when the whole 

brain is treated in conformal modality. Being the first one reduced when FFF 

irradiation mode is used.  

 

 



III. Thesiscore    2. Publications: D. SBRT, FFF and 10 MV irradiation techniques are 
associated to the lowest second cancer risk 

 

149 
 

 

 

Figure 5. Comparison of (a) PPD for the three-lesion hepatic case and (b) PD for the adrenal 

one  14 representative out-of-field organs in all the available energies (6 and 10 MV, with and 

without FF) for the (a) three-lesion hepatic and (b) adrenal casse in SBRT modality in the 

Varian linac. Polar axis is displayed in logarithmic scale, representing doses ranging between 9 

mSv-1.7x103 mSv and 9 mSv-40 mSv.  
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Figure 6. Comparison of PD when using: (a) 6 and 10 MV and (b) 6 FFF vs 10 FFF modalities 

for the adrenal case. Polar axis is displayed in logarithmic scale, representing doses ranging 

between 9 mSv-40 mSv and 5 mSv-50 mSv, respectively.  
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Figure 7. PD obtained for 10 MV in FF and FFF modalities compared to the use of combined 

low and high energies (6&15) in the single-lesion hepatic case in the Varian TrueBeam linac. 

Polar axis is displayed in logarithmic scale, representing doses ranging between 2.5 mSv-

1.4x103 mSv. 

 

In addition, we evaluated the treatment plans for which single tumors are 

treated either as combined or as separated lesions, in SBRT modality. PDs 

found were smaller in the first case due to an almost 3-fold increase in the 

number of MU when treating isolated lesions.  Thus, the advantage of treating 

some pathologies in SBRT that wouldn’t be viable with conventional ones (or 

would be considered as palliative) comes together with the reduction in PD. 

This is of special relevance in brain, breast and paravertebral cases here studied. 

As a final comparison, we wanted to study differences in terms of PD between 

the three main linac manufacturers studied. For that, PDs were calculated for 

the same treatment plans (one in high energy and other in low) in the three 

available linacs, to separate photon and neutron components.. As an  
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Figure 8. (a) Brain case (6 MV) contours  when lesions are treated separately ITV) and  a 

whole brain irradiation (PTV) has to be performed and (b) corresponding PPD. Polar axis is 

displayed in logarithmic scale, representing doses ranging between 4 mSv-34 mSv. 
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example, Figure 9 shows peripheral doses for two-lesion lung (6 MV) and 

prostate (15 MV) cases in terms of PPD, PD and PND respectively.  

In agreement with previous clinical studies (Irazola et al.,2016a; Murray et 

al.,2015; Kragl et al., 2011; Huang et al.,2015) lower PD for SBRT treatments, 

with respect to conventional fractionations, were observed. Modern techniques 

such as IMRT and VMAT showed slightly higher PD when compared with 3D-

CRT and similar values between them. In addition, lower values were obtained 

for any of the studied techniques when FFF mode is used, with higher relevance 

in organs located at further distances.  

Higher values are obtained for PD in 6 MV and 15 MV (photon+neutron 

contributions), while a compromise can be found when using 10 MV. These 

values decrease when using FFF mode, which is enhanced in the case of 10 MV 

FFF. Concerning linac manufacturer, lower peripheral photon dose values were 

obtained for the Varian linac for the low energy case, while Elekta machine is 

associated to lower photon and neutron doses in high energy.  

As a final comparison, it was decided to test the goodness of the combined use 

of SBRT modality, 10 MV energy and FFF operation mode in comparison with 

other alternative clinically viable plan, such as 15 MV in VMAT modality for 

the prostate case. Obtained results in terms of PD are shown in Figure 10. 

As expected, the first modality has shown to highly reduce PD with respect to 

those obtained with the VMAT modality.  

Our results seem to be in agreement with those obtained with other models as 

Schneider et al.,2010, where second cancer risk seem to decrease when 

increasing the dose per fraction.  
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Figure 9. Comparison of the three available linacs in terms of: (a) PPD for the two-lesion lung 

case (6MV) and (b) PPD and (c) PND for the prostate one (15 MV). Polar axis is displayed in 

logarithmic scale, representing doses ranging between 23 mSv-233 mSv, 22 mSv-1.54x103 

mSv, 25 mSv-1.5x103 mSv and 1.3 mSv-65 mSv, respectively. Curves overlapping do not 

permit see all the options in some graphs. 
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Figure 10. Comparison of PD obtained for SBRT 10 MV FFF modality and VMAT in 15 MV 

for the prostate case. Polar axis is displayed in logarithmic scale, representing doses ranging 

between 2.5 mSv–1.5x103 mSv and 97 mSV-3.7x103 mSv. respectively. 

 

Although calculations of SCR have been carried out for the PDs beyond 10 cm 

from the field-edge, it has been estimated that around 50% of SMNs are found 

in this location (Diallo et al.,2009).  Nevertheless, as our goal is the comparison 

among techniques, and no calculation of absolute values, we consider that the 

results of our analysis are valid. 

SCP, TCP and NTCP parameters were calculated for all the prostate treatment 

plans (including the 4 techniques, FF and FFF and irradiation mode and 

energies) as an example. An average decrease in SCR of 1.5% was found for 

SBRT modality, especially relevant in the 10 MV FFF modality (1.8%). SCR 
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values vary from 0.02 cases per 1000 (thyroid in 10 MV FFF SBRT) to 39 cases 

per 1000 (bone in 15 MV IMRT). 

Additionally, an average value of 99.7% has been obtained for TCP parameter. 

This value agrees with previous studies which have demonstrated the 

applicability of the classical LQ formula for local tumor control in fractionated 

SBRT for lung cancer (Guckenberger et al.,2016). Regarding normal tissue 

toxicity, NTCP values to OAR obtained for SBRT modality were lower than 

recent studies (Guckenberger et al.,2016). Particularly, for the case of 10 MV in 

FFF mode a decrease of 60% from the average value of all the other studied 

cases have been observed (Yan et al.,2015). 

4. Conclusions 

Ten different pathologies treated with SBRT have been calculated in all the 

available energies (6, 6 FFF, 10, 10 FFF and 15 MV), modalities (3D-CRT, IMRT, 

VMAT and SBRT) and linac manufacturers (Siemens, Varian and Elekta). A 

total number of 144 different treatment plans have been obtained and analysed 

for the first time in terms of peripheral neutron and photon doses. Two analytic 

models from directly available input parameters (MU, leakage, patient height, 

isocenter location and facility characterization in terms of neutron production) 

have been used for this purpose. We can conclude that lower peripheral doses 

are achieved for SBRT, being more evident when ITV is much lower compared 

to PTV. Thus, although peripheral doses may vary regarding technique used for 

SBRT fractionation (due to the different number of MU used for each modality), 

lower values are always expected. When comparing conventional 

fractionations, higher values are found for VMAT and IMRT techniques with 

respect to conformal one, as expected. In addition, a reduction in these doses 

has been found when using 10 MV energy, especially in FFF irradiation mode. 

Neutron doses have shown to contribute in small percentage to global values 
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(especially if combined energies are used). The low PD values obtanined (< 4 

Gy) makes possible to argue that linear no-threshold models for second cancer 

induction are valid and that they do not depend on the fractionation scheme 

used. The latter would ease the implementation of the model in TPS. This could 

be used, as an additional objective parameter for the choice of best treatment 

strategy. These results together with the obtained values for radiobiological 

TCP and NTCP parameters, suggest that hypofractionated modality in 10 MV 

using FFF mode, could represent the best compromise between dose delivery 

efficiency and peripheral doses reduction.   
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IV. Conclusions 

The outcomes of this work lead to the following conclusions: 

 1. The use of the new miniaturized active online Thermal Neutron Rate Detector, 

has demonstrated to be a good alternative to both, active (SRAMnd) and passive 

(TLD, CR-39) devices, needed for the established methodology for peripheral 

neutron organ (and second cancer risk) estimation in high-energy radiotherapy. 

Consequently, this device is usable for the direct estimation of peripheral 

neutron doses by terms of thermal neutron fluence measurements in both ‘ex-

phantom’ and ‘in-phantom’ locations. 

 

2. An almost pure, photon-free, thermal neutron field for detector stability 

testing purposes has been established and characterized at the 3 MV Tandem 

Pelletron accelerator of CNA (Sevilla). The characterized thermal neutron beam 

is obtained by terms of an incident proton beam impigning into a lithium target 

leading to thermal neutron fluence rates up to 2x103 cm-2·s-1 with a ±4% 

reproducibility. 

 

3. Two different methodologies to improve neutron-to-photon discrimination of 

TNRD devices under ‘critical’ conditions in radiotherapy environments 

(applicable to any thermal neutron detector) have been established. Both of 

them aim to estimate undesired photon contribution to detector readings in 

order to later correct the measurements. These approaches are based on the 

repetition of the high energy measurements under the same conditions: 

 

 (a) the first one is based on the use of a borated rubber material to 

eliminate neutron contribution and isolate photon one. 
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(b) the other one aims to represent a simpler and more universal alternative, 

consisting of the consideration of usual low energy (6 MV) TNRD 

reading as equal to undesired photon component in TNRD high energy 

measurements. 

 

4. The usability of TNRD devices for both measurements needed in the studied 

methodology, based on the correlation of reference ‘ex-phantom’ measurements 

(detector located in the reference position) to equivalent organ doses (estimated 

from detector readings inside an anthropomorphic phantom), has allowed  the 

improvement and generalization of the existing models.  Several aspects have 

been enhanced:  

(a) simplification of the facility characterization to be expressed in terms of 

thermal neutron fluences, generalizing the methodology to any thermal 

neutron detector. 

(b) improvement of neutron dose estimations, allowing the enhacement of 

the existing Head & Neck and abdomen models. 

(c) introduction of patient size as an additional parameter to provide more 

specific neutron dose evaluations, especially relevant in children 

patients.  

Results have also been validated in 510 real high-energy radiotherapy 

patients. 

 

5. Neutron and photon peripheral doses have been evaluated using the two 

analytic models developed by our group through the duration of this work. Ten 

real kinds of treatments have been compared using conventional (3D-CRT) and 

modern (IMRT, VMAT, SBRT and FFF) techniques using low (6 MV) and high 

(15 MV) energies in three different linacs (Siemens, Varian and Elekta). As a 

general pattern, SBRT fractionation, 10 MV and FFF modality have shown as 

the most optimal ones in terms peripheral dose reduction. Thus, a combined 
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use of these options would decrease second cancer probability. Obtained results 

from the comparison of these peripheral doses open the door to the 

introduction of an additional objective parameter in commercial TPS for the 

choice of the most adequate treatment plan regarding each patient. 
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AAPM American Association of Physicist in Medicine 

BED  Biological Effective Dose 

BEIR  Biological Effects of Ionizing Radiation 

CRT  Conformal RadioTherapy 

CT  Computed Tomography  

DDREF  Dose and Dose-Rate Effectiveness Factor  

EAR  Excess Absolute Risk 

ERR   Exxcess Relative Risk 

FF  Flattening Filter 

FFF  Flettening Filter Free 

H&N  Head & Neck 

ICRP  International Commission on Radiological Protection 

IGRT   Image Guided Radiation Therapy 

IMRT  Intensity Modulated Radiation Therapy  

LAR  Lifetime Attributable Risk  

LET  Linear Energy Transfer 

MC   Monte Carlo 

MU  Monitor Units 

NCRP  National Council on Radiation Protection & measurements 

NTCP  Normal Tissue Compliation Probability 

OAR  Organs At Risk 

PADC  Poly-Allyl-Diglycol-Carbonate (etched track dosimeter) 

PD  Peripheral Dose 

PND  Peripheral Neutron Dose 

PPD  Peripheral Photon Dose 

PTV  Planned Target Volume 

RBE  Relative Biological Efficiency 

RT  RadioTherapy 

SBRT  Stereotactic Body Radiation Therapy 

SCP  Second Cancer Probability 

SCR  Second Cancer Risk 

SEER  Surveillance, Epidemiology and End Results program 
SEU  Single Event Upset 

SMNs  Second Malignant Neoplasms 

SRAM  Static Random Access Memory 

TCP  Tumor Control Probability 

TLD  ThermoLuminiscent Dosimeter 

TNRD  Thermal Neutron Rate Detector  

TPS  Treatment Planning System 

VMAT  Volumetric Modulated Radiation Therapy 
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Appendix A       

A.1. 

Set-up of a new online digital detector for peripheral 

neutron equivalent dose estimation in radiotherapy patients 

 

Terrón, Irazola  et al., Radiother and Oncol 2014;111:564 

 

1. Purpose 

One of the possible sources of secondary neoplastic processes is the peripheral 

dose received by patients undergoing radiotherapy treatments. In spite of the 

International Commission on Radiological Protection (ICRP Publication 103, 2007) 

recommendations, out-of-field dosimetry is a complex task which is frequently 

ignored. Our team has focused on neutron equivalent dose estimation. 

Firstly, a methodology to estimate neutron equivalent dose in organs, based on 

a Static Random Access Memory neutron detector (SRAMnd) was set up (Sánchez-

Doblado et al.,2012; Expósito et al.,2014). The purpose of this work is to present 

a new digital diode detector sensitive to thermal neutrons (Irazola et al., 2014) 

which, following the established methodology, improves the performance of 

our previous neutron dosimetry system.  

2. Material and method 

The Thermal Neutron Rate Detector (TNRD), based on a commercial low-cost 

diode device and sensitized to thermal neutrons, is able to measure neutron 

fluence rate in the range of 10-107 ncm-2s-1 and in the presence of an intense 

photon background. It provides a voltage output which is directly proportional 

to the thermal neutron fluence rate (Irazola et al., 2014). 
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Simultaneous measurements with the SRAMnd were carried out. This allowed 

us to establish its reference factor, linearity, reproducibility and, finally, the 

patient measurements. 

3. Results 

A reference factor of 52.9 (events by SRAMnd/V·s by TNRD) with an 

uncertainty of 2.0% (1SD) was obtained.  

Figure 1 shows the detector’s linear response as a function of Monitor Units 

(MU) in the typical dynamic range of a radiotherapy treatment, with no 

saturation effect observed. 

A reproducibility of 1.67% (1SD) has been estimated by considering 18 

measurements. This value encompasses linac’s reproducibility. 

 

 

Figure 1. TNRD readings versus MU. 
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The variability in the response of both detectors, expressed in terms of Total Risk 

of acquiring a second cancer (TR), is shown in Table I for 50 patients, with 

measurements carried out in 4 facilities. 

 

Table I. TR (‰) per MU mean deviation between the values estimated by the TNRD and those 

of the reference SRAMnd, for the 4 studied facilities. 

 

4. Conclusions  

A new online neutron detector, named TNRD, has been validated and set-up 

for its use in the estimation of second cancer risk due to neutrons, as a 

consequence of radiotherapy treatments.  

5. References  

ICRP Publication 103, Recommendations of the International Commission on 
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Irazola L, Lorenzoli M, Bedogni R, Pola A, Terrón J A, Sanchez-Nieto B, Expósito M R, 

Lagares J I, Sansaloni  F and Sanchez-Doblado F. A new online detector for estimation of 

neutron equivalent dose in organ. Med Phys 2014;41(11):112105:1-5 

Sánchez-Doblado, F, Domingo, C, Gómez, F, Sánchez-Nieto B, Múñiz J L, García-Fusté 

M J, Expósito M R, Barquero R, Hartmann G H, Terrón J A, et al. Estimation of 
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online digital detector. Phys Med Biol 2012;57:6167–6191 

 

 

  



Appendix A A.1. Set-up of a new online digital detector for peripheral 
neutron equivalent dose estimation in radiotherapy patients 

182 
 



Appendix A A.2. Evaluation of peripheral neutron equivalent dose and 
second cancer risk in radiotherapy patients 

183 
 

 

A.2. 

Evaluation of peripheral neutron equivalent dose and 

second cancer risk in radiotherapy patients 

 

Irazola et al., Radiother and Oncol 2014;111:708-709 

 

1. Purpose 

The rapidly evolving external radiation treatment technologies have made 

possible a higher life expectancy of treated patients. This evolution is also 

associated to collateral long term effects like the risk of developing a second 

cancer (Xu et al.,2008). The source of this problem is the unwanted peripheral 

dose due to the photon leak and scattered photons, as well as to the secondary 

neutrons produced. Although absorbed dose due to photons is more relevant, 

neutrons do also have a noticeable contribution, owing to its biological 

weighting factor, wR.  

Neutron contribution to the doses in out-of-field organs has been previously 

estimated by Sánchez-Doblado et al.,2012. The introduction of a more versatile 

neutron detector has enabled the estimation of second cancer risk as a 

consequence of the neutron component of radiotherapy treatments (Expósito et 

al.,2013). We aimed to evaluate, using this detector, the neutron equivalent dose 

in peripheral organs, and the second cancer risk associated, for a group of 

patients. 

2. Material and method 

In order to evaluate, in real time, the neutron equivalent dose in peripheral 

organs and the second radio-induced cancer risk (Expósito et al.,2013), a 
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Thermal Neutron Rate Detector (TNRD) (Irazola et al.,2014) is placed inside the 

treatment room while performing patient measurements. Alternatively, and by 

means of a previous characterization of the facility (Expósito et al.,2012) with 

the same detector, we can estimate this risk (Total risk of acquiring a second cancer, 

TR) without the need of any measurements during the treatment.  

In this work, measurements were carried out during the irradiation of 50 

patients affected by different pathologies with high energies (15-18 MV). Four 

facilities participated in this quantification. The measurements have been 

compared to the estimated values, calculated with the characterization data. 

3. Results 

Table I shows the estimated TR per Monitor Unit (MU) for neck (H&N) and 

abdomen treatments, for the 4 characterized facilities (data are presented for 

men and women separately). 

Figure 1 shows the differences between calculated (characterization) and 

measured TR values for the 50 studied patients. 

 

Table I. Estimated risk (TR) per MU for two types of treatments in men and women in 4 

different facilities. 
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Figure 1. Percentage differences, with respect to the maximum risk (TR) of each facility, 

between estimated and measured value. 

 

4. Conclusions 

Peripheral neutron equivalent dose in patients undergoing radiotherapy has 

been measured, with a new active detector of small dimensions. Differences 

between the cancer risk estimations derived from direct measurements 

performed during patient irradiation and those estimated from a model based 

on a previous characterization of the linac are smaller than 0.25%. This opens 

the door to the implementation of models for peripheral neutron dose 

calculation in the context of treatment planning systems.  
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A.3. 

Online neutron fluence measurements in phantom for 

second cancer risk estimation in radiotherapy 

 

Sánchez-Doblado, Irazola et al., Radiother and Oncol 2014;111:709-710 

 

1. Purpose 

There is a growing concern about second cancer induction as a consequence of 

radiotherapy treatments (Xu et al.,2008). The main source of this problem is the 

unwanted peripheral dose, where neutrons represent an important contributor, 

owing to their relative biological effectiveness compared to photons. The 

equivalent dose in organ due to neutron contribution has been previously 

estimated by Sánchez-Doblado et al.,2012 through the use of an 

anthropomorphic phantom and passive detectors. 

The introduction of a new miniaturized active neutron diode detector named 

Thermal Neutron Rate Detector (TNRD) (Irazola et al.,2014) allows us to estimate, 

online, the equivalent dose. TNRD’s reduced size enables its insertion in an 

anthropomorphic phantom. We aimed to validate this new type of detector for 

the estimation of thermal neutron fluence at specific points inside a phantom. 

2. Material and method 

The new digital neutron detector TNRD, with an overall volume of approx. 0.9 

cm3, can be placed at 16 points in an anthropomorphic phantom (NORMA), as 

shown in Figure 1. 

This new detector was validated against ThermoLuminiscent Dosimeter (TLD). 

We have assumed a cumulative uncertainty of 15% for TLD, and 11% for  
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Figure 1. Anthropomorphic phantom with TNRD detectors located inside. 

 

TNRD. Measurements were performed for 3 different treatments using 15 MV 

(head and neck, abdomen and prostate). The equivalent doses in organs are 

estimated from the thermal fluence, using neutron fluence energy spectrum for 

each point of the phantom, calculated with Monte Carlo (Sánchez-Doblado et 

al.,2012). For the risk of acquiring a second cancer we have used the procedure 

proposed in Expósito et al., 2013. 

3. Results 

Table I shows mean differences in thermal neutron fluence (and the Standard 

Deviation [SD]) between both detectors obtained for the three types of 

treatments, considering TLD as the reference.  
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Table I. Mean deviation (1SD) of thermal fluence (106 n.cm-2) for both detectors (TLD as 

reference) in the different treatments. 

 

4. Conclusions 

A new active thermal neutron detector (TNRD) of small dimensions has been 

validated for in-phantom and online thermal neutron fluence estimation during 

radiotherapy treatments. This will enable direct estimation of equivalent dose 

in organs, and thus estimating the risk of acquiring second radio-induced 

cancer for any type of treatment and facility.  
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Appendix B      

B.1. 

Effects of cable extension and photon irradiation on TNRD neutron detector in 

radiotherapy  

 

Irazola et al., IFMBE Proceedings 2015;51:645-648 

 

Abstract 

A new thermal neutron detector (TNRD), developed for nuclear research, has 

shown to be effective for clinical use in peripheral neutron dose estimation, 

either in patient and ‘in-phantom’ measurements. This work shows some TNRD 

difficulties when adapting it to radiotherapy environments, mainly due to the 

fact that it has shown structural limitations. Two problems have been studied: 

(1) the influence of cable lengthening, necessary to be operative in a 

radiotherapy environment and (2) cable irradiation during the measurements. 

As we are measuring very small signals, we have to take into account not only 

these two facts but also the quality of the materials and connectors used. Thus, 

we studied cable elongation and irradiation influences in conventional and 

extreme situations once the setup was improved, in order to avoid uncertainties 

which could be of the order of the signal. Mean deviations of -0.15% from the 

original TNRD cable extension have been noticed. For the wide variety of 

conditions tested, in terms of both dose delivered and setup of the radiotherapy 

exposure, uncertainties smaller than 1.2% have been estimated. 

1. Introduction 

As part of the clinical routine in radiotherapy environments, radiation 

dosimetry needs to be performed as complete as possible. However peripheral 

doses are usually not considered in routine procedures. Our group established 
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an easily accessible methodology for neutron component estimation (Sanchez-

Doblado et al.,2012; Expósito et al.,2013). Neutron detectors used in 

radiotherapy for peripheral dose estimation for high-energy treatments were 

usually passive. Nevertheless new studies have demonstrated the viability of 

some active thermal neutron detectors, developed for nuclear research and 

aerospace applications, as suitable for both, ‘in-phantom’ and patient 

measurements (Guardiola et al., 2013; Irazola et al.,2014). Attention should be 

paid in the very small signals that are being measured, besides the fact that 

neutron presence is evaluated under an important photon background. This 

work studies the effects produced by the necessary modifications introduced in 

TNRD detector setup to adapt it from the nuclear to the radiotherapy 

environment, for peripheral neutron dose estimation. The effect of two 

parameters has been tested: (1) the cable lenghtening (2) cable irradiation 

during the measurements. For precise estimations of weak signals, the 

contribution of noise currents generated during cable exposition has to be 

quantified (Fiorino et al.,2000; Campos et al.,1990).  

In order to provide limits and recommendations for these detectors, this study 

was performed in the range of extreme and usual clinical conditions. 

2. Material and Method 

2.1 Material 

a) TNRD detector  

The newly miniaturized Thermal Neutron Rate Detector, TNRD has been 

developed in the INFN-LNF (Istituto Nazionale di Fisica Nucleare) of Frascati. 

Based on a low-cost commercial solid-state device sensitized to thermal 

neutrons through a customized physical-chemical treatment, is capable to 

correctly measure thermal neutrons under an intense photon background 
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(Bedogni et al.,2014). The signal is amplified in a low-voltage electronics 

module, then sent to a programmable ADC and finally controlled by a PC 

through a LabView© (2010 National Instruments). An improved and more 

compact setup was built, as shown in Figure 1a, to avoid inconvenient of the 

first prototype. Previous studies (Irazola et al.,2014) shown a global uncertainty 

in clinical environment measurements of 11% for  these detectors.  

Original cable length of the detectors was 0.8 m but an extension to a 2.4 m 

cable was found to be sufficient to reach all the anthropomorphic phantom 

measuring points from the electronic box (Figure 1b). For the reference detector 

(located close to the wall, in front of the treatment table) used for usual patient 

measurements, a 5.4 m total length was employed. Cables were adapted to 

these new lengths by using Belden Inc. RG-174/U and RG-58A/U cable type. For 

the box connections, BNC (Bayonet Neill Concelman) and SMA (SubMiniature 

version A) connectors are Amphenol® 50 Ω plugs. Amphenol® RF SMA to 

BNC adapters were also used here. Welding was performed at constant 

temperature with an electric welder and solder.  

A Siemens Primus has been used at Virgen Macarena University Hospital in 

Seville (HUVM).  

 

 

Figure 1. (a) Improved experimental setup with the new TNRD detector electronic box and (b) 

TNRD detectors during anthropomorphic phantom measurements in the treatment room.  

(a) (b) 
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2.2  Method 

a) Cable length influence 

In order to estimate cable influence, 0.8 m vs. 2.4 (or 5.4 m) cable, 500 MU 

measurements have been performed under the same irradiation conditions for 

the six available detectors.  

Irradiation conditions were 10x10 cm2 squared field in 15 MV, always with a 

100 cm SSD distance. Detectors were inserted in the middle of 8 cm of 

polyethylene with 10 cm of the cable irradiated. Then linearity response was 

studied in the range of 100 to 4000 MU, corresponding to a thermal neutron 

fluence comprised between (4.5-230) x106 neutrons per cm2. 

b) Cable irradiation influence 

An empirical evaluation of the cable irradiation effect was made by the 

irradiation of 300 MU in 4 consecutive fields: (1) 40x10 cm2 (2) 30x10 cm2 (3) 

20x10 cm2 and (4) 10x10 cm2 with (Figure 2a) and without (Figure 2b) cable 

irradiation. 40, 30, 20 and 10 cm of cable were irradiated (SSD=96.5 cm). 

Detector to field edge distance was always constant using asymmetric 

movements of the MLC (MultiLeaf Collimator). Both, cable and detectors were 

inserted in the middle of two layers of 0.5 cm of polystyrene and two layers of 3 

cm of PMMA (polymethyl methacrylate). 

First, reference measurements in 15 MV were performed without cable 

irradiation. Then, in order to avoid uncertainties due neutron production, 3.2 

mm thick Flex–Boron sheets were used to cover the detectors (eliminating thus 

neutron presence in the signal as shown in Gomez et al.,2010). For that, the two 

polystyrene layers (were substituted by the two Flex–Boron sheets (equivalent 

to 5 mm of water). With this setup, with and without cable irradiation 

measurements were performed.  
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Figure 2. Setup for a field size of 40x10 cm2 when no irradiation (a) and irradiation (b) of the 

cable occurs. The upper plastic layers have been removed for a better visualization of the 

detectors position. 

 

3. Results and discussion 

3.1 Cable length influence 

Mean loss of signal of (-0.09±0.08) % per meter of cable for the six detectors, 

with a maximum value of -0.24% and a minimum of -0.03%, has been obtained 

when measuring with extension cables with respect to the original setup. 

Observed differences could not only be related to cable length but also to 

quality of the connectors. In this sense, special care has been taken in material 

quality and connections when performing the setup. 

A good linearity response was found (R2=1) for all the detectors (with the 

extension cables) in the range 100-4000 MU as shown in Figure 3.  

(a) (b) 
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Figure 3. TNRD detectors linearity with extension cables in the range of 100 to 4000 MU, 

corresponding to a thermal neutron fluence comprised between (4.5-230) x106 neutrons per cm2.  

 

When 1000 MU are delivered, a thermal fluence of around 20 x106  neutrons per 

cm2 was obtained. This implies that the studied range covers widely the usual 

clinical values.  

3.2  Cable irradiation influence 

In general, a loss of signal has been observed when cables were irradiated. The 

variation obtained for the different studied field shapes (between irradiated and 

non-irradiated measurements using Flex–Boron sheets) is shown in Table I. 

Total signal and relative uncertainties are calculated with respect to the 

reference 15 MV measurement (without the neutron absorber material).  

Data show the same trend in signal variation by decreasing readings when 

cables are being irradiated. Deviations increase when the amount of exposed 

cable is bigger, until the 30 cm case.  
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Table I. TNRD signal in 15 MV, subtraction of irradiated and no irradiated cable readings and 

percentage that represents the difference with respect to total values. 

 

Field 

size 

(cm2) 

Total 

signal 

(V·s) 

Irradiation

-No Irradiation 

(V·s) 

Relative 

Deviation 

(%) 

10x10 74.17 -0.60 -0.63 

20x10 81.49 -0.76 -0.70 

30x10 87.30 -1.22 -1.19 

40x10 87.68 -1.20 -1.09 

 

Similar values were obtained for the most extreme situation (40x10 cm2) and the 

previous one (30x10 cm2). Thus we can assume that when cables are being 

irradiated, corresponding to a dose of 318.5 cGy, TNRD signal decreases at 

most 1.1% from the non-irradiated case. As during ‘in-phantom’ measurements 

and other experiments cables are similarly irradiated, we should consider this 

incertitude for now on.  

4. Conclusions  

Our experiences showed both, the substantial necessity of using extended 

cables and the impossibility of measuring in the anthropomorphic phantom 

points without cable irradiation. Fortunately, measurements are now possible 

with the proposed improved setup here detailed. The previously mentioned 

11% uncertainties did not consider these studied limitations. Although cable 

length extension has in general negligible effect on the measurement, cable 
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irradiation can produce up to a 1.2% deviation in some extreme conditions 

studied here.  

As such, it is recommended the use of longer (around 2.4 m) than the 0.8 m 

provided by the manufacturer. Taking special care on cable and connections 

quality. On the other hand, the irradiation of the cables should be considered in 

order to minimize its influence during the measurement. Nevertheless, this 

should be taken into account when considering measuring uncertainties in 

TNRD signal.  
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B.2. 

Signal photon component of a new thermal neutron detector TNRD in 

radiotherapy environments  

 

Irazola et al., Radiother and Oncol 2015;115(1):S870 

 

1. Purpose 

The goal of this work is to study TNRD (Thermal Neutron Rate Detector) 

response in high and low energies of clinical environments, to reject the photon 

component in peripheral dose measurements where mixed gamma and neutron 

fields are present.   

2. Material and method 

Four TNRD detectors (Bedogni et al.,2014) and a Farmer PTW ionization 

chamber were simultaneously used to obtain neutron and photon doses. 

Measurements were performed in a Siemens Primus linac with 6 and 15 MV 

photon beams (300MU/min) using a 40x10 cm2 field. One minute irradiation 

times were used with both detectors placed in the middle of an 8 cm 

methacrylate block under out-of-field geometries (Figure 1). The study was 

carried out for 9 different field edge-detector distances, which meant photon 

dose rates ranging from 0.16 to 6 cGy/min.  

3. Results 

As expected, for each location, similar readings from the IC were obtained for 

both energies as an indication of the low dependence of photon peripheral 

doses with the energy (Kry et al.,2005). An average difference of 0.26 cGy  
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Figure 1. Setup used for the field-edge-detector study. 

 

(photon dose) for IC readings in both energies, except for 5 cm to the field edge 

(not relevant for peripheral doses) was obtained. Neutron presence in 6 MV 

was evaluated with the SRAMnd (Sánchez-Doblado et al., 2012) (Static Random 

Access Memory neutron detector), with a negligible neutron presence (~1%). These 

two results allowed, from the subtraction of the 6 MV and the 15 MV readings, 

the neutron component discrimination for each measured situation (Table I 

with averaged values). Photon presence (6 MV) increases when getting closer to 

the field edge, which is predicted by the IC in accordance with TNRD readings. 

If we would establish a limit to trust TNRD neutron measurement, a noise 

(photon) lower than 10% of the signal (neutron) could be considered acceptable. 

This value is obtained 30 cm far from the field edge, corresponding to a photon 

dose around 0.5 cGy.  
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Table I. TNRD readings for 6 and 15 MV measurements and neutron component 

(substraction of both readings), for the 9 studied distances. 

 

Field-edge 

detector 

distance (cm) 

TNRD 15 

MV (V·s) 

TNRD 6 

MV (V·s) 

Neutron 

signal (V·s) 

5 152.48 83.46 69.02 

10 145.22 36.56 108.67 

15 143.78 34.50 109.28 

20 137.09 28.36 108.72 

25 129.09 25.38 103.71 

30 117.96 15.95 102.01 

35 106.65 9.47 97.19 

55 86.38 3.31 83.07 

100 63.07 1.07 62.00 

 

 

4. Conclusions  

A photon rejection uncertainty has been estimated for TNRD detectors under 

some clinical special conditions. Although patient measurements are perfectly 

feasible with this type of detector (Irazola et al.,2014) due to the low photon 

contribution when using the methodology established for model generation 

(Sánchez-Doblado et al., 2012), photon contribution limit should be studied for 

new detectors. Nevertheless, as we can assume that photon components are 

close for both energies, being 15 MV one at least as that of 6 MV, a good 

approximation to obtain more precise neutron doses, would be the subtraction 

of signals (corresponding to measurements at 6 and 15 MV under the same 
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conditions), as shown in the Table I. This would allow having reliable neutron 

measurements much closer than 30 cm to the field-edge (e.g. 10-15 cm). 
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B.3. 

Photon energy response of TNRD neutron detector in a 60Co irradiator and a 6 

MV clinac 

 

Terrón, Irazola et al., Radiother and Oncol 2015;115(1):S757-S758 

 
 

1. Purpose 

The validation of a novel digital thermal neutron detector TNRD has been 

carried out for clinical applications. The results obtained by our group, 

indicated that the estimation of neutron doses, both in phantom and patients 

are perfectly feasible with this detector (Irazola et al.,2014). Although 

differences among the two diodes that compose the detectors in terms of 

photon sensitivity were reduced in the manufacturing process, experiments 

have shown them not to be completely reliable in some special clinical 

environment.  

The goal would be to find a relation between dose-signal responses with photon 

dose and energy, in order to establish TNRD limitations in clinical 

environments.  

2. Material and method 

The 60Co photon source used is a Gammabeam® X200 irradiator, that provides 

gamma photons (with energies of 1.17 and 1.33 MeV) in a wide range of dose 

rate (0.05-400 Gy/h), obtained with different attenuation systems. The linac used 

is a Primus Siemens with 6 MV and a 40x10 cm2 field. Measurements were 

performed with a PTW Farmer ionization chamber and Thermal Neutron Rate 

Detector (TNRD), based on a pair of photodiodes and sensitized to thermal 
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neutrons (Bedogni et al.,2014). Pure photon response of TNRD was studied in 

the 60Co facility for dose rates ranging from 0 to 4 cGy/min. As we have already 

confirmed that neutron presence in 6 MV is negligible, measurements ranging 

from 0.1 to 4.6 cGy photon doses were performed for different out-of-field 

detector positions.  

3. Results 

Although we expected to obtain a constant signal-dose relation for TNRD, 

different behavior was observed at both facilities. A higher reading is obtained 

always for the 60Co measurements, being almost 7 times bigger for low doses 

(0.12 cGy) and around 3 times at higher ones (4.3 cGy). TNRD energy response, 

can be estimated based on the mass-energy attenuation coefficient (µen/р) of 14Si 

(main component of TNRD detector) shown in Figure 1. The difference found in 

TNRD signal in 60Co and 6 MV (Table I) is justified by the higher response 

observed for the 14Si at low energies, taking into account that measurements are 

always performed in a peripheral area where scattering is dominant and thus 

mean energy lower.  

4. Conclusions 

TNRD neutron detector has shown to be sensitive to photon dose rates even at 

low values (0.15-4 cGy/min). Different behaviour has been noticed for 60Co and 

6 MV photon energies. Nevertheless, similar TNRD response to 6 and 15 MV 

photons could be expected. In consequence, in order to reasonably avoid 

photon presence in peripheral neutron estimations, the subtraction of 6 MV 

signal to the 15 MV one (under the same irradiation conditions) could be a good 

approximation. Further measurements and MC simulations, should be 

necessary to ensure this proposal for different linac energies. 
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Figure 1. Logarithmic representation of the μen/ρ coefficient for 14Si in the range of 0-20 MeV, 

data extracted from 

http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z14.html. 

 

 

Table I. TNRD signal in 60Co and 6 MV facilities. 

60Co 6 MV 

D (cGy) TNRD (V·s) D (cGy) TNRD (V·s) 

0.14 7.61 0.11 1.07 

0.15 8.37 0.23 3.31 

0.16 8.73 0.42 9.47 

0.33 16.82 0.67 15.95 

0.43 20.17 1.11 25.38 

0.67 29.82 2.14 34.50 

3.30 151.16 3.29 33.92 

3.88 164.54 3.65 38.74 

4.03 168.88 4.60 60.67 
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B.4. 

TNRD neutron detector signals for different gantry angles in 6 and 15 

MV  

 

Irazola et al., Radiother and Oncol 2015;115(1):S761 

 

1. Purpose 

The new commercial thermal neutron device (TNRD) has a good response with 

directionality in a pure neutron beam (Bedogni et al., 2014). In addition, good 

coincidence with TLD detectors was found for peripheral neutron dose 

estimation in-phantom (Irazola et al.,2014). Nevertheless, further experiments 

have shown that TNRD is not completely reliable in some special clinical 

conditions, due to photon contribution.  

The aim of this work is the knowledge of uncertainties related to photon 

presence under different irradiation conditions, especially angle incidence 

influences at different field-edge distances. This will not only verify the 

goodness of TNRD measurements due to a possible compensation, but to find a 

possible correction to improve peripheral neutron doses estimation.  

2. Material and method 

TNRD detector is based on a pair of commercial photodiodes, and allows the 

measurement of thermal neutron fluences under an intense photon background 

(Bedogni et al., 2014) However in the case of an in important photon presence, 

intrinsic differences among diodes make TNRD signal to be over or 

underestimated, due to their relative position with respect to the beam 

incidence. This could be a consequence of “shadow” effect, from one diode to 
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the other, as the reading is obtained by the subtraction of both signals (the one 

of the sensitized to neutrons and the normal one). 

Six gantry angle incidences (0º, 45º, 135º, 180º, 225º and 315º) were measured in 

6 and 15 MV for two different field-edge detector distances (10 and 25 cm, 

corresponding to an approx. dose rate 3.53 and 1.21 cGy/min). A Primus 

Siemens linac using a 40x10 cm2 field was employed with TNRD detectors 

inserted in the middle of two layers of 4 cm polyethylene. 

3. Results 

Table I shows TNRD readings at 6 MV (photon signal) and neutron component 

from 15 MV (subtraction of 15 MV and 6 MV readings). Photon influence in 

TNRD neutron readings are up to 50% for 315º and 135º for 10 cm. However if 

we consider the accumulated readings among the whole arc, total photon 

component is compensated and reduced to 9.3% or 6.7% depending on distance 

to field-edge. Figure 1 shows the compensation of photon component for 

complementary gantry angles. 

 

Table I. TNRD readings at 6 MV (photon signal) and neutron component from 15 MV 

(subtraction of 15 MV and 6 MV readings). 

Distance to 

the field 

edge (cm) 

10 cm 25 cm 

Gantry  (º) 
Photon 

signal (V·s) 

Neutron 

signal (V·s) 

Photon signal 

(V·s) 

Neutron 

signal (V·s) 

0 36.13 113.234 26.03 110.51 

45 51.87 93.16 22.77 96.15 

135 -73.84 141.45 -34.84 105.57 

180 -56.37 182.55 -39.05 138.18 

225 -71.48 142.68 -37.24 107.83 

315 48.34 94.11 21.48 94.20 
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Figure 1. TNRD readings for complementary gantry angles at a field-edge detector distance of 

10 (dashed line) and 25 (solid line) cm. 

 

4. Conclusions 

Results obtained here explain the problem that TNRD measurements have 

shown when measuring at some angle incidences at different distances to the 

field-edge because of photon contribution. The good relation obtained with 

TLD detectors in previous experiences (Irazola et al.,2014) are due to the 

compensation of different angle incidences shown here. Although good 

measurements are obtained when compensated multi-incidences are used, 

more accurate results would be obtained if 6 and 15 MV measurements are 

performed under the same conditions. This would be relevant when non-

balanced gantry incidences are used.  
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Appendix C     

C.1. 

Peripheral neutron dose estimation: comparison between experimental 

measurements and TPS estimation 

 

Irazola et al., IFMBE Proceedings 2015;51:397-400 

 

Abstract 

A newly TPS algorithm, implemented in Pinnacle3, has been developed for 

peripheral neutron dose estimation for radiotherapy patients. The script gives 

doses in several organs according to gender, treatment location and delivered 

high energy monitor units.   In order to validate these estimations, doses for a 

total of 119 patients were calculated with Pinnacle3 TPS script, and compared to 

the experimental measurements with the new Thermal Neutron Digital 

Detector (TNRD). The studied patients, cover a wide range of pathologies for 

three different linacs. The comparison shows that with the implemented script 

we obtain a good correlation between measurement and theoretical values. On 

the other hand, periodic neutron characterization of the facility should be 

considered for better estimations.  

1. Introduction 

Peripheral doses delivered during radiotherapy treatments are usually not 

considered in routine procedures. Although neutron component of these doses 

is difficult to estimate, our group established an easily accessible methodology 

for neutron component estimation (Sanchez-Doblado et al.,2012; Expósito et 

al.,2013). A Pinnacle3 TPS (Philips Oncology Systems, Fitchburg, WI) script 

based on the previously validated algorithms (Romero-Exposito et al.,2015) has 
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been implemented. In order to verify this new tool, we compared neutron doses 

calculated with the TPS to the ones obtained by measurements in the treatment 

room. The detector used for this purpose, was a new active thermal neutron 

detector called TNRD (Irazola et al.,2014). A group of patients were evaluated 

from a wide range of pathologies in five linacs. 

2. Material and Method 

2.1 Material 

a) TNRD detector  

The Thermal Neutron Rate Detector (Bedogni et al.,2014) is a miniaturized thermal 

neutron active detector that has been validated for peripheral neutron dose 

estimates for radiotherapy patients (Irazola et al.,2014). For this purpose, during 

patient measurements, the device is located as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1. TNRD detector (marked in red) setup during patient measurements. 
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b) Peripheral Neutron Pinnacle3 TPS script 

A screenshot of the implemented Pinnacle3 TPS script is shown in Figure 2. 

Values used for peripheral neutron dose calculation are directly taken from the 

patient plan: total number of sessions, gender, location (abdomen or H&N), 

total number of high energy MU and the algorithm itself. An additional 

coefficient, obtained by the simple characterization procedure explained in 

Romero-Exposito et al.,2015, has to be calculated and implemented in the TPS 

for each facility. This characterization value correlates thermal neutron fluence 

in the treatment room with the number of high energy MU delivered. This 

procedure only needs to be performed periodically for each facility.  

From these data, the script automatically calculates equivalent neutron doses 

(mSv) for several organs as presented in Figure 2. These values are 

automatically recorded in an ASCII file, easily exportable to Excel for 

epidemiological studies. 

 

Figure 2.  Peripheral Neutron Pinnacle3 screenshot for a specific patient of breast cancer using 

15 MV beams as part of the treatment. 
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c) Accelerators 

Five facilities from two institutions have been evaluated with three different 

kinds of linacs: three Siemens Primus (two of 15 MV and one of 18 MV), one 

Siemens Oncor (15 MV) and one Varian TrueBeam (15 MV).  

2.2 Method 

a) Facility characterization 

In our case, the characterization factor was obtained with TNRD detector, 

following the characterization procedure explained in Exposito et al., 2015. In 

order to stablish the frequency of this characterization procedure, in parallel we 

studied its variation in time. For that, the parameter was calculated for three of 

the facilities during each series of patient measurement, in one year interval. 

b) Patient Measurements 

A total cohort of 119 patients was evaluated in the studied facilities, in order to 

compare TPS estimations against detector measurements. As example, we will 

represent both neutron doses for three representative organs, for the 45 patients 

measured in one of the Siemens Primus linac (15 MV). In addition, three 

selected kind of treatments in three different linacs have been chosen to show 

obtained differences. Here, 13 organ neutron doses have been compared for the 

whole treatment by extrapolating, in the case of experimental measurements 

values obtained for one session.  

3. Results and discussion 

3.1 Facility characterization 

Figure 3 shows the measured (symbols) characterization coefficient and the 

average values (lines), for three of the facilities. Error bars correspond to the SD 

(%) considering the three measurements performed each time. An almost 

constant value is shown for all the cases.  
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Figure 3. Characterization coefficient (m) that correlates detector readings to total number of 

high energy MU delivered is represented here. Measured values (symbols) and average values 

(lines) for three of the facilities are represented for along one year.   

 

3.2 Patient measurements 

Figure 4 shows peripheral neutron doses calculated in the TPS (bars) and 

measured (line), for three specific organs: (a) Thyroid, (b) Lung and (c) Colon 

for one of the Primus linac for a cohort of 45 patients. 

Figure 5 shows peripheral neutron doses for three different treatments in three 

different linacs (15MV): breast in Siemens Primus, rectum in Varian TrueBeam 

and lung in Siemens Oncor.  
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Figure 4. Peripheral neutron doses for three specific organs: (a) Thyroid, (b) Lung and (c) 

Colon for Siemens Primus (15 MV) linac, for a cohort of 45 patients. Bars represent TPS 

estimations while line shows measured values. 
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Figure 5. Peripheral neutron doses for three different treatments, using 15 MV: (a) Breast in 

Siemens Primus1, (b) Rectum in Varian TrueBeam and (c) Lung in Siemens Oncor, for the 

considered organs (1:thyroid, 2:oesophagus, 3:lung, 4:stomach, 5:liver, 6:colon, 7:bladder, 

8:skin, 9:bone, 10:marrow,11:remainder,12:breast,13:ovary). Solid line represents values 

obtained with the TPS and measurements are represented by the dashed one. 
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A good concordance is obtained between TPS calculation and experimental 

measurements for all the treatment types and facilities, as shown in the figures. 

4. Conclussions 

The implementation of the peripheral neutron dose calculation script in 

Pinnacle3 TPS has shown as an appropriate tool for peripheral neutron dose 

calculations. It is able to calculate peripheral neutron doses by terms of patient 

parameters and thus give an idea of peripheral neutron doses when choosing 

patient treatment strategy. Considering the obtained values, we assume that a 

periodicity of once a year for facility characterization, should be enough for a 

good TPS estimation of peripheral neutron doses in organs. 
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C.2. 

Peripheral neutron dose model verification for real IMRT cases  

 

Irazola et al., Poster accepted at the European Congress of Medical Physics 

(ECMP 2016), to be published in Phys Medica 

 

1. Introduction 

Peripheral doses are directly related to second cancer risk after radiotherapy. 

Our group developed a methodology to estimate neutron contribution to 

peripheral organ doses by terms of two general models, namely abdomen and 

head and neck (Sánchez-Doblado et al.,2012). 

2. Purpose 

This work aims to verify the validity of these models in real treatments, in order 

to evaluate the need of further improvements for specific locations beside the 

two generic ones. 

3. Materials and Methods 

Neutron doses were calculated in 12 representative organs from measured 

thermal neutron fluences with TNRD detectors at 16 points inside the phantom 

(Irazola et al., 2014), for two high energy (15MV) treatments (lung and prostate). 

Following the methodology described in (Expósito et al.,2013), these neutron 

doses were estimated by terms of number of delivered MU and facility 

characterization. Abdomen model was used for the prostate case while both 

(abdomen and head&neck) for the lung one (due to isocenter position respect to 

models). Then measurements have been compared to estimations obtained with 

the prediction models (Sánchez-Doblado et al.,2012). 
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4. Results 

Values generally agreed within the 30% uncertainty range established for the 

models and the 15% for the measurement (Figure 1 a-c). Abdomen model has 

shown to fit better for the lung (Figure 1b-c). Further studies should be needed 

to improve generic models in some specific locations such as skin or organs 

close to the field-edge. 

5.  Conclusion 

The generic model has shown to be good enough to cover frequent high-energy 

specific treatments as those studied here. It seems to be no need of more specific 

models, while some improvements have to bee done for particular points. 
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(b) Lung (abdomen)
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(c) Lung (H&N)
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Figure 1. Neutron dose (µSv) obtained by TNRD detector compared to abdomen model for: (a) 

prostate and (b) lung treatments and H&N model for (c) lung treatment. (graphics were not 

included in the original abstract as it was not permitted but will be included in the poster). 
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Appendix D     

 

Comparison of peripheral doses associated to SBRT, VMAT, IMRT, FFF and 

3D-CRT plans for lung cancer 

 

Irazola et al., 35th ESTRO Congress 2016; EP-1613, to be published in 

Radiother Oncol 

 

1. Purpose 

Out-of-field doses during radiotherapy treatments (RT) are associated with an 

increased risk of second malignant neoplasms in cancer survivors. The purpose 

of this work is to evaluate the impact, in terms of peripheral dose (PD), that 

new techniques for lung cancer such us stereotactic body radiotherapy (SBRT), 

modulated beams (IMRT and VMAT) and FFF would have in comparison to 

more traditional plans (3DCFRT).  

2. Material and method 

Self-developed models (Sánchez-Doblado et al,.2012; Sánchez-Nieto et al.,2015) 

were used for neutron and photon peripheral dose (NPD and PPD, 

respectively) estimation to 12 organs, associated to lung treatments delivered 

using 3 linacs: Siemens Primus (6&15 MV), Elekta Synergy (6 MV) and Varian 

TrueBeam (6,10&15 MV; FFF mode available for  the first two).  Facilities were 

previously characterized in terms of neutron production (Romero-Expósito et 

al.,2015) and photon leakage.  

17 plans were generated for a lung cancer case (60 cGy to 100%).Different PTVs 

were used for conventional and stereotactic treatments (factor of 20 between 

both volumes).  Results were compared to values from the literature (Huang et 
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al.,2015) where PD studies were done but by terms of direct measurements of 

only photon component for few external points. 

3. Results 

Figure (a) shows estimated NPD and PPD to some selected organs for SBRT 

treatments in 6 and 10 MV, including FF and FFF modes. Figure (b) shows 

average PPD to the same representative out-of-field organs (mSv) for 4 studied 

techniques, considering all the linacs and plans. As an example, differences in 

PPD and NPD, for 3D-CRT and IMRT in low and high energies, are shown in 

Table I. Taking into account leakage, field size and MU, an average increase in 

PPD values of 8.6% and 12.6% has been obtained for Varian and Elekta linacs 

with respect to Siemens, when considering for the here studied 3D-CRT 

treatment in 6 MV. However, a decrease in 19% was noticed when using FFF 

mode.   

 

 

Figure 1. (a) estimated NPD and PPD to some selected organs for SBRT treatments in 6 and 

10 MV, including FF and FFF modes. (b)  average PPD to the same representative out-of-field 

organs (mSv) for 4 studied techniques, considering all the linacs and plans. 
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Table I. PPD and NPD for 3D-CRT and IMRT treatments in low (6 MV) and combined 

(6&15) energies. 

 

 

4. Conclusions 

Lower PD in SBRT cases could be due to the smaller size of ITV vs. 

conventional PTV. Our results are in agreement with previous clinical studies 

(Huang et al.,2015). Additionally, we have quantified the advantage of reduced 

PD when using FFF mode. However, this study only considers PD while 

ignoring the impact of radiobiological effect due to the dose per fraction.  

The slight differences found between techniques (3D-CRT, IMRT and VMAT) 

are due to the simple case chosen (in terms of target geometry). Nevertheless, 

the tendency shows higher values for VMAT and IMRT. Thus, further studies 

are desirable to extrapolate these results to complex cases.  

Neutron contributes in a small percentage to global PD, this becomes especially 

relevant if 15 MV represents only a part of the total treatment.  
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