
Quantitative asymptotic regularity results for the composition of

two mappings

U. Kohlenbach1, G. López-Acedo2, A. Nicolae3

1 Department of Mathematics, Technische Universität Darmstadt,

Schlossgartenstraße 7, 64289 Darmstadt, Germany

kohlenbach@mathematik.tu-darmstadt.de

2 Department of Mathematical Analysis, University of Seville

Apdo. 1160, 41080-Seville, Spain

glopez@us.es

3 Department of Mathematics, Babeş-Bolyai University,
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Abstract

In this paper, we use techniques which originate from proof mining to give rates of asymptotic
regularity and metastability for a sequence associated to the composition of two firmly nonexpansive
mappings.
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1 Introduction

This paper continues the work initiated in [1] where the asymptotic behavior of compositions of finitely many
firmly nonexpansive mappings was studied with the main focus on asymptotic regularity and convergence
results. Since the subdifferential of a proper, convex and lower semi-continuous function is a maximal mono-
tone operator and the resolvent of a monotone operator is firmly nonexpansive, certain splitting methods
applied to convex minimization problems are a very relevant instance where compositions of firmly nonex-
pansive mappings appear. In this line, Bauschke, Combettes and Reich [5] proved that if f and g are proper,
convex and lower semicontinuous functions defined on a Hilbert space H, composing alternatively the re-
solvents of f and g, one obtains weak convergence to a solution (if it exists) of the following minimization
problem associated to f and g:

argmin
(x,y)∈H×H

(
f(x) + g(y) +

1

2λ
‖x− y‖2

)
, (1)

where λ > 0. This problem covers, among others, the convex feasibility problem for two sets both in the
consistent and inconsistent case.

More recently, see [4], problem (1) was considered in the setting of CAT(0) spaces where it can be ap-

proached as in Hilbert spaces by applying alternatively the two resolvents of f and g, Jfλ and Jgλ , respectively
(which are well-defined in this context). When evaluating the values of the resolvents, errors may also be
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taken into account. Thus, given a starting point x0, one can construct the sequences (xn) and (yn) defined
by

d (yn, J
g
λxn) ≤ εn and d

(
xn+1, J

f
λyn

)
≤ δn, for each n ∈ N, (2)

where

∞∑
n=0

εn < ∞ and

∞∑
n=0

δn < ∞. Note that, if (x∗, y∗) is a solution of (1), then y∗ = Jgλ(x∗) and

x∗ = Jfλ (y∗), so Fix(Jfλ ◦ J
g
λ) 6= ∅. At the same time, if x∗ ∈ Fix(Jfλ ◦ J

g
λ), then (x∗, Jgλ(x∗)) is a solution of

(1). Since Jfλ and Jgλ are firmly nonexpansive, by [1, Theorem 3.3], it follows that the sequences (xn) and
(yn) are asymptotically regular (that is, lim

n→∞
d(xn, xn+1) = 0 and lim

n→∞
d(yn, yn+1) = 0), provided problem

(1) has a solution. If the range of one of the resolvents is boundedly compact, by [1, Theorem 4.2], there

exists u ∈ Fix(Jfλ ◦ J
g
λ) such that (xn) and (yn) converge to u and Jgλu, respectively.

In this paper, we use techniques which originate from proof mining (see section 2.3 below and [10] for
more details) to give explicit quantitative forms of these results. Section 3 contains our main result that
provides a rate of asymptotic regularity for the sequences (xn) and (yn) obtained by composing alternatively
two general firmly nonexpansive mappings (with or without errors) in CAT(0) spaces. Section 4 focuses on
rates of metastability for these two sequences: based on general facts from computability theory one can
rule out the existence of computable rates of convergence for (xn) (or for (yn)). However, metastability

∀k ∈ N∀g : N→ N ∃n ∈ N ∀i, j ∈ [n, n+ g(n)] (d(xi, xj) <
1

k + 1
),

though noneffectively equivalent to the full Cauchy property of (xn), does admit (on general logical grounds)
effective bounds Φ(k, g) on ‘∃n ∈ N’. We call such a bound Φ a rate of metastability. This concept has been
known in logic as the Kreisel ‘no-counterexample interpretation’ of which it is a special instance, and for
the case at hand also coincides with the Gödel functional interpretation (see [10]). In 2007, the concept was
rediscovered by T. Tao ([14]) who introduced the name ‘metastability’ for it. Disregarding error terms for
the moment, in our situation a rate of metastability might be seen as a far reaching generalization of a rate
of asymptotic regularity as the latter results as the special case of the former where g ≡ 1 :
From

∀k ∈ N ∃n ≤ Φ(k, 1) (d(xn, xn+1) <
1

k + 1
),

the fact that d(xn, xn+1) is nonincreasing immediately gives

∀k ∈ N ∀n ≥ Φ(k, 1) (d(xn, xn+1) <
1

k + 1
).

2 Preliminaries

2.1 CAT(0) spaces

Let (X, d) be a metric space. A geodesic path that joins two points x, y ∈ X is a mapping γ : [0, l] ⊆ R→ X
such that γ(0) = x, γ(l) = y and d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [0, l]. The image of γ is called a geodesic
segment from x to y. A point z ∈ X belongs to such a geodesic segment if there exists t ∈ [0, 1] such that
d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y) and we write z = (1− t)x+ ty. (X, d) is a (uniquely) geodesic
space if every two points in X are joined by a (unique) geodesic path. A subset C of X is convex if it contains
all geodesic segments that join any two points in C. For more details on geodesic metric spaces, see [6].

There are several equivalent conditions for a geodesic metric space (X, d) to be CAT(0), one of them
being the following inequality (see, for example, [3, Theorem 1.3.3]) which is to be satisfied for any four
points x, y, u, v ∈ X

d(x, y)2 + d(u, v)2 ≤ d(x, v)2 + d(y, u)2 + 2d(x, u)d(y, v). (3)

CAT(0) spaces include Hilbert spaces, R-trees, Euclidean buildings, complete simply connected Riemannian
manifolds of nonpositive sectional curvature, and many other important spaces.
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2.2 Firmly nonexpansive mappings

Firmly nonexpansive mappings were introduced in Banach spaces by Bruck [8] (in the context of Hilbert
spaces, these mappings are precisely the firmly contractive ones considered earlier by Browder [7]). Recently,
Bruck’s definition was extended to a nonlinear setting in [2] (see also [13]; in the case of the Hilbert ball this
is already due to [9]).

Definition 2.1. Let C be a nonempty subset of a CAT(0) space (X, d). A mapping T : C → X is firmly
nonexpansive if

d(Tx, Ty) ≤ d((1− λ)x+ λTx, (1− λ)y + λTy),

for all x, y ∈ C and λ ∈ [0, 1].

Let X be a complete CAT(0) space. The metric projection onto closed and convex subsets of X is firmly
nonexpansive. Another important example of a firmly nonexpansive mapping is the resolvent of a convex,
lower semi-continuous and proper function f : X → (−∞,+∞],

Jfλ (x) := argmin
z∈X

(
f(z) +

1

2λ
d(x, z)2

)
,

where λ > 0.
In CAT(0) spaces, every firmly nonexpansive mapping satisfies the condition below which was called

property (P2) in [1]. Moreover, in this setting, every mapping with property (P2) is nonexpansive. Note also
that in Hilbert spaces, this notion coincides with firm nonexpansivity.

Definition 2.2. Let C be a nonempty subset of a metric space (X, d). A mapping T : C → X satisfies
property (P2) if

2d(Tx, Ty)2 ≤ d(x, Ty)2 + d(y, Tx)2 − d(x, Tx)2 − d(y, Ty)2,

for all x, y ∈ C.

2.3 Proof mining

During the last two decades a systematic program of ‘proof mining’ has emerged as a new applied form
of proof theory and has successfully been applied to a number of areas of core mathematics (see [10] for a
comprehensive treatment up to 2008). This logic-based program has its roots in Georg Kreisel’s pioneering
ideas of ‘unwinding of proofs’ going back to the 1950’s and is concerned with the extraction of explicit effective
bounds from prima facie noneffective proofs. General logical metatheorems guarantee such extractions
for large classes of proofs and provide algorithms (based on so-called proof interpretations) for the actual
extraction from a given proof. This approach has been applied with particular success in the context of
nonlinear analysis including fixed point theory, ergodic theory, topological dynamics, continuous optimization
and abstract Cauchy problems.

One condition that guarantees such results is that the statement proven has (if written in the appropriate
formal framework) the form

∀k ∈ N ∀g ∈ NN ∀x ∈ X(X) ∃n ∈ NA∃(k, g, x, n),

where x is a tuple of parameters ranging over various metric, hyperbolic or normed spaces X or suitable
classes of mappings between such spaces and A∃ is purely existential. This is not the case for the usual
formulation of the Cauchy property which is of the form ∀∃∀ but is satisfied for the (equivalent) metastable
formulation since the bounded quantifier ∀i, j ∈ [n, n+ g(n)] can be disregarded.
However, for asymptotic regularity results d(xn, xn+1)→ 0 (rather than the convergence of (xn) itself) one
usually can obtain full rates of convergence. One reason for this is that the sequence (d(xn, xn+1))n∈N often
is nondecreasing (as is the case for the sequences (xn), (yn) defined by (4) below). Then d(xn, xn+1)→ 0 is
equivalent to

∀k ∈ N∃n ∈ N (d(xn, xn+1) <
1

k + 1
),

3



which has the right logical form and any bound Φ(k) on n is a rate of asymptotic regularity.

In the next section we will present rates of asymptotic regularity that have been extracted using this method-
ology from a noneffective asymptotic regularity proof given in [1]. The noneffectivity of that proofs comes
from the (repeated) use of the convergence of bounded monotone sequences which is known to fail in a
computable reading. The analysis of the proof was obtained by first replacing the use of the limits of such
sequences by sufficiently good Cauchy-points instead and then applying a well-known and effective rate of
metastability for the Cauchy property of bounded monotone sequences to suitably chosen parameters g and
ε (see the end of the proof of Theorem 3.1 below).

In the final section we will apply an effective proof mining result from [12] to convert the rates of asymptotic
regularity into rates of metastability provided that the underlying space is compact.

As usual in applications of the proof mining methodology, the final bounds and the proofs of their correctness
can be stated in ordinary mathematical terms without any reference to tools or concepts from logic.

3 Rate of asymptotic regularity

Let X be a metric space, T1, T2 : X → X and (xn) and (yn) be defined by

yn := T1xn and xn+1 := T2yn, for each n ∈ N. (4)

Theorem 3.1. Let (X, d) be a CAT(0) space and let T1, T2 : X → X satisfy property (P2). Denote
S := T2 ◦ T1 and suppose that Fix(S) 6= ∅. Let x0 ∈ X and b > 0 such that there exists u ∈ Fix(S) with
2d(x0, u) ≤ b. Define the sequences (xn) and (yn) by (4). Then

∀ε > 0 ∀n ≥ Φ(ε, b) (d(yn, yn+1) ≤ d(xn, xn+1) ≤ ε),

where

Φ(ε, b) := k

⌈
2b(1 + 2k)

ε

⌉
+ 1, with k :=

⌈
2b

ε

⌉
.

Proof. Let n ∈ N and k ∈ N∗. Since T1 and T2 satisfy property (P2) we have that

2d(yn+k+1, yn+1)2 ≤ d(xn+k+1, yn+1)2 + d(xn+1, yn+k+1)2 − d(xn+k+1, yn+k+1)2 − d(xn+1, yn+1)2

and
2d(xn+k+1, xn+1)2 ≤ d(yn+k, xn+1)2 + d(yn, xn+k+1)2 − d(yn+k, xn+k+1)2 − d(yn, xn+1)2.

These inequalities together with (3) yield

d(yn+k+1, yn+1)2 + d(xn+k+1, xn+1)2 ≤ d(xn+1, xn+k+1)d(yn+1, yn+k) + d(xn+1, xn+k+1)d(yn, yn+k+1).

Because d(yn+k+1, yn+1)2 + d(xn+k+1, xn+1)2 ≥ 2d(yn+k+1, yn+1)d(xn+k+1, xn+1) we obtain that

2d(yn+k+1, yn+1)d(xn+k+1, xn+1) ≤ d(xn+1, xn+k+1)d(yn+1, yn+k) + d(xn+1, xn+k+1)d(yn, yn+k+1).

Hence,
2d(yn+k+1, yn+1)− d(yn+1, yn+k) ≤ d(yn, yn+k+1)

(note that the above relation is also true when d(xn+k+1, xn+1) = 0). Since

d(yn+1, yn+k) ≤ d(yn, yn+k−1) ≤ d(yn, yn+1) + d(yn+1, yn+k−1),

it follows that d(yn+1, yn+k) ≤ (k−1)d(yn, yn+1). Denote rn,k := d(yn, yn+k) ≤ d(xn, xn+k) ≤ 2d(x0, u) ≤ b.
Then

2rn+1,k − (k − 1)rn,1 ≤ rn,k+1.

We show next that for any n ∈ N and k ∈ N∗,

rn,k ≥ krn+k,1 − k2k(rn,1 − rn+k,1). (5)
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For k = 1 this relation obviously holds for every n ∈ N. Suppose that (5) holds for each n ∈ N. Then for
each n ∈ N,

rn,k+1 ≥ 2rn+1,k − (k − 1)rn,1 ≥ 2
(
krn+1+k,1 − k2k(rn+1,1 − rn+1+k,1)

)
− (k − 1)rn,1

≥ 2
(
krn+1+k,1 − k2k(rn,1 − rn+1+k,1)

)
− (k − 1)rn,1

= (k + 1)rn+1+k,1 − k2k+1(rn,1 − rn+1+k,1)− (k − 1)rn,1 + (k − 1)rn+1+k,1

= (k + 1)rn+1+k,1 − (k2k+1 + k − 1)(rn,1 − rn+1+k,1)

≥ (k + 1)rn+1+k,1 − (k + 1)2k+1(rn,1 − rn+1+k,1).

Thus (5) holds for every n ∈ N and k ∈ N∗, from where

rn,1 − (1 + 2k)(rn,1 − rn+k,1) ≤ rn,k
k
≤ b

k
.

Let ε > 0 and k :=

⌈
2b

ε

⌉
. Then for all n ∈ N,

rn,1 − (1 + 2k)(rn,1 − rn+k,1) ≤ ε

2
.

Note that (rn,1) is a nonincreasing sequence bounded by b. Using [10, Proposition 2.27] for ε′ :=
ε

2(1 + 2k)

and g ≡ k, there exists N ≤ k
⌈

2b(1 + 2k)

ε

⌉
such that rN,1 − rN+k,1 ≤

ε

2(1 + 2k)
and so rN,1 ≤ ε. Thus, for

n ≥ Φ(ε, b),
d(yn, yn+1) ≤ d(xn, xn+1) ≤ d(yn−1, yn) ≤ rN,1 ≤ ε.

Suppose now that (xn) and (yn) are defined by

d(yn, T1xn) ≤ εn and d(xn+1, T2yn) ≤ δn, for each n ∈ N, (6)

where

∞∑
n=0

εn <∞ and

∞∑
n=0

δn <∞. For n ∈ N, denote γn := εn + δn.

Lemma 3.2. Let (X, d) be a CAT(0) space and let T1, T2 : X → X satisfy property (P2). Denote S := T2◦T1.
Then for every n ∈ N,

(i) d(xn+1, Sxn) ≤ γn.

(ii) If u ∈ Fix(S), d(xn+1, u) ≤ γn + d(xn, u).

Proof. (i) d(xn+1, Sxn) ≤ d(xn+1, T2yn) + d(T2yn, T2(T1xn)) ≤ δn + d(yn, T1xn) ≤ γn.
(ii) Let u ∈ Fix(S). Then

d(xn+1, u) ≤ d(xn+1, T2yn) + d(T2yn, u) ≤ δn + d(yn, T1u)

≤ δn + d(yn, T1xn) + d(T1xn, T1u) ≤ γn + d(xn, u).

Theorem 3.3. Let (X, d) be a CAT(0) space and let T1, T2 : X → X satisfy property (P2) with Fix(S) 6= ∅,

where S := T2 ◦ T1. Let x0 ∈ X. Define the sequences (xn) and (yn) by (6). Suppose that

∞∑
n=0

γn converges

with Cauchy modulus α, i.e., α : (0,∞)→ N,

∀ε > 0 ∀k ∈ N

α(ε)+k∑
i=α(ε)

γi ≤ ε

 .
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Let B ≥ 0 such that
∑
n≥0

γn ≤ B and b > 0 such that there exists u ∈ Fix(S) with d(x0, u) ≤ b. Then

∀ε > 0 ∀n ≥ Φ′(ε, b, B, α) (d(xn, xn+1) ≤ ε),

where
Φ′(ε, b, B, α) := α(ε/3) + Φ(ε/3, 2(b+B)),

and Φ is the rate of asymptotic regularity from Theorem 3.1. For d(yn, yn+1) the same result holds with rate
Φ′′(ε, b, B, α) := Φ′(ε/2, b, B, α).

Proof. Let (xn), (yn) be defined as in (6) and consider for S := T2 ◦ T1,

zn := Sn(xα(ε/3)).

Note that (zn) is the sequence (xn) defined by (4) with the starting point z0 = xα(ε/3).
By induction, Lemma 3.2.(ii) gives

d(xn, u) ≤ d(x0, u) +

n−1∑
i=0

γi.

Thus,

d(z0, u) = d(xα(ε/3), u) ≤ d(x0, u) +

α(ε/3)−1∑
i=0

γi ≤ b+B

and so one can apply Theorem 3.1 to the sequence (zn) to get that for every n ≥ Φ(ε/3, 2(b+B)),

d(zn, zn+1) ≤ ε

3
.

One easily shows by induction on n that for all n ∈ N,

d(zn, xα(ε/3)+n) ≤
α(ε/3)+n−1∑
i=α(ε/3)

γi ≤
ε

3
.

For n = 0 this is obvious and for the induction step we argue (using Lemma 3.2(i))

d(zn+1, xα(ε/3)+n+1) ≤ d(Szn, Sxα(ε/3)+n) + d(Sxα(ε/3)+n, xα(ε/3)+n+1)

≤ d(zn, xα(ε/3)+n) + γα(ε/3)+n.

Hence for all n ≥ α(ε/3) + Φ(ε/3, 2(b+B))

d(xn, xn+1) ≤ d(xn, zn−α(ε/3)) + d(zn−α(ε/3), zn−α(ε/3)+1) + d(zn−α(ε/3)+1, xn+1) ≤ ε.

The claim for (yn) follows from

d(yn, yn+1) ≤ d(T1xn, T1xn+1) + εn + εn+1 ≤ d(xn, xn+1) + εn + εn+1

and the fact that for n ≥ Φ′( ε2 , b, B, α) ≥ α(ε/6) one has εn + εn+1 ≤ ε
6 and so

d(yn, yn+1) ≤ d(xn, xn+1) +
ε

6
≤ ε

2
+
ε

6
< ε.

Remark 3.4. In the situation of Corollary 3.3 from [1] we can take the quadratic rate θ from that corollary
instead of the exponential rate Φ in Theorem 3.3 above.
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4 Rate of metastability

Consider the sequences (xn), (yn) from (6).

Lemma 4.1. χ(n,m, r) := m(r+ 1) is a modulus of uniform quasi-Fejér monotonicity (in the sense of [12])
of (xn) w.r.t. F := Fix(S), where S := T2 ◦ T1, and the error terms γn := δn + εn, i.e.

∀r, n,m ∈ N ∀p ∈ X
(
d(p, Sp) ≤ 1

χ(n,m,r)+1 →

∀l ≤ m
(
d(xn+l, p) < d(xn, p) +

∑n+l−1
i=n γi + 1

r+1

))
.

Analogously for (yn) with γ′n := εn+1 + δn and S′ := T1 ◦ T2.

Proof. An easy calculation (see (14) in [1]) gives that for all p ∈ X and n ∈ N

d(xn+1, Sp) ≤ d(xn, p) + γn

and so
d(xn+1, p) ≤ d(xn, p) + γn + d(p, Sp).

Hence,

d(xn+l, p) ≤ d(xn, p) +

n+l−1∑
i=n

γi + l · d(p, Sp).

The claim is now immediate.
The second claim for (yn) is proved analogously using

d(yn+1, S
′p) ≤ d(yn, p) + γ′n.

Lemma 4.2. Under the assumptions of Theorem 3.3, let β be a rate of convergence for γn → 0 and
Φ′(ε) := Φ′(ε, b, B, α) be the rate of convergence for d(xn, xn+1) → 0 from Theorem 3.3. Then Φβ(ε) :=
max{β(ε/2),Φ′(ε/2)} is a rate of asymptotic regularity for d(xn, Sxn)→ 0, i.e.

∀ε > 0 ∀n ≥ Φβ(ε) (d(xn, Sxn) ≤ ε).

Analogously for (yn) and S′ := T1 ◦ T2 with β being replaced by a rate of convergence β′ for γ′n → 0 and
Φ′β′(ε) := max{β′(ε/2),Φ′′(ε/2)}.

Proof. Let n ≥ Φβ(ε). Then (using Lemma 3.2.(i))

d(xn, Sxn) ≤ d(xn, xn+1) + d(xn+1, Sxn) ≤ ε

2
+ γn ≤

ε

2
+
ε

2
= ε.

For (yn) one reasons analogously. Thus, for all n ≥ Φ′β′(ε) = max{β′(ε/2),Φ′(ε/4)},

d(yn, S
′yn) ≤ d(yn, yn+1) + d(yn+1, S

′yn) ≤ ε

2
+ γ′n ≤ ε.

Corollary 4.3. Φ̂β(k,N) := max{N,max{Φβ(1/(i + 1)) : i ≤ k}} is a monotone lim inf-bound for (xn)
w.r.t. Fix(S) in the sense of [12]. Analogously for (yn) with Φ′β′ and Fix(S′).

Definition 4.4 (see [12]). Let (X, d) be a totally bounded metric space. We call a function γ : N → N a
modulus of total boundedness for X if for any sequence (an) in X

∃0 ≤ i < j ≤ γ(k)

(
d(ai, aj) ≤

1

k + 1

)
.
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Theorem 4.5. Under the assumptions of Theorem 3.3, let X additionally be totally bounded with a modulus
of total boundedness γ. Then (xn) is Cauchy with rate of metastability Ψ̂(k, g, γ, α, β, b, B), i.e.

∀k ∈ N, ∀g : N→ N ∃n ≤ Ψ̂(k, g, γ, α, β, b, B)∀i, j ∈ [n, n+ g(n)]

(
d(xi, xj) ≤

1

k + 1

)
,

where
Ψ̂(k, g, γ, α, β, b, B) := Ψ̂0(P ), P := γ(8k + 7) + 1, ξ(k) := α(1/(k + 1)),

χMg (n, k) := (max
i≤n

g(i)) · (k + 1),

and Ψ̂0 is defined recursively

Ψ̂0(0) := 0, Ψ̂0(n+ 1) := Φ̂β

(
χMg

(
Ψ̂0(n), 8k + 7

)
, ξ(8k + 7)

)
.

Analogously for (yn) with Φ′β′ and ξ(k) := α′(1/(k + 1)), where α′ is a Cauchy modulus for
∞∑
n=0

γ′n.

Proof. The result follows from Theorem 6.4 in [12] together with Lemma 4.1 and Corollary 4.3. Note that
in our case G = H = id and so we can take αG := βH := id as well.
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