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Resumen

Esta tesis se centra en derivar métodos robustos o dispersos bajo la perspectiva de
la optimización para problemas que tradicionalmente se engloban en los campos de la
Estadística o de la Investigación Operativa. Concretamente, el objetivo de esta tesis
doctoral es fusionar técnicas de optimización con conceptos estadísticos para desarrollar
metodologías innovadorass que puedan mejorar a los métodos ya existentes y que aúnen
las matemáticas teóricas con los problemas de la vida real.

Por una parte, los métodos robustos propuestos facilitarán un nuevo enfoque so-
bre el modelado y la interpretación de problemas clásicos del área de la Investigación
Operativa, produciendo soluciones que sean resistentes a varios tipos de incertidumbre.
Por otra parte, las estrategias dispersas desarrolladas para resolver problemas noto-
rios del área de Estadística tendrán forma de Problemas No Lineales Mixtos (es decir,
problemas de optimización con algunas variables enteras o binarias y función objetivo
no lineal, denotados MINLP a partir de ahora). Se mostrará que los métodos prop-
uestos no solamente son manejables computacionalmente, sino que además realzan la
interpretabilidad y obtienen una buena calidad de predicción.

Específicamente, el Capítulo 2 se centra en descubrir causalidades potenciales en
series temporales multivariantes. Esto se lleva a cabo formulando el problema como un
MINLP donde las restricciones modelan distintos aspectos de la dispersión, incluyendo
restricciones que no permiten la aparición de relaciones espúreas en el modelo. El
método muestra un buen rendimiento en términos de poder de predicción y de recu-
peración del modelo original.

Análogamente, el objetivo del Capítulo 3 es descubrir cuáles son los predictores
relevantes en un problema de regresión lineal, sin llevar a cabo tests de significación ya
que éstos pueden fallar si existe multicolinealidad. Para ello, se formulan MINLPs que
restringen los métodos de estimación seleccionados, añadiendo restricciones que miden
la importancia de los predictores y que están diseñadas para evitar los problemas que
produce la multicolinearidad en los datos. Los modelos restringidos muestran un buen
equilibrio entre interpretabilidad y precisión.

Por otra parte, en el Capítulo 4 se generaliza el problema clásico del vendedor de
periódicos, asumiendo demandas correladas. En particular, una estrategia de inventario
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robusta, donde no se asumen hipótesis distribucionales sobre la demanda, se formula
como un problema de optimización. Para el modelado de dicho problema se hace uso de
técnicas que ligan conceptos estadísticos con conjuntos de incertidumbre. Las soluciones
obtenidas son robustas ante la presencia de ruido con alta variabilidad en los datos,
mientras evitan el exceso de conservadurismo.

En el Capítulo 5 se extiende esta formulación para series temporales multivariantes.
El escenario es, además, más complejo: no solamente se busca fijar los niveles de pro-
ducción, sino que se quiere determinar la localización de instalaciones y la asignación
de clientes a las mismas. Empíricamente se muestra que, para diseñar una cadena de
suministros eficiente, es importante tener en cuenta la correlación y la variabilidad de
los datos multivariantes, desarrollando técnicas basadas en los datos que hagan uso de
métodos de predicción robustos.

Un examen más exhaustivo de las características específicas del problema y de los
conjuntos de incertidumbre se lleva a cabo en el Capítulo 6, donde se estudia el prob-
lema de selección de portfolios con costes de transacción. En este capítulo se obtienen
resultados teóricos que relacionan los costes de transacción con diferentes maneras de
protección ante la incertidumbre de los retornos. Como consecuencia, los resultados
numéricos muestran que calibrar la penalización de los costes de transacción produce
resultados que son resistentes a los errores de estimación.



Abstract

This thesis is focused on deriving robust or sparse approaches under an optimization
perspective for problems that have traditionally fell into the Operations Research or the
Statisics fields. In particular, the aim of this Ph.D. dissertation is to merge optimization
techniques with statistical concepts, leading to novel methods that may outperform the
classic approaches and bridge theoretical mathematics with real life problems.

On one hand, the proposed robust approaches will provide new insights into the
modelling and interpretation of classic problems in the Operations Research area, yield-
ing solutions that are resilient to uncertainty of various kinds. On the other hand, the
sparse approaches derived to address some up-to-the-minute topics in Statistics will
take the form of Mixed Integer Non-Linear Programs (i.e. optimization problems with
some integer or binary variables and non linear objective function, denoted as MINLP
thereafter). The proposed methods will be shown to be computationally tractable and
to enhance interpretability while attaining a good predictive quality.

More specifically, Chapter 2 is focused on discovering potential causalities in mul-
tivariate time series. This is undertaken by formulating the estimation problem as a
MINLP in which the constraints model different aspects of the sparsity, including con-
straints that do not allow spurious relationships to appear. The method shows a good
performance in terms of forecasting power and recovery of the original model.

Analogously, in Chapter 3 the aim is to discover the relevant predictors in a linear
regression context without carrying out significance tests, since they may fail in the pres-
ence of strong collinearity. To this aim, the preferred estimation method is tightened,
deriving MINLPs in which the constraints measure the significance of the predictors
and are designed to avoid collinearity issues. The tightened approaches attain a good
trade-off between interpretability and accuracy.

In contrast, in Chapter 4 the classic newsvendor problem is generalized by assuming
correlated demands. In particular, a robust inventory approach with distribution-free
autoregressive demand is formulated as an optimization problem, using techniques that
merge statistical concepts with uncertainty sets. The obtained solutions are robust
against the presence of noises with high variability in the data while avoiding over-
conservativeness.
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In Chapter 5 this formulation is extended to multivariate time series in a more
complex setting, where decisions over the location-allocation of facilities and their pro-
duction levels are sought. Empirically, we illustrate that, in order to design an efficient
supply chain or to improve an existent one, it is important to take into account the
correlation and variability of the multivariate data, developing data-driven techniques
which make use of robust forecasting methods.

A closer examination of the specific characteristics of the problem and the uncer-
tainty sets is undertaken in Chapter 6, where the portfolio selection problem with trans-
action costs is considered. In this chapter, theoretical results that relate transaction
costs with different ways of protection against uncertainty of the returns are derived.
As a consequence, the numerical experiments show that calibrating the transaction costs
term yields to results that are resilient to estimation error.
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1.1. Sparsity 3

High dimensional real data are becoming customary to solve any real application
problem in the fields of Statistics and Operations Research (Friedman et al., 2001; Hastie
et al., 2015). As a consequence, two important properties are lately sought to derive
competitive methodologies for and from Data Analysis: sparsity and robustness. Both
properties are quite valuable since they enhance the standard outputs in many aspects.
First, a solution is said to be robust against uncertainty on the data if its performance
does not deteriorate much when perturbations on the data arise or estimation error
exists (Bertsimas et al., 2011). This is quite important since historical data are often
affected by measurement errors, and future data are unknown and thus need to be
estimated. Second, a solution is said to be sparse if it consists of a large number of zeroes
and only a few non-zero coefficients (Fan and Lv, 2010). Sparsity helps visualization,
which is a trending topic nowadays that we are in the so called big data era (Hastie et
al., 2015). The popularity of the sparsity does not only lie on easing the interpretability
of a process, but requiring sparsity is also essential because the use of all the available
attributes to predict a variable of interest may yield a poorer predictive quality due
to an overfit to the training data. Furthermore it may imply computational as well as
financial costs.

The aim of this thesis is to solve some trending problems in Operations Research
and Statistics under a robust and a sparse perspective, respectively, by making use of
mathematical programming techniques. The combination of optimization tools with
statistical concepts will lead to approaches that outperform the current methods, as
our numerical experiments show.

1.1 Sparsity

A plethora of real world data, such as e.g. air pollution measures, brain functional
connections, gene expressions...etc, involve multiple features mutually interacting. How-
ever, the consideration of a large amount of features for prediction may not only imply
high computational costs but may also lead to other problematic issues, such as a
poor predictive quality or the uninterpretability of the underlying process (Rish and
Grabarnik, 2014; Bickel et al., 2009). To illustrate this, consider a multivariate time
series model as the one depicted on the left panel of Figure 1.1. Each node corresponds
with a feature, and an arrow from node j to node i means that the model uses feature
j in the forecast of feature i. Data following this multivariate time series model was
simulated. In the right panel of Figure 1.1 the model estimated from this data by a
conventional estimation procedure, namely Ordinary Least Squares (OLS thereafter),
is depicted. As observed, the estimated graph contains a lot of spurious arrows that
complicate the interpretability of the real process and, as it will be shown in Chapters
2 and 3, it may deteriorate the forecasting power.



4 Chapter 1. Introduction

Figure 1.1: A simulated graph (left panel) together with its approximated counterpart
(right panel), estimated by OLS.

Since the data collection technologies are improving altogether with communication
systems and computers memories and processors, the dimension of the data sets is
increasing drastically (Hastie et al., 2015), emphasizing even more the phenomenon
shown in Figure 1.1. Since we are not likely to easily understand procedures in which
more than a handful of variables interact, nowadays researchers are frequently given
high dimensional databases and asked to return an interpretable output which explains
what is truly happening behind that pile of data; i.e., they are asked to choose which
features are relevant for the prediction (Friedman et al., 2001; Hastie et al., 2015). One
way to decide whether a predictor is meaningful or not is by obtaining a solution with a
large number of zeroes, in which only the most significant features are associated with
the non-zero coefficients. In other words, a sparse solution is sought.

Despite of easing the interpretability of our data, sparsity might not seem a property
to be sought if we take into account that the fit to the training data improves when
the number of non-zero coefficients of a model increases. However, if the model is fitted
too strictly to the training data, the prediction errors can be large. This phenomenon
is called overfitting, and can happen frequently if all the available variables are used
for the prediction. Therefore sparsity becomes a desirable property because it may not
only enhance interpretability but it may also avoid the overfitting.

Although sparsity has traditionally been attained as a consequence of variable selec-
tion in regression problems, sparse models are in demand in many other fields, such as
Support Vector Machines, Principal Components Analysis, Matrix Decompositions...,
etc (Hastie et al., 2015; Carrizosa et al., 2016a; Carrizosa and Guerrero, 2014). Since
very inaccurate predictions may be obtained if multivariate time series are analyzed
separately by repeatedly using one-dimensional time series forecasting tools (Peña and
Sánchez, 2007), multivariate models stand as a popular tool amongst staticians to study
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time series. However, the number of parameters rapidly increases with the dimension
of the multivariate time series (Peña and Poncela, 2006). In order to avoid the numeri-
cal issues derived from this fact, sparsity has also been studied recently in a time series
context. As a consequence, a different type of approaches, called graphical models, have
arisen (Arnold et al., 2007). In particular, sparsity has been widely studied in order
to unravel potential causalities in biological systems. For instance, graphical models
have been developed to deal with genetic networks (Abegaz and Wit, 2013; Shojaie and
Michailidis, 2010; Lozano et al., 2009; Hu and Hu, 2009; Dobra et al., 2004), which
includes E. coli and Arabidopsis thaliana regulatory networks, or human cancer cell
data. Sparse models have also been developed to enhance visualization of brain func-
tional connectivity or to understand the effect of air pollution and exposure over human
health (Dominici et al., 2000; Gorrostieta et al., 2013; Valdés-Sosa et al., 2005).

Traditionally linear regression has caught most of the attention due to its simplicity
and applicability. In linear regression a variable is expressed as a linear combination of
some attributes. In practice, it has been applied to a wide range of real problems. For
example, its applications range from the prediction of the development of illnesses, such
as cancer or diabetes, to the estimation of the overall reported crime rate (Hastie et al.,
2015). Despite OLS is the conventional procedure to estimate the coefficients of linear
regression models, dense solutions are to be obtained (see, for instance, Figure 1.1).

However, a plethora of sparse approaches have been proposed in this context Hes-
terberg et al. (2008). In fact, the importance of variable selection in the Statistics field
led to the early birth of many methods around the 60s and 70s. Forward stepwise
regression and all-subsets regression (Furnival and Wilson, 1974) were found amongst
the most popular ones. However, these methods are focused on picking the meaningful
predictors, and they do not address the task of estimating their associated coefficients.
This is normally done by the user on a second step using a standard criterion such
as maximum-likelihood or OLS. As a consequence, the solutions obtained by these ap-
proaches may be quite unstable, since small perturbations in the data can change the
set of selected features.

An attempt to overcome such instability was undertaken by the ridge regression
(Draper et al., 1998; Miller, 2002), which consists on adding to the objective function
an l2-norm penalization term over the coefficients to be estimated. In contrast to the
previous methods, this approach includes all the variables in the model but performs a
shrinkage on their associated coefficients. A more interesting approach is the Lasso (Tib-
shirani, 1996), which implies adding an l1-norm penalization term instead. Although
this approach is also subject to a shrinkage of the coefficients, it attains different lev-
els of sparsity depending on the value of the penalty added to the objective function.
Therefore, this method performs simultaneously variable selection and parameter esti-
mation. The output of the Lasso consists on a path of solutions with different degrees
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of sparsity. The final solution to be used is usually chosen ad-hoc using a modeling
validation technique such as cross-validation.

The popularity of the Lasso relies mostly on its tractability, which was enhanced
by the publication of the Least Angle Regression method (LAR thereafter) by Efron et
al. (2004). This algorithm progressively adds to the model the variable most correlated
with the current residuals. Although the LAR may seem quite different to the Lasso,
this algorithm can be modified to efficiently calculate the Lasso path of solutions and
has led to a large number of handy functions implemented in standard mathematical
packages such as Sjöstrand et al. (2012); Hastie and Efron (2013). In order to illustrate
the performance of this approach, Figure 1.2 shows the solution obtained by the LAR
for the graph depicted at the beginning of this section. Only one arrow is allowed in the
model per each node. As it can be observed, the obtained graph is more interpretable
than that obtained by the OLS, although thinner arrows than the original graph show
the effect of the shrinkage over the coefficients. Such a shrinkage is caused by the l1-
norm penalization term, and it will be shown in Chapters 2 and 3 that this may also
deteriorate the predictive power. Furthermore, the estimation of the coefficients using
the OLS and the Lasso may be highly unstable when there exists strong collinearity
on the data (Hesterberg et al., 2008). In fact, although the Lasso is a robust approach
rather than a sparse model (Bertsimas and Mazumder, 2014; Caramanis et al., 2012)
and thus reduces the variance of the estimates, it is still subject to strong instability
and produces biased estimates (Hesterberg et al., 2008).

Figure 1.2: Graph estimated using the LAR methodology.

As the aim of this Ph.D. thesis is to merge statistical concepts with optimization
techniques, Chapters 2 and 3 will be devoted to formulate sparse approaches in terms
of MINLPs. In particular, sparse methods will be modelled in a multivariate time
series and a linear regression context with the aim of providing alternatives to the
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Lasso which could help avoiding its drawbacks: deterioration of the predictive quality
due to strong shrinkage over the coefficients, and misbehaviour in the presence of high
correlations. The tractability of the proposed approaches will be supported by the
recent improvements of the computer processors and the MINLP solvers (Bertsimas
and King, 2015), making it feasible to address problems of large size, as our numerical
experiments report.

1.2 Robustness

In a classic optimization problem the parameters are assumed to be known, yielding
a solution that will remain optimal along the time. However, in practice parameters
are often not deterministic; for example, future demand in supply chain management is
unknown. Since in the presence of uncertain parameters the original optimal solution
may become suboptimal or unfeasible, many branches of study have arisen to understand
and/or alleviate the impact of parameter uncertainty in mathematical programming.

First, sensitivity analysis focuses on analyzing how the objective value is affected
by small changes in the parameters Saltelli et al. (2000). This approach is interesting
to study the a posteriori consequences of clinging to the original solution, but does not
grant protection against uncertainty when solving the optimization problem.

On the contrary, stochastic optimization expresses the parameter uncertainty using
probabilistic elements Heyman and Sobel (2003). This generalizes the classical per-
spective on optimization, yielding new types of constraints and objective functions.
Nevertheless, the stochastic modelling of the uncertainty may be quite restrictive as
well as computationally costly. On top of that, stochastic optimization may rely on
distributional assumptions, which may be unrealistic in practice.

Robust optimization is an alternative methodology which bounds the uncertainty of
the parameters by requiring them to belong to a set, which is expressed in a deterministic
way Ben-Tal and Nemirovski (1998); Ben-Tal et al. (2009). That is to say, parameters
are not known but they are assumed to vary within the so-called uncertainty set. To
illustrate this, consider Figure 1.3, where an uncertainty set has been depicted for an
ambiguous parameter u.

In order to obtain a solution that performs well under any possible realization, a
robustness measure must be optimized in the objective function. Specifically, a classic
robust optimization problem can be formulated as follows:

min max
u0∈U0

g0(x,u0)

s.t gj(x,uj) ≤ 0 ∀uj ∈ Uj , j = 1, ..,m
(1.1)

where x ∈ Rr and uj ∈ Rk are vectors of variables and uncertain parameters, respec-
tively, and g0, gj : Rr → R are functions. The uncertainty sets Uj ⊆ Rk determine the
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Figure 1.3: Example of an uncertainty set for a non-deterministic parameter u.

possible realizations for the parameters uj , while max
u0∈U0

g0(x,u0) expresses the robust

measure included in the problem so as to alleviate the impact of the uncertainty over
the objective value.

The computational costs of solving Problem (1.1) may sometimes be considerably
higher than those of its deterministic version. However, a deeper study of the properties
of a problem can allow to determine uncertainty sets that endow their robust version
with good performance and tractability. For a deeper review in recent advances in these
topics, the reader is refereed to Bertsimas et al. (2011); Gabrel et al. (2014). Specifi-
cally, Bertsimas et al. (2011) provides guidelines on how to construct uncertainty sets
with good properties for some type of general problems. Furthermore, many stochastic
problems possess properties that allow for a robust expression that performs equiv-
alently while implying less computational costs. These advances have upgraded the
robust optimization into a realistic and handy tool to address parameter uncertainty in
mathematical programming.

The most popular robust measure for robust optimization problems is that of mini-
mizing under the worst-case scenario. A common drawback in this case is that Problem
(1.1) may yield solutions that are too conservative, since uncertainty sets may not be
tight enough or decisions may be taken focusing solely on extreme cases that are un-
likely to happen (Ben-Tal and Nemirovski, 2002). Two alternatives have been explored
to overcome this over conservativeness: either to consider other robust measures in
the objective function, or to modify the size and/or the shape of the uncertainty sets.
Although other robust preferences (such as minimizing the maximum regret Perakis
and Roels (2008)) have been treated in the literature, the most popular approach is to
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modify somehow the uncertainty sets.

Specifically, the over conservativeness derived by focusing on optimizing under the
worst-case scenario can be reduced by excluding outlying cases. This can be attained
by simply reducing the uncertainty set. Nevertheless, this must be done carefully since
the user would become unprotected against any possible realization that is left out of
the uncertainty set. The user, taking into account her own risk aversion, is the one to
decide the proper trade off between performance and robustness. However, sometimes
the nature of the problem provides an idea about how to determine an appropriate
budget of uncertainty. As an example, consider the inventory approach proposed by
Bertsimas and Thiele (2006), where the future demands for periods t = T + 1, ..., T +h,
Xt, are unknown, but nominal values for them, X̂t, are given. Then, interval-shaped
uncertainty sets of length 2Lt are defined as follows:

Ut =
[
X̂t − Lt, X̂t + Lt

]
t = T + 1, ..., T + h. (1.2)

The scaled deviations for the demands, which take values in [−1, 1], are defined as
zt = (Xt − X̂t)/Lt. The size of the uncertainty set UT+1 × ...× ...UT+h can be reduced
by adding the constraint

∑T+h
t=T+1 |zt| ≤ Γ, where a Γ = 0 would imply there exists no

uncertainty, and Γ = h would allow the demands to always take the worst-case value.
The implications of considering these uncertainty sets in a facility location problem will
be discussed more carefully in Chapter 5.

Nevertheless, occasionally any reduction of the size of the uncertainty set may ex-
clude important scenarios that should have been taken into account. That is the reason
because it is also important to modify the shape of the uncertainty set as well, so as to
construct a set that is tight over the cases to be considered. In this task, the nature and
structure of the problem must be thoroughly taken into account, since, as mentioned
before, some uncertainty sets are known to provide good performance when coupled
with a specific type of problem Bertsimas et al. (2011). In addition, novel techniques
that make use of statistical results to construct uncertainty sets is bringing a whole
new perspective into the robust optimization field Bandi and Bertsimas (2012). For
example, assume that Z1, ..., Zs are independent and identically distributed random
variables. Then, using the Central Limit Theorem, Bandi and Bertsimas (2012) defines
an uncertainty set as:

U (Γ∗1) =

{
(Z1, . . . , Zs) s.t

∣∣∣∣∣1s
s∑
i=1

Zi

∣∣∣∣∣ ≤ Γ∗1σZ
√
s

s
+ µZ

}
, (1.3)

where µZ and σZ stand for the mean and the standard deviation of the random variables
Z1, ..., Zs, respectively. The value Γ∗1 in (1.3) is a small constant that influences the
accuracy of the fit, usually chosen as the (1 − τ/2)th quantile of the standard normal
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distribution. Although this kind of approaches provides useful techniques to model
the uncertainty sets and to determine a meaningful budget of uncertainty, they are
not too spread in the statistical community yet. Nevertheless, recent improvements in
computational settings are making these methods become a tractable tool that should
be strongly considered.

In this Ph.D. dissertation, bridging Statistics and Optimization, the uncertainty set
(1.3) will be used in Chapters 4 and 5 to model the random part of the demand in
inventory and location problems. In contrast, a portfolio selection model is considered
in Chapter 6, where the prior distributional assumptions of an investor will be related
with her modelling of the uncertainty on the mean assets returns.

1.3 Problems to be treated

In this section the family of problems addressed in this PhD dissertation are briefly
outlined.

1.3.1 Sparsity in Statistical problems

Linear Regression

One of the most common problems in real life is trying to predict a variable by
making use of attributes that are deterministic or are easier to obtain. This idea can be
gathered by expressing the stochastic variable y as a function of the attributes x1, ...,xN

y = f(x1, ...,xN ). (1.4)

Since this relationship is hardly ever strictly verified when fitted to real observations,
a random error term a is added. This shock accounts for the part of y that remains
unexplained. The simplest model is to assume that f is a linear function, and thus aim
to adjust a hyperplane to the observations in the following way:

Y = β0 + βββX + a (1.5)

where Y is a vector containing the K realizations Y1, ..., YK of the stochastic variable y
to be predicted, X is a matrix containing the observations Xj

1 , ..., X
j
K of the attributes

xj , j = 1, ..., N , that influence on y, and a = (a1, ..., aK)′ is the vector of error terms.
Once data containing the realizations of both the dependent variable and the predictors
is provided, it remains to estimate the coefficients β0, β1, ..., βN .

A natural estimation procedure may arise from minimizing somehow the unexplained
part of y, i.e., the error terms a1, ..., aK . For instance, the OLS method aims to minimize
the sum of the squared errors and yields valid estimates for coefficients β0, β1, ..., βN .
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However, estimators obtained through this procedure may lack some desirable proper-
ties. First, the linear coefficients may be strongly perturbed by the presence of outliers,
since the hyperplane may deviate from the main cloud of observations to better fit an
extreme value whose error term may become aberrant when squared. Second, the esti-
mation of such coefficients may be highly unstable when there exists strong collinearity
on the data (Hesterberg et al., 2008). This is usually overcome either by manually re-
moving variables that are highly correlated or by means of harvesting more observations
to discard collinearity (Dormann et al., 2013; Montgomery et al., 2015). Finally, there
are no reasons to expect the solution of the OLS to be sparse; i.e., a high number of
non-zero coefficients is likely to be obtained, making the results difficult to interpret.

To address outliers and collinearity issues, the standard algorithms for linear regres-
sion estimation include a step in which unimportant variables are manually removed
(Chatterjee and Hadi, 2015; Montgomery et al., 2015). To determine if a variable can be
discarded, significance tests may be carried out. However, the results of these tests may
not be faithful to the true importance of a variable in the presence of strong collinearity
(Watson and Teelucksingh, 2002; Dormann et al., 2013).

Since this procedure can be tedious as well as misleading, in Chapter 3 we will
propose tools based on Mathematical Optimization which improve sparsity in linear
regression, avoiding these manual steps. This will be addressed by modelling so-called
sparsity, significance and collinearity constraints and integrating them into the estima-
tion procedure. The so-obtained tightened sparse models will become MINLPs, solvable
by existing solvers.

Vector Autoregressive processes

Because of their simplicity and versatility, linear regression models as in (1.5) has
been widely used to study the relationship between different features. Nevertheless,
they do not allow to take into account the temporal dependence that may affect the
considered variables, thus different tools are needed to model time series in different
contexts where the temporal dependence is significant. A popular model in these cases
is the autoregressive process. A time series {Xt}t>0 follows an autoregressive process
of order n ≥ 1 (noted AR(n)) if it can be expressed in the form

Xt = α+

n∑
k=1

θkXt−k + at t > 0, (1.6)

where α, θ1, ..., θn are coefficients and {at}t>0 is the sequence of i.i.d model’s error terms
with expected value µa and variance σ2

a, for all t > 0. For a more detailed description
of the autoregressive process and interpretation of the coefficients in the model, see for
example Box et al. (2008).

If the parameters in (1.6) are given (either they are known or estimated from sam-
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ple data, available up to time T ), then (1.6) can be used to forecast the process. In
particular, if the errors are assumed to follow a normal distribution, then an (1− τ)%

prediction interval for a forecasted value at time T + 1 is given by

X̂T+1 ± z1−τ/2σa (1.7)

where X̂T+1 is the estimated forecast, and z1−τ/2 is the (1 − τ/2)th quantile of the
standard normal distribution.

However, a plethora of real world data, such as e.g. brain functional connections or
viruses activity, involve multivariate time series, i.e., different and inter-related features,
evolving in time, are simultaneously measured and are to be forecasted. Since the
components of such multivariate time series are not independent, inaccurate predictions
are expected if the series are analyzed separately by repeatedly using one-dimensional
time series forecasting tools. In order to properly address such dependencies, vector
autoregressive models (VAR) are frequently applied (Arnold et al., 2007; Valdés-Sosa
et al., 2005).

Let {Xt}t>0 be an N -dimensional vector autoregressive process of order n, VAR(n),
i.e., each series i, i = 1, ..., N , can be expressed as

Xi
t = αi +

N∑
j=1

n∑
k=1

θijkXj,t−k + ait t > 0 (1.8)

where {ait}t>0 denotes the series of contemporaneous shocks that affect feature i, and
αi and θijk are real numbers. A Vector Autoregressive process as in (1.8) can be written
in a more compact way as follows:

Xt = ααα+
n∑
k=1

AkXt−k + at (1.9)

where A1, ..., An ∈ RN×N are the parameters of the VAR that relates features k periods
behind (i.e., Ak = (θijk)ji), and ααα ∈ RN is the vector of intercepts.

VAR models have been widely used to study causalities in real processes (Eichler,
2012; Shojaie and Michailidis, 2010; Lozano et al., 2009; Arnold et al., 2007; Valdés-
Sosa et al., 2005). The reason VAR models are an appropriate tool to learn about
causalities is given by the definition of Granger causality (Granger, 1969), introduced
by the Nobel prize laureate, Clive Granger. This notion of causality is strongly related
to autoregressive processes, as a feature Y is said to Granger-cause a feature X if the
autoregressive model considering past values not only of X but also of Y is statistically
significantly more accurate than considering such a model based solely on X.

In Chapter 2 we will study a sparse variant of the VAR, in which the exact level
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of sparsity of the output can be controlled. This problem will be formulated in terms
of a MINLP, whose objective function will express the desire to attain a good pre-
diction power and the constraints will model different aspects of the sparsity, including
constraints that do not allow spurious variables to be associated to non-zero coefficients.

1.3.2 Robustness in Operations Research problems

The newsvendor problem

The single-period problem (SPP), also known as the newsvendor problem, is a simple
yet rich inventory model which has been widely studied in the Operations Research
field due to its versatility and applicability to many business decision problems, in fields
such as managing booking and capacity in airlines companies Weatherford and Pfeifer
(1994), health insurances Rosenfield (1986); Eeckhoudt et al. (1991), scheduling Baker
and Scudder (1990), retailers and managers order quantity decision in sports and fashion
industries Gallego and Moon (1993), etc.

The basic version of the problem consists in making a one-step decision on the
quantity Q to be bought of one single perishable product under the assumption that
the demand is a random variable with known distribution F . If the decision maker buys
each unit at cost c and sells it at price v, then the expected revenue is known to be
maximized by buying exactly this quantity of product:

Q∗ = F−1
(

1− c

v

)
. (1.10)

Numerous variants of the classical SPP have been proposed in the literature (see,
for instance, Khouja (1999); Petruzzi and Dada (1999); Qin et al. (2011)). Of particular
interest are the problems that assume uncertainty over the distribution function of the
demand since the traditional assumption that the demand probability distribution is
known may be unrealistic in many cases. In addition, if the demand is inferred from
sample data, then the resulting estimate may lack of desirable statistical properties
(consistency, asymptotic normality...), for example, for small sample sizes. To over-
come these and other related problems, some distribution-free approaches have been
considered in the literature. The most popular of these approaches may be the so called
Scarf’s rule Scarf (1958) , which is the solution to the robust optimization problem:

min
Q≥0

max
f∈H(µ,σ)

Gf (Q)

where H(µ, σ) denotes the set of distributions with mean µ and variance σ, and Gf (Q)
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is the expected total cost. The solution to this problem is given by:

Q?S =


0 if c

v

(
1 + σ2

µ2

)
> 1

µ+ σ
2

(
1−2 c

v√
c
v (1− c

v )

)
if c

v

(
1 + σ2

µ2

)
< 1;

(1.11)

see Scarf (1958) for more details. This solution is robust because it assumes uncertainty
over the distribution function of the demand. Two more remarkable distribution-free
works are also Gallego and Moon (1993), which provides an extension to Scarf’s solution,
and Yue et al. (2006), in which the demand density function is assumed to belong to a
specific family of density functions. Other articles which cope with demand uncertainty
are Ding et al. (2002); Dana and Petruzzi (2001); Godfrey and Powell (2001).
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Figure 1.4: Demand time series generated from an autoregressive process with heavy-
tailed errors, and real and predicted revenues under two classic approaches (classic
newsvendor and AR).

However, as pointed out in See and Sim (2010); Bandi and Bertsimas (2012), not
only the assumption of known distribution of the demand may be too strong, but also to
estimate the mean and variance from the sample data and accommodate such estimates
to an assumed distribution function may generate drastic errors in the inventory policy.
Moreover, demand is in fact usually correlated along time, so assuming demands for
each period are independent and identically distributed is in practice unrealistic (Lee
et al., 2000; Graves, 1999; Kahn, 1987). In contrast, in Chapter 4 we will explore
the newsvendor problem in which the distribution of the demand is unknown but it is
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assumed to follow an autoregressive process as in (1.6).

Different inventory policies yield rather different revenues. For instance, consider
Figure 1.4, which depicts a time series for the demand, assumed to follow an autoregres-
sive process with lognormal errors. This represents a realistic realization of the demand
since, as mentioned by (Bimpikis and Markakis, 2015), a heavy-tailed distributed de-
mand is common in practice. This is the reason why normally distributed errors may
be too restrictive, as they are not able to capture the extreme behavior of the demand.
Furthermore, when the errors are not normally distributed, the use of (1.7) may lead
to inaccurate results, as will be illustrated in detail in Chapter 4.

From Figure 1.4 it can be observed that conventional methods such as the classic
newsvendor and autoregressive approaches can lead to losses. In particular, for the data
of Figure 1.4, the classic model yields a negative revenue of −1.21, while when assuming
the basic AR model revenues decrease to −9.21. In contrast, robust approaches are
usually too conservative and avoid ordering any quantity of product (Bertsimas and
Thiele, 2006; Lin and Ng, 2011).

The approach proposed in Chapter 4 successfully copes with heavy-tailed distributed
demands (as the lognormal) and usually outperforms both classic and autoregressive
approaches in terms of average revenue and also probability of losses, while avoiding
over conservativeness of previous robust approaches in the literature. Our method will
be robust, since uncertainty over the demand is assumed, and distribution free, as no
distributional assumptions will be made over the error terms in the AR.

The p-median location problem

The classic p-median problem (Mirchandani and Francis, 1990) consitsts on opening
p facilities amongst a set of candidate locations to attend some customers. The problem
of locating the plants must be done in such a way that the company maximizes its
benefit. Therefore, the transportation and production costs must be taken into account
when formulating the optimization problem.

For the sake of comprehension, we next present the notation used throughout this
thesis.
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p number of facilities to open
{1, ..., L} set of candidate locations for the facilities
L0 set of opened facilities
{1, ..., N} set of clients
CS = (cSli) shipping costs matrix: cSli represents the cost of

sending one unit of product from facility l to client i
CP = (cPl ) vector of production costs: cPl represents the cost of

producing one unit of product at plant l
C = (cli) total cost matrix: cli = cSli + cP

The classic location-allocation p-median problem is formulated as:

min
L∑
l=1

N∑
i=1

Xiclixli

s.t



L∑
l=1

xli = 1 ∀i = 1, ..., N

xli ≤ yl ∀i = 1, ..., N, l = 1, ..., L
L∑
l=1

yl = p

xli ∈ {0, 1} ∀i = 1, ..., N, l = 1, ..., L

yl ∈ {0, 1} ∀l = 1, ..., L,

(p-median)

where Xi is the demand of client i, cli is the sum of the transportation and production
costs (cSli and c

P
l ), and the variables represent:

yl =

{
1 if facility l is opened
0 otherwise

xli =

{
1 if client i is supplied by facility l
0 otherwise.

The Uncapacitated Facility Location Problem (UFLP) (Cornuéjols et al., 1983) is
formulated similarly, but the number of facilities to open is not specified. On the other
hand, an opening cost ol is assumed for each facility l:
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min
x,y

L∑
l=1

N∑
i=1

Xiclixli +
∑
l∈L

olyl

s.t



L∑
l=1

xli = 1 ∀i = 1, ..., N

xli ≤ yl ∀i = 1, ..., N, l = 1, ..., L

xli ∈ {0, 1} ∀i = 1, ..., N, l = 1, ..., L

yl ∈ {0, 1} ∀l = 1, ..., L

(UFLP)

In practice, the demand of client i to be satisfied, Xi, is unknown and thus needs to
be estimated, which has yielded a wide range of robust location problems. Most of them
are based either on distributional assumptions over the clients’ demands or on scenario
analysis. In contrast, in recent research nominal values for the future demands are
assumed to be given and uncertainty structures are built taking into account those values
(see, for instance, Baron et al. (2011); Bertsimas and Thiele (2006)). The drawback of
this methodology is that, although an expert must have already harvested information
about the behaviour of the demand in order to select a proper prediction method,
unfortunately the user can incorporate such knowledge about the demand directly into
the optimization problem only by making use of the estimated nominal values. For
example, consider the approach in Bertsimas and Thiele (2006), whose uncertainty sets
are modelled as in (1.2). If the demands are known to follow a VAR process, the only
information that can be given about this is through the estimates X̂i

t . In constrast,
in the theoretical work developed in Chapter 5 we will use the VAR (1.8) to model
uncertainty sets for the future demands.

In Chapter 5 we also develop a numerical study that helps us assessing how different
demand forecasting techniques affect the location-allocation decisions. To this aim we
focus on a more simple problem: the p-median problem with independent autoregressive
demands amongst clients.

Portfolio selection and transaction costs

A portfolio selection problem consists of determining how to distribute a unit of
wealth among different assets. This decision will obviously depend on the investor’s
preferences, expressed as utility function, which is usually required to be concave so as
to express risk aversion.

The modern portfolio theory was developed by Markowitz (1952), who summarized
the behaviour of investors in two simple assumptions. First, it was assumed that an
investor always chooses a portfolio with a higher rate of portfolio return. Second, a
risk-averse investor will prefer a portfolio with a smaller standard deviation. This led
Markowitz (1952) to express the investor preferences as a trade-off between risk and
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expected return as follows:

min
w

1

2
wTΣw (1.12)

s.t. µTw = µ0

wT1N = 1,

where w ∈ RN is the portfolio weight vector, Σ ∈ RN×N is the covariance matrix of
asset returns, µ ∈ RN is the expected mean of asset returns, µ0 ∈ R is the expected rate
of return of the portfolio, 1N ∈ RN is the vector of ones, and the constraint wT1N = 1

requires that the portfolio weights sum up to one.

The solution to problem (1.12) is called frontier portfolio, i.e., it is the one that
possesses the minimum variance amongst all the portfolios with the same expected
return. The set of all frontier portfolios, called the portfolio frontier, is an hyperbola
in the standard deviation-expected return space. A portfolio frontier has been depicted
in Figure 1.5, where mvp denotes the minimum variance portfolio; i.e., the portfolio
that attains the minimum variance amongst all possible portfolios. Portfolios on the
frontier with a higher expected return than the mvp are called efficient portfolios, and
they have a correspondent inefficient portfolio in the frontier with the same variance
but lower expected return.

Figure 1.5: Portfolio frontier

Although the frontier portfolios are endowed with nice theoretical properties, in
practice they may be subject to strong estimation error since Σ and µ are unknown and
thus need to be estimated. Specifically, the estimation of the mean of the assets returns
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leads to such unstable portfolios that the solutions of the mean-variance problem (1.12)
are frequently outperformed by the mvp (Michaud, 1989; Chopra and Ziemba, 1993;
Broadie, 1993). To alleviate the impact of estimation error, many robust portfolios
have been proposed in the literature (Goldfarb and Iyengar, 2003; Garlappi et al., 2007;
Lu, 2011a,b).

Another crucial aspect in the successful implementation of the mean-variance port-
folios are the transaction costs. Transaction costs are important because they can easily
erode the gains from a trading strategy. For instance, DeMiguel et al. (2014) shows that
the gains from a trading strategy that exploits serial dependence in stock returns does
not survive even modest proportional transaction costs of ten basis points. Transaction
costs can be generally modelled with the p-norm of the portfolio trade vector.

Specifically, in Chapter 6 we will consider the following mean-variance problem with
p-norm transaction costs:

min
w

γ

2
wTΣw − µTw + κ‖Λ(w −w0)‖pp (1.13)

s.t. wT1N = 1,

where γ ∈ R is the risk-aversion parameter, w ∈ RN is the portfolio weight vector,
Σ ∈ RN×N is the estimated covariance matrix of asset returns, µ ∈ RN is the estimated
mean of asset returns, κ ∈ R is the transaction cost parameter, Λ ∈ RN×N is the
transaction cost matrix, which we assume to be symmetric and positive definite, w0 ∈
RN is the starting portfolio, and ‖s‖p is the p-norm of vector s, ‖s‖pp =

∑N
i=1 |si|p. The

first two terms in the objective function capture the risk-return trade-off: the first term
is the portfolio return variance scaled by the risk-aversion parameter (γ2w

TΣw), and the
second term is the portfolio return mean (µTw). More importantly for our purposes, the
third term in the objective function is the p-norm transaction cost term, κ‖Λ(w−w0)‖pp.
Note that we allow for the portfolio trade vector (w − w0) to be transformed via
a symmetric positive definite transaction cost matrix Λ before computing the p-norm.
This formulation provides a good approximation for several different types of transaction
costs. For small trades, which do not impact the market price, the transaction cost is
generally assumed to be proportional to the amount traded on each asset, and thus it
can be approximated by the p-norm transaction cost term with p = 1 and Λ = I, where
I ∈ RN×N is the identity matrix. For larger trades, the literature has traditionally
assumed that the transaction cost is quadratic, and thus it can be captured with p = 2.
Moreover, Gârleanu and Pedersen (2013) argue that, for the case with large trades, a
realistic choice of the transaction cost matrix is Λ = Σ1/2. Finally, several authors have
recently argued that the market impact costs associated with large trades grow as the
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square root of the amount traded (Torre, 1997; Farmer et al., 2013; Almgren et al., 2005;
Frazzini et al., 2015), and thus they are better captured by the p-norm with p = 1.5.
Our transaction cost term is general enough to capture all of these cases.

In Chapter 6 we will show that estimation error and transaction costs are intimately
related, and use this relation to propose a data-driven approach to compute portfolios
that are both efficient with respect to transaction costs and resilient with respect to
estimation error.
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A Sparsity-Controlled Vector
Autoregressive Model
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Vector autoregressive (VAR) models constitute a powerful and well studied tool
to analyze multivariate time series. Since sparseness, crucial to identify and visualize
joint dependencies and relevant causalities, is not expected to happen in the standard
VAR model, several sparse variants have been introduced in the literature. However,
in some cases it might be of interest to control some dimensions of the sparsity, as
e.g. the number of causal features allowed in the prediction. To authors extent none
of the existent methods endows the user with full control over the different aspects
of the sparsity of the solution. In this chapter we propose a sparsity-controlled VAR
model which allows to control different dimensions of the sparsity, enabling a proper
visualization of potential causalities and dependencies. The model coefficients are found
as the solution to a mathematical optimization problem, solvable by standard numerical
optimization routines. The tests performed on both simulated and real-life multivariate
time series show that our approach may outperform a greedy algorithm and different
Lasso approaches in terms of prediction errors specially when highly sparse graphs are
sought, while avoiding the VAR’s overfitting for more dense graphs.

2.1 Introduction

As mentioned in Chapter 1, a plethora of real world data involve multivariate time
series, i.e., different and inter-related features, evolving in time, are simultaneously
measured and are to be forecasted. Since the components of such multivariate time
series are not independent, inaccurate predictions may be obtained if the series are
analyzed separately by repeatedly using one-dimensional time series forecasting tools.
In order to properly address such dependencies, vector autoregressive models (VAR)
are frequently applied. However, although capturing features dependencies, there is
no reason to expect the so-obtained VAR to be sparse. In other words, the output
may be too complex when, on top of obtaining sharp forecasts, visualization of relevant
causalities is sought, (Eichler, 2012; Shojaie and Michailidis, 2010; Lozano et al., 2009;
Arnold et al., 2007; Valdés-Sosa et al., 2005). .

Due to its wide range of applications, several attempts have been proposed in the
literature to obtain VAR models in which sparsity, as a potential for easy visualization of
complex causal relations, is pursued. This is the case, for instance, of Stochastic Search
Variable Selection (George, 2000; George and McCulloch, 1997), Bayesian approaches
(Doan et al., 1984) and the Lasso (Tibshirani, 1996). Minimizing the forecasting errors
plus an `1-penalty regularization term has not led to a unique Lasso method, but it has
evolved into a full class of Lasso approaches, such as the so-called Adaptative Lasso,
(Zou, 2006), the Group Lasso, (Song and Bickel, 2011; Haufe et al., 2010; Zhao et al.,
2009; Yuan and Lin, 2006), the Maximum Likelihood Estimated Lasso (Davis et al.,
2012; Hsu et al., 2008), or Lasso Granger methods, (Arnold et al., 2007). Such VAR
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models attempt to gain overall sparsity, without an explicit analysis of its different
aspects.

Nevertheless, it might be of interest in certain real life situations to restrict not
only the overall number of depicted dependencies but also other levels of sparsity. For
example, the number of causal features might be wanted to be limited when acceding to
the historical records of the features incurs into a cost. Consider a patient who is under
surveillance and several tests need to be undertaken to control her health periodically.
Those tests may not only be costly but also invasive for the patient end therefore it
may be desirable to reduce their application without affecting much the quality of the
diagnose. As an example, Griffin et al. (2005) suggest heart rate to predict neonatal
sepsis, instead of obtaining blood from the infants for laboratory tests. This is also
useful for the companies shares prices, whose time series are to be paid but, once done,
all the historical records are available to use. For instance, generally in economy a three
factor model is assumed to have good properties to predict asset pricing anomalies
(Chen and Zhang, 2010). For this reason, many papers in this field have been devoted
to determine the three most significant features that help predicting those anomalies
(Kogan and Tian, 2015). In all these cases the number of causal features and the
number of dependencies from each causal feature are valued differently: as we might
seek to limit the first one, we might not be that strict with the second.

This subject was previously noted by Lozano et al. (2009), who stated that “as a
method of Granger graphical modeling, the relevant variable selection question is not
whether an individual lagged variable is to be included in regression, but whether the
lagged variables for a given time series as a group (i.e. the feature), are to be included".
To address this issue they proposed to use Group Lasso, in which all the lagged variables
of a feature were assigned to the same group. Although this approach reinforces to
choose all the past values of a feature once one of them has already been selected
for the prediction, it still does not grant control over the exact level of sparsity of
the outcome, like none of the other Lasso methods. Moreover, the Lasso approaches
perform a shrinkage over the coefficients which, as will be seen in Section 2.4, might
not be advisable when highly sparse graphs are sought.

In contrast we propose a novel sparse approach, formulated as a mathematical op-
timization problem, which endows the user with the power to control different aspects
of the sparsity of the solution. Sparsity is meant here in some of its many different
dimensions, as the total number of nonzero coefficients, the total number of features
used for the forecast, or the number of past observations of each feature used by the
model to make predictions. The performance of this sparsity-controlled VAR method
(SC-VAR henceforth) will be compared with three benchmark approaches, namely, the
VAR and both the standard and Group Lasso, on simulated and real-life multivariate
time series. The results show that the proposed approach outperforms the benchmark
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Lasso methods in terms of prediction errors when highly sparse graphs are sought, while
avoiding the VAR’s overfitting for more dense graphs.

The chapter is structured as follows. Next section introduces mathematically the
three benchmark methods, the VAR, the classic Lasso and the Group Lasso, and mo-
tivates our approach. In Section 2.3 the SC-VAR model is introduced and expressed
as a mixed integer non-linear optimization program, solvable by standard optimization
software. Also, a discussion about the choice of the parameters of the model is in-
cluded. Competing approaches are compared against the proposed method in Section
2.4 in both simulated and real datasets. Finally, conclusions and future extensions are
collected in Section 2.5.

2.2 Preliminaries

Let {Xt}t≥0 be an N -dimensional vector autoregressive process of order n, VAR(n),
i.e., each series i, i = 1, ..., N , can be expressed as in (1.8). The usual estimation
procedures for the coefficients αi and θijk are Maximum Likelihood (which implies mak-
ing distributional assumptions on the errors eit ) or, without imposing any statistical
assumption, the Ordinary Least Squares method:

min
c,A

N∑
i=1

T∑
t=n

Xi
t+1 − αi −

N∑
j=1

n∑
k=1

θijkX
j
t+1−k

2

(2.1)

where c = (αi)i ∈ R1×N and A = (A1|...|AN ) ∈ RN×N ·n stand for all unknown coeffi-
cients of the process to be estimated. Here Ai = (θijk)jk represents the N ×n matrix of
coefficients used to model series i.

There is no reason to expect sparsity in the estimates obtained by maximum like-
lihood estimation or by solving the nonlinear program (2.1), and therefore, it may be
difficult to visualize causalities while leading to overfitting (Kalli and Griffin, 2014; Li,
2012; Kojima et al., 2009). Among the different procedures proposed in the litera-
ture with the aim of obtaining more sparse solutions, a prominent role is given to the
Lasso-VAR (Lasso thereafter), in which an `1 regularization term is added to the objec-
tive function (2.1), and thus estimates are obtained by solving the following nonlinear
nonsmooth optimization program:

min
c,A

N∑
i=1

T∑
t=n

Xi
t+1 − αi −

N∑
j=1

n∑
k=1

θijkX
j
t+1−k

2

+

N∑
i=1

λi

 N∑
j=1

n∑
k=1

|θijk|

 . (2.2)

As previously mentioned, when features are presented as time series, the use of
Group Lasso is encouraged in the literature if more than one-lagged values are consid-
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ered; see, for instance, Lozano et al. (2009). Such a method groups lagged variables of
the same feature, giving more importance to the number of causal features rather than
to the overall number of dependencies depicted. This is done by adding an `2-penalty
separately for each group (Yuan and Lin, 2006):

min
c,A

N∑
i=1

T∑
t=p

Xi
t+1 − αi −

N∑
j=1

n∑
k=1

θijkX
j
t+1−k

2

+
N∑
i=1

λi

(
R∑
r=1

‖θij(r)θij(r)θij(r)‖2

)
(2.3)

where θij(r)θij(r)θij(r) =
(
θij1, θ

i
j2, ..., θ

i
jp

)
. On the other hand, the Adaptative Lasso considers

a weighted `1 penalization in which shrinkage is tried to be softened for significant
features.

Infinitely many solutions may be obtained for the Lasso approaches when varying the
parameter λi ∈ R+, where more sparse solutions are attained when increasing the value
of this penalty (in fact, note that all θijk = 0 when λi → +∞). However, although one
may think that these popular Lasso approaches already cope with sparsity-controlled
graphs, there is no way to discern the exact level of sparsity of the outcome when val-
ues for the penalties λi are given a priori, calling for a (multidimensional) parameter
tuning which, at the end, show solutions with different levels of sparsity, but there is
no guarantee that sparsity is fulfilled. Moreover, these methods perform a shrinkage
over the coefficients, which may deteriorate their prediction power when highly sparse
graphs are sought. Even although these methods often provide reasonable sparse solu-
tions, according to some authors (Bertsimas and Copenhaver, 2014; Caramanis et al.,
2012) adding an `1 or `2 penalty is a robust approach rather than a sparse method. In
contrast, Bertsimas and Copenhaver (2014) present Mixed Integer Programming as a
useful tool to attain sparsity. This recommendation is supported by the recent improve-
ment on integer optimization solvers, which can attain considerably good solutions at a
reasonable computational cost. In this chapter a sparsity controlled VAR is formulated
as a MINLP, in which we manage to control different aspects of the sparsity of the
outcome.

When control over sparsity is sought, a natural approach is as follows: start with
a standard VAR and then, in a naive way, select the largest estimated coefficients
(in absolute value) and set to zero the remaining (smaller) coefficients. This naive
approach is easy to implement, quick to execute and sounds reasonable. However, its
performance may be poor, as we show next. Consider the top left panel of Figure 2.1,
where a simulated VAR of order n = 3 is graphically represented. The multivariate time
series is represented as a directed graph; nodes correspond to the different features, i.e.,
the different one-dimensional time series composing the multivariate time series; edges
in the graph visualize causality: an arrow from node j to node i means that the model
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uses feature j in the forecast of feature i; the thickness of the edges is proportional to
the magnitude (in absolute value) of the coefficient relating the features, and therefore
it measures the causality’s strength when the series are normalized. The color of the
edges is related to the lag: the arrow is plotted in black if the present (t) value of a
feature is related with a data one period behind (t− 1), red for two periods (t− 2) and
green for three (t− 3). Here node 1 receives arrows from nodes 2 and 3, meaning that,
in order to forecast feature 1, past values of features 2 and 3 are used. Note also that
node 1 receives here three arrows from node 3, so the present value t of feature 1 is
caused by the previous three values (t− 1), (t− 2) and (t− 3) of series 3.
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Figure 2.1: Graphical representation of a simulated VAR and its sparse counterparts.
Naive algorithm (center) versus the proposed SC-VAR method (right).

Assume that only one observation of one single feature is allowed to be used to
explain a feature. Then the naive approach, illustrated in the top right panel of Figure
2.1, underestimates strong persistence in favor of just one significant coefficient. This
undesired phenomenon is a consequence of the nature of the naive approach: arrows
are considered to be kept or removed one by one, and thus the overall picture may be
lost. For this reason, instead of using the above-described naive approach, we suggest to
express the problem of arrows selection as a mathematical optimization model, solvable
by current standard numerical optimization routines. In particular, when applied to the
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time series of the example, the output of our procedure is visualized through the directed
graph in Figure 2.1 (bottom right panel). It can be observed that the MSE obtained by
the SC-VAR solution is considerably smaller than that of the naive approach. In order
to illustrate the effect of the shrinkage of Lasso methods over the forecasting power we
depict the solution under the standard Lasso in the bottom left panel. This effect is
clear since the arrow is thinner, which could be detrimental when highly sparse solutions
are sought. This phenomenon, also observed in the results of the experiments carried
out in Section 2.4, will be discussed in more detail. Also it is interesting to note that
the chosen causal feature differs for each method: as variable 1 is considered to cause
itself for the Group Lasso, feature 3 is considered for our approach instead. This is not
surprising since it is known that the VAR might not be identifiable (Lütkepohl, 2005).

2.3 The SC-VAR.

In this section we will first discuss the sparsity parameters in the SC-VAR model
(Section 2.3.1), which will be later written as a mathematical optimization problem
(Section 2.3.2). In Section 2.3.3 we will briefly discuss the choice of parameters of our
model.

2.3.1 Different aspects of the sparsity

To the best of our knowledge the existent sparse VAR models attempt to gain over-
all sparsity, without an explicit analysis of the different aspects of sparsity. The Lasso
approaches do not grant the user with the ability to manage the sparsity of the solution
in some desirable dimensions either. Indeed, the number of features allowed to be used
by the model to explain feature i (V i

S) or the overall number of nonzero coefficients (VA),
are different measures usually masked under the generic term of sparsity. Other aspects
of the sparsity, that will be also under the user’s control in our proposed sparse VAR,
are the number of non-zeroes used to explain feature i (V i

T ) or the number of observa-
tions per each causal feature of variable i (V i

Sa). Moreover, when series are normalized
then the strength of a potential causality might be related with the magnitude of its
associated coefficient. Hence, in order to avoid spurious dependencies, clear cut-offs εij
will be introduced, so that only coefficients with an absolute value greater than or equal
to εij are allowed when relating feature i with feature j. All these parameters, included
in our SC-VAR, allow the user to obtain an output with the desired level and structure
of sparsity.
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2.3.2 Mathematical Programming formulation

The objective of the SC-VAR approach if twofold: control the sparsity of the solution
while not damaging much the forecasting capacity. Therefore, in our SC-VAR model,
the VAR estimates are obtained by solving the optimization problem (2.1) imposing on
the coefficients of A the bounds represented by the sparsity parameters VA, V i

T , V
i
S , V

i
Sa

and εij above. They can be expressed as linear constraints by adding logical (binary)
variables. Indeed, define the variables δijk to indicate whether a coefficient θijk is zero or
not, and variables γij to indicate if feature j is meant to cause variable i (i.e., if θijk 6= 0

for some k).

Now the SC-VAR model is formulated as the optimization problem (2.4)-(2.11),
whose outputs are the estimates of the sparse coefficients αi and θijk, as well as the
solution for the indicator variables δijk and γij .

min
c,A,∆,Γ,

N∑
i=1

T∑
t=p

Xi
t+1 − αi −

N∑
j=1

n∑
k=1

θijkX
j
t+1−k

2

(2.4)

s.t

δijk ≤ γij ∀k ∈ K, j, i ∈ I (2.5)
N∑
j=1

γij ≤ V i
S ∀i ∈ I (2.6)

n∑
k=1

γijδ
i
jk ≤ V i

Sa ∀j, i ∈ I (2.7)

N∑
i=1

N∑
j=1

n∑
k=1

δijk ≤ VA (2.8)

N∑
j=1

n∑
k=1

δijk ≤ V i
T ∀i ∈ I (2.9)

Mδijk ≥ |θijk| ≥ εijδijk ∀k ∈ K, j, i ∈ I (2.10)

δijk, γ
i
j ∈ {0, 1} ∀k ∈ K, j, i ∈ I (2.11)

where K = {1, ..., p}, I = {1, ..., N}, ∆ = (δijk)i,j,k, Γ = (γij)i,j and M is a large
constant.

Let us briefly discuss the correctness of the formulation above. The objective func-
tion (2.4) minimizes the sum of squared errors. Constraint (2.5) forces the variable γij
to take the value 1 when some δijk takes the value 1, i.e., as soon as some θijk is non-zero.
The remaining constraints model different aspects of the sparsity of the process. Indeed,
constraints (2.6) and (2.7) bound the number of features that are said to cause variable i
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and the number of non-zero coefficients per each of the chosen causal features of variable
i, respectively, for i = 1, .., N . Constraints (2.8) and (2.9) bound respectively the total
number of non-zero entries in matrix A and the total number of non-zero coefficients
for each variable i. The shrinking parameter εij is included in the model via constraint
(2.10), which assigns zero to any coefficient that is not allowed to appear on the model,
but otherwise it requires |θijk| to belong to the interval [εij ,M ]. Here M is assumed to
be a large fixed number, and thus this constraint does not exclude reasonable values of
the parameters θijk.

Problem (2.4)-(2.11) is a MINLP (Burer and Letchford, 2012; Lee and Leyffer, 2012),
with convex quadratic objective function. See e.g. Bertsimas and Copenhaver (2014);
Bertsimas and Mazumder (2014) for other statistical problems recently addressed via
optimization in integer numbers. All constraints are linear, except for (2.10). How-
ever, this can be rewritten by introducing new auxiliary variables νi+jk , ν

i−
jk , allowing to

reformulate Problem (2.4)-(2.11) as:

min
c,A,∆,Γ,

N∑
i=1

T∑
t=p

Xi
t+1 − αi −

N∑
j=1

n∑
k=1

θijkX
j
t+1−k

2

s.t

(2.5)-(2.9)

αijk ≥ εijνi+jk − ν
i−
jkM ∀k ∈ K, j, i ∈ I

αijk ≤ −εijνi−jk + νi+jkM ∀k ∈ K, j, i ∈ I

γij , ν
i+
jk , ν

i−
jk ∈ {0, 1} ∀k ∈ K, j, i ∈ I

(P)

where δijk has been replaced by νi+jk + νi−jk in constraints (2.5)-(2.9). Note that the new
constraints require that either −M ≤ θijk ≤ −εij or εij ≤ θijk ≤ M if coefficient θijk is
chosen to appear in the model (i.e., if δijk = 1). Now, Problem (P) is a MINLP with
quadratic convex objective function and linear constraints. Hence, it can be solved
using standard solvers, such as CPLEX or Gurobi, and it can be easily written using a
simple algebraic language such as AMPL (Fourer et al., 2002). The lines of the AMPL code
are included in Appendix at the end of this chapter.

Note that (2.8) is the only constraint of Problem (P) linking the count of the non-
zeroes of all features. Hence, if constraint (2.8) were redundant, the separability of
the objective function (2.4) would allow to solve Problem (P) by solving separately the
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problem for each feature i :

min
αi,Ai

T∑
t=p

Xi
t+1 − αi −

N∑
j=1

n∑
k=1

θijkX
j
t+1−k

2

.

Since such problems are of much smaller dimension, we see that removing constraint
(2.8) would allow one to cope with databases with a larger number of time series.

2.3.3 Choice of parameters

Compared with other methods seeking sparsity, our approach has many more pa-
rameters, which may be, at first glance, discouraging. Some comments are in order to
treat this issue. First note that, as opposed to the Lasso approaches, the parameters
which are to be determined in Problem (P) have a precise meaning in terms of the spar-
sity, and therefore can be fixed by the user a priori without carrying out any tuning if a
determined level of sparsity is sought. In other words, they are not parameters to tune
but decisions to make with respect to the sparsity desired. Second, although apparently
the proposed methodology consists of four parameters per series (V i

T , V
i
S , V

i
Sa and εij)

and one global parameter (VA), not all of them need to be fixed to address the problem.
Indeed, it suffices to fix the parameters that are significant for the user and choose
the rest of them so that the remaining constraints are redundant. For instance, if the
user only cares about the number of causal features, it suffices to fix only V i

S . As an
illustration consider Figure 2.1, discussed in Section 2.2, where the SC-VAR approach
was solved fixing nothing but V 1

T = 1. Nevertheless, if the modeler does not possess
any information about the data and/or lack preferences regarding the sparsity of the
outcome, the parameters of concern may be tuned taking into account the preferred
trade off between the predictive quality and the sparsity of the output, as detailed in
Section 2.4.4.

Third, Problem (P) can be solved by fixing solely VA, which represents the overall
sparsity of the whole graph. This means that the SC-VAR can be solved for all features
simultaneously, while the Lasso approaches are always solved separately for each feature.
This provides our model with more flexibility than Lasso methods to obtain a graph
with a specified level of overall sparsity, placing pools of non-zeroes where necessary, as
will be seen in Figure 2.3. Summarizing, the more thorough the user wants to be with
the structure of the solution, the more parameters she has to fix. This is the price to
pay to control sparsity, if sought, in many of its dimensions.
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2.4 Numerical illustrations

In this section the SC-VAR is compared with five benchmark approaches, the VAR,
the Lasso, the Group Lasso, the Adaptative Lasso and a greedy approach on simulated
as well as real datasets. Further descriptions on such methods and the choice of the
parameters used are provided below.

2.4.1 Comparison methodology

In this chapter five different methodologies were chosen to compare against out SC-
VAR approach. They were: the VAR, the Lasso, the Group Lasso, the Adaptative
Lasso, and a greedy approach.

1. The VAR, whose solutions were obtained by OLS.

2. The Lasso, whose coefficients were obtained via the Least Angle Regression algo-
rithm, LAR. This algorithm solves the Lasso for each variable i separately. Since
at each step the LAR incorporates a new predictor for variable i, it provides a set
of solutions with different levels of sparsity (i.e. different number of non-zeroes per
node, V i

T ). The Lasso set of solutions was obtained by using the lars() function
of R-cran package lars (Hastie and Efron, 2013).

3. The Adaptative Lasso, whose coefficients were also obtained by using the same
lars() function. Its weights were fixed to 1/|α̂ijk,V AR|γ , by applying the algorithm
proposed in Zou (2006).

4. The Group Lasso, whose solutions were obtained by using the functions of
the R-cran package gglasso (Yang and Zou, 2015). In particular, the function
cv.gglasso was used to perform a 5-fold cross-validation over the fits obtained
for each value of the penalties λi and calculate their mean cross-validated errors.
Recall that the Group Lasso understands sparsity in terms of the number of causal
features, rather than the overall number of non-zero coefficients per node. As the
sparsity of the output cannot be discerned in advance, we had to tune its param-
eters: we solved the Group Lasso for a grid of λi large enough, so solutions for all
possible values of V i

S were obtained.

5. The greedy method, which consists on applying a refitting to the feasible solu-
tion obtained by the naive approach described on Section 2.2; i.e., the non-zero
coefficients are chosen to be the ones with a larger coefficient in absolute value
for the VAR, and then those coefficients are optimized so as to minimize the OLS
(2.1).
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The SC-VAR solution was obtained by solving Problem (P) using Gurobi version
6.5.0. As previously commented, the Lasso approaches are solved independently for
each node. Hence, in order to fairly compare against these methods, the parameter VA
was fixed so as the constraint (2.8) was redundant. In this way, Problem (P) could be
solved separately for each feature.

With the purpose of testing the influence of the shrinking parameter of constraint
(2.10), the SC-VAR was solved for ε = 0 and ε = 0.2, where εij = ε for all i, j.
However, we observed the obtained forecasting qualities were often similar but more
sparse solutions were obtained for ε = 0.2, thus generally we only report here the
results for ε = 0.2 to conserve space. In contrast to the VAR, some constraints of the
SC-VAR bounds the sparse coefficients by a constant M . Observe that, as customary
in the literature, the choice of such M is problematic, since a very small value may
exclude reasonable values of the coefficients θijk, whilst a very large value of M is to
cause severe numerical troubles (Camm et al. (1990)). In our experiments M was fixed
to 2, although other values were tested, with similar performance.

Concerning the computational costs, a time limit of 30 seconds per node was imposed
for the SC-VAR. However, this upper bound was only reached for the large simulated
data sets, that will be discussed in Section 2.4.2 of the manuscript. For the rest of
databases sparse graphs were generally obtained in less than 2 seconds. A more detailed
analysis of the computational times will also be carried out in Section 2.4.2.

In order to test the performance of all the approaches under different perspectives,
two ways of comparison were considered. In the first one, the modeler knows a priori the
level of the sparsity to be attained and thus the parameters are fixed beforehand, and in
the second one she does not possess such an information and therefore the parameters are
tuned. Hence, first the problems were solved for all possible combinations of parameters
V i
T or V i

S so as to carry out a deeper analysis on the performance of the approaches
under different requirements of sparsity. For VAR(1) processes, the greedy and the
SC-VAR were compared against the Lasso, since no grouping effects amongst lagged
variables were necessary for these cases. For VAR(n) processes with p > 1 the greedy
and the SC-VAR were also compared against the Group Lasso when it was sought to
test the influence of the number of causal features over the prediction quality. In this
case each time series was divided in train (50% of the data) and test (50%) sets. The
solutions for each method were obtained using only the data of the train set, and the
MSE for such solutions was calculated in the test set. These results are reported in
Sections 2.4.2 and 2.4.3.

In the second comparison methodology, the parameters V i
T ∈ {1, ..., N} were tuned,

as proposed at the end of Section 2.3.3. In this case, the Adaptative Lasso was considered
so as to compare with a more competitive lasso approach. The parameter γ of this
method was also tuned using the same values proposed in Zou (2006), i.e., γ ∈ {0.5, 1, 2}.
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The case γ = 0 was also considered so as to encompass the classic Lasso in our study.
Here each time series was divided in train, test and validation sets (50%, 25% and 25%,
respectively). The solutions for each method were obtained using only the data of the
train set, from which the output that minimized the MSE in the test set was chosen,
and the reported MSE for that solution was calculated in the validation set. The results
are reported in Section 2.4.4.

2.4.2 Simulation study

Data generation

In order to test the performance of all the approaches we generate synthetic data
following VAR(1) and VAR(2) processes of 10 nodes with i.i.d. errors drawn from a
standard Normal distribution. To generate the coefficients of such multivariate time
series we roughly follow the experiments conducted in Arnold et al. (2007); Lozano et
al. (2009), in which an affinity parameter is fixed. Such a parameter is the probability
that an edge is included in the graph. For example, if we want a graph to have a
20% density we fix the affinity parameter to 0.2. Then, we randomly generate all the
coefficients of the process matrix A and decide whether each off-diagonal element is
included by simulating a Binomial distribution with success probability 0.2.

So as to test the performance of the sparse approaches under graphs with differ-
ent levels of sparsity, VAR processes with densities 0%, 10%, 20%,...,100% have been
generated. A 0% density means that each feature follows an independent autoregres-
sive process (diagonal matrix) and a 100% density implies that there exists correlation
amongst all nodes. For each level of density 100 instances of VAR processes were gener-
ated. Each time series has 1000 observations, whose first 500 were assigned to the train
set and the remaining to the test set. Although the VAR, Lasso, Group Lasso, SC-VAR
and greedy were solved for all levels of density, the results were mainly equivalent and
thus only the results for simulations with a 10%, 50% and 90% density are included
here. Analogously, in order to test the performance of the SC-VAR for large databases,
5 instances of VAR(1) processes with 200 and 500 nodes were generated. In these cases
the processes were generated with a 5% density and parameter VT was fixed to the
number of expected non-zeroes.

Table 2.1 reports the median of the normalized MSEs and the standard deviations
(in brackets) for such densities. Specifically, Panel A of Table 2.1 reports the results for
Lasso, SC-VAR and greedy for VAR(1) processes, while Panel B of Table 2.1 reports
them for Group Lasso, SC-VAR and greedy for VAR(2) processes. The best method in
terms of MSE has been highlighted in bold for each case.
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Density 10% Density 50% Density 90%
Lasso SC-VAR Greedy Lasso SC-VAR Greedy Lasso SC-VAR Greedy

Panel A. Simulated datasets with n = 1

VT = 1 1.09 1.04 1.04 1.23 1.15 1.13 1.23 1.17 1.18
(0.36) (0.14) (8.87) (0.33) (0.23) (0.32) (0.35) (0.26) (0.86)

VT = 2 1.03 1.00 1.00 1.15 1.07 1.06 1.20 1.11 1.11
(0.38) (0.17) (0.33) (0.34) (0.25) (0.17) (0.36) (0.26) (0.45)

VT = 3 1.01 0.99 0.99 1.09 1.03 1.02 1.15 1.08 1.07
(0.41) (0.19) (0.08) (0.36) (0.26) (0.07) (0.38) (0.27) (0.25)

VT = 4 0.99 0.99 0.99 1.05 1.02 1.01 1.12 1.05 1.05
(0.42) (0.19) (0.07) (0.39) (0.27) (0.03) (0.40) (0.28) (0.16)

VT = 5 0.99 0.99 1.00 1.03 1.01 1.00 1.09 1.04 1.03
(0.43) (0.19) (0.01) (0.41) (0.28) (0.01) (0.44) (0.29) (0.08)

VT = 6 1.00 0.99 1.00 1.01 1.01 1.00 1.06 1.04 1.01
(0.43) (0.19) (0.00) (0.42) (0.29) (0.01) (0.48) (0.29) (0.04)

VT = 7 1.00 0.99 1.00 1.00 1.01 1.00 1.03 1.03 1.00
(0.43) (0.19 ) (0.00) (0.45) (0.29) (0.00) (0.53) (0.30) (0.02)

VT = 8 1.00 0.99 1.00 1.00 1.01 1.00 1.02 1.03 1.00
(0.43) (0.19) (0.00) (0.48) (0.29) (0.00) (0.57) (0.30) (0.01)

VT = 9 1.00 0.99 1.00 1.00 1.01 1.00 1.00 1.03 1.00
(0.44) (0.19) (0.00) (0.50) (0.29) (0.00) (0.65) (0.30) (0.00)

VT = 10 1.00 0.99 1.00 1.00 1.01 1.00 1.00 1.03 1.00
(0.45) (0.19) (0.00) (0.52 ) (0.29) (0.00) (0.74) (0.30) (0.00)

Panel B. Simulated datasets with n = 2

VS = 1 1.13 0.95 1.06 1.11 1.01 1.19 1.12 1.02 1.29
(0.36) (0.14) (0.88) (0.33) (0.23) (0.97) (0.35) (0.26) (6.56)

VS = 2 1.15 0.90 0.99 1.11 0.96 1.12 1.13 0.99 1.19
(0.38) (0.17) (0.17) (0.34) (0.25) (0.49) (0.36) (0.26) (0.69)

VS = 3 1.16 0.90 0.99 1.14 0.90 1.07 1.14 0.94 1.14
(0.41) (0.19) (0.03) (0.36) (0.26) (0.24) (0.38) (0.27) (0.42)

VS = 4 1.17 0.90 0.99 1.17 0.89 1.04 1.15 0.91 1.10
(0.42) (0.19) (0.01) (0.39) (0.27) (0.16) (0.40) (0.28) (0.29)

VS = 5 1.18 0.90 0.99 1.20 0.87 1.01 1.18 0.89 1.06
(0.43) (0.19) (0.00) (0.41) (0.28) (0.13) (0.44) (0.29) (0.19)

VS = 6 1.19 0.90 0.99 1.24 0.87 1.00 1.21 0.88 1.04
(0.43) (0.19) (0.00) (0.42) (0.29) (0.11) (0.48) (0.29) (0.14)

VS = 7 1.20 0.90 1.00 1.28 0.87 1.00 1.25 0.87 1.02
(0.43) (0.19) (0.00) (0.45) (0.29) (0.10) (0.53) (0.30) (0.11)

VS = 8 1.20 0.90 1.00 1.30 0.87 1.00 1.31 0.87 1.01
(0.43) (0.19) (0.00) (0.48) (0.29) (0.10) (0.57) (0.30) (0.10)

VS = 9 1.21 0.90 1.00 1.33 0.87 1.00 1.40 0.87 1.00
(0.44) (0.19) (0.00) (0.50) (0.29) (0.10) (0.65) (0.30) (0.10)

VS = 10 1.24 0.90 1.00 1.36 0.87 1.00 1.48 0.87 1.00
(0.45) (0.19) (0.00) (0.52) (0.29) (0.10) (0.74) (0.30) (0.10)

Table 2.1: Normalized median MSE (and standard deviations) under the SC-VAR,
greedy and the Lasso for VAR(1) processes, and the SC-VAR, greedy and the Group
Lasso for VAR(2) processes, all generated with a 10, 50 and 90% density, for different
requirements of sparsity in terms of number of causal features (VS=1,...,10)
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Analysis of the results

From Panel A of Table 2.1 it can be observed that the SC-VAR outperforms the
Lasso in terms of MSE when highly sparse graphs are sought (that is, for small values
of VT ). This outperformance over the Lasso increases as the density of the process does.
Indeed, the difference between the Lasso and the SC-VAR is at least a 5% deterioration
over the VAR MSE when the maximum number of non-zeroes required is less than 2, 4
or 6 for processes with densities 10%, 50% and 90%, respectively.

While the sparsity-controlled approach can sometimes attain an MSE 9% better
than the Lasso (VT = 2, 90% density), the Lasso outperforms it for highly dense graphs
(VT ≥ 8, 90% density). Furthermore, the standard deviations suggests that the SC-VAR
is a more stable approach in all cases. In comparison with the greedy approach we could
conclude that in terms of MSE both methods perform similarly for n = 1. However, the
greedy seems to become quite unstable when highly sparse graphs are sought, although
its standard deviations decrease very quickly when the number of zeroes of the output
does.

From Panel B of Table 2.1 it can be concluded that the SC-VAR usually helps
avoiding VAR overfitting. Note that the SC-VAR outperformance over the VAR is
clearer for n = 2 than for n = 1, which is reasonable since the number of parameters
of the VAR increases with n. As solving the SC-VAR with fixing nothing but VS = 10

is equivalent to the standard VAR, the improvement over its MSE is thanks to the
choice ε = 0.2. This poor performance in comparison with the SC-VAR also affects the
greedy, which always attains a worse MSE than the proposed approach. Specifically,
this behaviour is even more evident when highly sparse graphs are sought. For instance,
the MSE of the greedy presents a 27% more of deterioration over the VAR than the
SC-VAR for VAR(2) processes with 90% of density and VS = 1.

In Panel B of Table 2.1 it can be observed that the SC-VAR always outperforms
the Group Lasso in terms of MSE, the outperformance being clearer as the sparsity of
the output decreases. Moreover, it seems that the SC-VAR performs equivalently with
respect to the VAR no matter the density of the original graph, but the Group Lasso
performs worse for large VS in truly dense processes. For instance, while the SC-VAR
improves the VAR’s forecasting error in a 13% for VS = 10 and processes with 90%

density, the Group Lasso attains a 48% of worsening.
In order to test the ability of the different approaches to recover the original graph,

the median F1 score is depicted in Figure 2.2 for n = 1 and n = 2. In this case, the
results for the SC-VAR with ε = 0 were reported so as to show that its performance,
although different from that of ε = 0.2, is mainly equivalent to that of the greedy.
From Figure 2.2 some conclusions arise. First, considering an ε > 0 may help avoiding
the overfitting. This is observed clearly for VAR processes with 10% density, where
the capability of the approaches to recover the original graph deteriorates as more
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non-zeroes are allowed in the model. In this case, the F1 score for the SC-VAR with
ε = 0.2 holds constant, since constraint (2.10) avoids adding all the variables to the
model by requiring to include only relevant features. Second, although a large ε may
avoid overfitting and may focus solely on the most significant features, it might not be
advisable if a dense graph wants to be recovered completely. To see this, pay attention
to the performance of the SC-VAR with ε = 0.2 for VAR processes with 90% density.
However, note that although the rest of approaches attain a better F1 in these cases,
the SC-VAR with ε = 0.2 yields a better MSE. Therefore, it is an useful tool to discover
relevant causalities without damaging much the prediction power.
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Figure 2.2: Median F1 measure for Lasso/Group Lasso, greedy and SC-VAR with ε =
0, 0.2 for simulated databases with n = 1 and n = 2 and different levels of densities.

In order to illustrate more in depth the results, randomly selected instances are
depicted in Figure 2.3, together with their VAR solutions. For the sake of abbreviation,
only the most extreme solutions of the SC-VAR and the Lasso (VT = 1 and VT = 10)
have been depicted. From Figure 2.3 some observations become apparent. First, the
VAR leads to overfitting. This is clearer as more sparse the real graph is. Second,
the Lasso is equivalent to the VAR for VT = 10. However, the SC-VAR attains a much
more sparse solution while providing a similar MSE. It seems that requiring the absolute
value of the non-zero coefficients to be larger than a threshold (ε = 0.2 in constraint
(2.10)) helps avoiding overfitting in these particular cases, leading to graphs that are
more similar to the original ones. Observe that this idea of defining a clear cut between
non-zero and zero coefficients is rather different to the behaviour of the Lasso, which
shrinks coefficients towards zero.
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Density 10% 50% 90%

Real

VAR

 MSE = 1  MSE = 1  MSE = 1

VA = 10 SC-VAR

 MSE = 1.19  MSE = 1.32  MSE = 1.78

VT = 1

Lasso

 MSE = 1.54  MSE = 1.9  MSE = 2.4

SC-VAR

 MSE = 1.34  MSE = 1.35  MSE = 1.8

VT = 10

Lasso

 MSE = 1  MSE = 1  MSE = 1

SC-VAR

 MSE = 0.99  MSE = 1  MSE = 1.03

Figure 2.3: Real graphs of randomly selected instances of processes with different densities, repre-
sented along with their VAR solutions. SC-VAR and Lasso solutions are represented for a couple
of levels of sparsity, VT = 1 and VT = 10, and the SC-VAR is also depicted fixing solely V A=10.
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Third, although the two sparse approaches under comparison attain equally sparse
graphs for VT = 1, the SC-VAR yields better MSEs. Note that the chosen causal
features are different for the two approaches. Moreover, as noted in Section 2.2, larger
penalties for the Lasso imply more sparsity but stronger shrinkage, entailing a loss in its
prediction power. Finally, as an illustration results for the SC-VAR fixing nothing but
parameter VA have been also depicted. We required a total of 10 non-zero coefficients for
the whole graph, obtaining the same number of arrows as when requiring a maximum
of 1 non-zero per feature.

Observe that the obtained graphs for processes with 50 and 90% density are similar
to the outputs of SC-VAR solved fixing VT = 1 for each node. However, for the process
with 10% density the MSE is improved by encouraging extra-diagonal elements. Note
that some features receive more than one arrow, although the level of sparsity of the
whole graph is the same. In conclusion, the forecasting power can be improved while
maintaining the same level of sparsity by allowing a pooling effect on the non-zeroes
(i.e., by solving the SC-VAR with binding (2.8) constraint).

In order to test the performance of the SC-VAR for large databases, VAR(1) pro-
cesses with 200 and 500 nodes were generated. Despite a time limit of 30 seconds per
node was imposed for the SC-VAR for all the results presented in this chapter, this
upper bound was only reached for these large simulated data sets. For the rest of
databases sparse graphs were generally obtained in less than 2 seconds. More details
about the computational times are given in next section. For 200 nodes, the Lasso and
the greedy approach obtain a graph with exactly 2200 non-zeroes, while the output of
the SC-VAR has 1671 non-zero coefficients. Although the SC-VAR solution is more
sparse, its interpretability is gained by minor deterioration over the MSE of the greedy
approach and an improvement over the Lasso’s (the MSE equals 0.662 for the SC-VAR,
0.657 for the greedy and 0.849 for the Lasso). The behaviour is mainly analogous for
VAR processes with 500 features: the SC-VAR yields an extremely more sparse solution
than its competitors (3091 non-zeroes instead of 130000) with an improvement over the
forecasting power (the MSE equals 0.003 for the SC-VAR, 0.004 for the greedy and
0.156 for the Lasso). From these experiments we can conclude that the choice of an
ε > 0 avoids reaching the upper bound over the non-zeroes, leading the SC-VAR to yield
solutions that are much more sparse than its competitors’ but with similar or better
predictive quality.

Computational times.

Although it would be interesting to study how data parameters (N , n and T ) and
chosen parameters (such as VT , VS , VSa...etc.) affect computational times when solving
the MINLP (P), carrying out such costly experiments are out of the scope of this work.
However, some intuitions arise from our numerical experience. As the VAR consists
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Figure 2.4: Median elapsed times in seconds taken by the SC-VAR to be solved for
different requirements of the sparsity in VAR(1) and VAR(2) processes with various
levels of density.

of N2n + N coefficients, the computational times are expected to increase specially
with N and n, and we have experienced so in our experiments. On the other hand,
we found that the SC-VAR is not that sensitive to the length of the time series T .
In order to illustrate the effect of the sparsity requirements of the SC-VAR over the
computational cost, consider Figure 2.4, where the median elapsed time in seconds has
been depicted against the sparsity of the output, measured in terms of VS . For the
sake of clarity, only the times obtained for VAR(1) and VAR(2) processes with 10, 50

and 90% densities are depicted. Some comments are in order here. First, Figure 2.4
supports the intuition about computational times increasing with n. Second, although
there is no much difference in the computational times for VAR(1) processes, it seems
that for VAR(2) processes the computational times increase with the density of the
true graph. Third, for n = 2 it is clear that the SC-VAR computational burden is
consistently lower when either highly sparse or dense graphs are sought. To conclude,
for n = 1 the SC-VAR takes to solve around 0.6 seconds on a PC Intelr CoreTM Quad
CPU 4GB RAM, while for n = 2 the behavior is less consistent, but it usually obtains
highly sparse graphs (VS ≤ 2) in less than 1 second.

2.4.3 Real data sets

In this section the performance of the three competing approaches is compared in
two real databases, whose main features are summarized in Table 2.2. The series have
not only been normalized but they have also undergone the Augmented Dickey-Fuller
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test for stationarity, implemented in the function adf.test() of the R-cran’s package
tseries. The order n in the autoregressive model was unknown and hence chosen from
n = {1, 2, ..., 7} by the Schwartz criterion, implemented on the function VARselect(),
available in the R-cran’s package vars.

Abbreviation Name N Ttrain Ttest n Reference
Google flu Google Flu Trends 48 221 220 1 Davis et al. (2012)
Air pollution Concentration levels of air pollutants 5 4185 4185 4 Davis et al. (2012)

Table 2.2: Summary of real databases used for numerical illustrations

The main results for both databases are depicted in Figure 2.5. Panel A shows
the results obtained for the considered Lasso approach and the SC-VAR in terms of
MSE, which is represented against the upper-bound on the number of causal features
per node VS or the number of non-zero entries per node VT . Panel B depicts some
solutions for the methods under comparison. In the case of the Google Flu database,
those solutions are depicted as heatmaps for the VAR, Lasso and SC-VAR. The color
represents the sign of the coefficients θijk (blue for negative, red for positive) and the
intensity is related to the magnitude of such coefficients. For the airpollution database
Panel B of Figure 2.5 depicts, through directed graphs, the solutions of the VAR, and
a couple of solutions for the Group Lasso and the SC-VAR. In such graphs color blue
is associated with a 4-lag dependency. For the sake of abbreviation, only one or two of
the most sparse solutions of the sparse approaches are included.

Google flu database.

This database is derived by the 45 Google user search terms that are considered to
be indicative of influenza activity in the U.S. The sample is measured weekly from the
beginning of the year 2006 until the week of June 6, 2014. According to the Centers for
Disease Control and Surveillance (CDC) the probability that a patient query is related
to influenza-like-illnes is closely related to the data in the Google flu database. From
the 51 considered regions (50 states and the District of Columbia), North and South
Dakota as well as Wyoming have been removed due to missing data.

From Panel A of Figure 2.5 some conclusions become apparent. First, the SC-VAR
can considerably reduce the density of the matrix A, containing the coefficients of the
VAR, with an improvement of the MSE. Although one may think that fewer non-zero
entries in A would lead to better MSE, increasing the freedom of the model may lead to
overfitting. For instance, see that the SC-VAR solutions for VT ≤ 15 or Lasso solutions
for VT ≥ 3 report a MSE smaller than 1; i.e., the prediction power of those sparse graphs
is better than that of the solution provided by the VAR. Finally, it can be observed
that although Lasso outperforms the SC-VAR for VT ≥ 6, it can attain extremely worse
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MSE when highly sparse graphs are sought.
In the heatmaps of Panel B of Figure 2.5, the names of the states have been replaced

by their abbreviations. Although Lasso provides a much more sparse solution than the
VAR and enhance the visualization of potential causalities of the flu for the different
regions of the US, the price of gaining such a level of sparsity is a 192% deterioration
over its MSE. Nevertheless, the SC-VAR solution for VT = 1 considerably improves the
VAR’s forecasting capacity (it attains a MSE with a 38% improvement over the VAR)
while also allowing for an easier interpretation thanks to its sparsity.

Also note that, since the absolute value of the coefficients must be larger than the
threshold 0.2, the obtained heat map is sharper than that of the Lasso. It is also
interesting to note that SC-VAR approach tends to strengthen diagonal elements; i.e.,
with the SC-VAR in most cases the chosen causal feature for a node is itself when only
one non-zero is allowed. This behavior is not as evident with the Lasso.

Air pollution database.

The data consists of hourly records of the solar radiation intensity (R) and the levels
of four air pollutants, namely CO, NO, NO2 and O3, measured in Azusa, California
during the year 2006.

In Panel A of Figure 2.5 we observe that there exists a clear difference in the impact
of the parameters VS and VSa over the MSE: increasing the parameter VSa seems more
efficient to reduce the prediction error than increasing VS . Therefore it is advisable to
treat both parameters separately, since they clearly represent different aspects of the
sparsity. This is done in a natural way with our approach, but not with the Lasso.
Furthermore, note that our approach seems to stabilize for VT ≥ 6, whatever the values
of VS and VSa are. The constant MSE seems to denote that no further coefficients are
being added to the model. Also, some of these constant lines explain that the constraint
involving VT is redundant, as the VS · VSa ≤ VT .

The behaviour observed from both plots of Panel A of Figure 2.5 is analogous to
that of the previous results: when highly sparse graphs are sought, the SC-VAR seems
to be more appropriate as it attains a better MSE. We point out that when only one
non-zero is allowed (VT = 1), the SC-VAR yields a 16% worsening over the VAR, while
the Group Lasso reports a 49% deterioration. Moreover, when the number of causal
features wants to be limited, the differences between the prediction errors of the SC-
VAR and Group Lasso approaches are roughly a 200% and 50% for one and two causal
features, respectively. Note also that the MSE deterioration of the SC-VAR over the
VAR is less than a 2% for VS ≥ 2.



2.4. Numerical illustrations 43

Flu Airpollution
Panel A. Mean Squared Error

MSE

0 10 20 30 40

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Google flu database

VT

M
S

E

0 10 20 30 40

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

SC−VAR
Lasso

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Airpollution database

VT

M
S

E

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

● VS=1
VS=2
VS=3
VS=4
VS=5
VSa=1
VSa=2
VSa=3
VSa=4
Lasso

1 2 3 4 5

1.
0

1.
5

2.
0

2.
5

Airpollution database

VS

M
S

E

1 2 3 4 5

1.
0

1.
5

2.
0

2.
5

ε = 0.2
Group Lasso

Panel B. Some solutions
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Figure 2.5: MSE (Panel A) and some heatmaps and graphs (Panel B) representing some solutions
of the VAR, SC-VAR, and standard or Group Lasso for Flu and Airpollution databases. For the Flu
database the SC-VAR and the standard Lasso are depicted for VT = 1, while for the Airpollution
dataset the SC-VAR and the Group Lasso outputs are allowing one (VS = 1) or two (VS = 2) causal
features.
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From Panel B of Figure 2.5 some comments arise. First, note that although the
chosen relevant causal features are the same for the Group Lasso and SC-VAR when
VS = 1, the Group Lasso implies a 52% worsening over the VAR’s prediction error, while
the SC-VAR deteriorates it in a 8%. Second, the unraveled potential causal features
obtained for each method are different when VS = 2. The choice of the SC-VAR provides
a much more sparse graph than the VAR while obtaining 11% less deterioration than
its sparse counterpart.

In order to assess the stability of the SC-VAR we have solved the SC-VAR in the
airpollution database for a grid of ε with VT fixed, and a grid of VT for two different
values of ε fixed. The performance is illustrated in Figure 2.6, where Panel A depicts
the MSE of the outputs and a heatmap representing the path of solutions for a grid of ε
with VT = 10 fixed, and Panel B represents, also using heatmaps, the path of solutions
for a grid of VT with ε = 0 and 0.2 fixed. Note that the stability of the MSE for different
values of VT in the airpollution database was already analyzed when commenting Figure
2.5.

From Panel A of Figure 2.6 various conclusions emerge. First, the MSE tends to
deteriorate when ε increases. However, note that an improvement of the predictive
quality is attained for ε = 0.07. From what it has been commented in the simulation
study and real databases, it seems that constraint (2.10) is an useful tool to avoid
overfitting when the database is truly dense, and/or to attain sparsity. Second, from
the right plot of Panel A it can be deduced that the sparsity of the output increases
as the value of ε does. Although the path of solutions is quite stable, note that as
mentioned previously (see comments for Figure 2.5) sometimes it is not optimal to
gradually drop the variables with the smallest coefficients to attain sparsity, but often
it is better to let a new feature entering the model. For instance, look at the bottom
rows for ε = 0.12.

From Panel B of Figure 2.6 it can be deduced that the SC-VAR is highly stable
when varying the parameter VT . However, sometimes variables can leave the model
(VT = 3, 4 for ε = 0.2). Also, it is interesting to observe how choosing an ε > 0

stabilizes the process by avoiding adding features to the model.

2.4.4 Tuning of the parameters

In this section we comment the performance of the methods after applying the
parameter tuning proposed at the end of Section 2.4.1. The results in terms of MSE and
number of non-zeroes of the graph (denoted by NZ) are shown in Table 2.3. Specifically,
Panel A displays the results for the simulated data sets, while Panel B does for the real
databases.

Panel A of Table 2.3 shows that for simulated VAR(1) all methods are equivalent in
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Panel A. MSE and paths for a grid of ε

● ● ● ● ● ●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
99

1.
00

1.
01

1.
02

Airpollution database

ε

M
S

E

0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1

0.
12

0.
14

0.
16

0.
18 0.

2

0.
22

5

0.
25

0.
27

5

0.
3

−1 0.5
Value

Color Key
Path of solutions in  ε for VT = 10 ,

airpollution database

Panel B. Paths for a grid of VT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1 0.5
Value

Color Key
Path of solutions in  VT for ε = 0 ,

airpollution database
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1 0.5
Value

Color Key
Path of solutions in  VT for ε = 0.2 ,

airpollution database

Figure 2.6: Heatmap representing the paths of solution for a fixed VT = 10 and differ-
ent values of ε together with its MSEs (right and left plots of Panel A, respectively),
and heatmaps for different VT with fixed ε = 0, 0.2 (left and right plots of Panel B,
respectively).

terms of MSE, but the most sparse solutions are obtained for the SC-VAR. Nevertheless,
for VAR(2) processes the Adaptative Lasso is outperformed by its competitors, which
also attain more sparse solutions. Nevertheless, the sparsity of the greedy becomes more
similar to that of the Lasso as the density of the graph increases, while the SC-VAR
is always a lot more sparse. In particular, although for simulated VAR(2) data with
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90% of density the SC-VAR prediction power is slightly worse to that of the greedy, it
manages to reduce the number of non-zero coefficients in nearly 100.

From Panel B of Table 2.3 it can be observed that for Flu database the greedy
performs poorly in terms of forecasting power. Although the Adaptative Lasso improves
its MSE, it attains a solution that is a lot more dense. Nevertheless, the SC-VAR yields
similar MSE to the Lasso while obtaining a more sparse output. For the airpollution
database the Adaptative Lasso performs poorly, although its output is the most sparse.
Even though the greedy improves its predictive quality, the SC-VAR performs similarly
with a more sparse solution.

Summarizing, from Table 2.3 we can conclude that the SC-VAR attains either a
similar or better MSE than the rest of methods but with a more sparse output.

Adapt. Lasso SC-VAR Greedy
MSE NZ MSE NZ MSE NZ

Panel A. Simulated datasets

n = 1
10% density 1.00 48 1.00 17 1.00 29
50% density 1.01 70 1.02 35 1.01 53
90% density 1.02 84 1.04 50 1.01 75

n = 2
10% density 1.00 90 0.76 26 0.76 62
50% density 1.02 147 0.77 58 0.75 132
90% density 1.02 176 0.74 76 0.70 172

Panel B. Real datasets
Flu 0.51 652 0.54 190 1.47 317
Airpollution 1.21 49 1.02 56 1.01 84

Table 2.3: Results after tuning the parameters for the adaptative lasso, SC-VAR with
ε = 0.2 and greedy approaches in real and simulated databases. Normalized median
MSE and median number of non-zeroes are displayed for the simulated databases.

2.5 Concluding remarks and extensions

In this chapter a sparse vector autoregressive model, the SC-VAR, that allows the
user to control the sparsity of the output from various perspectives has been introduced.
The model’s sparsity is expressed in terms of different parameters, such as the number
of total non-zero entries per series, the number of features involved or the number
of periods chosen per feature. The method is expressed as an optimization problem,
solvable by standard numerical optimization software.

The ability of the proposed approach to unravel potential causalities and, in many
cases, to improve the fit, has been tested in simulated multivariate time series as well
as in two real data bases, referred in the existent literature. It is concluded from the
experiments that (i) the proposed approach is able to yield very sparse solutions either
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improving or without significantly increasing the VAR’s forecasting error, (ii) the SC-
VAR usually yields better MSEs than the greedy method and Lasso approaches when
highly sparse graphs are sought, leading to a much better visualization of the process
dependencies, as e.g. depicted in Figure 2.3, and (iii) the parameters considered to mea-
sure the sparsity play different roles, thus it might not be advisable to aggregate them
into one single measure, as done by other sparse methods. In particular, it seems that
the parameter ε plays an important role, as it helps avoiding overfitting and attaining
sparsity with a minor deterioration of the prediction power.

In the future we plan to address grouping effects by considering jointly different
features in constraints of type (2.10). The idea is to incorporate the modeller knowledge
about groups of variables that may have little individual effect but whose impact may be
significant when considered altogether. Hence, the user may want to group the features
in different sets J1, ..., JS and consider constraints of the type

∑
j∈Js |θ

i
jk| ≤ εis for all

s = 1, .., S. It is our aim to further model other grouping constraints and to asses the
influence over the performance of the approach.
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Appendix: AMPL code

#PARAMETERS OF THE PROCESS

param T; #Series’ length

param N; #Number of series

param p; #Order of the process

#SETS OF INDEXES

set Nseries:=1..N;

set time:=1..T;

set tallowed:=(p+1)..T;

set periods:=1..p;

#THE MULTIVARIATE TIME SERIES

param X {j in Nseries,t in time}; #Matrix of time series

#PARAMETERS OF THE SC-VAR

param VA; #Upper-bound on the total number of non-zeroes

param VT {i in Nseries}; #Upper-bounds on total non-zeroes for feature i

param Vs {i in Nseries}; #Upper-bounds on number of causal features for i

param Vsa {i in Nseries}; #Upper-bounds on number of non-zeroes

#of each causal feature

param eps {i in Nseries,j in Nseries}; #Thresholds

param M; #Upper bound for alpha

#VARIABLES

var c {i in Nseries};
var alpha {i in Nseries,j in Nseries,k in periods};
var gamma {i in Nseries,j in Nseries}, binary;

var nupos {i in Nseries,j in Nseries,k in periodos}, binary;

var nuneg {i in Nseries,j in Nseries,k in periodos}, binary;

#OBJECTIVE FUNCTION

minimize fun: (1/T)*sum{t in tallowed,i in Nseries} (X [i,t]

-c[i]-sum{j in Nseries, k in periods} (alpha[i,j,k]*X[j,(t-k)]))̂2;
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#CONSTRAINTS

subject to totalNZ:

sum{i in Nseries,j in Nseries,k in periods} (nupos[i,j,k]+nuneg[i,j,k])<=VA;

subject to totalNZi{i in Nseries}:
sum{j in Nseries,k in periods} (nupos[i,j,k]+nuneg[i,j,k])<=VT[i];

subject to nocausalnoalpha {i in Nseries,j in Nseries,k in periods}:
nupos[i,j,k]+nuneg[i,j,k]<=gamma[i,j];

subject to seriesNZ {i in Nseries}:
sum{j in Nseries} gamma[i,j]<=Vs[i];

subject to elemserieNZ {i in Nseries,j in Nseries}:
sum{ k in periodos} (nupos[i,j,k]+nuneg[i,j,k])<=Vsa[i]*gamma[i,j];

subject to epspos {i in Nseries,j in Nseries,k in periods}:
alpha[i,j,k]>=eps[i,j]*nupos[i,j,k]-M*nuneg[i,j,k];

subject to epsneg {i in Nseries,j in Nseries,k in periods}:
alpha[i,j,k]<=-eps[i,j]*nuneg[i,j,k]+M*nupos[i,j,k];
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As a preprocessing step, prior to estimating parameters in linear regression models
(1.5), a common practice consists of removing highly correlated variables or unimpor-
tant features. In this chapter we propose tools based on Mathematical Optimization
which improve sparsity in linear regression, avoiding these manual steps. This will
be addressed by modelling sparsity, significance and collinearity constraints, and inte-
grating them into the preferred estimation procedure. In particular, the so-obtained
tightened sparse models will become MINLPs. The numerical experiments carried out
on real and simulated datasets support this statement and also show that tightening the
search space of some standard linear regression models may enhance the interpretability
of the outcomes with competitive predictive quality.

3.1 Introduction

In this chapter we propose to add constraints to the existing linear regression ap-
proaches with the aim of avoiding the manual steps to remove unimportant or highly
correlated variables, as described in Chapter 1, while enhancing sparsity. This will be
addressed by modelling the so-called sparsity, significance and collinearity constrains
and integrating them into the preferred estimation procedure. Formally, assume the
estimation method, selected by the user to estimate the parameters β0, βββ of the linear
regression model (1.5), is derived from solving an optimization problem of the form:

min
βββ

f (βββ)

s.t βββ ∈ B
(3.1)

where B denotes the feasible region. In this chapter we propose to tighten the feasible
region for the βββ in order to enhance the performance and interpretability of the solutions
of Problem (3.1). For instance, the OLS and penalized regression may be good represen-
tatives of estimation methods as in (3.1). For these cases, B = RN ; in fact, the search
spaces of the most commonly used estimation methods are usually unrestricted. Hence,
tightening approaches have been considered in the literature in order to improve the
performance of linear regression problems. For example, in the recent paper Bertsimas
and King (2015) some sparsity constraints were added to the Lasso objective. In this
chapter, it is our aim to generalize this kind of approaches by replacing any estimation
procedure (3.1) by:

min
βββ

f (βββ)

s.t βββ ∈ B ∩ S
(3.2)

where S will gather the proposed constraints. In particular, the so-obtained sparse
models (3.2) will be MINLPs. Although not frequently used amongst the statistical
community, MINLPs have recently been used to tackle sparse models in a linear regres-
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sion (Bertsimas and King, 2015) and a time series (Carrizosa et al., 2016b) context. Both
cases were supported by the recent improvements in computational times that MINLPs
have enjoyed, becoming a useful tool to address statistical problems in a tractable and
versatile manner. We will show by means of different tests the advantages of tightening
(3.1) via specific constraints.

The chapter is structured as follows. Next section is devoted to motivate and model
different types of constraints which define the set S in (3.2); they will be called sparsity,
significance and collinearity constraints. The numerical experiments are carried out in
Section 3.3, where the methods under comparison and the design of experiments are
also discussed. The last section is devoted to concluding remarks and extensions.

3.2 New constrains for linear regression approaches

In this section we define the constraints to be added to a classic (possibly sparse)
linear regression model (3.1), in order to enhance the sparsity of the outcome and to
allow only significant features to be considered in the model. We also model some
constraints aiming to avoid some misleading interpretations that are common in the
presence of data multicollinearity. The idea is that the user should feel free to add any
of these constraints, when compatible, to her selected regression approach.

3.2.1 Sparsity

One way to limit the number of non-zero coefficients in a regression model is by
using the so called `0-norm, which is no other thing than a cardinality function ‖βββ‖0 =

#(j : βj 6= 0). This function provides a valid tool to model a constraint which can be
added to some regression approaches (for example, the basic OLS objective) to grant
control over the sparsity of the outcome:

‖βββ‖0 ≤ VT , (3.3)

where VT denotes an upper bound on the number of non-zeroes of the solution. In
Mathematical Optimization the formulation of this constraint is tackled defining the
integer variables:

γj =

{
1 if βj 6= 0

0 if βj = 0.
(3.4)

Once these indicator variables are defined, it is straightforward to formulate a constraint
that bounds the density of the solution as follows:
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N∑
j=1

γj ≤ VT . (3.5)

This constraint is equivalent to the `0-norm constraint (3.3). The tractability of ap-
proaches which model sparsity constraints as in (3.5) is supported by the recent devel-
opment of MINLP solvers (Bertsimas and King, 2015; Carrizosa et al., 2016b). Never-
theless, an `1-norm constitutes an even more tractable surrogate to attain sparsity in
regression models. Indeed, adding the constraint

∑
j

|βj | ≤ t (3.6)

performs a shrinkage over the coefficients, which reduces the variance of the estimates
but eventually attains sparsity as a side effect. Note that this constraint can be passed
to the objective function as a penalization, leading to the classic expression of the Lasso.

The tractability and the theoretical results that prove that the Lasso recovers the
real underlying sparse structure under some conditions, has led the Lasso to become
the benchmark sparse regression method. As it will be illustrated in Section 3.3, the
Lasso improves the interpretability of the OLS, but a better trade off between sparsity
and predictive power may be attained by tightening its feasible region with constraints
such as (3.5).

3.2.2 Significance

In this section we model constraints that allow only significant variables to be rep-
resented in the model. Intuitively, large coefficients are identified with the importance
of a feature when the data is normalized. For instance, best subset selection sets the
smallest coefficients to zero and keeps the largest ones (LeBlanc and Tibshirani, 1998).
This is also the idea underlying the Adaptative Lasso (Zou, 2006), which avoids highly
shrinkage over the largest coefficients so as to allow them to pervive in the model. This
is done by introducing weights that are related to the size of the estimated coefficients.
For instance, Zou (2006) proposes weights that are inversely proportional to the mag-
nitude of the OLS estimates. In this way, the largest coefficients on the OLS solution
are subject to a smaller penalization and hence are more likely to be included in the
model.

Following this reasoning we propose to establish a threshold of importance that a
feature must be able to exceed to be allowed in the model. This approach is mainly
different from the Lasso methods, which perform an shrinkage over the coefficients. We
model such constraint as follows:

|βj | ∈ {0} ∪ [ε,+∞) j = 1, ..., N (3.7)
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where ε is called here the significance threshold, to be fixed by the user or to be tuned.
Note that we define an unfeasibility region in (0, ε), trying to avoid shrinkage and forbid
espureous coefficients in the solution. Constraint (3.7) can be linearly rewritten using
the following binary variables:

ν+
j =

{
1 if βj > 0

0 otherwise

ν−j =

{
1 if βj < 0

0 otherwise

Indeed, constraint (3.7) is expressed via two linear constrains as follows:

βj ≥ εν+
j − ν

−
j M ∀j = 1, ..., N

βj ≤ −εν−j + ν+
j M ∀j = 1, ..., N

(3.8)

where M is a large constant. This big M , often appearing when modelling problems
with integer variables, is large enough so it does not exclude reasonable values of the
parameters βj (see, e.g. Camm et al. (1990)). To the authors extent, this constraints
were first modelled by Carrizosa et al. (2016b) in a sparse context, where they were
used to discover potential causalities in multivariate time series.

Variables ν+
j , ν

−
j are linked with γj , defined in Equation (3.4), as follows:

γj = ν+
j + ν−j ,

and thus (3.5) can also be written as:

N∑
j=1

γj ≤ VT .

Despite the usefulness of the above mentioned sparse approaches, the association
between the importance and the magnitude of the estimated coefficient may sometimes
be misleading, since coefficients obtained by OLS or Lasso approaches may be inflated
in the presence of collinearity (Montgomery et al., 2015). This issue will be treated in
Section 3.2.3, and therefore we propose to combine constraints (3.8) with the collinearity
constraints that will be described in the next section.
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3.2.3 Collinearity

The presence of correlated variables in the data is demonstrated to lead to the ap-
pearance of undesired consequences, such as the unstability of the solutions and the
inflation of the estimated coefficients, which may lead to misleading interpretations, or
misrepresentative results of significance tests (Watson and Teelucksingh, 2002; Hester-
berg et al., 2008; Dormann et al., 2013; Montgomery et al., 2015).

As an illustration, consider the example given by Hesterberg et al. (2008) with the
diabetes database. This database consists of the measures of 10 variables (namely age,
sex, body mass index, average blood pressure and six different blood serums) on 442
patients. Figure 3.1 depicts the path of solutions of the Lasso for this database; that is
to say, the estimates of the coefficients βββ obtained for different values of the penalty t
in constraint (3.6) are depicted against their level of sparsity.
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Figure 3.1: Path of solutions of the Lasso for the diabetes database. The size of the
coefficients βββ are depicted against the number of non zeroes of the solution (NZ).

As noted by Hesterberg et al. (2008), features tc and ldl, which have a correlation
of 0.89, enter the model relatively late and their coefficients grow quickly in opposite
directions. Another bizarre behaviour is observed for variables hdl and tch, which show
a correlation of −0.73. In this case, the coefficient of hdl (who had entered the model
far before tch), changes its tendency in the presence of tch. This unstable behaviour
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leads the coefficient associated with hdl to change its sign at the end. In particular, this
ultimate change of sign may cause a misinterpretation of the process: at some point
hdl is assumed to have a positive impact over the evolution of the diabetes, while for
another level of sparsity it is assumed to have the opposite effect.

The standard approach to avoid such negative consequences often consists of man-
ually removing some correlated variables after carrying out some tests (Chatterjee and
Hadi, 2015). Further remedies consist of applying methods that decorrelate the data
(see, for example, Cao et al. (2010); Massy (1965)). Nevertheless, the later approaches
imply the transformation of the variables and thus complicate the interpretation of the
final models with respect to the original features.

A novel approach was undertaken by Bertsimas and King (2015), who proposed
to integrate the manual step of removing correlated variables into their optimization
problem. They did so by adding the constraints:

γi + γj ≤ 1 ∀(i, j) ∈ Ωη, (3.9)

where Ωη = {(i, j) : ρij ≥ η} is the set of pairs of features considered to be highly
correlated, and the variables γi, γj are defined in (3.4). That is to say, a pair of
features whose correlation exceed a threshold η are considered not to give different
information about the response variable y. These constraints may be too restrictive
since if (i, j) ∈ Ωη, either feature i or j is excluded from the model. Hence, for a large η
collinearity issues might not be avoided, while for smaller η a large number of variables
might be excluded.

In contrast, we would like to propose less restrictive constraints in order to allow two
correlated variables in the model at the same time but forbid misleading interpretations
and misrepresentative coefficients. In other words, our aim is to avoid unstable be-
haviours while allowing the model to include two correlated variables only if they both
contribute separately to the explanation of y. In this way a clearer interpretation of the
true impact of the features over the variable under study may be obtained. Therefore,
we propose to model constraints that avoid the compensation of coefficients for corre-
lated variables. Under the light of the previous example, these are the requirements we
want to gather when modelling the pairwise collinearity constraints:

1. The weight of two correlated variables should not be spread out between them.
If two features do not give information important enough by themselves, at least
one should be removed.

2. The coefficients of two features that are highly positively correlated must have
the same sign.

3. The coefficients of two features that are highly negatively correlated must have
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opposite signs.

Since any coefficient βj must be larger than ε when imposing constraints (3.8),
intuitively the first point will be alleviated by considering the constraints (3.8) for ε
sufficiently large. The rest of requirements can be easily formulated as constraints
using the indicator variables defined in Section 3.2.2:

ν+
i + ν−j ≤ 1 ∀(i, j) ∈ Ω+

α (3.10)

ν−i + ν+
j ≤ 1 ∀(i, j) ∈ Ω+

α (3.11)

ν+
i + ν+

j ≤ 1 ∀(i, j) ∈ Ω−α (3.12)

ν−i + ν−j ≤ 1 ∀(i, j) ∈ Ω−α (3.13)

where Ω+
α and Ω−α are the sets of pairs of features that are moderately or highly corre-

lated, expressed as Ω+
α = {(i, j) : ρij ≥ α} and Ω−α = {(i, j) : ρij ≤ −α}. That is to say,

constraints (3.10)-(3.11) mean that, if two variables i, j are highly positively correlated
(i.e. (i, j) ∈ Ω+

α ), then we do not allow one of the coefficients to be positive and the
other negative. Similarly, constraints (3.10)-(3.11) imply that, if two variables i, j are
highly negative correlated (i.e. (i, j) ∈ Ω−α ), we forbid their coefficients to be both
positive or both strictly negative.

In order to illustrate the impact of these constraints over the Lasso approach, Figure
3.2 depicts the path of solutions of the tightened Lasso for the diabetes database, as
was analogously done in Figure 3.1. As it can be observed, the use of constraints (3.10)-
(3.13) to tighten the feasible region of the Lasso avoids the unstable behaviours noted
above, easing the interpretation of the impact of the predictors over the development
of the illness. In particular, the use of the proposed constraints yields a more sparse
solution, where the variables age, hdl, tch and ldl are omitted.

To the authors extent, this kind of correlation constraints has never been modelled
before, except for the above mentioned more strict constraint (3.9). In comparison, the
inclusion of the new collinearity constraints (3.10)-(3.13) would imply a larger number
of constraints and variables, yielding a more complex model. However, it will be seen in
the next section that a good performance is attained without increasing the time limit.

3.3 Numerical illustrations

In this section we describe and undertake the numerical experiments performed to
compare three benchmark estimation methods in linear regression against their tight-
ened versions derived from reducing the search of the coefficients βββ ∈ B to the set B∩S,
where S is defined through the constraints proposed in the previous section. Specifi-
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Figure 3.2: Path of solutions of the tightened Lasso for the diabetes database.

cally, in the next section we introduce the linear regression methods used in the tests,
while Section 3.3.2 outlines the design of the experiments. Sections 3.3.3 and 3.3.4 show
the results for the real and simulated databases, respectively.

3.3.1 Methods under comparison

Now we will introduce the linear regression models to which we will add the con-
straints proposed in the previous section, defining the so-called tightened region B ∩ S.
The aim is to assess their impact over the solutions of the original problems; i.e. to
analyze the differences in the performance between Problems (3.1) and (3.2). In par-
ticular, we will consider three different sets of constraints S. In order to test sep-
arately the effect of the significance and collinearity constraints, the tightening sets
S1 = {(3.5), (3.8)} and S2 = {(3.5), (3.10) − (3.13)} are considered. Finally, the set
S3 = {(3.5), (3.8), (3.10) − (3.13)} is also used to further tighten the set of constraints
B of the original problem. Note that the sparsity constraint (3.5) is always included in
the tightened versions since it is the most simple and interpretable of all the constraints
and has already proven to enhance the sparsity of the outcome in linear regression
(Bertsimas and King, 2015). Also, the integrality constraints ν+

j , ν
−
j ∈ {0, 1} need to

be included in the set S when such a kind of variables does not appear in the original
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problem.

Below, we explicitly formulate the benchmark estimation methods (Problem (3.1))
and their tightened versions (Problem (3.2)) used for comparison in our numerical re-
sults. In order to conserve space, only the problems with the tightening set S3 are
shown. To use S1 or S2 as tightening sets instead some of the constraints should be
removed.

Ordinary Least Squares

Following the notation used to define Problem (3.1), the Ordinary Least Squares
estimation method can be written as:

f(βββ) =

K∑
k=1

Yk − β0 −
N∑
j=1

βjX
j
k

2

(3.14)

B = RN

OLS is the most straightforward procedure to derive solutions for β0,βββ in linear
regression problems. It is extremely tractable, since Problem (3.14) is a unconstrained
quadratic program. The restricted approach with tightening set S3 can explicitly be
written as:

min
βββ

K∑
k=1

Yk − β0 −
N∑
j=1

βjX
j
k

2

s.t



N∑
j=1

(ν+
j + ν−j ) ≤ VT

βj ≥ εν+
j − ν

−
j M ∀j = 1, ..., N

βj ≤ −εν−j + ν+
j M ∀j = 1, ..., N

ν+
i + ν−j ≤ 1 ∀(i, j) ∈ Ω+

α

ν−i + ν+
j ≤ 1 ∀(i, j) ∈ Ω+

α

ν+
i + ν+

j ≤ 1 ∀(i, j) ∈ Ω−α

ν−i + ν−j ≤ 1 ∀(i, j) ∈ Ω−α

ν+
j , ν

−
j ∈ {0, 1} ∀j = 1, ..., N

(3.15)

Lasso

The Lasso can be formulated as an optimization problem as in (3.1) as follows:
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f(βββ) =
K∑
k=1

Yk − β0 −
N∑
j=1

βjX
j
k

2

+ λ‖βββ‖1 (3.16)

B = RN

The sparsity of the solution attained by the Lasso increases as its regularization
parameter λ ∈ R+ does. The critical values of λ are easily computed using any im-
plementation of the LAR algorithm in standard statistical softwares. In particular, in
this chapter the Lasso set of solutions was obtained by using the lars() function of
R-cran package lars (Hastie and Efron, 2013). Specifically, the expression of the most
tightened version of the Lasso that will be solved in our numerical experiments is:

min
βββ

K∑
k=1

Yk − β0 −
N∑
j=1

βjX
j
k

2

+ λ‖βββ‖1

s.t



N∑
j=1

(ν+
j + ν−j ) ≤ VT

βj ≥ εν+
j − ν

−
j M ∀j = 1, ..., N

βj ≤ −εν−j + ν+
j M ∀j = 1, ..., N

ν+
i + ν−j ≤ 1 ∀(i, j) ∈ Ω+

α

ν−i + ν+
j ≤ 1 ∀(i, j) ∈ Ω+

α

ν+
i + ν+

j ≤ 1 ∀(i, j) ∈ Ω−α

ν−i + ν−j ≤ 1 ∀(i, j) ∈ Ω−α

ν+
j , ν

−
j ∈ {0, 1} ∀j = 1, ..., N

(3.17)

The optimization problem of Bertsimas and King (2015)

Now we introduce the following optimization problem:

f(βββ) =

K∑
k=1

Yk − β0 −
N∑
j=1

βjX
j
k

2

+ λ‖βββ‖1 (3.18)

B = {(3.5), (3.9), γj ∈ {0, 1} ∀j = 1, ..., N}

Bertsimas and King (2015) proposed an algorithm to obtain interpretable solutions
in linear regression. As part of such an algorithm, the resolution of a more complex
version of Problem (3.18), which may include constraints that allow to incorporate the
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modellers prior knowledge or avoid undesirable results, can be undertaken more than
once. In our numerical results we restrict ourselves to the more simple version Problem
(3.18).

Although Problem (3.18) already includes the sparsity constraint (3.5), it lacks of the
significance constraints (3.8). Moreover the correlation constraint (3.9) is different to
the ones proposed here, as discussed in Section 3.2.3. Therefore a different performance
of Problem (3.18) is expected by considering the tightened feasible region B∩S instead.
In particular, the tightened version with search space B∩S3 can be explicitly formulated
as:

min
βββ

K∑
k=1

Yk − β0 −
N∑
j=1

βjX
j
k

2

+ λ‖βββ‖1

s.t



N∑
j=1

(ν+
j + ν−j ) ≤ VT

βj ≥ εν+
j − ν

−
j M ∀j = 1, ..., N

βj ≤ −εν−j + ν+
j M ∀j = 1, ..., N

ν+
i + ν−j ≤ 1 ∀(i, j) ∈ Ω+

α

ν−i + ν+
j ≤ 1 ∀(i, j) ∈ Ω+

α

ν+
i + ν+

j ≤ 1 ∀(i, j) ∈ Ω−α

ν−i + ν−j ≤ 1 ∀(i, j) ∈ Ω−α

ν+
i + ν−i + ν+

j + ν−j ≤ 1 ∀(i, j) ∈ Ωη

ν+
j , ν

−
j ∈ {0, 1} ∀j = 1, ..., N

(3.19)

As in Bertsimas and King (2015) the maximum pairwise correlation allowed is η =

0.8; that is to say, the set Ωη in (3.9) is defined here as Ωη = {(i, j) : ρij ≥ 0.8}. Further
details about the choice of λ and VT are given in the following section.

3.3.2 Design of experiments

In order to make a fair comparison against existing procedures, the experiments
developed here closely follow those in Bertsimas and King (2015). First, the datasets
are normalized and divided in train, test and validation (50%, 25% and 25% of the
data, respectively). All the problems are solved in the train set, and the solution that
minimizes the Mean Squared Error (MSE thereafter) in the test set is chosen. Two
criteria are used to compare the methods, namely, the MSE and the sparsity. All the
MSEs reported in this chapter correspond to the values obtained in the validation sets
and are normalized by dividing by the OLS solution; that is to say, when any method
attains a MSE greater than 1 their prediction capacity is estimated to be worse than
that of the OLS, while for smaller values the predictive power has improved.

For the tightened MINLPs (3.2), the pairwise correlation considered to generate
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the sets Ω+
α and Ω−α in constraints (3.10)-(3.13) is fixed to α = 0.6. The significance

parameter ε in constraints (3.7) is tuned by chosing amongst the ten values
{0.05, 0.06, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.3} so as to minimize the MSE in the
test set. As done in Bertsimas and King (2015), when comparing against any method
that has a Lasso objective, the grid of values of the parameter λ to be tuned for the
tightened MINLP is logarithmically generated in the interval (0, λmax], where λmax
is the penalty provided by the LAR for which only one coefficient is non-zero. The
parameter VT on the sparsity constraint is chosen in {1, ..., N}. However, in order
restrict the search only to likely values of VT , a stopping criterion is imposed: when no
more features are added to the model (i.e., when the constraint (3.5) becomes inactive),
no larger values of VT are considered.

Problems (3.1) and (3.2) are, at their worst, MINLPs with quadratic convex ob-
jective function and linear constraints. Unless otherwise specified, the optimization
problems were solved using the standard CPLEX 12.6.3.0 and were easily coded in the
algebraic language AMPL (Fourer et al., 2002). A time limit of 20 seconds was imposed,
although this limit was reached only for the largest datasets and in most cases cases the
optimal solution was attained in a few seconds.

3.3.3 Real datasets

In this section we show the results obtained for some real datasets, which are easily
reachable on internet and well referenced in the literature (Bertsimas and King, 2015).
Further details about the specifications of the data sets and their sources are displayed
in Table 3.1. The columns provide information about the name, number of observations
(K), the number of predictors (N), and the data source.

K N Source
cpu 105 6 Lichman (2016)
yacht 154 6 Lichman (2016)
whitewine 2499 11 Lichman (2016)
redwine 800 11 Lichman (2016)
golf2008 78 6 Winner (2016)
golf2009 73 11 Winner (2016)
compact 4096 21 Torgo (2016)

Table 3.1: Real data sets specifications and sources

The databases were randomly divided ten times in train, test and validation sets.
The median MSE and number of non-zeroes are displayed in Table 3.2, where the first
column of results corresponds to the normalized MSE and numer of non-zero coefficients
(NZ) for the original Problem (3.1) (Baseline), and the second, third and fourth columns
contain the results of Problem (3.2) with sparsity and significance constraints (S1),
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sparsity and collinearity (S2), and sparsity, significance and collinearity constraints
(S3), respectively. Each panel of Table 3.2 shows the results of tightening the feasible
regions of the considered methods, described in Section 3.3.1.

From Table 3.2 it can be concluded that reducing the search of the coefficients βββ by
adding any of the constraints proposed in Section 3.2 always improves or maintains the
sparsity of the solution. In particular, adding solely the significance constraints usually
improves the sparsity while attaining a better or equivalent MSE. In contrast, the effect
of the collinearity constraints yields an even more sparse solution, although sometimes
performing slightly worse than the significance constraints in terms of predictive power.
The combination of these constraints may yield even more sparse solutions than its
counterparts, while improving the MSE of the solutions obtained searching in B ∩ S2.

More specifically, as it can be observed in Panel A, the density of the outputs is
always substantially reduced for the OLS. The predictive power improves in 9 out of
the 21 cases, up to a 35% in the cpu dataset. For the rest of the databases the predictive
quality is similar to that of the OLS. The maximum deterioration of the MSE (4%) is
found for the compact database with the tightening set S3; it is the price paid for gaining
12 zeroes in the output.

In Panel B it can be observed that the tightened Lasso always reduces considerably
the density of the outputs except for golf2008 database, where the number of non-zeroes
is maintained. For instance, the number of non-zeroes is reduced in 11 and 4 for compact
and whitewine databases. The MSE is slightly improved (around a 2%) in 8 out of the
21 cases, and slightly deteriorated or similar for the rest of the cases. An exception is
the cpu database with collinearity constraints, where 1 zero is gained by paying a 16%

deterioration over the MSE. Nevertheless, this worsening is considerably alleviated by
also using the significance constraints.

In Panel C the performance of the new constraints is not as extreme, since Problem
(3.18) already considered sparsity and an alternative type of collinearity constraints.
However, adding the proposed new constraints has a positive effect over the outputs:
the density is reduced in 12 out of the 21 cases with a similar or better MSE. For cpu
database a much better predictive quality is obtained for the same level of sparsity when
including solely the significance constraints.
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Baseline S1 S2 S3
MSE NZ MSE NZ MSE NZ MSE NZ

Panel A: OLS
cpu 1.00 6.0 0.65 4.5 0.72 4.0 0.67 4.0
yacht 1.00 6.0 1.00 1.0 1.00 1.0 1.00 1.0
whitewine 1.00 11.0 1.02 8.0 1.03 6.5 1.03 6.0
redwine 1.00 11.0 1.03 7.0 1.03 6.0 1.03 6.0
golf2008 1.00 6.0 0.69 3.0 0.69 3.0 0.69 3.0
golf2009 1.00 11.0 0.90 7.0 0.91 7.0 0.89 6.0
compact 1.00 21.0 1.02 13.0 1.04 11.0 1.04 9.0
Panel B: Lasso
cpu 0.62 5.0 0.64 4.5 0.72 4.0 0.66 4.0
yacht 1.02 2.5 1.00 1.0 1.00 1.0 1.00 1.0
whitewine 1.02 10.0 1.02 8.0 1.03 6.5 1.03 6.0
redwine 1.05 9.5 1.03 7.0 1.03 6.0 1.03 6.0
golf2008 0.68 3.0 0.68 3.0 0.68 3.0 0.68 3.0
golf2009 0.88 9.0 0.86 6.0 0.89 7.5 0.86 5.5
compact 1.02 20.0 1.02 13.0 1.04 11.5 1.04 9.0
Panel C: Problem (3.18)
cpu 0.81 4.0 0.76 4.0 0.81 4.0 0.80 4.0
yacht 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0
whitewine 1.03 8.0 1.03 6.0 1.03 8.0 1.03 6.0
redwine 1.03 7.0 1.03 7.0 1.03 6.0 1.03 6.0
golf2008 0.68 3.5 0.68 3.0 0.68 3.0 0.68 3.0
golf2009 0.95 6.5 0.92 4.5 0.94 6.0 0.92 4.5
compact 1.04 14.0 1.04 10.0 1.05 11.5 1.05 9.5

Table 3.2: Median MSE and number of non-zeroes (NZ) of the ten random shuffles for
the real data sets.

3.3.4 Simulated data

Data generation

Analogously to the overall design of experiments, the synthetic generation of the
data closely follows that of Bertsimas and King (2015). The k-th vector of observations(
X1
k , ..., X

N
k

)
was generated following a multivariate normal distribution with zero mean

and covariance matrix Σ = (σij), where σij = ρ|i−j|. In particular, we chose ρ = −0.9

and ρ = −0.5 so as to test the performance of the constraints under highly and moderate
correlations. The regression model is taken in small dimension, but with quite a number
of irrelevant covariates. More precisely, the number of features was set to 500, although
the number of non-zero βββ coefficients was 10. The βi were uniformly generated in the
interval (−2, 2) for i such that i mod p/k = 0. The response was generated following
(1.5), with β0 = 0 and the error terms i.i.d. following a N ∼ (0, σ2). The variance σ2
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was chosen so as the signal-to-noise ratio (SNR) was 6.32, as in Bertsimas and King
(2015)

Results

Analogously to the real datasets results, Table 3.2 shows the median MSE and
number of non-zeroes (NZ). The first column corresponds again to the results for the
original Problem (3.1) (Baseline), and the remaining columns contain the results of the
tightened versions. Each panel of Table 3.2 corresponds to one of the methods described
in Section 3.3.1.

From Table 3.2 it can be observed that tightening the feasible regions of the baselines
methods by adding the significance or the collinearity constraints has a different impact
over the solution, usually attaining a better trade-off between sparsity and prediction
power when combined. More specifically, reducing the search of the coefficients βββ by
adding all the constraints proposed in Section 3.2 improves the MSE yielded with the
tightening sets S1 and S2 while maintaining or increasing slightly the density of the
output in the presence of highly correlated features.

From Panel A some conclusions arise. First, the density of the OLS outputs is always
reduced by adding any of the constraints proposed in Section 3.2. In particular, the
number of non-zeroes is usually reduced from 500 (the total number of features) to 6 or 7
with around a 25% improvement of the MSE. An exception is found for highly correlated
features and collinearity constraints, where an extremely sparse solution is obtained
paying with an 85% deterioration over the predictive power. Finally, the tightening set
S3 is observed to balance the effect of the significance and collinearity constraints, either
improving the predictive quality of the most sparse solution (ρ = −0.5), or attaining a
considerably sparse solution with a better MSE (ρ = −0.9).

From Panel B it can be concluded that the tightened versions of the Lasso substan-
tially reduce the sparsity but implying a small deterioration over the MSE. For instance,
for ρ = −0.5 the price of gaining 72.5 zeroes is a 5.6% worsening of the predictive power.
Despite the use of the collinearity constraints alone yields the highest deterioration over
the MSE for highly correlated features, it seems that the `1-norm regularization al-
leviates the extreme behaviour observed for the OLS. Nevertheless, the collinearity
constraints help improving the MSE produced by the significance constraints, although
they may increase the density of the output.

From Panel C it is observed that tightening Problem (3.18) always leads to a con-
siderable improvement over the predictive power but slightly more dense solutions. In
particular, significance constraints help improving the MSE in more than a 30%, al-
though producing around 2 more non-zeroes. As observed previously, the most sparse
solutions are obtained for the tightening sets S2, although in this case the MSE of the
baseline method is improved.
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Baseline S1 S2 S3
MSE NZ MSE NZ MSE NZ MSE NZ

Panel A: OLS
ρ = −0.5 1.00 500.0 0.81 6.0 0.60 7.5 0.75 6.0
ρ = −0.9 1.00 500.0 0.77 7.0 1.85 3.0 0.73 6.0
Panel B: Lasso
ρ = −0.5 0.53 80.5 0.63 7.0 0.60 7.5 0.56 8.0
ρ = −0.9 0.53 183.0 0.70 6.5 1.67 3.5 0.68 6.5
Panel C: Problem (3.18)
ρ = −0.5 0.76 6.0 0.53 8.0 0.60 7.5 0.55 8.5
ρ = −0.9 1.10 5.0 0.69 7.5 0.84 5.5 0.65 8.0

Table 3.3: Median MSE and number of non-zeroes (NZ) of the ten simulated instances.

3.4 Concluding remarks

In this chapter we propose to tighten the parameter region of linear regression mod-
els in order to enhance the sparsity of the outputs while attaining a good predictive
power. To this aim the underlying optimization problems are modified by adding new
constraints to those defining the search space. These constraints detect the most impor-
tant features for the prediction and avoid misleading estimators that may be obtained
in the presence of highly correlated variables.

In order to assess the impact of the new constraints over various linear regression
models, three approaches are considered. First, the standard OLS estimation is taken
into account. Second, the classic Lasso is considered. Last, a tightening procedure
introduced in Bertsimas and King (2015) is included in our numerical illustrations.
The results show that the tightened versions are computationally tractable and that
sparsity may be enhanced while often improving or maintaining the predictive quality
by tightening the feasible regions of the three above-mentioned regression approaches.
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In this chapter we explore the single-item newsvendor problem under a novel setting
which combines temporal dependence and tractable robust optimization. First, the
demand is modeled as a time series which follows an autoregressive process AR(n),
n ≥ 1. Second, a robust approach to maximize the worst-case revenue is proposed:
a robust distribution-free autoregressive method for the newsvendor problem, which
copes with non-stationary time series, is formulated. A closed-form expression for the
optimal solution is found for n = 1; for the remaining values of n, the problem is
expressed as a nonlinear convex optimization program, to be solved numerically. The
optimal solution under the robust method is compared with those obtained under three
versions of the classic approach, in which either the demand distribution is unknown,
and autocorrelation is neglected, or it is assumed to follow an AR(n) process with
normal error terms. Numerical experiments show that our proposal usually outperforms
the previous benchmarks, not only with regard to robustness, but also in terms of the
average revenue. Extensions to multiperiod and multiproduct models are also discussed.

4.1 Introduction

As mentioned in Chapter 1, the classic approach to the well-known newsvendor prob-
lem (1.10) and its famous robust counterpart (1.11) assume the demand is independent
and identically distributed along time, which is in practice unrealistic. For this reason,
some authors have studied inventory models with time-correlated demand, including AR
models (Aviv, 2002; Reyman, 1989; Johnson and Thompson, 1975), compound Poisson
processes (Shang and Song, 2003), martingale models of forecast evolution (Dong and
Lee, 2003; Lu et al., 2006; Wang et al., 2012), factor models (See and Sim, 2010) or
estimation via Kalman filter (Aviv, 2003). Most of these papers either assume perfect
knowledge of the distribution function (Levi et al., 2008; Aviv, 2003, 2002; Shang and
Song, 2003; Wang et al., 2012; Reyman, 1989) or are focused in calculating bounds
of the objective function, which are distribution-free in See and Sim (2010); Lu et al.
(2006); Dong and Lee (2003). In contrast, in the work developed here no distributional
assumptions are made and the optimal solution is obtained with a closed expression
for a particular case, and the problem to be solved in the remaining cases is extremely
tractable due to its structural properties: it is a low-dimensional convex problem. More-
over, we do not only cope with temporal demand but also take into account robustness
in terms of uncertainty and risk aversion, which provides novelty to this work.

In recent years, risk-averse models have received increasing attention in the inventory
literature (see Choi et al. (2011) and the references therein). There, instead of maxi-
mizing the expected revenues, other utilities are optimized. Depending on the decision
maker’s preferences, it may be reasonable, for example, to optimize the probability of
achieving a target profit (see for example Kabak and Schiff (1978) or Lau (1980)), the
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Return of Investment (Thakkar et al. (1983)), the Cost-Volume-Profit, the CVaR (Chen
et al. (2009)) or other risk-averse policies (Eeckhoudt et al. (1995); Choi et al. (2011)).
The above-mentioned paper of Yue et al. (2006), as well as Perakis and Roels (2008);
Zhu et al. (2013); Jiang et al. (2011) consider the minimax regret decision criterion
instead. The robust approach in the newsvendor problem deals with uncertainty in
the demand while minimizing the impact over the optimal solution of the worst-case
scenario. For example, the landmark Scarf’s rule adopts such a criterion, although it
enforces independence of the demand along time. Bertsimas and Thiele (2006) also
propose a robust inventory approach, where uncertainty intervals for the demand are
supposed to be already given. On the contrary, our approach would address the worst-
case analysis while coping with time-correlated demands and including information of
the historical observations of the demand into the model.

In this chapter we address the newsvendor problem from a new perspective, integrat-
ing a distribution-free design with temporal dependence in the demand, into a robust
optimization approach. Throughout this chapter we perform a worst-case analysis, seek-
ing the policy maximizing the worst-case revenue. Specifically, our main contributions
are:

1. We consider the demand as a time series with non-negligible autocorrelation coef-
ficients. For simplicity, the basic yet versatile autoregressive process of some order
n, AR(n), is used as time series model. We follow a distribution-free approach,
in the sense that no distributional assumption is imposed over the error terms of
the autoregressive model.

2. We implement a robust optimization method based on the uncertainty sets of
Bandi and Bertsimas (2012), where the goal is to minimize the losses in the worst-
case realization of the parameters. For the particular case when the uncertainty
set is modeled with the l2-norm, a closed-form expression for the optimal solution
is obtained in the case n = 1. For n ≥ 2 the problem turns into a tractable
nonlinear convex optimization program, solved numerically.

3. We show that our approach outperforms three different classic approaches. In the
first one, the demand distribution is assumed to be unknown and is estimated from
the sample observations, which are assumed to be independent; in the second one,
the demand distribution is assumed to follow an AR(n) process with normal error
terms; the third method is the robust distribution-free solution of Scarf (1958)
(1.11).

4. We briefly discuss the robust multi-product newsvendor problem with demands
correlated over time and between products, and the multi-period case.
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The chapter is organized as follows. In next section we briefly introduce autore-
gressive processes and model various robust newsvendor problems with autoregressive
demands. Specifically, we formulate the single-item single-period case in terms of an op-
timization problem in Section 4.2.1. There, we also discuss the choice of parameters and
we show that, for a particular case, the problem is a convex optimization problem, and
we obtain a closed-form solution for n = 1. A brief extension to the multi-period case is
outlined in Section 4.2.2, where the robust modelling of the autoregressive processes is
integrated into the inventory model of Bertsimas and Thiele (2006). An extension to the
multiple item newsvendor problem is carried out in Section 4.2.3, where the demands of
the products are assumed to follow a Vector Autoregressive Process. In Section 4.3 we
design and present some numerical examples, where the robust autoregressive model is
tested against three different but classic methods, outlined in Section 4.3.1. Data gener-
ation and presentation of results are addressed in Sections 4.3.2 and 4.3.3, respectively.
Last section is devoted to concluding remarks and extensions.

4.2 The model

Now we describe how to obtain a robust solution for the single period newsvendor
problem with AR(n) demand, under the assumption that a realization of the process
up to time T is available and no probability distribution is imposed on the errors. To
do this we use the uncertainty sets of Bandi and Bertsimas (2012).

4.2.1 The single-product case

In this section we focus on the single-item newsvendor with autoregressive demand,
obtaining a closed-form solution when the demand follows and AR(1) process. The
solution we obtain is robust in two senses. First, we optimize revenue under the worst-
case scenario of the demand. Second, the forecast of the demand is distribution-free,
although it takes into account autocorrelation. We undertake this task via a robust
optimization problem with uncertainty sets (Ben-Tal and Nemirovski, 1998, 1999): the
data is not deterministic but required to belong to an uncertainty set, and all the con-
straints of the optimization problem must hold for every valid value of the uncertainty
set.

Ben-Tal and Nemirovski (2000) show that nominal solutions of optimization prob-
lems may become drastically unfeasible under small perturbations in the data. Although
they recognize the need of robustifying the nominal problem, they also admit that this is
done under a cost over the optimal value. Therefore, risk aversion against uncertainty in
the data has often been addressed by alleviating the impact of the worst case scenario
over the solution (Bertsimas et al., 2011; Bertsimas and Copenhaver, 2014; Ben-Tal
et al., 2009). As mentioned in Hanasusanto et al. (2014), the worst case approach is
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strongly justified from the theory of choice in economics (Ellsberg, 1961; Gilboa and
Schmeidler, 1989). Furthermore, this risk averse approach has been frequently used
in the newsvendor context (Scarf, 1958; Gallego and Moon, 1993; Vairaktarakis, 2000;
Hanasusanto et al., 2014; Han et al., 2014). Although this type of robust solutions
might be too conservative, Bertsimas and Thiele (2006) show that the choice of the
uncertainty set can play an important role to help avoiding this over conservativeness.
In this section we formulate our robust newsvendor problem with autoregressive de-
mand by means of a minimax optimization problem. We give some guidelines on how
to choose the parameters of our model so as to take into account risk preferences and
avoid over conservativeness.

Assume we possess the historical data of the demand up to time T {Xt}Tt=1, but
it is unknown for next period. Moreover assume that such demand roughly follows
an autoregressive process as in (1.6). Let Q denote the quantity of product to order,
assumed to belong to an interval Q = [Q,Q]. If the demand takes the value XT+1, then
a revenue R(Q,XT+1) is obtained. Typically, when no shortage costs nor salvage values
are taken into account, R is calculated using the following expression:

R(Q,XT+1) = min {Q,XT+1} −
( c
v

)
Q. (4.1)

where c and v are the unit cost and selling price, respectively. The goal is to find
Q maximizing the revenue R(Q,XT+1) under the worst-case scenario for the demand
XT+1, assumed to vary in a given uncertainty set. We formulate the robust single-item
newsvendor problem as follows:

max
Q∈Q

min
XT+1

R(Q,XT+1) (4.2)

s.t∣∣∣∣∣ 1

T − n

T∑
t=n+1

at

∣∣∣∣∣ ≤ Γ1, (4.3)

‖(an+1, ..., aT )‖q ≤ Γ2, (4.4)

Xt = α+
n∑
k=1

θkXt−k + at t = n+ 1, ..., T + 1, (4.5)

|aT+1| ≤ ∆ (4.6)

a ≤ XT+1 ≤ b (4.7)

The rationale behind the constraints is the following. The vector (an+1, ..., aT ) is
the vector of residuals in the AR(n) model in constraint (4.5). Constraint (4.4) forces
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the error vector to be small, by bounding its lq norm. Typical choices are q = 1,
and thus we make small the absolute value of the residuals, and for q = 2 we bound
their variance. On the other hand constraint (4.3) requires the mean of the observed
errors to be bounded. Note that, as no constraints over the θk k = 1, ..., n are made,
nonstationary processes can be addressed by problem (4.2)-(4.7). Finally, (4.6) implies
that the absolute value of the random value aT+1 (which represents the prediction error)
is bounded above by some constant ∆. In some real-world situations, the nature of the
time series requires to obtain a value of XT+1 within a specific interval. This is for
example the case of rainfall data and exchange rates, which take non-negative values,
or unemployment rates and diseases prevalence, which must lie in [0, 1] (see Carrizosa
et al. (2013)). Constraint (4.7) expresses this requirement.

Denote the set of constraints (4.3)-(4.7) by X, and fix Q0 ∈ Q. As the function
R(Q0, ·) decreases in XT+1, then min

XT+1∈X
R(Q0, XT+1) = R(Q0, XT+1), where XT+1 is

either a, b, or the solution to problem ARUS(n), defined as:

min
α,θ1,...,θn,
a1,...,aT+1

XT+1 (ARUS(n))

s.t

(4.3), (4.4), (4.5), (4.6)

We will refer to this problem as an AutoRegressive process based on Uncertainty Sets,
in short ARUS(n). Then, the solution Q∗ to problem (4.2)-(4.7) is also the solution to

max
Q∈Q

(
min{Q,XT+1} −

( c
v

)
Q
)
.

As R(Q,XT+1) = min{Q,XT+1}−
(
c
v

)
Q is piecewise linear concave function in Q, with

a global maximum at XT+1, then the solution to problem (4.2)-(4.7) is finally given by:

Q∗ =


Q if Q ≥ XT+1

XT+1 if Q ≤ XT+1 ≤ Q

Q if XT+1 ≥ Q

(4.8)

Choice of parameters

The values of Γ1,Γ2 and ∆ in the formulation of the ARUS(n) problem are chosen
according to the practitioner’s criterion. Next, we describe a procedure to select such
parameters using the concept of uncertainty sets along the lines of Bandi and Bertsimas
(2012), who define the uncertainty set (1.3). Since the errors terms an+1, ..., aT are



74 Chapter 4. Robust Newsvendor Problem with Autoregressive Demand

assumed i.i.d., we can define an uncertainty set of the form (1.3) for them. As there is
no loss of generality in assuming µa = 0, in combination with (4.5) we would have the
following uncertainty set:

U (Γ∗1) =

{
(α, θ1, . . . , θn) s.t

1

T − n

∣∣∣∣∣
T∑

t=n+1

Xt − α−
n∑
k=1

θkXt−k

∣∣∣∣∣ ≤ Γ∗1σa
√
T − n

T − n

}
.

Since σa is unknown in practice, we suggest to set it to:

σa ≈ (1 + ξ1/100)σ0,

where (1 + ξ1/100) indicates a perturbation (depending on the value of ξ1) of σ0, which
denotes the optimal value to the problem of minimizing the variance of the errors
an+1, .., aT .

Consider now the constraint (4.4). For q = 2 this constraint bounds the variance
of the errors. In this case we can proceed similarly as before and substitute Γ2 by a
certain perturbation of the minimum value attained by the errors’ variance:

Γ2 ≈ (1 + ξ2/100) γ2,

where γ2 is the obtained by minimizing the variance of the errors subject to constraints
(4.3) and (4.5).

Finally, consider (4.6). The choice of ∆ is crucial, since it bounds the value of the
prediction error aT+1. Since the sequence {at, t > 0} is i.i.d., it seems reasonable to
relate ∆ with the values a1, a2, . . . , aT . Since we have already obtained the optimal
α?, θ?1, . . . , θ

?
n feasible for (4.3) and (4.5) and for which the errors’ variance is minimum,

then it is straightforward to obtain the values a∗1, . . . , a∗T (by substituting α?, θ?1, . . . , θ?n
into (1.6)). Therefore, one possible choice of ∆ is the empirical k−th quantile of the
sample (a∗1, . . . , a

∗
T ), for some value of k, large enough. In the context of the newsvendor

problem it seems reasonable to relate the value of ∆ to the profitability of the product c
v ,

which should influence the decision maker’s risk aversion. From Schweitzer and Cachon
(2000), in the case of high profit products (that is, c

v ≤ 0.5), risk aversion may be
reduced by allowing the decision maker to buy more items. This implies that XT+1 is
allowed to be higher, which may be obtained by reducing the value of ∆. Thus, in the
context of the newsvendor problem, it makes sense to choose ∆ as the empirical U

(
c
v

)
-

th quantile of the sample (a1, . . . , aT ), where U is an utility function that depends on
the decision’s maker risk aversion.
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Properties and closed-form solution for q = 2

In this section we analyze the properties of the robust newsvendor problem with
autoregressive demand (4.2)-(4.7) for q = 2 and we obtain a closed-form solution when
the demand follows an AR(1).

Consider problem

−∆ + min
θ

(
−
∑T

t=n+1 ϕt(θ)

T − n
−min

{
Γ1,
√

Γ2 −H(θ)
}

+

n∑
k=1

θkXT+1−k

)
(4.9)

s.t

Γ2 −H(θ) ≥ 0, (4.10)

where θ = (θ1, . . . , θn), and ϕt(θ), H(θ) are defined as

ϕt(θ) =
n∑
k=1

θkXt−k −Xt,

H(θ) =
1

T − n

T∑
t=n+1

ϕt(θ)2 − 1

(T − n)2

(
T∑

t=n+1

ϕt(θ)

)2

,

and fix the parameters Γ1, Γ2 and ∆. Then the next results hold.

Proposition 1. The solution to problem (4.2)-(4.7) is either Q, Q, a, b, or the solution
to (4.9)-(4.10).

Proof. First, we provide a lemma that will be necessary for the proof.

Lemma 1. If

1

T − n

T∑
t=n+1

(
α+

n∑
k=1

θkXt−k −Xt

)2

≤ Γ2, for all α, θ1, . . . , θn,

then Γ2 −H(θ) ≥ 0.

Proof. Note first that if Γ2 −H(θ) < 0 then

Γ2 −
1

T − n

T∑
t=n+1

ϕ2
t <

−1

(T − n)2

(
T∑

t=n+1

ϕt

)2

(4.11)

and
1

T − n

T∑
t=n+1

(α+ ϕt)
2 = α2 +

2α

T − n

T∑
t=n+1

ϕt +
1

T − n

T∑
t=n+1

ϕ2
t
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Assume there exists (α,θ) such that Γ2 − H(θ) < 0 and
1

T − n
∑

(α + ϕt)
2 ≤ Γ2.

Then,

α2 +
2α

T − n

T∑
t=n+1

ϕt ≤ Γ2 −
1

T − n

T∑
t=n+1

ϕ2
t

but from (4.11)

α2 +
2α

T − n

T∑
t=n+1

ϕt < −
1

(T − n)2

(
T∑

t=n+1

ϕt

)2

,

and therefore(
α+

1

T − n

T∑
t=n+1

ϕt

)2

= α2 +
2α

T − n

T∑
t=n+1

ϕt +
1

(T − n)2

(
T∑

t=n+1

ϕt

)2

< 0

which is a contradiction.

From (4.3),

α ≤ U1(θ) = Γ1 −
1

T − n

T∑
t=n+1

ϕt(θ),

α ≥ L1(θ) = −Γ1 −
1

T − n

T∑
t=n+1

ϕt(θ).

and (4.4) implies

α ≤ U2(θ) =
−1

T − n

T∑
t=n+1

ϕt(θ) +
√

Γ2 −H(θ),

α ≥ L2(θ) =
−1

T − n

T∑
t=n+1

ϕt(θ)−
√

Γ2 −H(θ),

Then given a fixed θ, (4.3)-(4.5) is written as:

−∆ + min

(
α+

n∑
k=1

θkXT+1−k

)

s.t


α ≥ max {L1(θ), L2(θ)}
α ≤ min {U1(θ), U2(θ)}√

Γ2 −H(θ) ≥ 0

,

or equivalently as
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−∆ + min

(
max {L1(θ), L2(θ)}+

n∑
k=1

θkXT+1−k

)

s.t
{ √

Γ2 −H(θ) ≥ 0

which is equivalent to (4.9)-(4.10).

Proposition 2. Equations (4.9)-(4.10) define a smooth convex optimization problem.

Proof. We provide two lemmas needed for the proof of Proposition 2.

Lemma 2. The function H(θ) is convex.

Proof. Since H(θ) is an estimator of the variance of ϕ(θ), it can be rewritten as

H(θ) =
1

T − n

T∑
t=n+1

(
ϕt(θ)− 1

(T − n)

T∑
t=n+1

ϕt(θ)

)2

which is a convex function on θ since each term is the square of an affine function.

Lemma 3. The feasible region of the problem defined by (4.9)-(4.10) is convex.

Proof. The feasible region of the problem defined by (4.9)-(4.10) is the set F = {θ s.t. Γ2−
H(θ) ≥ 0}. After some algebra, we have

Γ2 −H(θ) = Γ2 −
1

T − n

T∑
t=n+1

(
n∑
k=1

θkXt−k

)2

+
2

T − n

T∑
t=n+1

n∑
k=1

θkXt−kXt

− 1

T − n

T∑
t=n+1

X2
t +

1

(T − n)2

(
T∑

t=n+1

n∑
k=1

θkXt−k

)2

From the definitions in (4.16) it can be seen that

Γ2 −H(θ) = Γ2 −
n∑
k=1

θ2
kVk − 2

n∑
k=1

θk

n∑
r=k+1

θrCk,r + 2

n∑
k=1

θkCk,0 − V0 (4.12)

Since by Lemma 2, H is convex, the region defined by Γ2 −H(θ) ≥ 0 is convex.

Proof of Proposition 2: Since the feasible region is convex then, it suffices to
prove that the objective function is convex too. From Lemma 2, H(θ) is convex and
therefore

−min
{

Γ1,
√

Γ2 −H(θ)
}
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is also convex. On the other hand,
T∑

t=n+1

ϕt(θ) is linear on θ, thus

−∆ + min
θ

(
−
∑T

t=n+1 ϕt(θ)

T − n
−min

{
Γ1,
√

Γ2 −H(θ)
}

+

n∑
k=1

θkXT+1−k

)

is convex.

Moreover, the global optimum in the case p = 1 can be obtained in closed form as
the next result shows.

Theorem 1. For n = 1, the optimal solution to the minimization problem defined by
(4.9)-(4.10) is reached at one of these values for θ?1:

θ
?(1)
1 =

−C1,0 ±
√
C2

1,0 + V1 (Γ2 − V0 − Γ2
1)

−V1
, (4.13)

θ
?(2)
1 =

−C1,0 ±
√
C2

1,0 + V1 (Γ2 − V0)

−V1
, (4.14)

θ
?(3)
1 =

−C1,0(V1 + a2)±
√
C2

1,0(V1 + a2)2 + a2V1(V1 + a2) (Γ2 − V0 − C1,0)

−V1
, (4.15)

where
Vk = var

(
Xk
)
, Ck,h = cov

(
Xk, Xh

)
(4.16)

respectively denote the variance of Xk and covariance matrix between Xk and Xi where

Xk = (Xn+1−k . . . , XT−k) , (4.17)

and a =
−1

T − 1
S1 +XT .

Proof. Two main cases may be distinguished

1. Either min
{

Γ1,
√

Γ2 −H(θ1)
}

= Γ1,

2. or min
{

Γ1,
√

Γ2 −H(θ1)
}

=
√

Γ2 −H(θ1)
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Consider the first case. Then, the problem to be solved is written as

−∆− Γ1 + min


−

T∑
t=n+1

ϕt(θ1)

T − n
+

n∑
k=1

θkXT+1−k



s.t

{
Γ2 −H(θ1) ≥ 0√

Γ2 −H(θ1) ≥ Γ1

Note that the first constraint is redundant, as Γ1 is supposed to be positive. Since the
objective function is linear on θ1, the optimum is reached at the frontier of the feasible
region

F =
{
θ1 s.t. Γ1 =

√
Γ2 −H (θ1)

}
.

Consider (4.12) with n = 1. Then

Γ2 − Γ2
1 −H(θ1) = −θ2

1var(X
1) + 2θ1cov(X1, X0) + (Γ2 − var(X0)− Γ2

1)

which is equal to zero if θ1 = θ
?(1)
1 as in (4.13).

Assume now that min
{

Γ1,
√

Γ2 −H(θ1)
}

=
√

Γ2 −H(θ1). Then the objective
function to be minimized can be written as

A2(θ1) = −∆ +
−1

T − 1

T∑
t=2

(θ1Xt−1 −Xt)−
√

Γ2 −H(θ1) + θ1XT ,

and let F2(θ1) = A2(θ1)+∆. This function is convex and therefore, the optimal solution
for the unconstrained problem is reached when the derivatives are null, where

dF2(θ1)

dθ1
= a+

1

T − 1

∑T
t=2 (θ1Xt−1 −Xt) bt√
Γ2 −H(θ1)

,

and where a =
−1

T − 1

T∑
t=2

Xt−1 and bt = Xt−1 −
1

T − 1

T∑
t0=2

Xt0−1. Note that
dF2(θ1)

dθ1

exists if and only if Γ2 −H(θ1) > 0. Thus, the optimal θ1 is either the one which the
partial derivative of F2 in the feasible region of the considered problem is zero or it is
found at the frontier of such feasible region. Three cases may therefore be considered

(2.1) The minimun is reached at Γ2 −H(θ1) = 0,

(2.2) The minimun is reached at
√

Γ2 −H(θ1) = Γ1,
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(2.3) The optimal θ1 is the one such that
∂F2(θ1)

∂θ1
= 0.

Case (2.2) has been already solved. Consider the case (2.1). Then, after substituting
p = 1 in (4.12), expression (4.14) is obtained. Finally, the problem to be solved for the
case (2.3) turns into

−∆ + minF2(θ1)

s.t

{
Γ2 −H(θ1) > 0√

Γ2 −H(θ1) ≤ Γ1

(4.18)

An optimal solution to (4.18) is obtained in the case (2.3) if there exists θ1 such that
dF2(θ1)

dθ1
= 0 , which in addition satisfies the constraints of problem (4.18). Such value

θ1 is obtained by

(
−a
√

Γ2 −H(θ1)
)2

=

(
1

T − 1

T∑
t=2

ϕt(θ1)bt

)2

.

After some algebra, the right term is expressed as:

1

(T − 1)2

(
T∑
t=2

ϕt(θ1)bt

)2

=
(
cov

(
θ1X

1, X1
)
− cov

(
X0, X1

))2
,

from which the next quadratic function is obtained:

θ2
1(V 2

1 + a2V1)− 2θ1C1,0(V1 + a2)− a2(Γ2 − V0 − C1,0), (4.19)

which is equal to zero if and only if θ1 = θ
?(3)
1 as in the expression (4.15).

4.2.2 The multi-period case

It is reasonable to study the multi-period newsvendor problem whenever the product
perishes at a rate that extends to more than one period. Bertsimas and Thiele (2006)
propose a robust multi-period inventory approach in which prediction intervals for the
demand are supposed to be given. Although this approach deals with holding and
shortage costs, it does not provide any information about the demand or guidelines
on how to obtain its forecasts. Here we propose to use our modeling of the robust
autoregressive demand to obtain prediction intervals that can be embedded into the
multi-period approach of Bertsimas and Thiele (2006). In this way we are able to:
(i) take into account the temporal autocorrelation of the demand, (ii) provide robust
forecasts for the demands, which fits in with the robust approach Bertsimas and Thiele
(2006) propose, and (iii) intimately bound the demand estimation with the inventory
problem, as the forecasts can be done by taking into account the risk aversion of the
user, which depends on the profitability of the product c

v .
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Once provided the extremes values XT+1 and XT+1, a multi-stage prediction ap-
proach, as e.g. in Cheng et al. (2006), is possible: we minimize and maximize the
ARUS(n) at each time step and use the obtained values for the next period. Note that
if the demand follows and AR(n) process then XT+l depends on the n previous values,
thus the prediction interval obtained for the unknown data in XT+l−1, ..., XT+l−n may
affect the forecast on instant T + l. The robust multi-stage approach we propose to
estimate the demand consists on simply adding the constraints:

XT+m ≤ XT+m ≤ XT+m m = l − n, ..., l − 1

to the ARUS(n) optimization problem when XT+m is unknown. The values of XT+m

and XT+m have been previously obtained by minimizing (respectively maximizing) the
ARUS(n) problem for XT+m. Note that the value of parameter ∆ can be modified on
each step to deal with variations in the selling price and the cost.

4.2.3 The multi-product case

In this section we analyze the extension to the multiple item newsvendor problem
when the products are not replaceable. Many papers, such as Zhang (2012); Lau and
Lau (1995); Abdel-Malek and Montanari (2005); Choi et al. (2011), have treated this
problem considering demands possibly correlated amongst products. Without excep-
tion, they assume the demands’ marginal density functions are given for each product
and disregard temporal correlation. In contrast, we propose a distribution-free approach
and we assume that the demands of the products are not only correlated over time but
also correlated between items. Specifically, we extend the model in (1.6) by assum-
ing that the demands follow a Vector Autoregressive Process of or order n, VAR(n)

thereafter. Such a process can be written as in (1.8). Denote the demand of the N
products in time instant t by Xt =

(
X1
t , ..., X

N
t

)′, the vector of constants by ααα ∈ RN ,
and Ak = (θijk)i,j ∈ RN×N gathers the coefficients relating the values of the time series
with the demand k periods behind. Finally at ∈ RN represents the contemporaneous
error terms for all demands series at time instant t.

For the multi-product case we consider an uncertainty set gathering the constraints
(4.3) and (4.4) for each product, while including the demands’ correlation between
time and items expressed by (1.8). In order to bound the prediction errors in such a
way that a contemporaneous dependence between the shocks of the different products

can be addressed, we add the constraint
∥∥∥∥(a1

T+1

∆1 , ...,
aNT+1

∆N

)∥∥∥∥
s

≤ 1 to our multiproduct

problem. Note that for s = ∞, this is equivalent to requiring (4.6) to hold for each
product j = 1, ...N .

In conclusion, we model the robust multi-item newsvendor with correlated demand
as:
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max
Q∈Q

min
XT+1,ααα,
Ak,at

R(Q1, ..., QNNX1
T+1, ..., X

N
T+1) (4.20)

s.t∣∣∣∣∣ 1

T − n

T∑
t=n+1

ajt

∣∣∣∣∣ ≤ Γj1, j = 1, .., N (4.21)

‖(ajn+1, ..., a
j
T )‖q ≤ Γj2, j = 1, .., N (4.22)

Xt = ααα+

n∑
k=1

AkXt−k + at t = n+ 1, ..., T + 1 (4.23)∥∥∥∥∥
(
a1
T+1

∆1
, ...,

aNT+1

∆N

)∥∥∥∥∥
s

≤ 1 (4.24)

Here R(Q1, ..., QN , X1
T+1, ..., X

N
T+1) =

∑N
j=1 Rj(Q

j , Xj
T+1), Q is a set of constraints on

the quantity of products to acquire. Note that problem (4.20)-(4.24) takes into account
the correlation of the demand in two aspects (time and products) while providing a
distribution free approach. Define the function

φ(Q1, ..., QN ) = min
s.t. (4.21)-(4.24)

N∑
j=1

Rj(Q
j , Xj

T+1)

which gives, for quantities Q1, ..., QN the worst-case revenue. Observe that, for each Rj

as in (4.1), the function φ is concave and thus (4.20)-(4.24) is a concave maximization
problem. It will be linearly constrained if, as customary in the literature, capacity,
weight or budget constraints are written as linear functions (Hadley and Whitin, 1963;
Abdel-Malek and Montanari, 2005)

4.3 Numerical illustrations

Now we are going to test the performance of our single-product approach against
those described in Section 4.3.1. To make the results as complete as possible we have
checked the obtained average revenue and small quantiles for a large number of simulated
data sets with different properties, such as the correlation, distribution of errors or
seasonality. To further explore the behavior of our approach, different values of n have
been considered to generate possibly periodic AR(n) processes, but only results for
n = 1 are included here as the same performance was observed for the other cases
tested.

The proposed approach will be compared with three classic approaches, which will
be called static, Scarf and AR(n). In the first approach, the demand distribution will
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be unknown and estimated from the sample observations (assumed to be independent),
the second assumes the distribution function for the demand is uncertain, as in the
third approach normality in the error terms will be assumed.

4.3.1 Benchmark methods

In this section we describe in detail the three benchmark approaches: static, Scarf
and AR(n).

If the demand distribution F were known and the expected revenue were to be
maximized, then the optimal quantity Q?s would be given by the specific quantile of the
distribution function (1.10), which depends on the cost (c) and selling prices (v). Note
that under this approach the temporal dependence in the data is ignored, so we call it
static thereafter. In practice the distribution of the demand is unknown and therefore
in the static approach, an estimation of the distribution function must be employed.
Usually, the empirical distribution function F̂ , which converges to the true cumulative
density function (cdf) F for a large enough sample, is considered.

The so called Scarf’s rule is a robust solution, given by (1.11), in which the dis-
tribution of the demand is unknown except for its mean and variance. This solution
is robust because it assumes uncertainty over the distribution function of the demand.
However, as our numerical results show, this solution may suffer from an excessive
conservativeness.

In the case of the classic AR(n) approach the forecast was assumed to follow a nor-
mal distribution. Therefore, under normality, the optimal solution for the newsvendor
problem would be

QAR(n) = Φ−1

(X̂T+1,σa)

(
1− c

v

)
(4.25)

where Φ−1

(X̂T+1,σa)
is the inverse cdf of a normal distribution with mean X̂T+1 and stan-

dard deviation σa. Since QAR(n) may be negative and the demand always takes non-
negative values, the quantity Q?AR(n) = max

{
0, QAR(n)

}
will be considered instead.

4.3.2 Synthetic data generation and experiments design

The performance of the different inventory policies is illustrated by different simula-
tional experiments, for which samples of the AR(n) process (representing the demand
series) are artificially generated. In this section we describe how the synthetic AR(n)

data have been generated, and we specify the choice of parameters for our model.
We have generated the demand series {Xt}t>0 following an AR(n) process as in (1.6).

Three different distributions for the error terms were tested in our experiments, all of
them chosen so as to generate non-negative demand series. First, at ∼ N(4, 1); also, we
found of interest to check the behavior of the methods when heavy-tails are incorporated
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in the generator model, as done in Huh et al. (2011), who choose Pareto and Lognormal
distributions to check the performance of their inventory approach under samples of
time-independent demand generated with heavy-tailed distributions. Therefore, we
also set at ∼ LN(0, 3) and at ∼ Par(1, 1), where LN and Par denote the standard
Lognormal and Pareto distributions.

A different aspect to be considered when simulating the data is the strength of the
temporal dependence. In our experiments, two values of θ were set. Note that for
p = 1 the coefficient θ1 represent the lag−1 autocorrelation coefficient thus, in order to
test the methods on highly and moderately correlated time series, θ = θ1 = 0.9 and
θ = θ1 = 0.5 were fixed. Figure 4.1 illustrates demand time series generated with the
highest value of the correlation and both normal and lognormal errors distributions. As
mentioned before, other values of p have been tested with different values of θ but the
conclusions obtained were analogous to those for p = 1.
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Figure 4.1: Examples of highly correlated autoregressive demands generated with errors
following N(4, 1) and LN(0, 3).

Finally, after some testing, the risk seeker strategy where ∆ is the
( c
v

)2
-th quantile

of (a1, . . . , aT ), has been adopted under three types of profit products:
c

v
∈ {0.75, 0.5, 0.25},

representing low-, neutral- and high-profit products, respectively. In this way the pro-
posed robust approach avoids being too conservative. The perturbation parameters β
and ν of the ARUS(n) were both set to 5, allowing therefore a 5% perturbation over the
minimum variance and standard deviation, respectively. The parameter Γ∗1 was set as
the 0.95 quantile of the standard normal distribution following the reasoning of Bandi
and Bertsimas (2012).

A total of 1000 series of length T + 1 = 1000 were generated for each θ and each
error’s probability distribution. The first T = 999 values have been used as train set
in order to estimate the parameters of the inventory policies proposed in Section 4.3.1
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and the ARUS(n), and the remaining value t = 1000 has been used as validation set.
Therefore, the next process has been followed in order to calculate the revenue of the
different approaches:

1. Determine the optimal quantity Q∗ of products to buy for instant T + 1 having
available the demand historical records for t = 1, ..., T

2. The demand in instant T + 1 is realized, and then the revenue is calculated by
using the expression (4.1).

4.3.3 Results

The results obtained are illustrated by Table 4.1 and Figure 4.2. Table 4.1 shows the
average revenue and the frequency of losses for the different approaches (namely, static,
Scarf, classic AR(1) prediction method, and robust ARUS(1) method) under three
different statistical distributions for the error terms (Par(1, 1), LN(0, 3) and N(4, 1)).
In Table 4.1 two levels of dependence (θ = 0.9 versus θ = 0.5) are considered.

From Table 4.1 several conclusions can be obtained. We first analyze highly auto-
correlated series. First, we point out that under normally distributed errors, the four
competing approaches perform similarly in terms of both the average revenue and fre-
quency of losses. However, significant differences are found when the errors follow a
distribution with heavier tails. Second, in both the Pareto and Lognormal cases, the
robust approach outperforms the other three in terms of both the average revenue and
percentage of losses, being the LN(0, 3) under neutral-profit product (c/v = 0.5) an
exception, as the AR(1) attains a better average revenue. Third, the methods that
do not take into account the correlation of the data present the poorest performance,
Scarf being the worst approach, usually yielding a higher percentage of losses that the
ARUS(1) and a lower average revenue. Fourth, the frequency of losses is always zero
under the proposed robust approach, while it may be moderately high for both the
static approach and the classic AR(1) prediction method when high-profit products are
considered.

Consider now moderately correlated series. Although the overall picture is analo-
gous to that of the highly correlated case, some differences arise. First, it is interesting
to note how for the low-profit products case with normally distributed errors all ap-
proaches attain a fraction of runs with losses bigger than zero, Scarf being the most
extreme one. Second, it is worth highlighting the poor performance of the AR(1) fore-
casting method under heavy-tailed distributions for the errors. Note that for high-profit
products negative average revenues are obtained, the frequency of losses being extraor-
dinarily high (this last phenomenon is also observed under neutral-profit products). On
the contrary, the Scarf’s rule is too conservative, always attaining a zero average rev-
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Par(1, 1) LN(0, 3) N(4, 1)

θ c/v Method Avg. rev. % loss Avg. rev. %loss Avg. rev. %loss

0.9

Static 25.70 7.50 157.64 27.50 29.16 0.00
Scarf 11.76 12.90 46.26 15.30 29.16 0.00

0.25 AR(1) 145.75 22.50 583.51 36.10 29.58 0.00
ARUS(1) 160.22 0.00 674.83 0.00 29.45 0.00

Static 13.01 12.60 65.09 23.50 19.02 0.00
Scarf 1.52 3.20 0.09 0.10 19.02 0.00

0.50 AR(1) 118.60 4.50 490.27 10.90 19.52 0.00
ARUS(1) 105.22 0.00 437.73 0.00 19.49 0.00

Static 4.94 11.60 20.19 16.30 9.25 0.00
Scarf 0.00 0.00 0.00 0.00 9.21 0.00

0.75 AR(1) 50.51 0.00 187.70 0.00 9.64 0.00
ARUS(1) 52.25 0.00 217.49 0.00 9.64 0.00

0.5

Static 2.72 28.40 9.29 47.70 5.56 0.00
Scarf 0.00 0.20 0.00 0.00 5.56 0.00

0.25 AR(1) -27.63 82.00 -145.12 87.80 5.61 0.00
ARUS(1) 7.23 0.10 33.08 0.00 5.46 0.00

Static 1.16 26.00 2.80 35.70 3.48 0.00
Scarf 0.00 0.00 0.00 0.00 3.48 0.00

0.50 AR(1) 3.02 63.60 4.63 76.90 3.55 0.00
ARUS(1) 4.16 0.00 19.19 0.00 3.51 0.00

Static 0.35 17.70 0.61 21.90 1.60 1.90
Scarf 0.00 0.00 0.00 0.00 1.60 2.60

0.75 AR(1) 2.29 0.00 9.31 0.00 1.66 0.90
ARUS(1) 1.96 0.00 9.39 0.00 1.65 0.50

Table 4.1: Average revenue and frequency of losses obtained for highly and moderately
autocorrelated series under the four considered approaches (static, Scarf, classic AR(1)
forecasting method, and ARUS(1)), under Pareto, Lognormal and normally distributed
error terms.

enue for heavy-tailed demands. In this case, in which data are not highly correlated,
the static approach does not behave as poorly as in the previous example.

In conclusion, it could be said that the robust autoregressive approach is more
stable than the static and AR(1) approaches, and overcomes extreme conservativeness
of the Scarf method: it usually performs better or equivalently to all methods in terms of
average revenue and always outperforms or is equivalent when minimizing the frequency
of losses. Last, it is interesting to note that the higher the profit of a product is, the
worse the classic AR(1) forecasting method performs.

As an alternative illustration of the different prediction methods’ performance in the
least favorable scenarios, we provide Figure 4.2, which depicts the predicted empirical
cdf of the revenue in the interval of probabilities [0, 0.2]. For the sake of abbreviation,
only the neutral products case, i.e., for c

v = 0.5, has been depicted. In the top of
Figure 4.2 the error terms follow a N(4, 1) distribution, while in the central and bottom
panels the errors are assumed to be LN(0, 3) and Par(1, 1) distributed, respectively.
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Time series with moderate and high autocorrelation (θ = 0.5, θ = 0.9 respectively) are
considered, and the results are given in the left and right column.

Several conclusions can be obtained from Figure 4.2. First, it can be deduced that
for demand with normally distributed error the classic AR(1) and robust ARUS(1)

approaches perform equivalently for highly correlated demand (right column), while for
demand with lower correlation the ARUS(1) approach outperforms the classic AR(1).
In both cases, the static and Scarf approaches present a poorer performance. Figure
4.2 illustrates the same phenomena reported on Table 4.1 for demand with heavy-
tailed errors: the classic AR(1) forecasting method performs poorly, obtaining highly
negative revenues. Although the Scarf approach outperforms both the static and classic
autoregressive approaches, it is worse than the ARUS(1).
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Figure 4.2: Empirical cdf of the revenue under the static (dotted line), AR(1) forecasting
method (dashed line), Scarf approach (dot-dashed line) and the ARUS(1) approach
(solid line), under normally (top), lognormally(central) and pareto (bottom) distributed
error terms in the case of neutral products.
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4.4 Concluding remarks and extensions

In this chapter we have considered a novel approach to the classic newsvendor prob-
lem. First, we incorporate temporal dependence by assuming that the demand follows
an autoregressive process, and the forthcoming demand is to be forecasted from histor-
ical data. Second, the common assumption of normally distributed error terms in AR
models is not made, as a distribution free counterpart is proposed. Moreover, a robust
approach is used, and a closed form of the optimal solution is derived for the case n = 1.
The performance of the proposed approach is compared to three traditional competing
methods. The results show that the robust method outperforms the other approaches
in terms of average revenue and obtains better results in term of robustness. In very
few occasions runs with losses are obtained.

We have briefly explored a robust extension to the multi-period counterpart. We
aim to integrate our robust autoregressive approach into the robust inventory model
of Bertsimas and Thiele (2006), who assume uncertainty intervals for the demand are
already given. We propose to provide such intervals, whose lengths depend on the
profitability of the product (or equivalently on the risk aversion of the user), by applying
the robust modeling for autoregressive demands ARUS(n).

We have shown how to extend the model to a robust multi-item newsvendor problem
with demands autocorrelated over time by products. Specifically, we have considered
demands following a VAR(n) process. Extensions to more general inventory models,
such as the replaceable items case, deserve further attention and careful analysis. Fu-
ture prospects concerning this work would also include to formulate robust versions of
more sophisticated time series models. Moreover, in the newsvendor context, shortage
penalties and salvage values per unit can be considered as possible extensions to include
in the robust approaches proposed here.
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In this chapter we investigate how the demand forecasting technique, as well as
other factors, such as the correlation and variability of the demand and its geographical
distribution, affect the facility location-allocation decisions. To do this, we first study
location problems with demands correlated along time and between clients. Future
demands are assumed to be uncertain but following a Vector Autoregressive process
(VAR) (see expression (1.8) of Chapter 1), and the robust problems are defined. Theo-
retically, we show these robust problems are equivalent to a minimization problem with
a regularization term over the coefficients of the VAR and the costs, and we also obtain
some sensitivity results.

Secondly, in order to develop a numerical study we focus on a more simple model in
which demands amongst clients are supposed to be independent. We analyze a location
problem in which one single perishable product is to be produced at a number of facilities
whose location is sought, to be later shipped to a set of users. The demand of the clients,
defined by an uncertain autoregressive time series, is forecasted from historical data.
Empirically, we show that: (i) embedding the forecasting technique into the location
decision problem may lead to a facilities-clients allocation which does not necessarily
correspond to the minimum cost allocation, but produces better revenues, (ii) taking
into account the correlation of the demand can significantly improve the performance
of the supply chain, and (iii) a highly variable demand may lead to different location
and production decisions.

5.1 Introduction

Demand uncertainty affects decisions in supply chain management, at both strategic
(location decisions) and tactical (production and inventory management) levels, see for
example Snyder (2006); Melo et al. (2009). Although the demand forecast relies on the
chosen forecasting technique, to the authors’ knowledge no research has been devoted
to analyze the effect of the choice of the forecasting technique on the location-allocation
decisions.

Demand uncertainty has been addressed in the location and inventory literature by
either considering a scenario analysis or assuming a perfect knowledge of the demand’s
distribution function (cdf) (see Snyder (2006); Gulpinar et al. (2013); An et al. (2014) in
the location field, Levi et al. (2008); Aviv (2003, 2002); Shang and Song (2003); Wang et
al. (2012); Reyman (1989) in inventory, and Barahona and Jensen (1998); Snyder et al.
(2007) in joint location-production models). In particular, in some works the demand
is modeled via a specific stochastic model as the normal distribution (Atamturk et al.,
2012; Coullard et al., 2002; Liao et al., 2011; Snyder et al., 2007; Shen and Qi, 2007;
Shen et al., 2003; Shu et al., 2005) or the Poisson process (Ozsen et al., 2009; Wang et
al., 2007). All these approaches are contrary to the recommendations given by Bandi
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and Bertsimas (2012), who show that assuming a known cdf of the demand may be
prohibitive and inaccurate in practice. Also See and Sim (2010); Bandi and Bertsimas
(2012) show the drastic errors in the inventory policy caused by an inaccurate estimation
of the demand from sample data.

Note that assuming a known cdf for the demand may not only lead to quite inaccu-
rate results, but also implies that the consecutive demand values are considered as inde-
pendent, an assumption that be may unrealistic in practice, see Lee et al. (2000); Graves
(1999); Kahn (1987). In the inventory literature some authors have studied models with
time-correlated demand; see, for instance, Dong and Lee (2003); Lu et al. (2006); Wang
et al. (2012); See and Sim (2010); Aviv (2003); Dogan and Goetschalckx (1999); Snyder
et al. (2007); Aghezzaf (2005). In particular, autoregressive processes have been widely
used to model the demand (see Aviv (2002); Reyman (1989); Johnson and Thompson
(1975)). A different approach is undertaken by Shahabi et al. (2014), who propose a
location-inventory approach when demands are correlated amongst clients.

Despite most robust location problems are based in either distributional assumptions
over the clients’ demands or in scenario analysis, lately a new approach is raising: nom-
inal values for the future demands are assumed to be given and uncertainty structures
are built taking into account those values (see, for instance, Baron et al. (2011)). Al-
though authors like to think no statistical procedures are involved in these approaches,
the truth is that those nominal values for the demand must have been obtained some-
how relying in prediction or estimation methods, and the user has no control over it. In
the theoretical work developed here the parameters of the VAR are assumed to be given
instead of those nominal values. The VAR definition (1.8) together with the informa-
tion of the provided coefficients will be used to model uncertainty sets for the future
demands. Moreover, Baron et al. (2011) proposes a multi-period setting in which the
demand at future time instant t is assumed to belong to a l1 or l2-norm uncertainty
set. Even although those uncertainty sets may be constructed taking into account the
correlation of the demand, they might allow realizations that do not preserve such a
correlation. In contrast, it will be seen that the feasible paths of the demands within the
uncertainty sets that are proposed in this work manage to preserve the inner behaviour
of the demands.

Several papers have been devoted to study the impact of taking into account demand
correlation in supply chain management (Helper et al., 2010; Güllü, 1997). Moreover,
much of this literature model the demand as an AR(1) process (Ganesh et al., 2014;
Raghunathan, 2003; So and Zheng, 2003). However, rather than studying the impact
of updating the demand forecasts over the design of the supply chain, they state the
benefits from considering demand correlation in a supply chain which is already set. An
exception applies to Güllü (1997), which studies the effect of demand forecasting in the
allocation using a Martingale Model of Forecast Evolution. The approach undertaken
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in the empirical study of this work is different, as we also analyze the impact of the
demand prediction method over the location and allocation solutions.

In this chapter we first model robust location problems where we consider demands
correlated not only amongst clients but also along time. Second, we focus on a more
simple setting to empirically analyze the effect of the (time-correlated) demand fore-
casting technique in location and production decisions. Our test environment is a basic
discrete p-facility location model in which the open facilities are to produce one single,
perishable product. Demand at different time periods from different users is assumed
to follow an uncertain autoregressive process, in the sense that the parameters defining
the process are unknown, as well as the probability distribution of the error terms. The
demand is forecasted from historical data. The problem we are addressing accomplishes
three tasks: select the plants to be opened, allocate clients to such facilities, and decide
the quantity of perishable product each plant must produce for each client at each single
period. Our aim is to compare how different strategies for forecasting the demand affect
such decisions.

The chapter is structured as follows. Next section introduces some robust locations
problems with uncertain future demands following a VAR process. Some theoretical re-
sults are derived. In Section 5.3 we develop a data-driven approach for a location model,
where the demand is estimated using a forecasting technique. This approach is used to
analyze the effects of such forecasting method on the location-allocation decisions. The
design of the experiments is addressed in Section 5.4. Specifically, the data sets used
to illustrate the approach are introduced in Section 5.4.1, Section 5.4.2 deals with the
stochastic processes that have been used for generating the demand time series values,
and Section 5.4.3 reviews the demand forecasting techniques to be considered in the
numerical experiments. Section 5.5 is devoted to present the obtained numerical results
under two perspectives. First, we analyze the effects of the demand forecasting tech-
nique when considering the proposed approach. Second, the previously obtained results
are compared to those obtained under a minimum cost allocation criterion. Finally, last
section presents some remarks and extensions.

5.2 Robust location problems with Vector Autoregressive
demands

Most robust location problems are based on either distributional assumptions over
the clients’ demands, or on scenario analysis. However, lately a new approach is be-
coming quite popular. It consists on constructing uncertainty sets around nominal
values for future demands, assumed to be given. Nevertheless, the user may have no
control over the estimation methods that are used to obtain those nominal values for
the demand. Moreover, although either a statistician or an expert must have already
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harvested information about the behaviour of the demand in order to select a proper
prediction method, unfortunately the user can incorporate such knowledge about the
demand directly into the optimization problem only by making use of the estimated
nominal values. For instance, consider the ambiguity sets (1.2) proposed by Bertsimas
and Thiele (2006), discussed in Chapter 1.

A benchmark paper in this context is Baron et al. (2011), which proposes a multi-
period setting in which the demand is assumed to belong to a l1 (box) or l2-norm
(elliptical) uncertainty set. However, the work developed here presents substantial dif-
ferences from Baron et al. (2011). First, nominal values for the future demand are
assumed to be given in their approach, while here the parameters of the VAR are as-
sumed to be given instead. The VAR definition (1.8) together with the information of
the provided coefficients will be used to model uncertainty sets for the future demands.
Finally, their demand realization for time t does not depend on the realization of the
demand for time t − 1; i.e., their uncertainty sets might contain paths that do not
preserve the inner behaviour of the demands. This phenomenon will be illustrated in
Section 5.2.1, as well as the feasible paths of the demands within the uncertainty sets
that are proposed in this work.

Assume we possess the historical demands X1, ...,XT , where Xt =
(
X1
t , ..., X

N
t

)′
are the demands of all clients at time instant t. We assume the series {Xt}t≥0 follows
a VAR(n) of parameters A1, ..., An ∈ RN×N , ααα ∈ RN , i.e., it can be written as in (1.9).
Our planning horizon is T + 1, ..., T +h, and although demands XT+1, ...,XT+h are un-
certain they can be expressed in terms of a VAR(n) model for t in the planning horizon.
Therefore, the future demands are required to belong to the following uncertainty set:

UX̃ = {X̃ : ΠX̃ − ã = b, X̃ ≥ 0} (5.1)

where X̃ =
(
X′T+1, ...,X

′
T+h

)′ ∈ Rnh and ã =
(
a′T+1, ...,a

′
T+h

)′ ∈ Rnh represents the
uncertain parameters. The known parameters Π ∈ Rnh×nh and b ∈ Rnh are:

b =



ααα+
∑n

k=1AkXT−k

ααα+
∑n

k=2AkXT+1−k
...

ααα+AnXT−1

ααα
...

ααα
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Π =



In×n 0 . . . 0

−A1 In×n 0 . . . 0

−A2 −A1 In×n 0 . . . 0
...

. . . . . . . . .
...

−An −An−1 −An−2 . . .
...

0 . . . In×n


We also define the following uncertainty set for the future prediction errors ã:

Uã = {ã : ‖ã‖ ≤ δ} (5.2)

where ‖ · ‖ is a vector norm. Note that a matrix norm can also be used here so as to
bound differently the errors between products and the errors along time. For instance,
consider the ((s,Λ), a)-norm, defined as

‖Z‖(s,Λ),q = ‖Λ (‖z1‖q, ..., ‖zh‖q)‖s (5.3)

where Z = [z1, ..., zh] is a Rnh vector, and Λ ∈ Rh×h. Then the uncertainty set (5.2) is a
particular case, since it can be written as U = {ε̃εε : ‖ε̃εε‖(s,A),q ≤ 1}, with A = diag

(
1
h

)
.

In the multi-period setting it is reasonable to consider as an objective function to
minimize the costs along the planning horizon. This can be formulated in terms of the
robust p-median problem with correlated demands as:

min
x,y∈R

max
X̃∈UX̃
ε̃εε∈Uε̃εε

X̃ ′F(x) (5.4)

where F(x) ∈ Rnh represents the unit costs of serving the clients :

F(x) =



F (x)

F (x)
...

F (x)


, and F (x) =



N∑
i=1

c1ix1i

N∑
i=1

c2ix2i

...
N∑
i=1

cLixLi


.



96
Chapter 5. On the Effect of the Demand Forecasting Technique on

Location-Allocation Decisions

Analogously, the multi-period robust UFLP can be expressed as:

min
x,y∈R′

o′y + max
X̃∈UX̃
ε̃εε∈Uε̃εε

X̃ ′F(x) (5.5)

The following result shows that the previous minmax optimization problems are
equivalent to simple minimization problems in which the feasible regions are the same
as the original non-robust programs and regularization terms over the coefficients of the
VAR and the costs have been added to the objective functions.

Theorem 2. The robust p-median problem (5.4) is equivalent to the following optimiza-
tion problem:

min
x,y∈R
λλλ≥0

b′G(x,λλλ) + δ‖G(x,λλλ)‖∗ (5.6)

where G(x,λλλ) = (Π−1)′(F(x) + λλλ) and λλλ ∈ Rnh. Analogously, the robust UFLP is
equivalent to:

min
x,y∈R′
λλλ≥0

o′y + b′G(x,λλλ) + δ‖G(x,λλλ)‖∗. (5.7)

Proof. Since the future error terms can be expressed as ã = ΠX̃ −b, problem (5.4) can
be rewritten:

min
x,y∈R

max
X

X̃F(x)

s.t

 X̃ ≥ 0

‖ΠX̃ − b‖ ≤ δ

(5.8)

As the original problem is convex (because the objective function is linear and any norm
defines a convex set) and constraints verify Slater’s condition, we can dualize only the
positivity, obtaining that problem (5.8) is equivalent to:

min
x,y∈R
λλλ≥0

max
X

X̃F(x) + λλλX̃

s.t
{
‖ΠX̃ − b‖ ≤ δ

(5.9)

Then, the following change of variables z = ΠX− b is effectuated, yielding:

min
x,y∈R
λλλ≥0

max
‖z‖≤δ

(Π−1(z+b))′(F(x)+λλλ) ≡ min
x,y∈R
λλλ≥0

b′Π−1(F(x)+λλλ)+ max
‖z‖≤δ

z′(Π−1)′(F(x)+λλλ)

Note that Π is invertible since det(Π) = 1 holds because Π is lower triangular with
a diagonal of ones. Now, using the definition of dual norm it is straightforward to
conclude that this is equivalent to problem (5.6). The proof for the UFLP is analogous.
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Now a sensitivity analysis is performed by the following Corollary, in which the
maximum bound for the norm of errors such that the solution to the robust p-median
problem is the same as the original p-median problem is given.

Corollary 1. Let (x0,y0) be the solution of the deterministic p-median problem (p-median).
Then, the maximum δ such that the solution to the robust p-median problem (5.4) is
still (x0,y0) is:

δ0 = min
x,y∈R
λλλ≥0

X̂′(F(x)− F(x0))

‖(Π−1)′(F(x0) + λλλ)‖∗ − ‖(Π−1)′(F(x) + λλλ)‖∗
, (5.10)

where X̂ = Π−1b is the estimation of the demand via the VAR model (1.8).

Proof. From Theorem 2 we know that δ0 is the solution of the following problem:

max δ

s.t


min
x,y∈R
λλλ≥0

X̂′F(x) + X̂′λλλ+ δ‖(Π−1)′(F(x) + λλλ)‖∗ ≥

X̂′F(x0) + X̂′λλλ+ δ‖(Π−1)′(F(x0) + λλλ)‖

which is equivalent to:

max δ

s.t
{
δ ≤ X̂′(F(x)− F(x0))

‖(Π−1)′(F(x0) + λλλ)‖∗ − ‖(Π−1)′(F(x) + λλλ)‖∗
, ∀(x,y) ∈ R, λλλ ≥ 0

which is equivalent to Problem (5.10).

Since Problem (5.10) is a MILFP, Dinkelbach algorithm can be applied to obtain δ0.
This is a convergent iterative algorithm such that the solution of a problem minz

f(z)
g(z)

can be solved iteratively zk+1 = arg minz f(z)− g(z)f(zk)
g(zk) .

5.2.1 Illustration of demands’ feasible paths

In order to test the possible realizations of the demands within the uncertainty sets
defined in Baron et al. (2011), an autoregressive series as in (1.6) and a Moving Average
series (the reader is referred to Box et al. (2008) for more information about MA models)
both with parameters α = 100 and θ = 0.9 and errors following a N(0, 1) have been
generated. The series, with 100 observations, have been split up in train and validation
sets with a proportion of 80% and 20%, respectively.
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Figure 5.1: The top panels show highly correlated autoregressive demands, while the
bottom panels show moving average demands, both generated with errors following
N(0, 1) and parameters θ1 = 0.9, α = 100. Left panel contain the whole series, right
panel the unknown future values for the demand

Let us first focus on the box uncertainty sets proposed by Baron et al. (2011),

Ut = [Xt(1− at), Xt(1 + at)], t = 81, ..., 100,

where Xt are the nominal values for the future demand, assumed to be given. Once
provided the real values of the future demand asXt, the uncertainty sets were calculated
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under the choice of parameters suggested in Baron et al. (2011), i.e., at = γ+(1−γ)at−1,
with γ = 0.15 and a80 = 0. In order to assess the possible realizations of the demands
within those uncertainty sets, values in those intervals were uniformly generated, i.e.,
X̂t ∼ U(Xt(1− at), Xt(1 + at)).
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Figure 5.2: The red lines denote the interval uncertainty sets for each instant of time
for AR (top panels) and MA (bottom panels) demands. On the right panel, some
realizations for the demand are shown with their standard deviations

In order to test the implications of the uncertainty set (5.1) over the path of feasible
demands, we estimate the coefficients α, θ1, .., θn by OLS using the known demands
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X1, ..., X80. To better compare with Baron et al. (2011), the next condition is required:
‖(a81, ..., a100)‖∞ ≤ max

t=81,..,100
|abaront |. Once again, possible realizations for the demand

at each period have been uniformly generated and depited in Figure 5.3. In comparison
with Figures 5.2 and 5.3, the feasible realizations obtained by the proposed model seem
to better maintain the inner behaviour of demand and generate less variable series, since
the standard deviations obtained are closer to the real one.
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Figure 5.3: Some realizations for the demand for uncertainty sets (5.1) and (5.2), to-
gether with their standard deviations.

.

5.3 A data-driven approach for a single-period location-
production model

In this section we describe a location-production data-driven procedure that shall be
applied in Section 5.5 under the assumption of a correlated demand to illustrate the ef-
fect that the demand forecasting technique has on the location-allocation decisions.Due
to the many paremeters to study, we have restricted to a single-item perishable product
to improve the readability of the chapter. Therefore, no warehouses or stock levels are
considered. The problem to be solved encompasses locating p facilities amongst the can-
didate locations to attend all customers, whose demand values {Xi

t}Tt=1 are available up
to time T . For simplicity such demand values are assumed to be independent amongst
clients. Along with the location task, the quantity of products Qli(t) to produce at
each location l to supply client i at each instant time t is to be determined. As the
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considered product is perishable, the demands can only be forecasted for one period
ahead. For the sake of comprehension, we next present the notation used throughout
the rest of this chapter.

Xi = {Xi
t}Tt=1 i ∈ {1, ..., N} time series of demands of clients up to time T

Qli(t) l ∈ {1, ..., L}, i ∈ {1, ..., N} t > 0 the quantity of product to produce at location l

to supply client i, at time t

vi sale unit price of the perishable product for client i

T + 1, ..., T + h planning horizon

If bli(t,Xi
t) denotes the benefit of serving client i from facility l at time t, under the

assumption of a known demand Xi
t , then the benefit of serving client i from facility l

per each period in the planning horizon T + 1, ..., T + h, is given by

Bli(T + 1, T + h,Xi) =
1

r

T+h∑
t=T+1

bli(t,X
i
t) (5.11)

Coefficients bli(t,Xi
t) are deterministic when the demand Xi

t is known. Since the
values of {Xi

t}t>T are not available in practice and no probabilistic model for the demand
is assumed, a data-driven distribution-free recursive approach is proposed to estimate
the benefit coefficients bli(t,Xi

t). The method consists in dividing each client’s historical
demand, given by a time series, into two sets: the training set (periods 1, ..., T1) and
the testing set (periods T1 +1, ..., T ). After having chosen a specific demand forecasting
technique, then the train set will be used to estimate its parameters, and the test set
to estimate the benefit coefficients bli(t,Xi

t), (and therefore, the total benefit as in
Eq.(5.11)). This procedure is explained in more detail in Table 5.1.

Once the total benefit coefficients are estimated according to the procedure in Table
5.1, the location-allocation problem to be solved is formulated as the p-facility problem
on (p-median) but maximizing the total profit as in (5.14)



102
Chapter 5. On the Effect of the Demand Forecasting Technique on

Location-Allocation Decisions

1. Split the demand time series in train {Xi
t}
T1
t=1 and test {Xi

t}Tt=T1+1

sets for all clients i ∈ {1, ..., N}.

2. For t0 = T1 + 1, . . . , T and for all i ∈ {1, ..., N} repeat:

(a) Use the known values of the demand {Xi
t}
t0−1
t=1 to fit the

parameters of the selected demand forecasting technique.

(b) Use the (estimated) demand forecasting technique to obtain the
prediction of the demand and the quantity of product to send to
client i from every plant i ∈ I at time t0, X̂i

t0 and Q̂li(t0).

(c) Calculate the benefit coefficients as the obtained revenues

bli(t0) = vj min{Xi
t0 , Q̂li(t0)} − cliQ̂li(t0) (5.12)

3. Estimate the benefit coefficients per period in the planning horizon
as

B̂li(T + 1, T + h) =
1

T − T1

T∑
t=T1+1

bli(t) (5.13)

Table 5.1: Recursive approach for estimating the parameters of the p-median problem.

max
L∑
l=1

N∑
i=1

B̂li(T + 1, T + h)xli

s.t



L∑
l=1

xli = 1 ∀i = 1, ..., N

xli ≤ yl ∀i = 1, ..., N, l = 1, ..., L
L∑
l=1

yl = p

xli ∈ {0, 1} ∀i = 1, ..., N, l = 1, ..., L

yl ∈ {0, 1} ∀l = 1, ..., L

(5.14)

Note that (5.14) is a p-median problem in which the costs (or, equivalently, the
benefits B̂li) not only depend on the transportation and production costs (cSli and c

P
i ),

but they also depend on Q̂li, which is obtained through demand estimation. Hence, it is
intuitively obvious that an erroneous forecast of the demand may strongly perturb the
coefficients B̂li, and therefore the location and allocation decisions obtained by (5.14)
may significantly differ from the solution of the standard p-median problem. This
phenomenon will be clearly illustrated in Section 5.5.
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5.4 Description of the experiments

In this section we describe in detail the design of the numerical experiments whose
results are presented in Section 5.5. Specifically, the data sets, the stochastic models
for the demand, the considered demand forecasting techniques as well as the structure
of the profitability are discussed here.

5.4.1 Data sets

The data sets used in the experiments developed here closely follow those in Daskin
and Owen (1999): the 55-node data set of Swain (1971) and the 88-node data set of
Daskin (1995). The 88-node data set represents the fifty largest cities in the United
States along with the state capitals, and its distance matrix was calculated using great
circle distances, whereas for the Swain network the closest paths between nodes were
calculated using Floyd’s approach. Average demands for the U.S. cities data set were
given, as for the nodes of the Swain network they were randomly generated following a
uniform distribution, as done in Blanquero et al. (2014).

The number of facilities to be opened was also chosen accordingly to Daskin and
Owen (1999): they tested the two data sets for p = 3, ..., 15. For the sake of abbreviation,
we only considered the minimum, maximum and median of such set, therefore we will
test the approach for three different values of p, namely p = 3, 9, 15.

5.4.2 Stochastic models for the demand

In the real data sets presented in Section 5.4.1, the nodes’ demands {Xi
t}T+h
t=1 were

unavailable (only the average demands were known) and therefore we needed to sim-
ulate them artificially. Since we aim to study how the correlation and variability of
the demand affect to the location-allocation decisions, we will assume that the demand
follows an (uncertain) autoregressive process. Recall that the demand has been often
modeled as an autoregressive process (Aviv, 2002; Reyman, 1989; Johnson and Thomp-
son, 1975). However, any other stochastic process considering correlated demands may
also be tested by the proposed data-driven approach.

In our experiments demands were generated from autoregressive processes as in (1.6)
with n = 1, in such a way that the expected value of the series matches the average
known values. We choose αi = α and θik = θk for all j ∈ J . The choice n = 1 follows
from Chapter 4, where proposed a robust forecasting technique for uncertain AR(n)

processes is proposed. Within that chapter, only results for n = 1 were included, due
to the performance of the forecasting techniques being virtually unaffected by changing
the value of n. The effect of different properties, as the distribution of errors {ait}t>0

(which determines the variability of the demand time series) and the strength of the
correlation was analyzed. Two different distributions for the error terms were tested
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in our experiments: the normal and the lognormal distributions. First we considered
standard normally distributed errors, as we aimed to test the performance under the
commonly considered AR(n) model. In addition, we found it of interest to check the
effects of the forecasting techniques under a high variability in the demand time series,
as done in Huh et al. (2011); Carrizosa et al. (2014). To such aim, the lognormal
distribution LN(0, 3) was selected. Another aspect to be considered when simulating the
data is the strength of the temporal dependence. In our experiments, two values of θ1 =

θ were set. Note that for n = 1 the coefficient θ1 represents the lag-1 autocorrelation
coefficient thus, in order to test the methods on highly and moderately correlated time
series, θ1 = 0.9 and θ1 = 0.5 were fixed. Figure 5.4 shows a simulated demands time
series generated under the two choices of errors distributions and correlation strengths.
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Figure 5.4: Examples of high and low correlated autoregressive demands generated with
errors following N(0, 1) and LN(0, 3).



5.5. Numerical results 105

5.4.3 Forecasting techniques for the single-period inventory policy

Suppose the set L0 of open facilities is already chosen, as well as the clients-
facilities allocation. At each time period t we want to cover the demand of customer
i ∈ {1, ..., N}, Xi

t , by plant l ∈ L0. However, only the historical and possibly correlated
demands for t = 1, . . . , T are available, thus a demand forecasting technique for esti-
mating Xi

t , with t > T , needs to be considered. In order to address demands generated
from the AR(n) process, some of the demand forecasting techniques tested in Chapter
4 will be considered in our numerical experiments. Such forecasting techniques are the
so called static, the classic AR(n) approach and the robust ARUS(n) approach.

5.4.4 Profitability structure

Note that the quantity of products Q̂li(t) to produce at plant l to supply client i
estimated via the forecasting techniques described in Section 5.4.3 depends on the total
cost defined cli and on the sale price vj . Hence it is expected that the supply chain
performance is affected by the profitability of the products, as the forecasting methods
themselves do. Therefore, two types of profitability settings were considered for the
perishable product: low- and high-profitability. For the sake of abbreviation we fix
vj = v for all clients. For low-profit products, the sale price was stablished as

v = 1.25 max
l=1,...,L
i=1,...,N

{cSli, cPi } (5.15)

where cSli are the normalized transport costs, which are derived from normalizing the
distance matrix, and cPi are the so as normalized production costs. The high-profit
products are defined as in (5.15) but with a higher value:

v = 1.75 max
l=1,...,L
i=1,...,N

{cSli, cPi }

5.5 Numerical results

In this section, the results obtained are compared under the different forecasting
techniques outlined in Section 5.4.3, and also, under a benchmark approach, consisting
in assuming perfect knowledge of the demand at each period. Under this perfect knowl-
edge criterion, clients are supplied with their exact demand. Two different allocation
strategies will be considered:

• The maximum-profit allocation, i.e., the one given by the optimal values of vari-
ables xli when (5.14) is solved.
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• The minimum-cost allocation, i.e., the one that allocates the clients to their min-
imum cost open facility (xli = 1 if and only if l = arg minl∈L0

cli).

We consider of interest to compare the results with the classic minimum cost alloca-
tion as it does not take into account the demand of the clients and it has been reported
to be very restrictive (Weaver and Church, 1986). It will be shown that the allocation
decisions under the proposed data-driven approach do not necessarily coincide with that
under the minimum cost strategy, and usually better total revenue values are obtained.

In our experiments 25 instances of the problem were simulated for each data set.
Series of length T +h = 288 following an AR(1) process with i.i.d errors were generated
for each node. The train set is defined for time instants t = 1, ..., 240, while the test
set considers the demand from t = T1 + 1 = 241 to t = T = 264. The validation set
is composed of the rest of time series values {Xi

t}T+h
t=T+1, so the train set has a length

equal to 240 and both the test and validation sets are of length 24. To manage the
supply chain according to the proposed location-production approach, each demand
forecasting technique is applied in the validation set where the location ({yl}l∈{1,...,L})
and allocation ({xli}l∈{1,...,L},i∈{1,...,N}) solutions are obtained from the train and test
sets, and where the total revenue for each instance as in (5.11) is computed similarly as
in Table 5.1 using the validation set.

In the next section the influence of the forecasting technique, variability and cor-
relation in the demand, type of profitability and geographical position of the nodes
is analyzed under the maximum profit criterion. Section 5.5.2 will be devoted to ex-
amine in detail the effect of considering instead the minimum cost allocation. All the
optimization problems were solved using Xpress 7.2.

5.5.1 Results under the maximum profit criterion

Figures 5.5 and 5.6 show the box plots of the 25 total revenues for all considered
location-production approaches under the maximum profit criterion. The demand in all
cases is generated from an AR(1) process with normal N(0, 1) and lognormal LN(0, 3)

errors, respectively. Note that this implies that a low (respectively, high) dispersion in
the realizations of the demand is expected in Figure 2 (respectively, Figure 3). Our
findings showed few differences between the behavior of the location approach under
different number of plants to be opened. Therefore, to abbreviate only the case with
p = 3 is illustrated here. The location-production strategies are named as the associated
forecasting method, i.e., for instance STATIC 0.9 denotes the location approach in
which the demand has been generated with parameter θ = 0.9 and forecasted by (1.10).

The results of the first set of experiments are presented in Figure 5.5. In this case,
in which the N(0, 1) model governs the distribution of the errors in the autoregressive
process for the demand, the samples concentrate in an interval of small length, specially
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for low correlation. In addition, total revenues distribute similarly among the different
forecasting techniques for a given value of θ. The best results are obviously obtained
under the benchmark approach, as perfect knowledge of the demand is assumed. Con-
cerning the static approach, a better performance is achieved for θ = 0.5. Slightly better
values, close to those of the benchmark approach, are obtained when the classic AR
model is considered, a reasonable result since the AR process assumes normal errors.
The results are similar for the 88-node data set (top part of Figure 5.5), though much
worse results are obtained for ARUS. From this experiment it can be concluded that,
when the demand variability is low, the results are highly dependent on both the spatial
distribution of the nodes (since the obtained results are different for the two data sets)
and the correlation in the demand. However, the effect of the forecasting technique and
the type of profitability seems to be weaker.

Now we consider the variability of the samples represented by the box plots of Figure
5.6. As expected, the heavy-tailed behavior in the demand implies a high variability
in the results obtained for both Swain and 88-node data sets, in particular under the
benchmark approach. For the rest of approaches the variability increases with the
correlation parameter θ. Also, it can be seen that the results for the 88-node data set
are more dispersed than those for the Swain network, especially for high-profit products.
Consider now the effect of the different forecasting techniques on the revenues. Similarly
as in the previous situation, better results are obtained under the benchmark approach,
this outperformance being more evident for low correlated demands. The performance
of the static approach is similar in all cases. However, significant differences are observed
for the combination of the location problem with autoregressive forecasting approaches.
Although the robust approach never obtains losses, the model with the classic AR
produces negative total revenues when θ = 0.5 and for high-profit products, and also
for low-profit products in the case of the 88-node database. Therefore in this case, where
extreme values for the demand are considered, the performance of the supply chain under
the maximum profit allocation criterion is influenced not only by the spatial distribution
of the data and correlation in the demand, but also by the forecasting technique. The
effect of the profitability seems to be negligible for the 88-node data sets. However,
for the Swain data the type of profitability affects the results under the AR forecasting
method.
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Figure 5.5: Box plots of the obtained total revenues for the 88-node and Swain databases under the
maximum profit criterion. The nodes’ demands have been generated from an AR(1) process with
errors distributed according to a N(0, 1) model.
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Figure 5.6: Box plots of the obtained total revenues for the 88-node (up) and Swain (bottom)
databases under the maximum profit criterion. The nodes’ demands have been generated from an
AR(1) process with errors distributed according a LN(0, 3) model.
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5.5.2 The effect of the allocation

As commented at the beginning of Section 5.5, two location-allocation approaches
have been considered in our experiments, namely, the one that considers maximum
profit allocation of clients according to the forecasting technique, and the one that
assigns clients to the minimum cost open facility. The results shown in the previous
section were obtained under the maximum profit criterion. In this section, the effect of
considering the alternative approach is analyzed.

Tables 5.2 and 5.3 report the average percentage of improvement of the minimum
cost allocation over the maximum profit allocation, for the Swain and 88-node datasets,
respectively. In order to test the effect of the number of plants to be opened, three
values of p, p = 3, 9, 15, were considered in the experiment. In addition, since the
results from Section 5.5.1 under the N(0, 1) model were analogous, in this case the
errors are assumed to be lognormally distributed.

θ = 0.9 θ = 0.5

Profitability Forecasting p = 3 p = 9 p = 15 p = 3 p = 9 p = 15

High
STATIC 2.62 1.91 1.24 6.18 8.06 8.94

AR -18.53 -18.62 -17.61 -8002.84 -1059.04 -938.30

ARUS 0.98 1.30 1.27 2.15 2.30 2.51

Low
STATIC 3.11 4.11 4.12 6.79 8.42 8.88

AR -11.55 -17.61 -17.15 -374.73 -406.14 -380.50

ARUS 1.62 0.94 0.75 2.84 2.83 3.11

Table 5.2: Average percentage of improvement of the minimum cost allocation over the
maximum profit allocation for the Swain databases. The nodes’ demands have been
generated from an AR(1) process with errors distributed following a LN(0, 3) model.

From Tables 5.2 and 5.3 it can be observed that the worst results are obtained under
the classic autoregressive forecasting technique. For the AR, the minimum cost criterion
always worsens the total revenue of the supply chain, especially for the Swain database.
Note that in this case, when p = 3, θ = 0.5 and for high profitability, the obtained loss
is greater than 8000% of the total revenue. Note also that the average percentage of
improvement gets worse as the autocorrelation of the demand decreases. The ARUS is
the least affected forecasting method since its average percentage of improvement varies
between 0.07% and 3.11%. On the other hand the results under the static forecasting
technique are more variable: for the Swain network it is the forecasting method that
best responds to the change of allocation, but for the 88-node database and a high
correlation this change results in a worsening of the total revenue between 10.66% and
18.31%.
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θ = 0.9 θ = 0.5

Profitability Forecasting p = 3 p = 9 p = 15 p = 3 p = 9 p = 15

High
STATIC -13.45 -17.81 -18.31 1.29 1.81 2.42

AR -10.40 -8.94 -8.17 -123.60 -133.66 -178.07

ARUS 0.10 0.08 0.12 0.08 0.07 0.08

Low
STATIC -10.66 -11.89 -13.93 1.31 1.55 1.95

AR -11.71 -11.14 -10.63 -201.53 -146.40 -131.90

ARUS 0.11 0.10 0.14 0.09 0.08 0.10

Table 5.3: Average percentage of improvement of the minimum cost allocation over the
maximum profit allocation for the 88-node databases. The nodes’ demands have been
generated from an AR(1) process with errors distributed according a LN(0, 3) model.

In conclusion, although a minimum cost allocation may be thought as a sensible
criterion, the previous findings show that it can lead to worse revenues than those
obtained under the maximum profit strategy. Moreover, substantial changes in the
results are observed for the different data sets, forecasting techniques and correlation
values. However, the behavior under different values of p does not seem to be affected.

In order to investigate in more detail the effect of the number of plants to be opened
and the influence of the location-allocation approach, we depict in Figure 5.7 the box-
plots of the revenues samples for different settings in the Swain data set. In particular,
the results for p = 3, 9, 15, in combination with high and low profitability, the different
forecasting techniques as well as the two considered location-allocation strategies are
shown. In all cases the value of θ is set to 0.5 (since from Table 5.2 this is the case
which produces the highest worsening) and the errors in the demand’s autoregressive
process are lognormal LN(0, 3).

Several conclusions are obtained from Figure 5.7. First, with the exception of the
benchmark approach, whose results improve with the value of p, the rest of forecasting
techniques are unaffected by this parameter. Second, the type of profitability apparently
has a minor effect when the minimum cost allocation is considered. Finally, the results
under the AR forecasting method combined with the minimum cost allocation strategy
differ significantly from those obtained under the rest of forecasting techniques for both
allocation criteria. In order to better understand the reason why the minimum cost
allocation criterion behaves differently under different forecasting techniques, we report
in Table 5.4 the average percentage of clients (for p = 3, 9, 15) that were assigned with
minimum cost when the maximum profit criterion was assumed. It is expected that the
higher this percentage is, the less impact the minimum cost allocation criterion has.
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Figure 5.7: Box plots of the obtained total revenues for the Swain database under both types of
allocation and all values of p. The nodes’ demands have been generated from an AR(1) process
with errors distributed following a LN(0, 3) model and θ = 0.5.
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Swain 88-node

Profitability Forecasting θ = 0.9 θ = 0.5 θ = 0.9 θ = 0.5

High
STATIC 66.57 81.96 71.95 81.52

AR 64.80 26.74 89.59 67.80

ARUS 93.19 88.82 96.83 96.82

Low
STATIC 68.78 84.51 71.32 83.12

AR 56.19 18.62 86.89 59.92

ARUS 92.02 87.10 96.74 96.50

Table 5.4: Average percentage of clients allocated to the minimum cost open facility
for the 88-node databases. The nodes’ demands have been generated from an AR(1)
process with errors distributed following a LN(0, 3) model.

As observed, the robust approach ARUS is the one which assigns more clients
with minimum cost. In most cases all forecasting methods perform better for the 88-
node database than for the Swain network. It is interesting to note that, unlike the
autoregressive approaches AR and ARUS, the performance of the static forecasting
technique improves when the correlation decreases. For the Swain network, AR never
assigns more than 65% of clients to their nearest facility. Moreover, for low-correlated
demand this percentage strongly decreases: for low-profit products only the 18.62% of
clients are assigned with minimal cost, and this case corresponds to the worst average
percentage of improvement derived from applying minimum cost allocation instead of
the original assignment of clients in Table 5.2.

In order to better understand this phenomenon, we depict in Figures 5.8-5.9 the
locations of the opened plants for the case p = 3 and the assignment of clients in the
88-node data set for two randomly selected instances (top and bottom panels) under
both allocation criteria (left and right panels). In all cases the demand is low-correlated
and heavy-tailed, and final total revenue is displayed for each case. Figures 5.8 and 5.9
show the results for high and low profit product, respectively.
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Figure 5.8: Location and allocation of clients for AR forecasting technique of two randomly se-
lected instances for high-profit products in the 88-node database under both criteria: maximum
profit and minimum cost (production+transportation) allocation. The nodes’ demands have been
generated from an AR(1) process with errors distributed following a LN(0, 3) model and θ = 0.5.
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Figure 5.9: Location and allocation of clients for AR forecasting technique of two randomly selected
instances for low-profit products in the 88-node database under both criteria: maximum profit and
minimum cost (production+transportation) allocation. The nodes’ demands have been generated
from an AR(1) process with errors distributed following a LN(0, 3) model and θ = 0.5.
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The three open facilities are represented within the figures by either a large solid
green triangle, an empty red circle or a crossed blue square. Their assigned clients have
been represented by smaller but analogous symbols with the same color. It may be the
case that an open facility is not served by itself but by another open plant. In such a
case, only the color (not the symbol) changes to denote which plant will supply it.

Figures 5.8-5.9 show a number of interesting issues. In particular:

1. First, the minimum cost allocation is usually suboptimal. Second, in some cases
the clients are allocated to their furthest open facility, and geographically close
clients may be optimally allocated to facilities far from each other. Moreover, we
have observed that the facilities opened may have high production costs.

2. The optimal location of plants may vary according to the realization of the demand
(see the plant denoted by a triangle in both figures).

3. In some cases the plants are not served by themselves (see the plant denoted by a
circle in the left panel of both figures). This is due to extremely high production
costs: it is more profitable to be served by a plant with higher transportation
costs but lower overall expenses.

4. Under the minimum cost allocation, some open plants do not serve any client (see
the plant denoted by a circle in the right panels of both figures).

These results may be a consequence of the behavior observed in Carrizosa et al.
(2014): the AR approach performs better for low-profit products than for high-profit
products. Hence, the AR forecasting method produces the requirement for location-
allocation solutions that increase the costs of the problem (thus diminishing the prof-
itability) by opening facilities with high production costs and serving clients that are far
away. This will usually lead to a better joint performance of the location-production so-
lution. From this experiment it can be concluded that the forecasting technique deeply
influences the location-allocation solution.

5.6 Concluding remarks and extensions

In this chapter we have analyzed the impact of numerous factors over the location-
allocation decisions, with special emphasis on the effects of the demand forecasting
technique. Theoretically, we have proposed robust location problems considering de-
mands correlated along time and between clients. Results stating the tractability and
sensitivity of such models have been proved. Empirically, several conclusions have
been obtained from the experiments considered. Firstly, the variability of the demand
strongly affects the performance of the joint location-production model, in such a way
that an unsuitable choice of the demand forecasting technique can lead to losses, mainly
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when the demand is affected by a strong variability. Secondly, the geographical distribu-
tion of the nodes as well as the correlation of the demand also influences the performance
of the joint location-production model too. Therefore, as shown by our numerical ex-
perience, taking into account the correlation of the demand when managing the supply
chain can significantly improve the final revenue. Thirdly, when the cost is optimized,
some clients may not be allocated to their minimum cost open facility. Furthermore,
the number of clients optimally allocated with minimal cost depends on the forecasting
technique chosen for the proposed joint location-production model. In conclusion, in or-
der to improve the total revenue of a supply chain the choice of the demand forecasting
technique must take into account the correlation and variability of the demand.

All conclusions obtained in our experiments are constrained to one single facility
model (p facilities, with p fixed) and strong assumptions of demand distribution (de-
mands of different clients are considered as independent, and thus the spatial correlation
is ignored). Furthermore, the simplest inventory model has been used in order not to
add more degrees of freedom to the problem. Extensions to more realistic models, in-
cluding multi-item inventory or non-perishable storable products deserve further study.
Moreover, it would be interesting to empirically test the performance of the proposed
robust location problems with Vector Autoregressive demands agains the robust coun-
terparts existent in the current literature, with special interest on the comparison with
Baron et al. (2011).
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In this chapter we show how to use a transaction cost term in a portfolio optimization
problem to compute portfolios that are both efficient in terms of transaction costs and
robust to estimation error. Theoretically, we prove that the portfolio problem with
transaction costs is equivalent to three different problems designed to alleviate the
impact of estimation error: a robust portfolio optimization problem, a robust regression
problem, and a Bayesian portfolio problem. Motivated by these results, we propose a
data-driven approach to portfolio optimization that calibrates the transaction cost term
taking into account both transaction costs and estimation error. Our empirical results
demonstrate that the data-driven portfolios perform favorably because they strike an
optimal trade-off between rebalancing the portfolio to capture the information in recent
historical return data, and avoiding the large transaction costs and impact of estimation
error associated with excessive trading. Essentially, the data-driven portfolios induce
an slow and steady rate of trade that results in superior performance.

6.1 Introduction

Markowitz (1952) showed that an investor who cares only about the mean and
variance of portfolio returns should choose a portfolio on the efficient frontier. Mean-
variance portfolios continue to be the workhorse of much of the investment management
industry, but two crucial aspects in their successful implementation are estimation error
and transaction costs. In this chapter we show that these two aspects are intimately
related, and use this relation to propose a data-driven approach to compute portfolios
that are both efficient with respect to transaction costs and resilient with respect to
estimation error.

Estimation error is important because to implement the mean-variance portfolios
in practice one has to estimate the mean and the covariance matrix of asset returns,
and it is well known that the resulting portfolios often perform poorly out of sample;
see Michaud (1989); Chopra and Ziemba (1993); Broadie (1993), and DeMiguel et al.
(2009b). A popular approach to alleviate the impact of estimation error is to use robust
portfolio optimization; see, for instance, Goldfarb and Iyengar (2003); Garlappi et al.
(2007), and Lu (2011a,b). This approach captures the uncertainty about the mean
and covariance matrix of asset returns by assuming they may lie anywhere inside the
so-called uncertainty sets. The robust portfolio is the one that maximizes the mean-
variance utility with respect to the worst-case mean and covariance matrix of asset
returns.

Another approach to combat estimation error in portfolio selection is to use Bayesian
portfolios. The tenet behind this approach is that the investor has a prior belief about
the distribution of asset returns. Then the investor uses Bayes rule to combine her prior
belief with the observed data and obtain the portfolio that maximizes the mean-variance
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utility with respect to the posterior distribution. The prior distribution can be diffuse
Barry (1974); Bawa et al. (1979), empirical Jorion (1986), or based on an asset pricing
model Pástor (2000); Pástor and Stambaugh (2000) .

Transaction costs are important because they can easily erode the gains from a
trading strategy. For instance, DeMiguel et al. (2014) show that the gains from a
trading strategy that exploits serial dependence in stock returns do not survive even
modest proportional transaction costs of ten basis points. Transaction costs can be
generally modelled with the p-norm of the portfolio trade vector. For small trades,
which do not impact the market price, the transaction cost is generally assumed to be
proportional to the amount traded, and thus it can be approximated by the 1-norm of
the portfolio trade vector. For larger trades, the literature has traditionally assumed
that they have a linear impact on the market price, and thus they result in quadratic
transaction costs that are captured by the 2-norm. Finally, several authors have recently
argued that market impact costs grow as the square root of the amount traded (Torre,
1997; Almgren et al., 2005; Farmer et al., 2013; Frazzini et al., 2015), and thus they are
captured by the p-norm with p = 1.5.

We make a theoretical contribution and an empirical contribution. The theoreti-
cal contribution is to show that estimation error and transaction costs are intimately
related. Specifically, we show that the portfolio optimization problem with p-norm
transaction costs can be equivalently reformulated as three different portfolio problems
designed to alleviate the impact of estimation error: (i) a robust portfolio optimization
problem, (ii) a robust regression problem, and (iii) a Bayesian portfolio problem. First,
we show that the portfolio optimization problem with p-norm transaction costs is equiv-
alent to a robust portfolio optimization problem where the mean of asset returns can
take any value in an uncertainty set defined by the q-norm, where 1/p + 1/q = 1. For
instance, a mean-variance portfolio problem with proportional (quadratic) transaction
costs can be equivalently rewritten as a robust portfolio optimization problem where the
mean can take any value in an uncertainty set defined by a box (hypersphere) centered
at the nominal mean return.

Second, we show that the portfolio optimization problem with p-norm transaction
costs is equivalent to a robust regression formulation of the mean-variance problem. It is
well known that the mean-variance portfolio optimization problem can be equivalently
reformulated as a linear regression problem; see, for instance, Britten-Jones (1999).
We demonstrate that including a p-norm transaction cost term in the mean-variance
portfolio optimization problem is equivalent to solving a robust linear regression problem
where the historical returns may take any value in an uncertainty set defined by a certain
matrix norm. Third, we show that the portfolio optimization problem with p-norm
transaction costs is equivalent to a Bayesian portfolio problem where the investor has
a prior belief that the portfolio weights are distributed as a Multivariate Exponential
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Power Distribution centered around the starting portfolio.

Our theoretical results demonstrate that incorporating a p-norm transaction cost in
the mean-variance optimization problem may help to reduce the impact of estimation
error. Therefore it is reasonable to assume that one could calibrate the transaction
cost parameter to produce portfolios that are not only efficient in terms of transaction
costs, but also resilient to estimation error. From a real-world perspective1, combating
estimation error by calibrating the transaction cost term has two advantages. First, a
transaction cost term has a natural economic interpretation, and this facilitates the task
of selecting a reasonable range of parameters to calibrate from. Second, practitioners
are used to incorporate transaction cost terms in their portfolio selection frameworks,
and thus it may be easier for them to simply calibrate the transaction cost parameter
instead of using a more sophisticated approach based on uncertainty sets or prior beliefs.
These observations motivate our second contribution.

Our empirical contribution is to propose a data-driven approach to portfolio selec-
tion with estimation error and transaction costs. Concretely, we propose using cross-
validation to calibrate the transaction cost parameter and compute portfolios that per-
form well in a realistic scenario with both estimation error and transaction costs. We
compare the out-of-sample performance of the proposed data-driven portfolios on five
empirical datasets with that of the mean-variance portfolios that ignore transaction
costs, as well as mean-variance portfolios that capture the nominal proportional trans-
action costs. We find that the proposed data-driven portfolios outperform the tradi-
tional portfolios in terms of their out-of-sample Sharpe ratio net of transaction costs.
The data-driven portfolios perform well because they calibrate the transaction cost pa-
rameter to achieve intermediate levels of turnover that strike an optimal (data-driven)
trade-off between two goals: (i) rebalancing the portfolio to capture the information in
recent historical return data, and (ii) avoiding the large transaction costs and impact
of estimation error associated with excessive trading.

The remainder of this manuscript is organized as follows. Sections 6.2, 6.3, and 6.4
show that the portfolio problem with transaction costs is equivalent to a robust portfolio
problem, a robust regression problem, and a Bayesian portfolio problem, respectively.
In Section 6.5, we propose the data-driven approach to portfolio selection and evaluate
its out-of-sample performance. Section 6.6 concludes.

The notation followed in this chapter is analogous to that introduced in Section
1.3.2.

1Fabozzi et al. (2007) review the practical modelling aspects of portfolio optimization and manage-
ment.
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6.2 The robust optimization problem

This section shows that the mean-variance portfolio problem with p-norm trans-
action costs can be equivalently rewritten as a robust portfolio optimization problem
where the mean asset returns can take any value in an uncertainty set defined by the
q-norm, where 1/p + 1/q = 1. (Gotoh and Takeda, 2011, Proposition 1) provide a
similar result for the case without transaction costs. We adapt their result and provide
interpretation for the case with transaction costs.

We first introduce some basic definitions and preliminary results. For a given vector
norm ‖ · ‖, its dual norm ‖ · ‖∗ is:

‖x‖∗ = max
‖y‖≤1

yTx.

It is easy to show that the dual norm of the p-norm is the q-norm, where 1/p+ 1/q = 1;
see (Higham, 2002, Section 6.1). Let Λ be a symmetric and positive definite matrix;
we define the (p,Λ)-norm of vector x as ‖x‖p,Λ := ‖Λx‖p. The following lemma shows
that ‖ · ‖p,Λ is indeed a vector norm and characterizes its dual norm.

Lemma 4. The (p,Λ)-norm, ‖ · ‖p,Λ, is a vector norm and ‖ · ‖q,Λ−1 is its dual norm,
where 1/p+ 1/q = 1.

Proof. To prove that ‖ · ‖p,Λ is a norm we exploit the fact that ‖ · ‖p is a norm:

1. ‖x‖p,Λ = ‖Λx‖p ≥ 0.

2. ‖αx‖p,Λ = ‖αΛx‖p = |α| · ‖x‖p,Λ.

3. ‖x + y‖p,Λ = ‖Λ(x + y)‖p ≤ ‖Λx‖p + ‖Λy‖p = ‖x‖p,Λ + ‖y‖p,Λ.

We now prove that ‖ · ‖q,Λ−1 is the dual norm of ‖ · ‖p,Λ; that is, we prove that

‖y‖q,Λ−1 = max
‖x‖p,Λ≤1

yTx. (6.1)

Let ỹ = Λ−1y and x̃ = Λx. Because ỹT x̃ = yTx, Equation (6.1) is equivalent to:

‖ỹ‖q = max
‖x̃‖p≤1

ỹT x̃. (6.2)

Equation (6.2) holds because the q-norm is the dual of the p-norm.
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The following proposition gives our main result.

Proposition 3. For every risk-aversion parameter γ > 0 and transaction cost parame-
ter κ ≥ 0, there exists δ > 0 such that the mean-variance problem with p-norm transac-
tion costs, Problem (1.13), is equivalent to the following robust optimization problem:

min
w

γ

2
wTΣw − µTw + max

µ̂∈U(δ)
(µ− µ̂)T (w −w0), (6.3)

s.t. wT1N = 1,

where the uncertainty set for mean asset returns is

U(δ) = {µ̂ : ‖µ− µ̂‖q,Λ−1 ≤ δ}.

Proof. From Lemma 4, it follows that the third term in the objective function of Prob-
lem (6.3) can be rewritten as :

max
µ̂:‖µ−µ̂‖q,Λ−1≤δ

(µ− µ̂)T (w −w0) = δ‖w −w0‖p,Λ. (6.4)

This implies that Problem (6.3) is equivalent to the following problem:

min
w

γ

2
wTΣw − µTw + δ‖Λ(w −w0)‖p, (6.5)

s.t. wT1N = 1.

Note, however, that the p-norm transaction cost term in Problem (1.13) is raised to
the power of p. It is easy to show, however, that for any κ ≥ 0, there exists δ > 0 such
that Problem (6.5) is equivalent to Problem (1.13). To see this, note that there exists
η ≥ 0 such that Problem (6.5) can be equivalently rewritten as:

min
w

γ

2
wTΣw − µTw, (6.6)

s.t. ‖Λ(w −w0)‖p ≤ η,

wT1N = 1.

Moreover, constraint ‖Λ(w − w0)‖p ≤ η is equivalent to constraint ‖Λ(w − w0)‖pp ≤
ηp. Penalty term theory then guarantees under mild regularity conditions that the
constraint ‖Λ(w −w0)‖pp ≤ ηp can be moved to the objective function multiplied by a
certain penalty coefficient. Finally, there exists a δ > 0 such that the penalty parameter
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equals κ.

A few comments are in order. First, Proposition 3 shows that the p-norm transaction
cost can be interpreted as the maximum regret the investor may experience (in terms
of mean return) by trading from the starting portfolio w0 to portfolio w, assuming the
true mean belongs to the uncertainty set U(δ), which is defined in terms of the dual
q-norm. To see this, note that Proposition 3 essentially shows that the transaction cost
term can be rewritten as

κ‖Λ(w −w0)‖pp = κ‖w −w0‖pp,Λ = max
µ̂:‖µ−µ̂‖q,Λ−1≤δ

(µ− µ̂)T (w −w0),

where µ is the estimated mean asset return vector, and µ̂ is the worst-case mean asset
return vector for the given portfolio w.

Second, Proposition 3 shows that the use of the p-norm to capture transaction costs
corresponds to the use of the q-norm to represent the uncertainty set for mean returns,
where 1/p+1/q = 1. To understand the implications of this correspondence, assume for
the sake of simplicity that Λ = I. For this case, proportional transaction costs, which
model small transactions, correspond to a box-shaped uncertainty set for the mean;
and quadratic transaction costs, which are used to model larger trades, correspond to
a hyperspherical uncertainty set. One interpretation of this correspondence is that for
small trades, the investor assumes that the uncertainty around the estimate of mean
return for each asset is independent from other assets, and thus the investor models the
uncertainty set for the means as a box. For large trades, the investor assumes there is a
certain dependence between the uncertainty around the means of different assets, and
thus the investor models the uncertainty set for the means as a hypersphere.2

The correspondence between different types of transaction costs and uncertainty
sets for mean returns is illustrated in Figure 6.1 for the case with two assets. The left
graph in Figure 6.1 depicts the level sets for a proportional transaction cost term (solid
red line) and a quadratic transaction cost term (dashed green) in the space of portfolio
weights. The graph also shows the starting portfolio w0 at the origin (blue dot), the
optimal portfolio in the presence of proportional transaction costs (red square), and
the optimal portfolio with quadratic costs (green triangle). The right graph depicts the
corresponding uncertainty sets for the case with proportional costs (solid red line) and
quadratic costs (dashed green line) in the space of mean returns. The graph also shows
the nominal mean return at the origin (blue dot), the set of worst-case mean returns
for proportional costs (red squares), and the worst-case mean return for quadratic costs
(green triangle).

2The insights for the general case with Λ 6= I are similar up to a linear transformation.
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Figure 6.1: Transaction cost level sets and mean return uncertainty sets

Finally, our results in this section are related to those by Natarajan et al. (2009),
who show that there is an equivalence between uncertainty sets in robust portfolio
optimization and financial risk measures. The distinguishing feature of our analysis in
this section is that we focus on the equivalence between uncertainty sets and transaction
costs rather than risk measures.

6.3 The robust regression problem

It is well known that the mean-variance problem can be rewritten as a linear regres-
sion problem. In this section, we show that including a p-norm transaction cost term in
the mean-variance problem is equivalent to robustifying the equivalent linear regression
problem with respect to uncertainty in the historical return data.

This result is related to that by Caramanis et al. (2012), who show that including a p-
norm regularization term in a linear regression problem is equivalent to solving a robust
version of this linear regression problem. We adapt their result to the specific context
of the mean-variance optimization problem with transaction costs. In particular, we
consider the case where the portfolio trade vector is transformed via a matrix Λ before
computing its p-norm.

Britten-Jones (1999) showed that the tangency mean-variance portfolio is the scaled
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solution of the following regression problem:

min
w

‖1T −Rw‖22,

where 1T ∈ RT is the vector of ones, and R ∈ RT×N is the matrix whose columns
contain the historical returns for each of the N assets. The following proposition shows
how Britten-Jones’ result can be extended to rewrite the general mean-variance portfolio
problem with transaction costs as a linear regression problem with a regularization term.

Proposition 4. For every risk-aversion parameter γ > 0 and transaction cost param-
eter κ ≥ 0, there exist µ0 and κ′ ≥ 0 such that the mean-variance problem with p-norm
transaction costs, Problem (1.13), can be equivalently rewritten as the following con-
strained regularized linear regression problem

min
w

‖1T −Rw‖22 + κ′‖Λ(w −w0)‖pp, (6.7)

s.t wTµ = µ0,

wT1N = 1.

Proof. The constrained OLS problem (6.7) can be rewritten as

min
w

1TT1T + wTRTRw − 2 · 1TTRw + κ′‖Λ(w −w0)‖pp,

s.t. wTµ = µ0,

wT1N = 1.

Moreover, because Σ = RTR − µµT and 1TTR = T · µ, we have that this problem is
equivalent to

min
w

1TT1T + wTΣw + wTµµTw − 2 · T · µTw + κ′‖Λ(w −w0)‖pp,

s.t. wTµ = µ0,

wT1N = 1.

Furthermore, because wTµ is constant in the feasible region, this problem is equivalent
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to

min
w

wTΣw + κ′‖Λ(w −w0)‖pp,

s.t. wTµ = µ0,

wT1N = 1.

It is easy to show that for any γ > 0 and κ ≥ 0, there exists a µ0 and κ′ ≥ 0 such that
this problem is equivalent to Problem (1.13).

A couple of comments about regression problem (6.7). First, the term κ′‖w −w0‖pp
can be interpreted as a regularization term that reduces the impact of estimation error.
Second, the constraints guarantee that the portfolio mean return is µ0 and the portfolio
weights add up to one.

Finally, the following proposition shows that the mean-variance problem with p-
norm transaction costs is equivalent to a robust linear regression problem where the
historical returns can take any value in an uncertainty set defined by a certain matrix
norm.

Proposition 5. Let Λ be a positive-definite diagonal matrix. Then, for every risk-
aversion parameter γ > 0 and transaction cost parameter κ ≥ 0, there exist µ0 and δ > 0

such that the mean-variance problem with p-norm transaction costs, Problem (1.13), is
equivalent to the following robust regression problem:

min
w

max
∆R∈U (δ)

‖1T −Rw −∆R(w −w0)‖2, (6.8)

s.t wTµ = µ0,

wT1N = 1,

where

U(δ) = {∆R = [ξ1|...|ξN ] : ‖Λ−1 (‖ξ1‖2, ..., ‖ξN‖2) ‖q ≤ δ}.

Proof. Given Proposition 4, it suffices to show that for every κ′ ≥ 0, there exists a
δ > 0 such that the optimal objective value of the inner optimization problem in (6.8)
is equivalent (in terms of minimizers with respect to w) to the objective function of
Problem (6.7).

We prove this result in three steps. First, we prove that the inner optimization
problem in (6.8) is equivalent to:
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max
c

(
‖1T −Rw‖2 +

N∑
i=1

ci|wi −w0i|

)
, (6.9)

s.t ‖c‖q,Λ−1 ≤ δ,

c ≥ 0.

Second, we prove that the optimal objective value of Problem (6.9) is equal to
‖1T −Rw‖2 + δ‖Λ(w −w0)‖p.

Third, we show that for every κ′ > 0, there exists δ > 0 such that problem min
w
‖1T−

Rw‖2 + δ‖Λ(w −w0)‖p is equivalent to min
w
‖1T −Rw‖22 + κ′‖Λ(w −w0)‖pp.

Step 1: Inner optimization problem equivalent to Problem (6.9).

We follow a similar argument to that in the proof of Theorem 14.8 of Caramanis et
al. (2012). Given a fixed portfoliow, we first show that for every matrix ∆R = [ξ1|...|ξN ]

such that ∆R ∈ U (δ), there exists a rank-one matrix ∆R∗ ∈ U (δ) such that

‖1T −Rw −∆R(w −w0)‖2 ≤ ‖1T −Rw −∆R∗(w −w0)‖2. (6.10)

Specifically, we show that this inequality holds with the rank-one matrix ∆R∗ =

[ξ∗1 |...|ξ∗N ], where

ξi
∗ =

−cisgn(wi −w0i)v if wi 6= w0i,

0 otherwise,

where ci = ‖ξi‖2 and the vector v is

v =


1T−Rw
‖1T−Rw‖2 if Rw 6= 1T ,

any vector with unit 2-norm otherwise.

To see that Inequality (6.10) holds, note that by the triangular inequality

‖1T −Rw −∆R(w −w0)‖2 ≤ ‖1T −Rw‖2 +

N∑
i=1

|wi − w0i| · ‖ξi‖2. (6.11)

Moreover, because ξi∗ is proportional to 1T−Rw, we have that the triangular inequality
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is binding for ∆R∗ and thus

‖1T −Rw −∆R∗(w −w0)‖2 = ‖1T −Rw∗‖2 +
N∑
i=1

ci|w∗i −w0i| (6.12)

= ‖1T −Rw‖2 +
N∑
i=1

|wi − w0i| · ‖ξi‖2. (6.13)

Inequality (6.10) shows that the maximizer to the inner optimization problem in
(6.7) must be a rank-one matrix in U (δ) whose columns are proportional to 1T −Rw.
Because all columns of these rank-one matrices are proportional to 1T −Rw, there is a
one-to-one correspondence between these rank-one matrices and the vectors c such that
‖c‖q,Λ−1 ≤ δ and c ≥ 0. This correspondence is specifically given by ci = ‖ξ∗i ‖2. This
together with Equations (6.12) and (6.13) imply that the inner optimization problem
in (6.8) is equivalent to Problem (6.9).

Step 2: the optimal value of Problem (6.9) is ‖1T −Rw‖2 + δ‖Λ(w −w0)‖p.

Caramanis et al. (2012) state a similar result without proof in their Corollary 14.11.
Note that ‖1T − Rw‖2 does not depend on c and thus to simplify the exposition we
focus thereafter on problem:

max
c

N∑
i=1

ci|wi −w0i|, (6.14)

s.t ‖c‖q,Λ−1 ≤ δ,

c ≥ 0.

We prove the result in two sub-steps. First, we show that the nonnegativity con-
straints in Problem (6.14) are redundant. Second, we show the result.

Step 2.1: the nonnegativity constraints in Problem (6.14) are redundant

Consider the problem without shortsale constraints:

max
‖c‖q,Λ−1≤δ

c|w −w0|. (6.15)
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Let c∗ be the maximizer of Problem (6.15), and assume for contradiction that there
exists j such that c∗j < 0. Then, there exists c∗∗ such that c∗∗ ≥ 0 and

∑N
i=1 c

∗∗
i |wi −

w0i| >
∑N

i=1 c
∗
i |wi − w0i|. Indeed, it suffices to choose c∗∗j = −c∗j . Because Λ is

assumed to be a diagonal positive definite matrix, its diagonal elements λ1, ..., λN are
strictly positive. Moreover, because the objective function is linear, the constraint in
(6.15) is binding, thus

N∑
i=1

(
1

λi
|c∗i |
)q

=
N∑
i=1

(
1

λi
|c∗∗i |

)q
= δq,

and
∑N

i=1 c
∗∗
i |wi −w0i| >

∑N
i=1 c

∗
i |wi −w0i|.

Step 2.2: the optimal value of problem (6.15) is δ‖Λ(w −w0)‖p.

We use Lemma 4 and the definition of dual norm. Specifically, we can deduce that
the solution of problem (6.15) is δ‖|w−w0|‖p,Λ, but as Λ is a diagonal positive definite
matrix we have:

δ‖Λ|w −w0|‖p =

(
N∑
i=1

|λi|wi − w0i||p
) 1

p

=

(
N∑
i=1

|λi(wi − w0i)|p
) 1

p

= δ‖Λ(w −w0)‖p.

Step 3: problem min
w
‖1T − Rw‖2 + δ‖Λ(w −w0)‖p is equivalent to min

w
‖1T −

Rw‖22 + κ′‖Λ(w −w0)‖pp

This step follows using a similar reasoning to that behind the last paragraph of the
proof of Proposition 3 and taking into account that the minimizer of ‖1T −Rw‖2 is the
same as the one of ‖1T −Rw‖22.

A few comments are in order. First, Proposition 5 shows that the portfolio problem
with p-norm transaction costs is equivalent to a robust regression problem where the
true historical returns can take any value in the uncertainty set U(δ). To see this, note
that the term ∆R(w−w0) in the objective function (6.8) captures the regret (in terms
of regression mean squared error), that the investor may experience by trading from
the starting portfolio, given that there is uncertainty about the true historical returns.



6.4. The Bayesian portfolio problem 131

Second, the uncertainty set U(δ) is defined in terms of the ((q,Λ−1), 2)-matrix-norm:

‖X‖(q,Λ−1),2 = ‖Λ−1 (‖x1‖2, ..., ‖xN‖2) ‖q.

Kowalski (2009) used a similar norm in the context of regularized regression. Finally,
to simplify the exposition we assume in Proposition 5 that the transaction cost matrix
Λ is diagonal, but it is possible to show that the result in Proposition 5 holds for the
general case with symmetric positive definite Λ.

6.4 The Bayesian portfolio problem

The following proposition shows that the mean-variance problem with p-norm trans-
action costs is equivalent to a Bayesian portfolio problem where the investor believes a
priori that the portfolio weights are jointly distributed as a Multivariate Exponential
Power (MEP) distribution. The method of proof is similar to that used by DeMiguel
et al. (2009a), who provide a Bayesian interpretation for the 1-norm, 2-norm and A-
norm constrained portfolios. We extend their analysis to the general case with p-norm
transaction cost, with p ∈ (1, 2).

Proposition 6. For every risk-aversion parameter γ > 0 and transaction cost parame-
ter κ ≥ 0, there exists α > 0 such that the weights that solve the mean-variance portfolio
optimization problem with p-norm transaction costs, Problem (1.13), are the mode of
the posterior distribution of the mean-variance portfolio weights when the investor be-
lieves a priori that the variance of the mean-variance portfolio return, denoted by σ2,
has an independent distribution π(σ2), that asset returns are normally distributed, and
that the mean-variance portfolio weights are jointly distributed as an MEP distribution,
whith probability density function:

π(w) =
pN |Λ|

2NαNΓ(1/p)N
e−
‖Λ(w−w0)‖pp

αp , (6.16)

where α is the scale parameter and Γ(·) is the gamma function.

Proof. Step 1: Equation (6.16) defines a distribution.
To see this, note that if the portfolio weights were independently distributed as an
Exponential Power distribution, the joint prior distribution for a portfolio w would be

π′(w) =
N∏
i=1

π′0(wi) =
N∏
i=1

p

2αΓ(1/p)
e−
|wi−wi0|

p

α =
pN

2NαNΓ(1/p)N
e−
‖w−w0‖

p
p

αp ,
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and thus we know that ∫
RN

pN

2NαNΓ(1/p)N
e−
‖w−w0‖

p
p

αp = 1.

The difference between the distribution π′(w) and the distribution in Equation (6.16)
is simply a linear transformation of the variables h(w−w0) = Λ(w−w0). Then, by a
well-known theorem of elementary analysis, see Schwartz (1954), we have that:

∫
RN

pN

2NαNΓ(1/p)N
e−
‖w−w0‖

p
p

αp =

∫
RN

pN |Λ|
2NαNΓ(1/p)N

e−
‖Λ(w−w0)‖pp

αp = 1.

Step 2: mean-variance portfolio weights are mode of posterior distribution.
We now show that the mean-variance portfolio weights with p-norm transaction cost
are the mode of the posterior distribution. Bayes theorem guarantees that the posterior
distribution of the portfolio weights and portfolio return variance conditional on the
observed sample returns is

π(w, σ2|{rt}Tt=1) =
π(w)π(σ2)L(w, σ2|{rt}Tt=1)∫

w,σ2 π(w)π(σ2)L(w, σ2|{rt}Tt=1)dwdσ2
,

where L(w, σ2|{rt}Tt=1) stands for the likelihood function ofw and σ2 given the observed
sample returns {rt}Tt=1

L(w, σ2|{rt}Tt=1) =
1

σN
√

2NπN
e
−

∑T
t=1(wT rt−wT µ̂)2

2σ2 .

Hence

π(w, σ2|{rt}Tt=1) ∝ π(w)π(σ2)L(w, σ2|{rt}Tt=1);

that is,

π(w, σ2|{rt}Tt=1) ∝ π(σ2)

σN
e
−

∑T
t=1(wT rt−wT µ̂)2

2σ2 − ‖Λ(w−w0)‖pp
αp . (6.17)

From (6.17), it is straightforward to show that for a given portfolio return variance σ2,
there exist µ0 such that the portfolio that maximizes the posterior distribution of the
mean-variance portfolio weights subject to the condition that the portfolio weights add
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up to one, is the solution to the following optimization problem

min
w

wTΣw + κ‖Λ(w −w0)‖pp,

s.t. wT1N = 1,

µTw ≥ µ0,

where

κ =
2σ2

αp(T − 1)
.

The proof of Proposition 6 establishes that for a given portfolio return variance σ2,
the following relation between the transaction cost parameter and the investor prior
beliefs holds:

κ =
2σ2

αp(T − 1)
, (6.18)

where T is the estimation window length. We make three observations from Equa-
tion (6.18). First, the higher the portfolio return variance σ2, the higher the equivalent
transaction cost parameter. The intuition behind this result is that the less certain the
investor is about the portfolio return, the more reticent she will be to move from her
prior belief portfolio weights. This reticence is equivalent to facing large transaction
costs. Second, the longer the estimation window, the smaller the equivalent transac-
tion cost parameter. The intuition behind this result is that the longer the estimation
window, the more accurate the estimators obtained from the historical data, and thus
the more willing the investor is to move away from her prior portfolio weights. Third,
the larger the scale parameter of the prior distribution of portfolio weights, the smaller
the equivalent transaction cost parameter. Intuitively, the less confident the investor
is in her prior beliefs, the more willing she will be to move away from the prior belief
weights.

Note that the MEP prior distribution includes as a particular case the Multivariate
Normal prior distribution for the case when p = 2 and Λ = Σ1/2. Proposition 6 implies
that assuming this Multivariate Normal prior is equivalent to capturing a quadratic
transaction cost with Λ = Σ1/2. Gârleanu and Pedersen (2013) point out that this
type of quadratic transaction cost is reasonable for the case with large trades. Also,
the MEP prior includes as a particular case (when p = 1 and Λ = I) a prior belief
that the portfolio weights are independently and identically distributed as a Laplace
distribution. Proposition 6 implies that assuming this Laplace prior is equivalent to
capturing a proportional transaction cost. For values of p ∈ (1, 2), the MEP prior
generalizes the Normal and Laplacian priors, and provides a Bayesian interpretation for
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the p-norm transaction costs beyond the cases with p = 1 and p = 2.
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Figure 6.2: Power exponential density functions for different values of p and α.

This figure depicts power exponential density functions for different values of p and α. The left graph depicts
the power exponential density functions for different values of p and α = 1, and the right graph for different
values of α and fixed p = 1.5.

Figure 6.2 depicts the Exponential Power distribution for the case with a single
asset. The left graph depicts the Exponential Power distribution for different values of
p ∈ [1, 2] with α = 1. The case with p = 1 corresponds to the Laplace distribution,
and the case with p = 2 to the Normal distribution. The graph illustrates that for
values of p < 2, the Exponential Power distribution has sharper peak and fatter tails
than the Normal distribution. The right graph in Figure 6.2 depicts the Exponential
Power distribution for different values of the scale parameter α with p = 1.5. The graph
illustrates that the scale parameter is a proxy for the dispersion of the distribution; that
is, the higher the α, the higher the dispersion of the distribution.

Table 6.1 summarizes our main theoretical results for the general case with p-norm
transaction costs as well as for the particular cases with quadratic and proportional
transaction costs. The first column indicates the type of transaction cost, the second
column gives the mathematical formulation of the transaction cost term, the third,
fourth, and fifth columns give the corresponding Bayesian prior, robust optimization
uncertainty set, and robust regression uncertainty set, respectively.
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Transaction Transaction Bayesian Robust optim. Robust regression

cost cost prior dist. Uncertainty set Uncertainty set

type formulation for weights for mean for historical ret.

p-norm κ‖Λ∆w‖pp MEP ‖Λ−1∆µ‖q ≤ δ ‖∆R‖(q,Λ−1),2 ≤ δ

quadratic κ‖Λ∆w‖22 Normal ‖Λ−1∆µ‖2 ≤ δ ‖∆R‖(2,Λ−1),2 ≤ δ

proportional κ‖∆w‖1 Laplace ‖∆µ‖∞ ≤ δ ‖∆R‖∞,2 ≤ δ

Table 6.1: Summary of main theoretical results.

6.5 Data-driven portfolios

The theoretical results in the previous sections demonstrate that incorporating a
p-norm transaction cost term in the mean-variance portfolio problem may help to re-
duce the impact of estimation error. Motivated by these findings, we now propose a
data-driven approach to portfolio selection with estimation error and transaction costs.
Concretely, we propose using a nonparametric approach to calibrate the transaction
cost parameter to obtain portfolios that are not only efficient from a transaction cost
perspective, but also robust to estimation error.

We evaluate the out-of-sample performance of the proposed data-driven portfolios
on the five empirical datasets with US stock monthly return data listed in Table 6.2,
which are similar those used in the literature; see DeMiguel et al. (2009a) and the
references therein. Specifically, we consider two datasets with returns on industry port-
folios downloaded from Ken French’s website, two datasets with returns on portfolios of
stocks sorted by size and book-to-market from Ken French’s website, and one dataset
with returns on individual stocks downloaded from the CRSP database. We assume
proportional transaction costs of 50 basis points, which are similar to those considered
in the literature; see, for instance, Balduzzi and Lynch (1999); DeMiguel et al. (2009b),
and the references therein.

The remainder of this section is organized as follows. Section 6.5.1 describes the
benchmark and data-driven portfolios that we compare. Section 6.5.2 describes the
rolling-horizon methodology used to compare the different portfolio policies. Finally,
Section 6.5.3 discusses the performance of the different portfolio policies.
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Abbrv. Dataset N Time period Source

10Ind Ten industry portfolios 10 07/1963-12/2013 K.French

48Ind Forty eight industry portfolios 48 07/1963-12/2013 K.French

6FF 6 portfolios sorted by size and book-to-market 6 07/1963-12/2013 K.French

25FF 25 portfolios of firms sorted by size and b-t-m 25 07/1963-12/2013 K.French

CRSP 500 randomized stocks from CRSP 500 04/1968-04/2005 CRSP

Table 6.2: Datasets used for comparison of portfolios.

6.5.1 Description of the portfolios

Table 6.3 contains four panels corresponding to the four different types of portfo-
lios we compare. Panel A lists benchmark portfolios that ignore transaction costs and
estimation error. These are computed by solving Problem (1.13) with transaction cost
parameter κ = 0. Panel B lists benchmark portfolios that capture the nominal propor-
tional transaction costs, but ignore estimation error. These are computed by solving
Problem (1.13) with p = 1, Λ = I, where I is the identity matrix, and κ = 50 basis
points. Panel C lists the data-driven portfolios with calibrated proportional transaction
costs. These are computed by solving Problem (1.13) with p = 1, Λ = I, and κ = κcv

calibrated via cross-validation. Finally, Panel D lists the data-driven portfolios with
calibrated quadratic transaction costs. These are computed by solving Problem (1.13)
with p = 2, Λ = Σ1/2, where Σ is the estimated covariance matrix, and κ = κcv

calibrated via cross-validation.
Each panel lists four different portfolios depending on the variant of mean-variance

portfolio considered. The mean-variance portfolio (MEAN) is computed by solving
Problem (1.13) with risk-aversion parameter γ = 5.3 The minimum-variance portfolio
(MIN) is computed by solving Problem (1.13) after dropping the term µTw. We consider
the minimum-variance portfolio because it is well known that it often outperforms the
mean-variance portfolio out of sample due to the difficulty estimating mean returns.4

Finally, we consider shortsale-constrained versions of the mean variance (MEANC) and
minimum-variance (MINC) portfolios computed by imposing the constraint w ≥ 0. We
consider shortsale constrained portfolios because as documented by Jagannathan and
Ma (2003) these constraints often help to improve out-of-sample performance.

A few comments are in order. First, why consider data-driven portfolios with cali-
3We have considered other values of the risk aversion parameter (γ = 2, 10), but the results are

qualitatively similar and thus we do not report them to conserve space.
4(Jagannathan and Ma, 2003, pp. 1652Ű-1653), for instance, explain that: “The estimation error

in the sample mean is so large nothing much is lost in ignoring the mean altogether when no further
information about the population mean is available”.
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Portfolio Abbreviation

Panel A. Benchmark portfolios that ignore transaction costs

Minimum-variance portfolio, shortsale unconstrained, κ = 0 MIN

Minimum-variance portfolio, shortsale constrained, κ = 0 MINC

Mean-variance portfolio, shortsale unconstrained, κ = 0 MEAN

Mean-variance portfolio, shortsale constrained, κ = 0 MEANC

Panel B. Benchmark portfolios with nominal transaction costs

Minimum-variance portfolio, shortsale unconstrained, 0.005‖∆w‖

Minimum-variance portfolio, shortsale constrained, 0.005‖∆w‖

Mean-variance portfolio, shortsale unconstrained, 0.005‖∆w‖

Mean-variance portfolio, shortsale constrained, 0.005‖∆w‖

Panel C. Data-driven portfolios with calibrated proportional transaction costs

Minimum-variance portfolio, shortsale unconstrained, κcv‖∆w‖

Minimum-variance portfolio, shortsale constrained, κcv‖∆w‖

Mean-variance portfolio, shortsale unconstrained, κcv‖∆w‖

Mean-variance portfolio, shortsale constrained, κcv‖∆w‖

Panel D. Data-driven portfolios with calibrated quadratic transaction costs

Minimum-variance portfolio, shortsale unconstrained, κcv‖Σ1/2∆w‖22

Minimum-variance portfolio, shortsale constrained, κcv‖Σ1/2∆w‖22

Mean-variance portfolio, shortsale unconstrained, κcv‖Σ1/2∆w‖22

Mean-variance portfolio, shortsale constrained, κcv‖Σ1/2∆w‖22

Table 6.3: Portfolios evaluated, where κcv is calibrated with cross-validation.
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brated quadratic transaction costs when the nominal transaction costs are proportional?
The answer is that the data-driven portfolios are designed to address not only transac-
tion costs, but also estimation error, and it is therefore possible that the data-driven
portfolios with calibrated quadratic costs offer a good trade-off between these two ob-
jectives. Second, note that the transaction cost parameters corresponding to the data-
driven portfolios with proportional versus quadratic costs are not easy to compare. The
reason for this is that the parameters for the two different types of data-driven portfo-
lios have different units: one multiplies a 1-norm term and the other a squared 2-norm
term. Fortunately, the data-driven portfolios can be equivalently calibrated in terms of
trading volume or turnover, which can be directly compared for the data-driven port-
folios with proportional and quadratic transaction costs. To see this, note that for the
portfolios with proportional costs, it is easy to show that there is a one-to-one corre-
spondence between the minimizers to the problem with proportional transaction costs
for different values of the transaction cost parameter κ, and the problem with turnover
constraint ‖w − w0‖1 ≤ τ for different values of the trading threshold τ . Likewise,
for the data-driven portfolios with quadratic transaction costs and Λ = Σ1/2, Kourtis
(2015) shows that the optimal portfolio is a convex combination of the starting portfolio
and the mean-variance portfolio in the absence of transaction costs. Consequently, for
these portfolios one can also calibrate the trading volume τ instead of the transaction
cost parameter κ. Summarizing, to facilitate the comparison between the two types
of data-driven portfolios (with proportional and quadratic costs), we calibrate these
portfolios by selecting their trading volume τ from 0%, 0.5%, 1%, 2.5%, 5% and 10%.5

We calibrate the data-driven portfolios using the bootstrap methodology of 10-fold
cross-validation; Efron and Gong (1983). Specifically, we divide the estimation window
of M returns into ten intervals of M/10 returns each. For j from 1 to 10, we remove
the jth-interval from the estimation window, and use the remaining sample returns to
compute the data-driven portfolio for each value of the trading volume τ from 0%, 1%,
2.5%, 5% and 10%. We then evaluate the return of the resulting portfolios (net of
transaction costs of 50 basis points) on the jth-interval. After completing this process
for each of the 10 intervals, we have the M “out-of-sample” portfolio returns for each
value of τ . Finally, we compute the variance of these out-of-sample returns and select
the value of τ that corresponds to the portfolio with smallest variance.6

Finally, we have also used 10-fold cross-validation as well as generalized cross-
validation as defined by (Fu, 1998, Section 5) to calibrate simultaneously the transaction

5For computational convenience, we approximate the shortsale-constrained data-driven portfolios
with quadratic transaction costs by taking a convex combination of the starting portfolio, which is a
long-only portfolio, and the shortsale-constrained mean-variance portfolio in the absence of transaction
costs.

6We have also tried using the Sharpe ratio of returns net of transaction costs as the calibration
criterion, but the results are qualitatively similar to those obtained from the variance criterion, and
thus we do not report them to conserve space.



6.5. Data-driven portfolios 139

cost parameter (value of κ) and the type of transaction cost (proportional or quadratic).
We find that such calibrations do not result in a substantial improvement in terms of
out-of-sample performance (compared to the case where we only calibrate the trans-
action cost parameter κ with 10-fold cross-validation) and thus we do not report the
results to conserve space.

6.5.2 Comparison methodology

We use a rolling-horizon methodology similar to that used in DeMiguel et al. (2009b)
and DeMiguel et al. (2009a) to compare the performance of the different portfolios. We
use an estimation window of M = 120 monthly returns. We start by using the first
M returns in the historical sample to compute the different portfolios and evaluate
their out-of-sample return on period M + 1. We then “roll” the estimation window one
month forward by dropping the earliest return and adding a new return, and repeat the
process. At the end of this iterative process we obtain T −M out-of-sample returns for
each portfolio that allow us to compare performance. Table 6.4 outlines the proposed
methodology.

To test the statistical significance of the differences between the out-of-sample vari-
ance and Sharpe ratio of the different portfolios with those of the benchmark minimum-
variance portfolio, we use the bootstrap methodology employed by DeMiguel et al.
(2009a), which is based on the work by Ledoit and Wolf (2008).

6.5.3 Discussion

Tables 6.5, 6.6, 6.7, and 6.8 report the out-of-sample Sharpe ratio, turnover, vari-
ance, and mean, respectively, for the different portfolios. The quantity corresponding
to the best performing portfolio is highlighted in bold for each dataset.

Sharpe ratio.

Table 6.5 reports the out-of-sample Sharpe ratio for each of the 16 portfolio poli-
cies considered, together with the p-value indicating whether the differences with the
benchmark minimum-variance portfolio are significant. Panel A reports the Sharpe ra-
tios for the benchmark portfolios that ignore transaction costs. This panel shows that
the minimum-variance portfolios generally outperform mean-variance portfolios. This
is explained by the well-known difficulties associated with estimating mean returns from
historical data. Imposing shortsale constraints on the minimum-variance portfolio helps
only for the two datasets with largest number of assets (48Ind and CRSP). This makes
sense as estimating the covariance matrix of asset returns is harder for datasets with
many assets, and under these circumstances the shortsale constraints will help to allevi-
ate the impact of estimation error. Imposing shortsale constraints on the mean-variance
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1. Initialization: set the first estimation window as [r1, rM ] and calculate
the starting portfolio weights for each strategy η, wη

0

2. For the current estimation window, [rt−M+1, rt]:

(i) For every data-driven portfolio η perform 10-fold cross-validation
to select τηt ∈ {0.00, 0.01, 0.025, 0.05, 0.1} to minimize portfolio variance

(ii) Compute optimal portfolio weights for every strategy η, wη
t

(iii) Use the next return rt+1 to compute the out-of-sample return net of
transaction costs at time t+ 1 for every strategy η:

Rηt+1 = rTt+1w
η
t − (1 + rTt+1w

η
t )× 0.005‖wη

t −wη
0‖1

(iv) Use the next return rt+1 to compute the starting portfolio for the
next period wη

0

3. Roll the estimation window by dropping the first return (rt−M+1) and
adding the next return (rt+1) to obtain the next estimation window
[rt−M+2, rt+1]

4. Repeat steps 2-3 until t = T − 1

5. We have a sample of T − M portfolio returns for each strategy η.
Compute:

- Mean

- Variance

- Sharpe ratio

- Turnover

Table 6.4: Methodology used to compare portfolios
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Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Benchmark portfolios that ignore transaction costs

MIN 0.3027 0.1220 0.3525 0.3195 0.3243
(1.00) (1.00) (1.00) (1.00) (1.00)

MINC 0.2954 0.2642 0.2490 0.2461 0.3741
(0.34) (0.00) (0.00) (0.02) (0.07)

MEAN 0.0756 -0.1015 0.2407 0.0941 -0.1124
(0.00) (0.00) (0.02) (0.00) (0.00)

MEANC 0.2120 0.1754 0.2492 0.2370 0.1272
(0.01) (0.15) (0.00) (0.04) (0.00)

Panel B. Benchmark portfolios with nominal transaction costs

MIN 0.2899 0.0972 0.3319 0.3274 0.3614
(0.34) (0.36) (0.17) (0.39) (0.02)

MINC 0.2442 0.2652 0.2370 0.2317 0.3684
(0.06) (0.00) (0.00) (0.02) (0.13)

MEAN 0.2124 -0.0893 0.3129 0.1455 -0.0506
(0.02) (0.00) (0.20) (0.01) (0.00)

MEANC 0.2211 0.1989 0.2478 0.2586 0.1806
(0.02) (0.06) (0.00) (0.08) (0.03)

Panel C. Data-driven portfolios with calibrated proportional transaction cost

MIN 0.3301 0.1282 0.3438 0.3921 0.3595
(0.06) (0.44) (0.31) (0.00) (0.03)

MINC 0.2992 0.3000 0.2484 0.2567 0.3696
(0.46) (0.00) (0.00) (0.06) (0.12)

MEAN 0.2487 -0.0668 0.3112 0.1586 -0.0629
(0.09) (0.01) (0.15) (0.02) (0.00)

MEANC 0.2707 0.2462 0.2498 0.2460 0.1754
(0.17) (0.00) (0.00) (0.06) (0.02)

Panel D. Data-driven portfolios with calibrated quadratic transaction cost

MIN 0.3278 0.2486 0.3554 0.3998 0.3607
(0.02) (0.00) (0.42) (0.00) (0.02)

MINC 0.3013 0.2812 0.2432 0.2522 0.3700
(0.49) (0.00) (0.00) (0.04) (0.11)

MEAN 0.2466 0.0627 0.3442 0.1304 -0.0710
(0.07) (0.14) (0.43) (0.04) (0.00)

MEANC 0.2767 0.2633 0.2502 0.2523 0.1731
(0.19) (0.00) (0.00) (0.06) (0.02)

Table 6.5: Sharpe ratios

This table reports the monthly out-of-sample Sharpe ratio and the corresponding p-value that the Sharpe ratio
for each of the portfolios is different from that for the minimum-variance portfolio
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portfolio helps for every dataset because the unconstrained mean-variance portfolio is
very sensitive to estimation error.

Panel B shows that capturing nominal proportional transaction costs generally helps
to improve the performance of the mean-variance portfolios, but it only helps to improve
the minimum-variance portfolio for two of the five datasets (25FF and CRSP), and the
difference is statistically significant only for the CRSP dataset. The reason for this is
that the nominal transaction cost term helps to combat estimation error to a certain
extend, and this is helpful for mean-variance portfolios, which are very sensitive to
estimation error. Minimum-variance portfolios, on the other hand, are more resilient to
estimation error, and a nominal transaction cost parameter is not sufficient to strike the
right balance between estimation error and transaction costs. This seems to indicate
that using a data-driven approach to calibrate the transaction cost parameter may help
to improve the performance.

From Panels A and B we conclude that the shortsale-unconstrained minimum-
variance portfolio that ignores transaction costs is the best of our benchmark portfolios,
and we now compare its performance to that of the data-driven portfolios in Panels C
and D.

Panel C shows that the data-driven approach based on proportional transaction costs
generally helps to improve the performance of the traditional portfolios. Specifically, the
data-driven shortsale-unconstrained minimum-variance portfolio outperforms its bench-
mark counterpart for every dataset except 6FF, with an improvement in Sharpe ratio
that ranges from 9% to 23% for the different datasets, and is statistically significant for
two of the five datasets.

Finally, Panel D shows that the data-driven approach based on quadratic transac-
tion costs also helps to improve the performance of the traditional portfolio. Specif-
ically, the data-driven shortsale-unconstrained minimum-variance portfolio with cali-
brated quadratic transaction costs outperforms its benchmark counterpart for every
dataset, with an improvement in Sharpe ratio that ranges from 1% to 104%, and is
statistically significant for four of the five datasets.

Turnover.

Table 6.6 reports the turnovers for the different portfolio policies. The table shows
that taking transaction costs into account helps to reduce turnover. For instance, for the
25FF dataset, the monthly turnover of the shortsale-unconstrained minimum-variance
portfolio is 75.32%. Including a calibrated quadratic transaction cost term reduces this
turnover to 5.14%, including a calibrated proportional transaction cost term to 0.89%,
and including a nominal proportional transaction cost term to 0.02%.

Comparing the turnover of the portfolios with nominal proportional transaction
costs (Panel B) with that of the data-driven portfolios with calibrated proportional
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Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Benchmark portfolios that ignore transaction costs

MIN 0.1422 0.7450 0.1945 0.7532 0.1905

MINC 0.0494 0.0711 0.0474 0.0765 0.0714

MEAN 0.9651 11.0694 1.4017 8.3947 1.3716

MEANC 0.1523 0.2138 0.1187 0.2388 0.1516

Panel B. Benchmark portfolios with nominal transaction costs

MIN 0.0000 0.0103 0.0001 0.0002 0.0000

MINC 0.0003 0.0010 0.0000 0.0001 0.0001

MEAN 0.0106 55.5685 0.0069 0.1989 0.1412

MEANC 0.0054 0.0114 0.0003 0.0002 0.0009

Panel C. Data-driven portfolios with calibrated proportional transaction cost

MIN 0.0098 0.0135 0.0107 0.0089 0.0014

MINC 0.0087 0.0079 0.0118 0.0092 0.0004

MEAN 0.0134 0.0865 0.0170 0.0190 0.0306

MEANC 0.0056 0.0083 0.0087 0.0101 0.0175

Panel D. Data-driven portfolios with calibrated quadratic transaction cost

MIN 0.0181 0.0490 0.0219 0.0514 0.0019

MINC 0.0113 0.0141 0.0136 0.0129 0.0016

MEAN 0.0215 0.0966 0.0301 0.0594 0.0301

MEANC 0.0093 0.0079 0.0114 0.0145 0.0276

Table 6.6: Turnover

This table reports the monthly turnover of the different portfolios. Turnover is the average percentage of
wealth traded in each period and is equal to the sum of the absolute value of the rebalancing trades across the
N available assets and over the T −M − 1 trading dates, normalized by the total number of trading dates.
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transaction costs (Panel C), we observe that the nominal transaction cost term induces
an all-or-nothing trading pattern, whereas the data-driven portfolios are associated with
intermediate levels of turnovers. For instance, the unconstrained minimum-variance
portfolio with nominal costs is effectively a buy-and-hold portfolio (with almost zero
turnover) for every dataset except 48Ind, whereas the counterpart data-driven portfolios
with calibrated proportional costs have reasonable monthly turnovers ranging between
0.14% and 1.35% for the different datasets. On the other hand, the unconstrained mean-
variance portfolio with nominal costs has very large monthly turnover for 25FF and
CRSP of around 15–20%, and huge of 5,556% for 48Ind, whereas the counterpart data-
driven portfolios with calibrated proportional costs have reasonable turnovers ranging
between 1.34% and 8.65%.

The mathematical intuition behind why the nominal transaction cost term induces
an all-or-nothing trading pattern is that the proportional transaction cost term is a
piecewise linear term, which when combined in the objective function with the linear-
quadratic mean-variance objective, results in policies that advice either large trading
or no trading. This all-or-nothing trading pattern is indeed optimal in the absence of
estimation error. Constantinides (1979, 1986); Davis and Norman (1990) and Muthura-
man and Kumar (2006), amongst others, show that the optimal portfolio policy in the
presence of proportional transaction costs is characterized by a no-trade region: if the
portfolio is inside this region, then it is optimal not to trade, and if it is outside, then
it is optimal to trade to the boundary of this region.

The Sharpe ratio results in Table 6.5, however, show that this all-or-nothing trading
pattern leads to poor performance when in addition to transaction costs the investor is
also facing estimation error. No trading results in poor performance because buy-and-
hold policies essentially ignore the information available in recent historical data—they
stick to the portfolio weights obtained from the earliest estimation window. All trading
leads to poor performance because the resulting portfolio policies are too sensitive to
recent historical data, which leads to large transaction costs and sensitivity to estimation
error. The data-driven portfolios, on the other hand, allow reasonable amounts of
turnover that strike an optimal trade-off between incorporating the information in recent
historical return data, and avoiding the large transaction costs and impact of estimation
error associated with large turnovers.7

7Note that this is a counterintuitive result as one would expect that the data-driven portfolios
would always result in smaller turnover compared to the portfolios that capture nominal transaction
costs. Concretely, one would expect that the data-driven portfolios would result in a larger calibrated
transaction cost parameter in order to robustify the portfolios and reduce the impact of estimation
error. Our results, however, show that from a data-driven perspective, it is optimal to calibrate the
transaction cost parameter to achieve intermediate levels of turnover.
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Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Benchmark portfolios that ignore transaction costs

MIN 0.1242 3.8689 0.0553 0.9104 0.9630
(1.00) (1.00) (1.00) (1.00) (1.00)

MINC 0.1259 2.9976 0.0686 1.1468 0.8717
(0.35) (0.00) (0.00) (0.00) (0.08)

MEAN 0.5280 218.7537 0.2515 20.7243 9.5164
(0.00) (0.00) (0.00) (0.00) (0.00)

MEANC 0.2275 7.4006 0.0876 1.4930 1.6589
(0.00) (0.00) (0.00) (0.00) (0.00)

Panel B. Benchmark portfolios with nominal transaction costs

MIN 0.1684 9.1902 0.0616 1.0374 0.9664
(0.00) (0.00) (0.00) (0.03) (0.48)

MINC 0.1870 4.3855 0.0713 1.2203 0.8804
(0.00) (0.08) (0.00) (0.00) (0.15)

MEAN 0.2775 11100.0558 0.1115 10.6297 10.3566
(0.00) (0.00) (0.00) (0.00) (0.00)

MEANC 0.1955 6.2474 0.0780 1.3973 1.7651
(0.00) (0.00) (0.00) (0.00) (0.00)

Panel C. Data-driven portfolios with calibrated proportional transaction cost

MIN 0.1354 7.2630 0.0619 0.8949 0.9643
(0.01) (0.00) (0.00) (0.38) (0.50)

MINC 0.1342 3.4277 0.0722 1.1827 0.8796
(0.04) (0.06) (0.00) (0.00) (0.12)

MEAN 0.2182 337842.7232 0.1086 14.9258 11.1818
(0.00) (0.00) (0.00) (0.00) (0.00)

MEANC 0.1572 4.5914 0.0759 1.3007 1.7030
(0.00) (0.02) (0.00) (0.00) (0.00)

Panel D. Data-driven portfolios with calibrated quadratic transaction cost

MIN 0.1315 3.6690 0.0615 0.9378 0.9644
(0.02) (0.18) (0.00) (0.27) (0.47)

MINC 0.1317 3.3144 0.0728 1.1973 0.8795
(0.08) (0.02) (0.00) (0.00) (0.13)

MEAN 0.2026 1088237.2067 0.1014 39.6984 11.6139
(0.00) (0.00) (0.00) (0.00) (0.00)

MEANC 0.1531 4.1090 0.0757 1.3166 1.6819
(0.00) (0.27) (0.00) (0.00) (0.00)

Table 6.7: Variance

This table reports the monthly out-of-sample variances and the corresponding p-value that the variance for
each of these strategies is different from that for the minimum-variance portfolio
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Variance and mean.

Finally, Tables 6.7 and 6.8 show the out-of-sample variance and mean for the dif-
ferent portfolios. We observe that considering transaction costs generally does not help
to reduce the variance of portfolio returns, but it helps to increase the mean. Thus the
gains from using the proposed data-driven approaches are obtained from improvements
in out-of-sample means, rather than variances. Intuitively, transaction costs are likely
to impact mean returns more than return variance. To see this, assume the trading
volume of a portfolio policy is relatively constant over time, then transaction costs will
shift every portfolio return down by an almost constant amount. This “shift” will result
in a reduction in mean returns, but may not have a large impact on variance. Finally,
comparing the variances of the data-driven portfolios to those of the portfolios capturing
nominal transaction costs, we conclude that the data-driven portfolios usually attain a
lower out-of-sample variance.

Summary.

The proposed data-driven portfolios outperform the traditional portfolios in terms of
Sharpe ratio net of transaction costs. Capturing a nominal proportional transaction cost
term helps to improve the performance of the mean-variance portfolios, but not that of
the minimum-variance portfolios. Comparing the data-driven and nominal portfolios,
we conclude that calibrating the transaction cost term with cross-validation results
in better out-of-sample performance because it leads to optimal data-driven levels of
portfolio turnover. Finally, the gains from capturing transaction costs come in the form
of higher mean returns, rather than lower variance of returns.

6.6 Concluding remarks

We show that there is an intimate relation between transaction costs and estima-
tion error in portfolio selection. In particular, we show that a mean-variance problem
with p-norm transaction costs is equivalent to three different robust formulations of the
portfolio problem: (i) a robust optimization problem where mean returns can take any
value in an uncertainty set, (ii) a robust regression problem where historical returns
can take any value in an uncertainty set, and (iii) a Bayesian portfolio problem where
the investor holds a certain prior on the portfolio weights. Table 6.1 summarizes the
relation between these four formulations.

Motivated by our theoretical findings, we propose a data-driven approach to portfolio
selection with transaction costs and estimation error. The approach consists of using the
nonparametric technique of cross-validation to calibrate the transaction cost parameter
in a mean-variance problem in order to improve the out-of-sample performance in the
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Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Benchmark portfolios that ignore transaction costs

MIN 0.1067 0.2399 0.0829 0.3049 0.3182

MINC 0.1048 0.4575 0.0652 0.2635 0.3492

MEAN 0.0549 -1.5015 0.1207 0.4286 -0.3467

MEANC 0.1011 0.4772 0.0738 0.2896 0.1638

Panel B. Benchmark portfolios with nominal transaction costs

MIN 0.1190 0.2948 0.0824 0.3335 0.3553

MINC 0.1056 0.5554 0.0633 0.2560 0.3457

MEAN 0.1119 -9.4064 0.1045 0.4743 -0.1627

MEANC 0.0978 0.4971 0.0692 0.3057 0.2400

Panel C. Data-driven portfolios with calibrated proportional transaction cost

MIN 0.1215 0.3456 0.0855 0.3710 0.3530

MINC 0.1096 0.5555 0.0668 0.2791 0.3467

MEAN 0.1162 -38.8372 0.1025 0.6127 -0.2102

MEANC 0.1073 0.5275 0.0688 0.2806 0.2290

Panel D. Data-driven portfolios with calibrated quadratic transaction cost

MIN 0.1189 0.4762 0.0882 0.3872 0.3542

MINC 0.1093 0.5119 0.0656 0.2759 0.3470

MEAN 0.1110 65.3606 0.1096 0.8215 -0.2420

MEANC 0.1083 0.5337 0.0688 0.2895 0.2244

Table 6.8: Mean

This table reports the monthly out-of-sample mean of the different portfolios
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presence of both transaction costs and estimation error. Our numerical results on five
empirical datasets show that the data-driven approach helps to improve the out-of-
sample performance in terms of Sharpe ratio of returns net of transaction costs. The
explanation for the favorable performance of the data-driven portfolios is that they
strike an optimal (data-driven) trade-off between rebalancing the portfolio to capture
the information in recent historical return data, and avoiding the large transaction
costs and impact of estimation error associated with excessive trading. Essentially, the
data-driven portfolios induce and slow and steady rate of trade that results in superior
performance.
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