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ABSTRACT. A MacMahon symmetric function is a formal power series in
a finite number of alphabets that is invariant under the diagonal action
of the symmetric group. In this article, we show that the MacMahon
symmetric functions are the generating functions for the orbits of sets
of functions indexed by partitions under the diagonal action of a Young
subgroup of a symmetric group.

We define a MacMahon chromatic symmetric function that general-
izes Stanley’s chromatic symmetric function. Then, we study some of
the properties of this new function thru its connection with the noncom-

mutative chromatic symmetric function of Gebhard and Sagan.

1. INTRODUCTION

Doubilet [1] introduced a set of formal objects indexed by set partitions
(whose behavior is closely related to the behavior of symmetric functions)
that allowed him to make calculations on symmetric functions through prop-
erties of the partition lattice and its Mobius function. The aim of this article
is to generalize his approach to the MacMahon symmetric functions.

Symmetric functions appear when expressing a monic polynomial in terms
of its roots. On the other hand, suppose that the coefficients of a polynomial
in two variables can be expressed as a product of linear factors. That is,
suppose that e o) + -+ + e 1Ty + -+ + € p)2"y" can be written as (1+
a1z + fry) - (1 + apz + Bry). Expanding the product of linear factors
in the previous equation, we obtain symmetric functions like ey = 1,
e0) = a1 +az + -+ ap, and ey = B + P2 + - + By But, we
also get some things that are different, like e(1,1) = a1f2 + a2 + -+ +
Qn—10n, and ey 1) = arazfs + arazfe + - - + an—20n10,. These objects

are invariant under the diagonal action of the symmetric group, but not
1
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under its full action. (The monomial & ay, -+, Bj, B, - -+ Bj, is sent to
(i) Qi) " Qi) Buw(i)Puw(ia) " Buw(j) Py permutation w.)

As noted by MacMahon [5], in order to avoid syzygies between the ele-
mentary MacMahon symmetric functions, it is necessary to take the num-
ber of linear factors, or equivalently, alphabets X = a3 + a2 + ... and
Y =p1+ B2+, to be infinite. A MacMahon symmetric function is a for-
mal power series of bounded degree, in a finite number of infinite alphabets,

that is invariant under the diagonal action of the symmetric group.

2. BASIC DEFINITIONS.

Let u be a vector in N*, where N is the set of nonnegative integers. A
vector partition A of u, written A F u, is an unordered sequence of vec-
tors (a1,b1,...,c1)(az,be,...,c2)... summing to u. We consider two such
sequences equal if they differ by a string of zero vectors. In particular, a
partition of a number is consider a vector partition. The nonzero vectors of a
vector partition are called the parts of A, and the number of parts of A is de-
fined to be the length of A\, written [(\). Sometimes, we write A using block
notation. We write A = -+ (a;,b;,...,¢;)™ --- , where part (a;,b;,, - ,¢;)
appears m; times in A and ¢ is running over all different parts of A\. For
instance, A = (2,1)(2,1)(1,1) = (2,1)(1,1) is a partition of (5,3) of length
3. The weight of a vector u, weight(u), is the sum of its coordinates.

Let Sy = U;>15;, where the symmetric group S; acts on the first 7 letters.
The symmetric group Se acts diagonally on f in Q[[X,Y,- -, Z]] sending f
t0 f(Tw(1), Yuw(1)s " » Zw(1) Tw(2)s Yw(2), " s Zw(2), " "+ )- A formal power series
finQ[X,Y, -, Z]] is called a MacMahon symmetric function in k systems
of indeterminates if the degree of f is bounded and if it is invariant under
the diagonal action of So,. We say that f has homogeneous multidegree
(a,b,--- ,c) if in each monomial term of f there are a letters in alphabet X,
b letters in alphabet Y, and so on.

The vector space of homogeneous MacMahon symmetric functions of de-
gree 1 can be decomposed as the disjoint union of all vector spaces I,
where v is a vector of weight ¢ and 90, is the vector space of MacMahon

symmetric functions of multihomogeneous degree u.
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We introduce some basis for the pace of MacMahon symmetric functions
of multihomogeneous degree u. Let A = (a1,b1,...,¢1)(ag,b2,...,c2)... be
a vector partition of (a,b,--- ,c).

(1) Let x* be z8y% ... 201 g82yb2 ... 502 .. :L“E”ylbl -+-2z". Then, the mono-
mial MacMahon symmetric function indexed by A is the sum of all
distinct monomials that can be obtained from x* by a permutation
w in Sy acting diagonally.

(2) The elementary MacMahon symmetric function indexed by vector

partition A 18 ex = €(qy by, 01)€(an,ba,yc0) " T s WhETE € p .

)

) 1s de-
fined by the generating function:
Z e(a’b,...,c)satb ceut = H (I+zis+yit + - + zju).
b, ,¢>0 i>1
(3) The complete homogeneous MacMahon symmetric function indexed
by vector partition A is hx = h(ay by, e1)P(az,bz,sc0) 7+ » Where we
define h(qy,... o) by the generating function:

1

aph c _
Z h(aaba"'ac)s t U _Hl—fL'S— t__zu
@by >0 i>1 i i !

(4) The power sum MacMahon symmetric function indexed by vector

partition A 18 Px = P(ay,by, c1)Plas,ba,ye2) "0 WheTe Prgp ... oy 18
Zzzlx?yfzzc
(5) In the ring of MacMahon Symmetric Functions there is an involu-
tion defined by w(ey) = h). The forgotten MacMahon symmetric
functions are defined by w(m)) = (sign ) fy.
To A we associate the partition of the (number) weight of A defined
by (a1 +---+ci,a9+---+cg,---) = (1™2"2...). Then, the sign of
X is defined as (—1)72t+2ns+3nate
We are following Doubilet’s definition of the forgotten MacMahon
symmetric functions [1] instead of the one in Macdonald [4].
A vector partition is unitary if it is a partition of (1) = (1,1,---,1).
Similarly, a monomial (elementary, etc.) MacMahon symmetric function
is unitary if it is indexed by a unitary vector partition. Unitary vector

partitions can be identified with set partitions: To m = {By, Ba,--- , B} we
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associate the unitary vector partition A = AjAg---A; where A; has its ith
coordinate 1 if ¢ is in B; and 0 otherwise.

Let v = (a,b,- -+ ,c) be a vector of weight n. We define a Young subgroup
Sy of Sp by Sy = S{12, 4} X S{at1,at2,,a4b) X 7 X S{n—ctln—ct2,n}.
There is a canonical action of Sy, on [n]. It partitions [n] into equivalence
classes that we order using the smallest element in each of them.

The type of a set partition m = By|Bs|- - - |B; under the action of S, de-
noted type, (7), is the vector partition A = A; Ay - - - \;, where Ay, is the vector
whose ¢ coordinate is the number of elements of By in the ith equivalence
class. If u equals (n), we may omit the subindex (n).

Let F), be the set of all functions from [n] to P, the set of positive integers.
Each f in F), defines a set partition ker f, where n; and nsy are in the same
block of ker f if and only if f(n;1) equals f(ng2). We read the expression
f(i) = j as saying that ball i has been placed on box j.

Let f be in F),. Suppose that the Young subgroup S, is acting on [n]. We
weight f by vu(f) = [Tyejn) ¢(d) p(ay where c(d) denotes the equivalence class
of d and we use variables x,y,--- ,z to denote the equivalence classes. In
the particular case where u = (1)", we denote 7, by . To a set of functions
T we associate the generating function: v, (T) = >_ req Yu(f)-

A disposition is an arrangement of the balls (that is, the elements of [n])
into the boxes (that is, the positive numbers, P), where we may impose
some condition on the way the balls are placed. In particular, a function is
a disposition where there is no condition on the way the balls are placed.
The underlying function of a disposition p is the function obtained from p
if we forget about the extra data condition on the balls. The weight of a
disposition is defined as the weight of its underlying function. The kernel of

a disposition p, written as ker p, is the kernel of its underlying function.

3. COMBINATORIAL INTERPRETATION OF THE MACMAHON SYMMETRIC

FUNCTIONS.

In this section we follow Peter Doubilet and define three sets of functions
and two sets of dispositions. Then, we show how this sets are related to the

MacMahon symmetric functions.
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Definition 1 (The projection map). Let S, be a Young subgroup of Sy,
acting on [n].

Given any function f : [n] — P. Let v,(f) be defined as v, (fu(i,c(7))),
where fy,(,c(i)) = f(i), and c(3) is the equivalence class of i under S,. Given
a set of functions T' going from [n] to P we define v, (T') as 3 rer yu(f)-

The map sending y(T') to v, (T) is called the projection map and denoted
pu- Given any set of dispositions, the projection map is defined on their

underlying functions.
Definition 2 (Doubilet). Let w be a set partition of [n].

(1) My ={f:f€F,, kerf =}, and let my be y(My).

(2) Pr={f:f€F,, ker f > 7}, and let p; be v(Py).

(3) Er={f: f €Fy,, ker f A =0}, and let e, be y(Eyr).

(4) Let H, be the set of dispositions such that within each box the balls
from the same block of © are linearly ordered, and let hy be y(Hr).

(5) Let Fr be the set of dispositions such that balls from the same block

of ™ go into the same box, and within each box the blocks appearing

are linearly ordered, and let fr be v(Fr).

For any vector partition A\ = (a1,by,...,¢1) - (a;, by, ..., ¢), (or X =
- (aj, bj, -+ ¢;)™ --- when written in block notation), define |A| = [, m;!

and A = albo!---cilag!by! -yt !

Theorem 3. Let S, be a Young subgroup of Sy,. Let w be a set partition of
[n] and let X be the type m under S,. Then, under the projection map py,

Mg — | Al My Dr > D er — Aley

hy— Alh)y fﬁi—> |>\|f)\
In particular, py : Mo — My,

. b b
Proof. If f is in My, then, v, (f) = 'y} - 20l ) - 202 - afly - 2]

21 V12 12 124
Therefore,

_ § : Z b1 €1 . 02 b 262 ay, b c
pu(mﬂ') - 21 yll : 7,1 7,2 yzz o Zz wzl yll ZZl
ilai2a"'ai121
different
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Any monomial appears mi!ms! ...my! times. Hence, p,(m;) = |A|my.

We can rewrite P, as

Pr={f:f € F and f is constant in blocks By, Ba,... of 7},

Therefore,
pulpr) = Y ) = D nlfIB)Y(f[Bs). ..
fe€Pr fe€Pr
= > wlBIn(B). =11 > w)
fePr i f:B;—P
f|Bi constant f constant

S | (G AR T S
[

ai; big Ciy @iy biy Cig
= E Tyt 2 Tt 2 = D
11,82,...

By definition &, is the set of functions from [n] to P that are injective on

the blocks of w. Hence, py(e;) equals

S o= X wimnis) =1 X wn).

fEER feF i N [:Bi—P
f|B; injective f injective

Note that -, (f) is a monomial without repeated factor. Moreover, each such

monomial arises from a;! b;! - - ¢;! different functions f : B; — P. Therefore,
ST ) = albil - ciley,
f:B;—P

f injective
and py(er) = ar!by! ---cilag!ba! ---co! - exn,.. = Men.
Suppose that in [n]/S, there are a elements in the first equivalence class, b
on the second, and so on. There are n! different ways of linearly ordering
the balls of [n] and we can make (a oo C) sequences of words (with the
same underlying function) out of these letters. Therefore there are a!d! - - - ¢!

repetitions. We obtain that

pu(hw) = aﬂbﬂ ---01!a2!b2! ~~~02!~~~ h/\1/\2~~~ =\ h)\.

In [1] Doubilet showed that w(m,) = sign(w) f; when 7 is a unitary vector
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partition. Therefore, we have that (signn)fr = w(m;) — w(|Ajmy) =
|A|w(my) = |A|(sign A) fi. Since sign A = sign 7 for any 7 of type A, we have
that fr — |A|fx.

|

Although the notation |A| may be misleading, we have decided to follow
Doubilet [1] and Gebhard and Sagan [3], and adopt it.

Corollary 4 (Doubilet). Let S, be the symmetric group, and 7 be in a set
partition I1,. In this case type(n) () is a partition of a number, say .
Then, pn @ Myn — My, the vector space of symmetric functions of

homogeneous degree n.

Mg — | Al My Dr > D er — Aley

hy— Alh)y f7r — |>\| f)\.

where my, px, ex, hy, and f\ are symmetric functions.

4. THE SCALAR AND KRONECKER PRODUCTS AND THE TRANSITION

MATRICES.

Following Gessel [2], we define a scalar product of MacMahon symmetric
functions by (hx,m,) = 0 4.

For any MacMahon symmetric functions f and for any vector partition A,
the scalar product (hy, f) gives the coefficient of z{* .- 2{'z3*--- 25 -+ in
f- The Kronecker product of MacMahon symmetric functions is defined by
Px* P = (Px, Pu)Py, and extended by linearity. If A is a partition of a num-
ber, then the Kronecker product gives the multiplicity of the irreducible
representations of the symmetric group in the tensor product of their ir-

reducible representations. An analogous interpretation for the Kronecker

product for the MacMahon symmetric functions is unknown.

Proposition 5. Let u be a vector weight w. The number of set partitions ©

in I, of the type X under S, is

u\ u!
A _A!|>\|'
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Definition 6 (The lifting map). Let X\ be a vector partition of u. Let My =
(§)|>\|m,\ Then define the lifting map py : MMy — M1yn by
(M) = D ma
type,, (m)=A

Similarly, we define Ex = (})Mex, Py = ()pr, Hy = (Y)Alhy, and Fy =
(K)|)\|f,\ It is easy to show that E\ — Ztypeu(ﬂ):/\ ex, P\ — Ztypeu(ﬂ):)\pm
Hx = Y iype, (m=a P and Fx = 3 ype (my=n fr-
Proposition 7. The lifting map p, has the property that pyp, = 1. More-
over, for all f,g € M,,

Proof. We show that p,p, (M) = M,.
N u
patn0) = ) =N X = () = s
type, (m)=X type,, (m)=X
Moreover, (Hy, M)) = u!{py(H)), p(My)). Because, on the one hand,

<ﬁu<HA),ﬁu<Mu)>=< DS m>

type, (m)=X type, (0)=p

U
= <h7r,mo'> = Z (5)\,” :(5,\# ()\)

type, (m)=A type, (0)=p type, (m)=X
On the other hand,

(Hy, M,) = <<;‘> Ay, (Z) |,u|mu>: (2) 2>\!|)\|5M = uld),, (2)

Proposition 7, together with the Theorem 3 and Doubilet’s calculations

0

[1], allows us to compute the transition matrices and the scalar product
between the different basis of 91,. For instance, to compute the scalar
product of power sum MacMahon symmetric functions assume that A = p.
(Otherwise their scalar product is 0.) Then, (Py, P\) = ul{pu(Py), pu(Py)) =

u 1

U!<Ztypeu(w>Apmztypeu(au Po )= U Y iype, (m)=r{Pms Pr) = “‘(A)m'

We have obtained that (px,py) = I/J()\f)‘/\/\!)\’ where 1(0,\) is defined to be

(0, 7) for a set partition m of type A under the action of S,,.
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Proposition 8. Let f and g be functions in 9,. Then
(1) The lifting map pu satisfies pu(f * g) = ulpu(f) * pu(g)
(2) The Kronecker product on M yn and M, are related by
fxg=ulpu(pu(f) * pu(g))

(3) For all f,g € M, involution w satisfies

w(f)*wlg) =f*g

Proof. (1) On the one hand,

N N u u
Pu(Py * Pu) = Pu(<A> ( ><p/\apu>p)\>
W
w\ AN . uldy, ( )
= — P\ = ’ .
(Q a0, P = e N
On the other hand,

pu(P)*pu(P) =D pex >, Pe= Y, Dr*ps

type, (m)=X type, (o)=p type, (m)=X
type, (0)=p

= = 76A,/1‘
Z (pmpa>p7r |'u(0 7_()| ( Z )\p,\>.

type, (m)=X ’ type, (7)=
type, (o)=p

(2) This follows from 1. Since, f x g = pu(pu(f * 9)) = pu(ulpy(f) *

pu(9)) = ul pu(Pu(f) * Pulg))-
(3) It is enough to show that w(ps) * w(ps) = pr * ps. Then, w(py) *

type, (m)=

w(ps) = sign(m)px * sign(o)ps = sign(no) pr * ps = pr * po
U

Proposition 8 together with the Theorem 3 and Doubilet’s calculations
[1] allows us to compute the Kronecker product of two functions in 9t(*).

For instance,

1 1
ha s hy =~ Hy % Hy =~ py,  pu(Hy + H
S C T R M(K)M(Z)p<p( )
A A
-l L'!“'pu( it h“%% 2. pulboro)

type, (T)=X type,, (o)=p type,, (m)

type, (o)

A
7
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A
_ M Z type(m A U)!htype(ﬂ/\ff)'

u!
type,, ()
type, (o)

A
n

5. THE CHROMATIC MACMAHON SYMMETRIC FUNCTION.

We extend Stanley’s definition of chromatic symmetric function of a graph
G [9] obtaining a MacMahon symmetric function. Finally, we show that the
techniques developed by Gebhard and Sagan to study noncommutative chro-
matic symmetric function [3] can be used to study the MacMahon chromatic
symmetric function.

Let G be a graph with vertex set [n] and edge set E. A function & :
[n] — P is called a proper coloring of G if k(u) # k(v) whenever u and v are
vertices of an edge of G. A stable partition 7 of G is a set partition of [n]
such that each block of 7 is totally disconnected. Let G be a simple graph
with vertex set [n] and edge set E. Stanley’s chromatic symmetric function
[9] is defined as

Xa = Z Tr(1)Tr(2) """ Tr(n)s

Kk proper coloring

Let G be a simple graph (without loops or multiple edges) with vertex
set [n] and edge set E. Let S(G) be the set of all stable partitions of G. Let
Fn(G) be U reg(q) Ma- Stanley [9] showed that pn(v(7(G))) = Xq.

A set composition [C|Cs| - - - |C)] of [n] is an ordered partition of [n], where
some parts may be empty. The vector associated to C' has ith coordinate

equal to the cardinality of C;. Then S, acts on [n] as S¢;, x Scy, -+ X S¢;.

Definition 9. Let G be a graph (or directed graph) with vertez set [n]. Let
C = [C1|Cy|---|C)] be a set composition of [n]. The chromatic MacMahon
symmetric function according to C in alphabets X; (with i = 1,2,--- 1) is

defined by

XG’C = Z xc(l)a“(l)xC(Q)an(Q) T xc(n)an(n)'

K proper coloring

where X; = {x;1,%i2, -+ ,Tin}, and c(i) denotes that vertez i belongs to Cj.
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For instance, if C; is defined as the set of vertices of degree i, then X 9,C 18
an invariant of the graph under relabelings, called the MacMahon chromatic
symmetric function according to the degree, and denoted Xg,degree.

If C = [1]2]| -+ |n], then X is called the MacMahon chromatic sym-
metric function according to the vertices and denoted Xg,vertices. It is an
unitary MacMahon symmetric functions equivalent to the noncommutative
chromatic symmetric function of Gebhard and Sagan. Moreover, it satisfies
a deletion-contraction property, and specializes to all the invariant chromatic
symmetric function described in this section. However, it is not invariant
under relabelings of the vertex set.

If C =[12---n], then X ¢ is the chromatic symmetric function intro-
duced by Stanley, and denoted by X¢. Stanley showed that the chromatic
symmetric function reduces to the chromatic polynomial ys under a certain
specialization of variables. Then, he proved various theorem generalizing
results about the chromatic polynomial, as well as some new ones that did
not make sense for x¢g [9].

We produce an invariant chromatic MacMahon symmetric functions asso-
ciated to graph (or directed graph) G if we construct the set composition C'
according to an invariant property of G. For instance, C' can be obtained by
partitioning the vertex set according its connected components, according
to the number of different closed walks starting at each vertex, according to

its in degree, and so on.

Proposition 10. Let G be a graph with vertex set [n]. Let C be a set
composition of [n] with associated vector u. Then Xgc is a MacMahon
symmetric function of homogeneous multidegree u.

Moreover, we can recover Stanley’s chromatic symmetric function Xq
from X¢ through the projection map pn(Xa,c) = X where pp(X¢,c) is the

image under p, of any preimage of X¢ ¢ under py.

Proposition 11. Let G be a graph with vertex set [n]. Let C be a set

composition of [n] with associated vector u. Then

XG,C = Pu( Z Mw>: Za)\|>\|m,\

TeS(G) AFu
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where ay is the number of set partitions m in S(G) such that type,(w) = .

As an illustration, we look at the MacMahon chromatic symmetric func-
tion according to the degree, denoted Xg,degree. In [9] Stanley showed that
the chromatic symmetric function for graphs G and H (See Figure 1) does

not distinguish between them.

Graph G Graph H
FIGURE 1.

On the other hand, the chromatic MacMahon symmetric function of G
and H are different because X degree € 93?(0,4,0,1) and X g degree € 93?(1,1,3).
This is not too surprising because their degree sequences are different. The
remarkable point is that the MacMahon chromatic symmetric function en-
closes more information than what we can obtain by having both the chro-
matic symmetric function and the degree sequence of a graph, while being

of the same complexity.

Graph L Graph M
FIGURE 2.

For instance, L and M (See Figure 2) have the same degree sequence
and the same chromatic symmetric function, but their chromatic MacMahon
symmetric functions according to the degree are different. It is not known an
example of two non isomorphic graphs with the same MacMahon chromatic
symmetric function according to the degree.

In general, the MacMahon chromatic symmetric function do not satisfy a

Deletion-Contraction law. This was the main motivation (in the symmetric
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functions case) for Gebhard and Sagan [3] to introduce their noncommu-
tative chromatic symmetric function Y¢, having the nice properties that it
obeys such a law, and that it specializes to X when we allow the variables
to commute.

Noncommutative symmetric functions [3] are indexed by set partitions.
Let {ui,ug,---} be a set of non commuting letters. The noncommutative
monomial symmetric function m, is defined as m, = Zmz iy Wit Wiy~ - Uiy
where the sum is taken over all sequences i1,i2--- ,14 of positive integers
such that ¢; = 7, if and only if j and k are in the same block of 7. For exam-
ple, Myg|3 = U1U1U2 + UgUaul + uurug + Uzuzuy - - - . The noncommutative
power sums and the noncommutative elementary symmetric functions are
defined thru the identities in Appendix 6.1.

There is a canonical isomorphism between the vector space of noncom-
mutative symmetric functions and the vector space of unitary MacMahon
symmetric functions sending the noncommutative monomial u;, u;, - - - u;, to
the monomial z;,¥;, - - - 2;,,. Under this isomorphism m, goes to the unitary
MacMahon symmetric functions m.

For any graph G, with vertices vy, v9,--- ,v4 in a fixed order, the non-
commutative chromatic symmetric function Y is defined as the sum over
all proper coloring of G of Uy Ur g *** U gy - (Under the canonical isomor-
phism just described Y corresponds to the MacMahon chromatic symmetric
function according to the vertices.)

The noncommutative chromatic symmetric function Y satisfies a deletion-
contraction property (and so does the X ¢ vertices). This remarkable fact al-
lows inductive proofs of noncommutative versions of some results of Stanley
[9], making straightforward to generalize them to the chromatic MacMahon

symmetric function. For instance, the following theorems holds.

Theorem 12. Let G be a graph with vertex set [n]. Let C' be any set

composition of [n] with associated vector u. Then

Xoo= Y (=1 lpype, sy
SCE
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where w(S) denotes the partition of [d] associated with the vertex partition
of the spanning subgraph of G induced by S.

All other results of Gebhard and Sagan [3] generalize to the MacMahon
chromatic symmetric function in a similar straightforward manner that is
left to the reader. (In the proof of lemma 6.3 appears a product of non-
commutative symmetric functions. It corresponds to the product of unitary
MacMahon symmetric functions because the labels of the vertex sets are
disjoints.)

A final remark, the MacMahon chromatic symmetric function according
to the vertices distinguish among all graph G with no loops or multiple edges

[3]. But, it is not an invariant of G.

6. APPENDICES.

We reproduce the appendices 1 and 2 in [1]. The definition of the scalar

product used differs from the one in [1] by a constant factor.

6.1. The matrices of change of basis.

Pr = E Mg, Mg =
€r = § Mg, mg =

oo AT=0 27 N’(Ov T) o<T
. 1
€r = ZN(Oya)pm Pr = —= ZN(Uvﬂ-)eU?
= w0, m) =
pr= sign(m,0)fo. fr = n(m.0)|po,
o>T o>m
) (m, T
he= Y sign(o) fo, fﬂ:Z (0, |ZMUT he,
o:oAT=0 727" T | o<T
. 1
hy = 111(0,0)|ps, Pr = 77— p(o,m)he,
2 0. 2
:Ztype T Ao)lmg, My = MZM(U,T)hm
= 0,7 7=
er —Zs1gn type(o A )l fs, fn= ZM p(o,T)eq,
= w0,7) =
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My = Z sign(m, o) type(m, o) fo,  fr= Z type(m, o) mg,

o>m o>m
er = Z sign(7) type(o, 7)! hg, hr = Z sign(o) type(o, m)!es.
o<m o<m

6.2. The scalar product.

)
<h7rama> = 57r,(7’ (pmpa> = #’
(0, )|
<h7r7ptr> = C(U7 77)7 (emptf> = Sign(a) C(Ua 7T)7
<67r7 ea) = type(a N ﬂ-)!7 <67r7 ho’) = 57[’/\0',07

<67r7 mtf) = Sign(a) type(a, W)!C(O—v ﬂ-)v <h7r7 htf) = type(a N 7T)!,

(i po) = %C(ma), (Frves) = sign(r) br,0,
(o) = type(m, 0)LC(m, 0),

(. p0) = sign(ro) |Zg: j§| (),

(oo} = >Z %

where ( is the zeta function and 0, , is the Kronecker symbol.
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