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ABSTRACT. A MacMahon symmetric function is a formal power
series in a finite number of alphabets that is invariant under the
diagonal action of the symmetric group. In this article, we give a
combinatorial overview of the Hopf algebra structure of the MacMa-
hon symmetric functions relying on the construction of a Hopf al-
gebra from any alphabet of neutral letters obtained in [18, 19]

Dedicated to the memory of Gian-Carlo Rota.

1. INTRODUCTION.

In his seminal article [11] MacMahon initiated the systematic study
of a new class of symmetric functions that he called symmetric func-
tions of several systems of quantities. This class of functions had been
previously considered by Cayley [2] and by Schlafli [22] in their in-
vestigations on polynomials. Following Ira Gessel [5, 6], and in honor
of Major Percy MacMahon, we call this class of symmetric functions
MacMahon symmetric functions.

One motivation for the study of MacMahon symmetric functions
comes from the following analogy with symmetric functions. On the
one hand, symmetric functions appear when expressing a monic poly-
nomial in terms of its roots. On the other hand, suppose that we can
express the coefficients of a polynomial in two variables as a prod-
uct of linear factors. Then egg) + -+ + eq Ty + -+ + e r"y"
can be written as (1 + ayz + f1y)--- (1 + ax + 5,y). Expanding
the previous product, we obtain symmetric functions like ey = 1,
€(1,0) = 01 + g+ +ay, and eq1) = B1 + P2+ -+ B,. But, we also
get some things that are different, like e( 1) = oy fo+azB1+ -+ 15,

and e(p1) = ajaofs + ajazfBy + - - + Q201 Bn.
1
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The relevant fact about this new class of symmetric functions is
that they are invariant under the diagonal action of the symmetric
group, but not under its full action. The diagonal action of a per-
mutation 7 in S, on a monomial oy, -y fj, -+ B; is defined by
Qr(ir) "+ Or(ip) Br(iy) * * Br(jy)- The class of functions that we just have
found are the elementary MacMahon symmetric functions in two finite
alphabets of size n.

As noted by MacMahon [10], in order to avoid syzygies between the
elementary MacMahon symmetric functions, it is necessary to take the
number of linear factors, or equivalently, the size of alphabets X =
ar+as+...and Y = ) + By + -+, to be infinite. That observation
leads to the following definition. A MacMahon symmetric function is
a formal power series of bounded degree, in a finite number of infinite
alphabets, that is invariant under the diagonal action of the symmetric
group.

Probably, it is the fact that not all polynomials in several variables
are a product of linear forms, even over an algebraically closed field,
which makes the MacMahon symmetric functions less ubiquitous than
their symmetric relatives.

In this article we look at the Hopf algebra structure of the MacMa-
hon symmetric functions from a combinatorial point of view. Barnabei,
Brini, Joni, and Rota [3, 8, 17] have suggested a combinatorial inter-
pretation of the product and the coproduct of a bialgebra. They have
proposed that the product corresponds to the process of putting things
together, and that the coproduct corresponds to the process of splitting
them apart. We use their ideas as a starting point towards a combina-
torial interpretation of some instances of the theory of plethystic Hopf
algebras developed in [7, 18, 19, 20, 21]. In particular, we obtain a com-
binatorial interpretation for the Hopf algebra of MacMahon symmetric
functions that extends the one developed by the author [14, 15, 16] for
their vector space structure.

We assume that the reader is familiar with the basic notions of alge-
bra, coalgebra, bialgebra, Hopf algebra, and with Sweedler’s notation.
A fine exposition of these topics is given in [1].
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2. THE HOPF ALGEBRA Gessel(A)

2.1. The Hopf algebra Super[A]. The ordinary algebra of polyno-
mials in a set of variables A is generalized in [7] to include the case
where the variables can be of three different kinds: positively signed,
neutral, and negatively signed. This new structure is called the super-
symmetric algebra associated with the signed alphabet A, and denoted
by Super[A].

Let AT be a set of positive letters. The set of divided powers of AT,
denoted by Div(A™), was originally constructed [7] as follows. Define
Div(A™) to be the quotient of AT x N by the equivalence relations
obtained by prescribing that a(™, the equivalent class of (a,n), be-
haves algebraically as a"/n!. The map that sends the pair (a,n) to its
equivalence class a(™ is called the divided powers operator.

In this article, we introduce Div(A™) in an equivalent way that has
the advantage of showing its combinatorial nature. We represent a set
of n distinguishable balls of weight a by the pair (a,n) in AT x N.
Then, we define the divided powers operator acting on AT x N as the
operator that makes us forget how to distinguish between objects of
the same weight. In consequence, the image of (a,n) under the divided
power operator, denoted by a(™, represents a set of n undistinguishable
balls of weight a.

A monomial element in Div(A*) has the form a0 ...c*) and
represents a set consisting of ¢ undistinguishable objects of weight a, j
undistinguishable objects of weight b, and k£ undistinguishable objects
of weight c¢. As usual, the sum of monomial elements of Div(A™) is
interpreted as a disjoint union. In consequence, an arbitrary element
of Div(A™) is a disjoint union of sets of undistinguishable objects.

Sometimes, we think of an object of weight a as an object that has
been colored a. In this framework, each positively signed letter corre-
sponds to a color. Moreover, (a,n) represents a set of n distinguishable
balls that have been colored a, and a'® corresponds to a set of i undis-
tinguishable objects colored a. In this framework, the effect of the
divided power operator is that we forget how to distinguish between
objects of the same color.
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Following Barnabei, Brini, Joni, and Rota [3, 8, 17], we interpret
the product of element of Div(A™1) as the process of putting objects
together. From this combinatorial interpretation, we get the following
algebraic rule for the product of elements of Div(A™) :

0,40) — <Z + j) i),
i
Since having a set consisting of ¢ undistinguishable objects, together
with another set that consists of j undistinguishable objects, is the
same as having a set with ¢ 4+ j undistinguishable objects, together
with a distinguished subset of 7 elements.
Similarly, the operation of exponentiation is defined by

(a)0) = ,('ij)!.a(ij>.
gl(a)7
Since a set whose j elements are sets consisting of ¢ objects is the same
as a set with ij objects partitioned into j disjoint subsets, each of them
consisting of 7 objects.

Finally, the following analog of Newton’s Identity for Div(A™) relates
the sum with the product: (a 4 b)® = Dtk a Wb A set with i
objects, where j of them are of weight a and k of them are of weight b
is equivalent to a set of k£ undistinguishable objects of weight a, together
with another set of 5 undistinguishable objects of weight b.

The unit of this product is given by the weight of the empty set, and
denoted by 1. Multiplying an element W of Div(A™) by 1 corresponds
to adding nothing to the object in W.

So far, we have described an algebra structure on Super[A]. To
introduce its coalgebra structure, we follow Barnabei, Brini, Joni, and
Rota [3, 8, 17], and interpret the coproduct of Div(A™) as the process
of splitting objects apart. In consequence, the coproduct of a monomial
element W, denoted by AW, describes all different ways of splitting
the objects being weight by W into two different boxes, where the
boxes are expressed using the tensor product. For instance, a ® a(®b
indicates that in the first box we have an object of weight a, and that
in the second box we have two undistinguishable objects of weight a
and an object of weight b. The following identity describes all different
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ways of splitting ¢ undistinguishable objects into two distinguishable
boxes.

A = 37 0 @ o),

k=i

Moreover, the order in which we place balls of different weights do

not affect the result. Hence, the coproduct should be multiplicative:
A(WW') = AWAW'. For example,

AdPb =P @1 +a®a+10d?)b®1+10b)
= @1+ab@a+b®a? +ad? @b+a®ab+1®a?b.

Let ¢ be the counit of our coalgebra. Using Sdweeler’s notation,
the counitary property says that W = Y We(Ws) = > e(W)W(y).
Henceforth, from the unicity of the counit, we obtain that e(W) equals
1if W =0, and (W) equals 0 if W # 0

The study of neutral variables is the algebraic analog of the study of
weighted distinguishable objects. They behave as ordinary commuting
variables. In consequence, the multiplication and the exponentiation
are defined by a'a’ = a*/ and (a')! = a¥, respectively. Moreover,
Newton’s identity relates the sum of neutral letters with their product.

The coproduct of neutral letters is defined in terms of placing distin-
guishable balls into distinguishable boxes. Hence, Aa =a® 1+ 1 ® a.
Moreover, the order in which we place distinguishable objects into the
boxes does not affect the result, so the coproduct is multiplicative. For
example, Aa?b = a’b®1+2abRa+bRa’ +a’?Rb+2a®ab+1®a?b. The
occurrence of the factor 2 in terms ab ® a and a ® ab comes from the
fact that objects of weight a are distinguishable. Finally, the counitary
property implies that the counit, e(W), equals 1 if W = 0, or equals 0
itW #0

Let A be an alphabet consisting of neutral and positively signed
letters. (Negative letters do not appear in our study of the Hopf alge-
bra structure of the MacMahon symmetric functions.) The superalge-
bra Super(A) is the algebra spanned by monomials in Div(A*) U A°,
where all letters commute and cocommute. So far, we have shown that
Super(A) has structure of a bialgebra. But it has a richer structure; it
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is a graded, Z/2 graded, commutative, (negative letters anticommute,)
cocommutative Hopf algebra, i.e., it is a supersymmetric algebra.

Theorem 1. Let A be a signed alphabet, then Super(A) has the struc-
ture of a supersymmetric algebra.

Given a monomial element W in Super(A), the degree W is defined as
the number of objects that W is weighting, and denoted by |WW|. There
are no negatively signed letters, so it is automatically Z/2 graded. The
antipode sends W to (—1)3M)y.

2.2. The Hopf algebra Gessel(A). In this section we give a combi-
natorial overview of the construction of the plethystic Hopf algebra
Gessel(A) from Super[A] introduced in [18]. Since the objective of this
paper is to study the Hopf algebra of MacMahon symmetric functions,
we assume that alphabet A is composed of neutral letters. Positively
signed letters will appear as the result of the construction of Gessel(A).

There are two operators that we can apply to an alphabet. On the
one hand, we can construct Div(A), making distinguishable objects
undistinguishable. On the other hand, from any alphabet A" we can
construct Super(A’), forming packages of those objects being weighted
by A’

Let A be an alphabet of neutral letters. First, we construct Super[A].
Then, we consider the monomials in Super[A] to be the positive letters
of a new alphabet and construct the supersymmetric algebra 3 defined
as Super(Div(Super[A])).

A monomial element in ¥ has the form (w)® (w")¥) ... (W")*) where
w, w', and w" are different monomial elements in Super[A] and is inter-
preted as the weight of a set of undistinguishable packages made out
of distinguishable balls.

We set (1) = 1. From the construction, we obtain that ¥ is graded
by saying that the degree of W is the number of packages of balls that
W is weighting. We denote the degree of W by |W]|.

2.3. The Laplace pairing. We introduce a Laplace pairing on X
sending (W, W') in ¥ x ¥ to (W|W’') in ¥ according to the following
rules. First, the Laplace pairing finds all possible bijections between
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the set of packages of W and the set of packages of W'. Then, for
each such bijection, if package (w) corresponds to package (w’), the
Laplace pairing puts all balls in w and w' together in the same package
of (W|W').

Theorem 2. Let U = (uq)(ug)---(uy) and V. = (v1)(va) - - - (v,) be
monomial elements of 3. Let M be the square matriz obtained from U

and V' by making (u;v;) be its ij entry. Then,

((ur)(uz) - -~ (un)[(01) (02) - - - (vn)) = Per(M).

Proof. The symmetric group S, is the set of bijections of [n] onto itself.
Therefore,

((ur)(uz) - - (wa) | (02)(02) -+~ (va)) = Y (wr0g1) (uzv2) - -~ (UnVon).

UESTL

By definition, this is the permanent of matrix M, see [12]. O

From the combinatorial definition of the Laplace pairing, we can
deduce a recursive definition [18]:
(1) Set (1]1) = 1.
If we pair the empty package with itself, we obtain the empty
package.
(2) If W = (w)® and if W’ = (")), with |w| > 0 and || > 0,
then (W|W') = (ww')® if i = j and (W|W') = 0 otherwise.
Let (w)® and (w)%) be sets of undistinguishable packages.
If 7 equals j, there is only one bijection between then. On
the other hand, if 7 is different from j, there are not bijections
between them.
(3) If W has packages of different weights, then (W |W') can be
defined recursively by the Laplace identity:

(UVIW) = (UWu) (VW)

where AW = Z W(l) & W(g).

Suppose that W has more than one class of packages. Let
UV be an arbitrary partition of W into two non-empty parts.
The Laplace pairing splits the packages weighted by W' in all
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possible ways by taking its coproduct. Then, it proceeds recur-
sively.

Nonzero terms can only occur when the degree of U equals
the degree of Wy and where the degree of V' equals the degree
of Wi9). In particular, (W|W’) is equal to zero if the degree of
W is different than the degree of W'.

Similarly, if W' has packages of different weights, (W |WW’)
can be defined recursively by the dual Laplace identities:

(UIVIW) = (U V) (U W),
where AU = Z U(l) X U(g).

The Laplace pairing allows us to define the circle product between
elements of ¥ by

(1) UoV = Z Uy (U Vi) Viz).-

For any signed alphabet A, the pair (X, o) is called the Cliffordization
of Super[A], and is denoted by Pleth(Super[A]). The construction of
Cliffordization of a supersymmetric algebra is studied in a more general
setting in [18], where the following result was obtained. When A is an
alphabet of neutral letters, we denote Pleth(Super[A]) by Gessel(A).

Theorem 3. Let A be any signed alphabet. The Cliffordization of
Super[A], denoted by Pleth(Super[A]) is an associative Hopf algebra.

The antipode is given by the Schmitt’s formula. Let W_,» = (1 —
E)W(Z-). Then,

(2) soW = Z(—1)7W<1> oWegs 0vv-0Weps.

For each k the antipode looks for all possible ways of splitting the
packages of balls weighted by W into £ different boxes, so that packages
of balls weighted by W_,~ are in box k, and such that no box remains
empty. Then, it takes the signed circle product of the weight of the
packages obtained in this way.

There are two different products on Gessel(A). One comes from the
algebra structure of Super[A], and is called the juxtaposition product,
and another one comes from the Hopf algebra structure, and is called
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the circle product. Later, we introduce a third product on Gessel(A),
the square product, and study some connections between the three of
them.

3. THE HOPF ALGEBRA OF MACMAHON SYMMETRIC FUNCTIONS.

Let A be an alphabet consisting of n neutral letters. There is an
isomorphism between the Hopf algebra Gessel(A) and the MacMahon
symmetric functions in n alphabets, denoted by 9", the Gessel map
[19]. In the particular case where A consists of one neutral letter, the
Gessel map defines an isomorphism between Gessel(A) and the Hopf
algebra of symmetric functions.

Moreover, we can associate a Hopf algebra Pleth(H) to any super-
symmetric algebra H [18] obtaining a generalization of the Hopf alge-
bra of MacMahon symmetric functions. This is an intriguing object of
study that we do not pursue here. A particularly striking case appears
when A is an alphabet of negative letters. Then, Pleth(Super[A]) is
isomorphic under the Gessel map to the skew-symmetric MacMahon
symmetric functions. In this case, the role of the permanent is played
by the determinant function.

3.1. The Gessel map. We define the Gessel map as the generating
function for a process of placing balls into boxes according to certain
rules [14, 15]. Suppose that we have an infinite set of boxes labeled by
the natural numbers. Let a be a letter in A. We write (ali) to indicate
that we have placed a ball of weight @ in box 7. Sometimes, we denote
(alt) by x;, (b|i) by v, (c|i) by z;, and so on.

Definition 4. We define the Gessel map G : Gessel(A) — IM" as the
linear map that sends the monomial W in Gessel(A) to the generating
function for the process of placing those balls being weighted by W
into distinguishable boxes labeled by the natural numbers, according
to the following rules:

e Balls that belong to different packages are placed to different
boxes.

e Balls that belong to the same package are placed to the same
box.
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A vector partition is a decomposition of a vector as a sum of vec-
tor with positive integer coordinates, with the assumption that the
order of the summands is not relevant. For example, (1,1)(1,0) is a
vector partition of (2,1). There is a bijection between monomial ele-
ments in Gessel(A) and vector partitions. The bijection sends mono-
mial W = (w;)@) .. (w))@ of Gessel(A), to vector partition \ =
(ar, by, 1)+ (a, by, -+, )", where a; is the number of elements
of weight a in wj, b; is the number of elements of weight b in w;, and
so on. In this case, we say that A is the vector partition associated to
the monomial element W.

A vector partition A = (ay,b1,...,¢1)(az,be, ..., c2) ... (a; by, -¢)
determines a monomial x* = a1y - .- Wbyt L gby
The monomial MacMahon symmetric function indexed by A is the sum
of all distinct monomials that can be obtained from x* by a permuta-
tion 7 in S,, where the action of 7 in x* is the diagonal action. That
is,

my = Z xgllyfll .- zlcllxz?yf; .. 22022 .. .gcgllyzl?ll .. chlz

different
monomials

The monomial MacMahon symmetric functions are a basis for the space
of MacMahon symmetric functions.

Theorem 5. Let W be a monomial element in Gessel(A), and let \ be
the associated vector partition. The image under the Gessel map of W
s the monomial MacMahon symmetric function my. Moreover, if A
s a partition of a number, then its image is the monomial symmetric

function my.

Proof. Let W be a monomial element in Gessel(A), and let

(ayby - c)) - (aby - - ;)™ be the corresponding vector partition.

If f is one of the placing described by the Gessel map, then the weight of

fis zj! yfll ezt yfl’ -+ 2;/, where the subindices are all different.
The weight of f uniquely determines f, because packages of the same

kind are undistinguishable. Henceforth, the image of W under G is the

monomial MacMahon symmetric function m. ([l

Theorem 5 shows that the Gessel map defines a vector space iso-
morphism between Gessel(A) and the MacMahon symmetric functions.
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Moreover, it allows us to define the monomial MacMahon symmetric
functions as the image under the Gessel map of monomial elements of
Gessel(A).

For instance, let A = {a,b} be an alphabet with two neutral let-
ters. Then, the monomial MacMahon symmetric function m1).,1) is
G(a®b)(b), that is it equals zi#(a|7})(2)(b|i)(b|j) = > iz Tiyiy;. Simi-

larly, the monomial symmetric function m) ) is G(a?)(a), i.e.,

> (al)®P(alj) = ata;.

i#] i#]

Definition 6. A monomial element in Gessel(A) is called elementary
if it corresponds to the weight of a set of one ball packages. Elementary
monomials have the form (a)® (b)) ... (c)®) with i, j, k greater than
or equal to zero, and where a,b,---, and c are letters in A.

A monomial element W in Gessel(A) is called primitive if it is the
weight of exactly one package of balls. Primitive elements have the

form W = (w), for some monomial element w in Super[A].

Elementary and primitive monomials correspond to the two extreme
ways of distributing packages of balls into boxes. We either place them
into different boxes or we put them in the same box.

Let W = (a)® (b)) ... (¢)® be an elementary monomial in Gessel(A).
Then, the image of W under the Gessel map is the elementary MacMa-
hon symmetric function e ;... xy. It corresponds to the generating func-
tion for all different ways of placing the balls being weighted by W into
different boxes. That it,

€ k) = [ -] H(l + sz +ty 4+ -+ uz).
!

For instance, the elementary symmetric function e, is G((a)™). Simi-
larly, the elementary MacMahon symmetric function e ») is G((a)(b)®),
it corresponds to > i<i, TV Yiy-
o all different
Let (a’b’ - - - d*) be a primitive element in Gessel(A). Then, its image
under the Gessel map is the power sum MacMahon symmetric function
P(i,j,—k)- 1t corresponds to the generating function for all different ways
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of placing the balls being weighted by (w) into one box. That is,
p(la]77k) = Zx;yl] T Zlk
l

For instance, the power sum symmetric function pg,) is defined as
G(a™) = Y, «7, and the power sum MacMahon symmetric functions

P(p,g) is defined as G(a?b?) = >, a¥y!. They are often called polarized

power sums.

3.2. The algebra structure. We define the circle product of elements
of Gessel(A) so that it corresponds to the ordinary product of MacMa-

hon symmetric functions.

Theorem 7. The Gessel map is an algebra map:
G(WoW') =GW)G(W")

For example, let W = (a)®(ab), and W' = (ac). On the one hand,
W o W' = (a%c)(a)(ab) + (a)®(a’bc) + (a)®(ab)(ac). On the other
hand, G(W) =3, g vixjzrye, GW') = 32, ziyi, and G(WoW') =

2 2
D difr. Vi ZiTiTkYk + D i i (zoxjoiynzr + Tt Teypiz).

Let Wy, Wa, - -+, W, be elementary (primitive) monomials in Gessel(A),
and let A, Ag,---, A, be the associated vectors. Then, we say that
A= A1, Ay, - -+, A\ is the vector partition associated to WioWyo---0W).

In particular, if W is an elementary (primitive) monomial, then the
vector partition associated to W has exactly one part.

A vector partition is unitary if it is a partition of a vector such that
all its coordinates are equal to one. Unitary vector partitions can be
identified with partitions of a set.

Theorem 8. Let Wi, Wy, --- W, be elementary monomials such that
the associated vector partition X is unitary. Then, the expression for

WioWso---oW, in the monomaial basis is the following:
WioWyo---o W, = Z .
7AA=0

where the join is taken on the partition lattice. It corresponds to all
different ways of placing the balls being weighted by W, oWy o0---0 W,
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into boxes, with the condition that balls in different packages of ™ go
into different bozes.

Proof. 1t follows from the combinatorial interpretation for the elemen-
tary MacMahon symmetric functions found in [14]. O

For example, (a)(b) o (¢) = (ac)(b) + (a)(be) + (a)(b)(c).

Theorem 9. Let Wi, Wy, --- W, be primitive monomials such that the
associated vector partition \ is unitary. Then, the expression for Wi o
Wsyo---oW; in the monomial basis is given as the sum of all monomials
bigger than or equal to the partition Wi Wy -+ - W,. It corresponds to all
different ways of placing the balls being weighted by 7 into boxes, with
the condition that balls in the same package of WiWs -+ - W, go into the

same boz.

Proof. Tt follows from the combinatorial interpretation for the power
sum MacMahon symmetric functions found in [14]. O

For example, (ab) o (cd) o (e) = (abede) + (abed)(e) + (abe)(cd) +
(ab)(cde) + (ab)(cd)(e).

What happen in theorems 8, and 9, when the partition A is not
unitary? After we make two distinguishable balls undistinguishable,
equation p(i0)o,1) = M(10)0,1) +m(1,1) becomes puya) = 2ma) +me.
There are two different situations in the term m; g)(0,1) that become the
same one under the divided powers operator, explaining the occurrence
of the factor of two in front of m)().

It is possible to compute the transition matrix between the different
bases of the ring of MacMahon symmetric functions, as well as their
scalar or inner product, by lifting those computations on the ring of
MacMahon symmetric functions to the partition lattice, and using its
Mobius function [14, 15]. This is done by the introduction of two oper-
ators on the space of MacMahon symmetric functions, the projection
operator and the lifting operator, fitting nicely on this framework.

The operation induced by the Laplace pairing on the algebra of
MacMahon symmetric functions gives it the structure of a plethystic
Hopf algebra. The Laplace pairing corresponds to permanent function

on the monomial basis.
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Let (wy)(wa) - - - (wk) and (w])(w)) - - - (w)) be monomials in Gessel(A).
Then ((wy)(wse) - - - (wk)|(w]) (w)) - - - (w;)) equals zero if k& # [. When k =
[, it equals the permanent of the matrix which 7, j entry is (w;w;). For
example, ((a®)(a)|(a®)(a)) = (a*)(a®) + (a®)(a®) = (a*)(a®) + 2(a®)®).
Then, (mo1|ma;) equals mys + 2mygs.

The operation induced by the Laplace pairing does not correspond to
the plethysm of symmetric function. In particular, the Laplace pairing

is symmetric.

4. INVOLUTION w AND THE SQUARE PRODUCT.

On the MacMahon symmetric functions there is a remarkable op-
eration called involution w [9, 23] corresponding, up to a sign, to the
antipode sy of Gessel(A). We use the antipode to define two remark-
able basis for the MacMahon symmetric functions: the homogeneous
and the forgotten MacMahon symmetric functions. We describe invo-
lution w in terms of the antipode of Super(A), and of the antipode of
Gessel(A) as follows:

w((W)(Wa) - - (W) = so(s(W1))(s(W2)) - - - (s(Wi)))

where s denotes the antipode of Super(A4) that sends W to (—1)deeM) 1y
Moreover, we define the square product between monomial elements in
Gessel(A) by

WOW' = w[w[W]w[W']].

For example, (a)d(a) = wlw[(a)]w[(a)]] = 2!'s0[(—1)2(a)@] = 2!((a®+
(a?)). The image under the Gessel map of (a)J(a) is the homogeneous
symmetric function hy. We define

e = @O0 00)
n!

An element of Gessel(A4) of the form (a)MO(b)V!- .- O(c)* is called a
Wronski element. The homogeneous MacMahon symmetric functions

are the image under the antipode of the elementary MacMahon sym-
metric functions. The image of a Wronski element under the Gessel
map is a homogeneous MacMahon symmetric function, as we can easily
check by taking the antipode at both sides of the defining equation.



MACMAHON SYMMETRIC FUNCTIONS 15

Theorem 10. The image of (a)P0(b)Y...0O(c)¥ under the Gessel
map 18 the MacMahon symmetric functions hg ... p).

Moreover, h; ... k) is the generating functions for the process of plac-
ing the balls being weighted by (a)P (b)) .- (c)*) into bozes, with the
condition that distinguishable balls within the same box are linearly or-
dered. That is,

o 1
hei oo Sltj...uk:
uz:k e 1:[ L—mis—yit =+ — ziu
Proof. The combinatorial description follows from [14, 15]. O

The homogeneous MacMahon symmetric functions are a multiplica-
tive basis for the space of MacMahon symmetric functions.

To introduce the forgotten MacMahon symmetric functions we need
the following lemma.

Lemma 11. Properties of the square product
(1) so[W o W] = so[W] 0 5o[W]
(2) so[WW'] = so[W]0so[W']
(3) so[WOW'] = s9[W]so[W']
Moreover, the associativity of the juxtaposition product implies the

associativity of the square product.

The forgotten MacMahon symmetric functions are defined as the im-
age under the antipode map of the monomial MacMahon symmetric
functions [4]. We have seen that the monomial MacMahon symmetric
functions correspond to the image under the Gessel map of the mono-
mial elements of Gessel(A). So, the previous lemma implies that the
forgotten MacMahon symmetric functions are the image of monomial
elements when using the square product instead of the juxtaposition
product.

Theorem 12. Let D = (w;)0(wy)VI0- - O(w)* be a Doubilet el-
ement and let N\ be the vector partition associated of its underlying
monomial. The image of D under the Gessel map is the forgotten
MacMahon symmetric function fy.

The forgotten MacMahon symmetric function corresponding to the
Doubilet element D is the generating function for the process of placing
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the balls being weighted by D into boxes, where balls coming from the

same package go to the same box, and where we require that within each

box, the packages appearing are linearly ordered.

To summarize, we describe the action of the Gessel map on the three

different products defined for the MacMahon symmetric functions.

(1)

The juxtaposition product. The image of a monomial element
in Gessel(A)

(UJ)(Z) (’LU,)(]) cen (w//)(k)

under the Gessel map is the generating function for the process
of placing balls into boxes, where balls in the same block go
to the same box, and where balls in different blocks go into
different boxes.

The square product. The image of a Doubilet element in

Gessel(A)
(w)[i]D(w’)U]D e D(w”)[k]

under the Gessel map is the generating function for the process
of placing balls into boxes with the condition that balls that
come from the same package go into the same box, and that
within each box the packages appearing are linearly ordered.
The circle product. The image of a circle product of monomial
elements in Gessel(A)

WioWsyo---0W,,

under the Gessel map is the generating function for the process
of placing balls into boxes, where for each ¢, balls in the same
block of W; go to the same box.

5. ACKNOWLEDGMENTS

We want to thank the anonymous referee for many useful suggestions

to improve the clarity of this paper.



MACMAHON SYMMETRIC FUNCTIONS 17

REFERENCES

[1] E. Abe, Hopf algebras, Cambridge tracts in mathematics, Cambridge Univer-
sity Press, 1997.

[2] A. Cayley, On the symmetric functions of the roots of certain systems of two
equations. Phil. Trans., vol. 147. (1857).

[3] M. Barnabei, A. Brini, and G.-C. Rota, Section coefficients and section se-
quences, reprinted in Gian-Carlo Rota on Combinatorics, Birkhauser 1995.

[4] P. Doubilet, On the foundations of combinatorial theory. VII: Symmetric func-
tions through the theory of distribution and occupancy, Stud. Appl. Math.
Vol. LI No. 4 (1972), 377-396. Reprinted in Gian-Carlo Rota in Combinatorics,
J.P. Kung Ed., Birkh#user, (1995), 403-422.

[5] LM. Gessel, Symmetric Functions and P-recursiveness, J. of Comb. Th. A.
53 (1988), 257-285.

[6] .M. Gessel, Enumerative applications of Symmetric Functions, Actes 17¢
Séminaire Lothaingien, Publ. .R.M.A. Strasbourg, 348/ 5-17, (1988), 5-21.

[7] F.D. Grosshans, G.-C. Rota and J. Stein, Invariant theory and Superalgebras,
CBMS Regional Conference Series in Mathematics, 69. American Mathemat-
ical Society, 1987.

[8] S.A. Joni and G.-C. Rota, Coalgebras and Bialgebras in Combinatorics,
reprinted in Gian-Carlo Rota on Combinatorics, Birkhauser 1995.

[9] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second edition,
Oxford Science Publications, Oxford University Press, 1995.

[10] P.A. MacMahon, Combinatorial Analysis, Vol 1-2, Cambridge University Press
1915, 1916; reprinted by Chelsea, New York 1960.

[11] P.A. MacMahon, Memoir on symmetric functions of the roots of systems of
equations, reprinted in Percy Alexander MacMahon. Collected Papers. Vol. II,
MIT Press 1986.

[12] H. Minc, Permanents, Encyclopedia of Mathematics and its applications, Vol.
6, Addison—Wesley 1978.

[13] P.J. Olver, Classical Invariant Theory, London Mathematical Society Student
Texts 44, Cambridge University Press 1999.

[14] M.H. Rosas, A combinatorial overview of the theory of MacMahon symmetric
functions and a study of the Kronecker product of Schur functions. Ph.D.
Thesis. Brandeis University (2000).

[15] M.H. Rosas, MacMahon symmetric functions, the partition lattice, and Young
tableaux, Journal of Combinatorics Theory. Series A. 96, No. 2, pp. 326-340.
November 1, 2001.

[16] M.H. Rosas, Specializations of MacMahon symmetric functions and the Stirling
numbers, Discrete Mathematics, 246 (1-3) (2002) pp. 285-293.



18 M.H. ROSAS, GIAN-CARLO ROTA, AND J. STEIN

[17] G.-C. Rota, Hopf algebra methods in combinatorics, reprinted in Gian-Carlo
Rota on Combinatorics, Birkhauser 1995.

[18] G.-C. Rota and J. Stein, Plethystic Hopf algebras, Proc. Natl. Acad. Sci.
USA. VOL. 91, pp. 13057-13061.

[19] G.-C. Rota and J. Stein, Plethystic algebras and vector symmetric functions,
Proc. Natl. Acad. Sci. USA. VOL. 91, pp. 13062-13066.

[20] G.-C. Rota and J. Stein, A formal theory of resultants. I. An algorithm
in invariant theory. Algebraic combinatorics and computer science, 267-314,
Springer Italia, Milan, 2001.

[21] G.-C. Rota and J. Stein, A formal theory of resultants. II. A constructive
definition of the resultant. Algebraic combinatorics and computer science, 315—
342, Springer Italia, Milan, 2001.

[22] Schlafli, Ueber die Resultante Eines Systemes mehrerer algebraischen Gle-
ichungen, Vienna Academy Denkschriften, vol. 4, (1852).

[23] R. Stanley, Enumerative Combinatorics, Vol. II, Cambridge Studies in Ad-
vanced Mathematics 62, Cambridge University Press, 1999.

DEPARTAMENTO DE MATEMATICAS. UNIVERSIDAD SIMON BOLIVAR. APDO.
PosTaL 89000. CARACAS, VENEZUELA.

FE-mail address: mrosas@usb.ve

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY AT SAN
BERNARDINO, SAN BERNARDINO, CA.

E-mail address: jstein@csusb.edu



