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SHARP L^-WEIGHTED SOBOLEV INEQUALITIES(*)

by Carlos PEREZ

1. Introduction and statements of the results.

The purpose of this paper is to prove sharp weighted inequalities of
the form

(1) / \f{x^v{x)dx^C ( |p(^)(/)(^|2^)(.^)^
./R71 JR^

for homogeneous differential operators p{D). N will be an appropriate
maximal type operator related to the order of the differential operator. We
say that N "controls" the differential operator p(D). These inequalities will
be derived from corresponding weighted inequalities for fractional integrals
or Riesz potentials similar to those obtained in [P2] for singular integral
operators. The approach for potentials is direct and does not rely upon the
duality argument used in [P2].

A model example for (1) is related to the theory of Schrodinger
operators. This theory has recently received a lot of attention after the
work by C. Fefferman and D. H. Phong described in [F]. In that paper the
following problem is proposed. Let v be a nonnegative, locally integrable
function on ^n, and consider its associated Schrodinger operator L =
—A—v. Then, integration by parts says that L is a positive operator
whenever the "uncertainty principle" holds, namely

( if^v^dx^ ( IV/^)!2^,
JR71 JR"

(*) work partially supported by DGICYT grant PB90187, Spain.
Key words'. Weighted inequalities - Sobolev inequalities - Fractional integrals.
Math. classification: 42B25 - 42B20 - 42B15.
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for smooth functions /. One is thus led to consider conditions on v which
would imply weighted Sobolev inequalities of the form

(2) / \f(x)\2v(x)dx<C^ ( |V/(a;)|2^.
./R71 JR"

A sufficient condition for (2) is given when the potential v satisfies
for some r > 1

(3) suplOl^f— f v(yYdy\ < oo,
Q \\Q\JQ )

where the supremum is taken over all the cubes in R/1. This is the so
called C. Fefferman-Phong condition obtained in [F]. Observe that we can
rephrase this condition by saying that the potential belongs to the Morrey
space ^r''n-2r'. The case r = 1 is necessary but not sufficient.

We shall consider inequalities of the form

(4) / {/{x^v^dx^C I ^/(x^N^^dx,
JR71 JR"

with C independent of / and v, such that we can recover conditions like
(3) or similar when assuming that N(v) € L°°.

One way to prove (4) is by means of the inequality

(5) \f(x)\<ch(\^f\){x)
which follows from the classical Sobolev integral representation ([Ma],
[Sti]). Here la, 0<a<n, denotes the fractional integral of order a on R/1

or Riesz potentials defined by

w=f -/(^-JR- \x - y\
Therefore one is now led to consider for p > 1 weighted inequalities of the
form

(6) / ^f^v^dx^C { ^{x^N^x^x.
JR" JR71

Perhaps the first result of this kind was obtained by D. Adams [A]:
let r > 1 then

(7) / ^{x^v^dx^C f {f^M^W^dx^
./R71 ^R71

where M^, (3 > 0, denotes the Marcinkiewicz or fractional maximal
operators

|n|^/71 /•
M^(.r)=sup^—— / \f(y)\dy.

x^Q IVI JQ



SHARP L9-WEIGHTED SOBOLEV INEQUALITIES 811

Observe that (7) with a = 1 and p = 2 yields the C. Fefferman-Phong
condition since (3) is equivalent to M^r^Y^ € L00.

Our goal will be to sharpen (7) by replacing M^^)^)1^ by
appropriate pointwise smaller operators. In fact our estimates are closely
related to the work done in [CWW] by A. Chang, M. Wilson, and T. Wolff
in the case p = 2, and for general p > 1 by S. Chanillo and R. Wheeden
in [CW]. In these papers the sufficient condition (3) is sharpened in a very
nice way. We recall the result for p = 2. Let (p : [0, oo) —^ [1, oo) increasing
and doubling such that

r00 i dt
h W^<oo'

Then a sufficient condition is given by
\n\2/n r

(8) -joj- j ^vM^ym^dy < c.
Observe that the case ^p(t) = f~1, r > 1 corresponds to (3), but a more
interesting example is obtained from (p(t) = (1 +log+ ̂ 1+£ with e > 0. We
shall point out in Remark 1.5 that this condition is related to iterations of
the Hardy-Littlewood maximal function M at least when e is a positive
integer, and for "fractional iterations" of M in the general case (see also
Remark 1.4).

It should be mentioned that E. Sawyer obtained in [S2] a full charac-
terization of the two weight problem for la

( {lafW^v^dx^C { {/{x^u^dx.
J^ JR"

However, such condition is difficult to test and in particular we do not
know how to recover our results (part (A) of the Theorem). Also, R. Long
and F. Nie [LN] have given a complete characterization of the two weight
problem for the gradient, namely

/ \f{x)\t2v{x)dx<Cy f \\/f(x)\\(x)dx.
J^ JR^

The condition for this problem is less restrictive than Sawyer's condition
but still difficult to verify. We do not pursue in this direction and remit to
[SW] for more information related to both problems.

As we mentioned above our results for potentials are related to the
work in [P2] (also [Wil]), where the main result is the following. Let T be
a classical singular integral operator (see [GCRdF]) and let 1 < p < oo.
Then there exists a constant C such that for each weight w

.(9) / \Tf\x)\pw(x)dx^C { \f{x)\PM^lw(x)dx.
J^ JR"
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(k}
Here Mk = Mo ' • • oM denotes the Hardy-Littlewood maximal operator
M iterated k times. This result was first obtained by M. Wilson in [Wil] in
the range 1 < p <, 2. The estimate is sharp since it does not hold for M^.
The method used in [P2] is different from the one in [Wil] and it relies upon
a duality argument combined with sharp weighted estimates for M from[PI].

As we said we are going to consider a different approach for the
potentials. We shall treat them directly by writing down the operator as a
sum of pieces after breaking down the kernel appropriately. Then, we shall
combine ideas from [SW] and [P3] to sum up the pieces to get the desired
estimates. In fact, this is one of the main points of the paper, namely that
we can get optimal weighted inequalities for potential operators by using
size estimates only. In this fashion we avoid the duality argument in [P2].

Our method is flexible enough to produce also sharp weighted esti-
mates of the form

(10) / ^afW^v^dx^C ( M^(f)(xrN(v)(x)dx.
./R71 JR"

THEOREM 1.1. — Suppose that 0 < a < n and that v is a
nonnegative measurable function on R71.

(A) Let 1 < p < oo. Then there exists a constant C = Cn,p such
that

(11) / ^f(x)\pv(x)dx<C f ^WfM^M^v^dx.
./R71 JR"

(B) Let 1 < p < oo. Then there exists a constant Cn such that

(12) I ^fWv^dx^C ( M^{f){xrM^\v)(x)dx.
JR71 JR"

When p = 1 we can find a constant C such that

(13) / \I^f(x)\v{x)dx <,C { Mo,f(x)Mv(x)dx.
JR" JR^

All these estimates are sharp since we cannot replace [p] by [p] — 1.
Some counterexamples will be given in §5.

That these estimates are sharper than (7) can be seen from

Remark 1.2. — Let k = 1,2,3, • • • and r > 1. Then there exists a
constant C = Cn,r,k such that for all non negative functions v
(14) M^M^v))^) ̂  CM^KX)^.
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This follows from standard arguments and the fact that
(15) M^Qr) < C^M^)^)1/7",
where C = Cn,r is the best constant in the inequality Af^M^7')1/7') <
CM^Y/7' (see [GCRdF], p. 158).

Some of the consequences for differential operators are as follows.

COROLLARY 1.3.

(A) There exists a dimensional constant C such that

(16) f \f(x)\2v(x)dx<C { IV/^A^M2^))^)^
^R71 JR"

foraJJ/eCo^R71).

(B) There exists a dimensional constant C such that

(17) / ^(x^v^dx^C ( lA/^I^M2^))^)^
./R71 JR"

forallf eC^^).

Part (A) follows from (5) and part (B) follows from the fact that
/ = l2(A/). Part (B) is related to the work done in [CR] and [CS].

Remark 1.4. — If we look at the proof of the theorem we have the
more precise estimate

(18) / {f^v^dx^C f |V/(a;)|2M2(M^og^(^;))^)d.^,
^R" JR"

and the result is false for e = 0. M^^^y is a maximal type operator
which can be seen as a fractional iteration of M (cf. next section for the
precise definition). A corresponding result holds for A/.

Remark 1.5. — As we mentioned above inequality (16) (and also
(18)) is related to condition (8) of Chang, Wilson, and Wolff. Indeed if the
potential v satisfies tha,t

M2(M2^)) e L°°
then for some constant C and for all cubes

\Q\2/n—! M^Wdy^C.
IVI JQ

Let y(t) = (1 + log^)2. Then by homogeneity and Stein's inequality [Sti]
(see (33) below) we get

^/ ̂ ym^Mvm^dy < — f M^v^^dy

lOI2^ /*=l-^j^Wy<c,
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yielding (8).

Another antecedent of the inequality in part (A) of the theorem is the
following generalization due to E. Sawyer [Sl] of the celebrated weighted
inequality of C. Fefferman and E. Stein [FS1]

I {M^x^w^dx^C I ^{x^M^w^dx.
./Rn JR71

Observe that this estimate combined with (12) does not yield inequality
(11). We loose one iteration by doing this.

2. Some preliminaries and notation.

As usual, a function B : [0, oo) —> [0, oo) is a Young function if it is
continuous, convex and increasing satisfying B(0) = 0 and B(t} —> oo as
t —>• oo. We define the J9-average of a function / over a cube Q by means
of the Luxemburg norm

w ii/ii...-"^^/^(T)^1}-
The following generalized Holder's inequality holds:

(20) —y \f{y)g(y}\dy < \\f\\^ \\g\\^

where B is the complementary Young function associated to B.

We define a natural maximal operator associated to the Young
function associated to B.

DEFINITION 2.1. — For each locally integrable function f the
maximal operator M^ is defined by

M^f{x)= sup H/11
xeQ "

where the supremum is taken over all the cubes containing x.

The main examples that we are going to be using are B(t) = t(l +
log4'^)771, m == 1 , 2 , 3 , - - ' , with maximal function denoted by M^iogi/)7"-
The complementary Young function is given by B(t) ̂  et with corres-
ponding maximal function denoted by A^/gxpL)1/7"-

The relevant class of Young functions is the following.
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DEFINITION 2.2. — Let 1 < p < oo. We say that a doubling Young
function B satisfies the Bp condition if there is a positive constant c such
that

fJ c B(t) dt
-i-t<oo•

This condition gives a characterization of those maximal operators
MQ which are bounded on L^R^), 1 < p < oo. In fact, we have the
following.

THEOREM 2.3. — Let 1 < p < oo. Suppose that B is a Young
function. Then the following are equivalent:

i)

(21) B € B^

ii) there is a constant c such that

(22) / M^fWdy^cf /{yfdy
JR71 ^R71

for all nonnegative functions f;

iii) there is a constant c such that

(23) { M^f(y)Pw{y)dy<c f f(y)PMw{y)dy
JR71 JR71

for all nonnegative functions f and w;

iv) there is a constant c such that

'24' L^'w^^-'L^^-
for all nonnegative functions f, w and u.

In the proof of Theorem 1.1 and for p > 1 we shall be working with
Young functions of the form B(t) w t'p(\ogt}~l~£ which satisfies the Bp
condition and therefore their associated maximal operators M ^ ^-i-e
are bounded on L^R").

The proof of this result can be found in [PI].
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3. Basic lemma.

LEMMA 3.1. — Let f and g be L°° functions with compact support,
and let u. be a nonnegative measure finite on compact sets. Let a > 2"-,
then there exists a family of cubes Qkj and a family of pairwise disjoint
subsets Ekj, Ekj C Qkj, with

(25) \QkJ\<Yl^W
a

for all k,j, and such that

(26) / Iaf{x)g(x)d^(x)
./R-

^ ̂ E l^r|: / ^y^—i I 9(y)d^y)\E^.
hj l̂ ,j| JSQ^ \Vkj\ JQ^

Proof. — Observe first that Iaf{x) < oo for all x e R". Then, we
discretize the operator I^f as follows:

^)=E/ , , r^^l.ez72~'~l<la;-2/l<2-l/ \x-y\

-E E XQWf ^^———dy
v^L Q^-D JW)/2<|a;-2/|<^(Q) \x-y\

<(Q)=2-^

< „ v- IQI^" /• ,/ ,, ,,<1CL^ ~\oT /, i fWyxQ(x).
QGV M ^y - x\^e(Q)

T> denotes the family of dyadic cubes on R". Since the ball B(x,C(Q)) is
contained in the cube 3Q when x € Q we have

__ \o\a/n r
^(^E'^r fWyx^Y

Qep 1 " 1 "^Q
and then

f lOI0^71 r r
\ Wx)g(x)d^x) < c ̂  1-̂ — / f(y)dy \ g(x)d^(x).
JRn Q^D w ^Q ^Q

Recall that a><ln and consider for each integer k the set

Dk = {x e R71 : M^^)^) > a^},
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where Md is the usual dyadic Hardy-Littlewood maximal operator. Then
it follows that if Dk is not empty there exists some dyadic cube Q with

(27) a^— f g(y)d^y)^

then Q is contained in one dyadic cube satisfying this condition and
maximal with respect to inclusion. Thus for each k we can write Dk =
UQfcj where the cubes {Qkj} are nonoverlapping, they satisfy (27), and
j
by maximality we also get

(28) ^ < ——— { g(y)d^y) < 2^.
\VkJ\ JQk,j

We also need the following property. For all integers k,j we let
Ekj = Qkj — Qkj n Dk+1- Then {Ekj} is a disjoint family of sets which
satisfy

(29) |Q^nD^i|<^|Q^|,

and therefore

(30) \Qkj\ < -^-l^\Ek^
a

Indeed, by standard properties of the dyadic cubes we can compute what
portion of Qkj is covered by Dk^i as m [GCRdF], p. 398:

\Qkj nPfc+il ^ y^ IQfcj nQfc+i,z| ^ v^ |Qfc+i,z|
1^-1 =z- l̂ -l "̂ CQ... l̂ -l

<^Tr E lo1-^/- ^d^)
a i^^CQ^^^^^

^n i r 2n

^a^r^/ ^)^)<^.a l l^fc^l JQfc,jnu,Qfc-n,i a

This gives (29).

We continue with the proof of the lemma by adapting some ideas
from [SW]. For each integer k we let

Ck={Q^-D:ak<— I g{y)d^{y) < a^1}.
M JQ

Every dyadic cube Q for which J^ g(y)dp,(y) -^ 0 belongs to exactly one
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Ck. Furthermore, \iQ^Ck it follows that Q c Qkj for some j. Then

f I.f(x)g(x)d^x) < ̂  ̂  I9—— /* /(^ /* ^)d/^)
l/R feezoe^ M ^ ^Q

^^^E E IQI^/ A?/)^
k.^'7. i(=7. ^/-/.fc -'30

a^a^ _
kez jez Qecfe J30

QCQfc,,

^^EmS/1 ^^Q^t fWy.kj \^kJ\ 7Q^, y3Q^^.

The last inequality follows from the fact that for each dyadic cube P

E ̂ a/n I WV < W^ t f(y)dy.
Qe-D ^3Q Jap
QCP

Indeed, if £(P) = 2~l/o

E^r771/ /(^=c^ ^ 2—/ /(^
^^ l/3Q ^VQ QC-D-.QCP l/3QQCP ^(Q)=2-^

~)—VOL=C^-2-va ^ /' /(y)dy

i/>^o Qe'D-.Qc? l/3QV>YQ Q€'C':QCP l/3Q
^(Q)=2-^

_ fWy
Qe-D-.QcP ^SQ
^(Q)=2-^

^(Q)=2-^

< GIPÎ  ^ /*
Qe-D-.QCP V3(^
£(Q)=2-^

^ C\p^/n f ^y

J3P

since the overlap is finite. Hence

/ Iaf(x)g(x)d^(x)
^R71

|30jL l^^ /* 1 /•
^ ̂ E ^Q,. / /^^To— / <?(y)<WI<^l„, i^fcj jaofc- i<yA;,, J o , ,^ \3Qkj ^,^-IQ.,, yQ,,
<^V-|3M^/- „ / , , 1 /•^^^^o-—/ f(y)dy-^—/

kj Wk,j\ JSQ^, \Qk,j\ JQ^

by (30). Q

^E13^1 / ^^V^—l 9W^y)\Ekj\,
k,j Wk,j\ JSQ^,, \Vk,j\ JQ^^
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4. Proof of the theorem.

Proof of (A). — Since p > 1, it is enough to show that there exists
a positive constant C such that

(J) = / I^f{x}v{x)^g{x)dx
./R71/R71

r r "1VP r r -i
<C / /(^M^(M^^)(.z1)^ / g{xYldx\

i i/p r /• . 1 VP'
L^/R71 J L*/R71 J

for all nonnegative, bounded functions / and g with compact support. Now,
by Lemma 3.1 with dp,{x) = v(x)l/pdx we have that

w<^E^T/ ^^^-T/ ^^( î̂ i.^ i->yfc,ji jsQfc,, lyfcji^Qfe,,
Next we apply the generalized Holder's inequality (20) with respect to the
associated spaces L^logL)^-1)^) and L^logL)-1-^ e > 0, (see [0]
for instance). After that we apply Holder's inequality at the discrete level
with exponents p and p ' . We can follow the estimate with^^rL/"'̂ "^"^..—'̂ '"^ Wkj\ J3Qk,j "LP(logl/)(P-i)( i+^) '

^"^^J '̂l
i/p'

^s(̂ „̂/( )̂"llt•/'«:.,...„.-..,-.|̂ |
1/p

i/p'Eii^e^^-j^i^j
Now, if e = - ^ - - 1 > 0, thenp - 1

(31) ||^/.p|r =|H|
LP(logL)(P-l)(l+£') L(logL)h]

Now, we need the following lemma

LEMMA 4.1. — If k = 1,2,3,'", then there exists a constant
C = Cn such that for all bounded functions f with support contained
inQ
(32) ^^.^wS^^-
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Indeed, by homogeneity we can assume that the right hand side is
equal to C. Then by the definition of the Luxemburg norm it is enough to
prove

— I fW^o^UW^dy^C^
M JQ

but this is a consequence of iterating the following inequality of E.M. Stein:

/ t/(2/)(l+log+(/(2/))) f ed2/^a
JQ
ce of iterating the following inequ

(33) / /Q/)(l + log^/Q/)))^ < C ( Mf(y)(l + log-^M/Q/))^-1^
JQ JQJQ

with k = 1,2,3, • • • .with k = 1,2,3, • • • .

Then using (31) and (32) we get

W<C^%1^! f(y)dy\ ———( MWv(y)dy\E^
^\ Wkj\ J3Qkj ) \Qk,j\JQ^

i/p'

E
kj

LP' (logL)-1-®
\Ek,,\

( \ ^

<c E/ W)—\l f{v)M^(M^v)(y)^dy\ dx
^JB^ Wk,j\J3Q^ )

1/P'

V t M , , g(x)p'dx
2-̂  / L P ' V o s L ) - 1 - ' " ' '
k,j J E I ' , 3

i/p

1/p

< C y / M(/Map(M[plv)l/p)(a;)pda;
[k,j J^

ASUw

ii/p'
x / M . . g{xY dx\

Un^ ^o"^)-1-^' / J
r r 1 ̂  r /* 1 l/p/

< c / ^^(^^(M^'y)1^)^^ x / ^(^/d^
L^R71 J L^R71 J

r r -| VP r /• -i I/P'
^ / /(^M^(M^^)(^)& x / g(xY'dx\ .

UK"- J L./R71 J

We used first that the sets in the family Ekj are pairwise disjoint.
Also it is used that M is a bounded operator on L^R^) and that the
maximal operator M , _^ is bounded on L^R^) by Theorem 2.3
since the Young function B(t) w ^(logt)"1"^ satisfies the Bp' condition.
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Proof of (B). — Consider first the case p > 1. Hence as above we
prove that

(J) = ( I^f(x)v{x)l^g(x)dx
JR71

r r 1 l /p r r / I l / p /

<C / M^^^M^1^)^)^ / p(^&
L/R71 J L/R71 J

for all nonnegative, bounded functions / and g with compact support. Now,
by Lemma 3.1 with dp.(x) = v^x^^dx and by the disjoint property of the
sets Ekj we have

w < ̂ E13^-^ / f^w-^ [ ^ww^
——y Wk,j\ J3Qk,j \V^j\JQk,j

^ [ Ma{f){x)M(v^g){x)dx
kj JEk^

< ( MaUWM^g^dx.
JR71

Using again that the spaces L^logL)^-1^1-^ and £^(logL)-1-6,
e > 0, are associated one to each other we can apply the generalized
Holders inequality (20)

^C/^M^n^M^^^^^^^^^M^^^^.,^

r r l1^
< C [j^ MMWM^^^ (.l/P)( ĵ

r r ' ^fpt
x \ M , , ^^dx}

[J^ LP'^L)^-^^ ) \

As above taking e = - 1 > 0 and using Lemma 4.1 we getp-1
r r ily/p r /* / l ̂

(J) < C \ Ma(fWM^\v}{x)dx\ x / g{xY dx\
LJR" J U^ J

since as above B € Bpi and we apply again Theorem 2.3. D

5. Examples.

We show in this section that the results in Theorem 1.1 are sharp.
For part (A) we show that

/ ^fWfw^dx^C f WfM^M^wWdx
jRn JR"
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is false in general. By duality, this inequality is equivalent to

/ VafWM^M^w^xY-^'dx^C { ^(x^'w^-^dx.
^R71 JR^

Let / = w = \B where B = B(0,1) is the unit ball centered at the origin
so that the right hand side is finite. For the left hand side we get

/ lafWM^M^f^x^-P'dx
JR71

> f ^(xY'M^M^f^xY-^'dx
JR"

> I M^f(x)pfM^{M^-lf){x)l-pfdx.
J\X\>e

Now for \x > 1, 0 < a < n, k = 0,1,2, • • • we have

M,(M-/)(.) . ̂ ^.

Then

{ M^x^M^M^f^xY-^dx
J X\>e

^ f i ^(logM)^-1^^ / I v 0 ' 1 / I ^
^h\>.^^{~^~) dx

w [ (log^^-^-^dx
J\X\>e

/oo
tW-iW-p-^t = ̂

_

Finally we also show that

/ {lafix^w^dx^C ( M^f)(x)PM^{w)(x)dx
JR" JR^

is false in general. We cannot use duality since we do not have the dual
space of the Banach space {/ : Jp, Ma{f)(x)Pv(x)dx < 00}.

Let n = 1, 0 < a < 1, and 1 < p < 2. Consider f(y) = Xco,!)^/)!^"0.
Then we have

Iaf(x) >C71og 1 0 < ; r < l ,
/y

and
M^f{x) ̂  Cn.



SHARP I^-WEIGHTED SOBOLEV INEQUALITIES 823

For e > 0 we let w{x) = ^(o i)^)-?—^-^T?- Then
v ' e ^ a l̂og ̂

M(w)(a;) ^ w(a;) log - 0 < x < 1.
x

Hence
/* /ll/e / IV 1/ J,/(^w(^ > C / log - ————^cte

^R JO \ x / x(\0g^)

r00 i dt
=h t^J=00

if we choose 0 < £ < p — 1. On the other hand

/ M^f{xYMw(x)dx
JH

<CP [ Mw{x)dx-}- [ —,—^Mw(x)dx
~ J\X\<l/e 7|a;|>l/e ̂ -^

, /ll/e 1 dx - /•00 1 dx<C ————-rr—+C ——-—< oo.
~ Jo (log^ x Jl/e^1-^ X
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