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CHARACTERIZATION OF DUAL MIXED VOLUMES VIA

POLYMEASURES

CARLOS H. JIMÉNEZ AND IGNACIO VILLANUEVA

Abstract. We prove a characterization of the dual mixed volume in terms
of functional properties of the polynomial associated to it. To do this, we
use tools from the theory of multilinear operators on spaces of continuos func-
tions. Along the way we reprove, with these same techniques, a recently found
characterization of the dual mixed volume.

1. Introduction

The Brunn-Minkowski theory is one of the cornerstones of modern Convex Ge-
ometry. This theory can trace back its origin to Minkowski’s efforts to study the
relation between two basic mathematical concepts on the set of Convex Bodies:
Minkowski (or vector) addition and volume. Among the main objects of study on
this theory we find the mixed volumes (see next section for definitions) which allow
us to study some other very important concepts such as volume, mean width and
surface area measure all within a consolidated framework. For a comprehensive
exposition on this we refer to [21, 13]. Several concepts from the Brunn-Minkowski
theory have been successfully extended in many ways. These extensions can reach
other areas of mathematics, like those providing similar versions for log-concave
functions or those of purely geometric nature. From these extensions, in this note
we mainly deal with the dual mixed volume. Dual mixed volumes lie at the very
core of what is now called the dual Brunn-Minkowski theory. With the development
of this theory came along several new tools that have been successfully applied in
many different areas such as Integral Geometry, Geometric tomography and Local
theory of Banach spaces among others. It should be mention as well, that it played
a key role in the solution of Busemann-Petty problem [14, 15, 18, 22].

Recent years have witnessed an increasing interest in the characterization of sev-
eral important parameters and operations on convex (or star) sets. The purpose
is to obtain characterizations based on different fundamental properties of the pa-
rameters. Some of these properties are invariance (or covariance) with respect to
basic transformations, symmetry, positivity or additivity.

In the papers [10, 19], the authors study different characterizations of the mixed
volume and the dual mixed volume by their respective functional properties.

In this note, we continue this study applying known results from the theory
of multilinear operators on spaces of continuous functions. In our main result,
Theorem 3.4, we provide a set or equivalent conditions that characterize the mixed
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volume. One of these conditions is stated in terms of the polynomial associated
to the dual mixed volume, which turns out to be the n-dimensional volume. As a
byproduct we also reprove the functional characterization of the dual mixed volume
that appeared in [10].

The basic idea of the connection is the following: it seems natural to try to
characterize the dual mixed volume in terms of its separate additivity with respect
to the radial sum. An additive function on star bodies induces an additive function
on their radial functions. This, in turn, induces an additive function on C(Sn−1)+,
the positive cone of the space of continuous functions on the unit sphere in R

n.
With a little extra help additive functions become linear. Therefore, we run into
the study of multilinear forms on C(Sn−1), the space of continuous functions on
Sn−1. The situation is analogous for the case of star sets. In that case one runs
into the multilinear forms on B(Σn), the space of functions on Sn−1 which are the
uniform limit of simple Borel functions.

The dual spaces C(Sn−1)∗ and B(Σn)
∗ are well described by regular measures

and additive measures, respectively, on Σn, the Borel σ-algebra of Sn−1. Simi-
larly, multilinear forms on C(Sn−1) or B(Σn) are well described by polymeasures,
functions γ : Σn × · · · × Σn :−→ R which are separately measures.

The theory of polymeasures, or multilinear operators on C(K) and B(Σ) spaces,
has been studied for some time now [8, 2, ?]. In particular, there are two results
already in the literature which will be needed.

First of all, it will be important to understand when can a polymeasure be
extended to a measure in Σ⊗ · · · ⊗ Σ, the product σ-algebra. The answer to this
for the case of Radon polymeasures appeared for the first time in [2], although the
particular case of bimeasures, or bilinear operators, had already been studied in
[16]. The answer for bounded additive polymeasures is simpler and follows along
the same lines.

Also, it is important for our purposes to understand when the action of a poly-
measure γ : Σn×· · ·×Σn :−→ R, given by

∫

(f1(t1), . . . , fm(tn))dγ(t1, . . . , tm), can
be described by means of a measure µ : Σn −→ R via the integral

∫

f1(t) · · · fm(t)dµ(t).
The answer to this appeared for the first time in [20] and [1] for the case of Radon
polymeasures. Again, the case of bounded additive measures is simpler and is
essentially contained in the previous one.

For completeness, we state these results in the next section.

2. Notation and previous results

We will need several definitions and results from the theory of polymeasures
and multilinear operators in spaces of continuous functions as well as from Convex
Geometry.

As usual, Sn−1 stands for the Euclidean unit sphere. We denote by Σn its Borel
σ-algebra. For K ⊂ R

n compact, its support function hK is defined as

hK(x) = max{x · y : y ∈ K}.

The support function uniquely characterizes the set K. The Minkowski addition of
sets K and L is defined as the set K +L satisfying hK+L(x) = hK(x) + hL(x). We
denote the space of convex bodies (compact, convex set with non-empty interior)
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by Kn. For K1, ...,Km ∈ Kn and λ1, ..., λm ≥ 0, the volume

|λ1K1 + ...+ λmKm| =
∑

1≤i1,...,in≤m

λi1 ...λinV (Ki1 , ...,Kin)

is a polynomial on the variables λ1, ..., λm where the coefficients V (Ki1 , ...,Kin) are
called mixed volumes. The previous non-trivial fact is a classical theorem in the
field due to Minkowski.

A set L is star shaped at 0 if every line through 0 that meets L does so in a
(possibly degenerate) line segment. We denote by Sn the set of the star sets.

Given a star set L, we define its radial function ρL by

ρL(x) =

{

max{c : cx ∈ L} if L ∩ lx 6= ∅

0 otherwise

Clearly, radial functions are totally characterized by their restriction to Sn−1,
so from now on we consider them defined on Sn−1.

A star set L is called a star body if and only if ρL is continuous. We denote
by Sn

0 the set of star bodies. Conversely, given a positive and continuous function
f : Sn−1 −→ [0,∞), it can be considered as the radial function of a star body Lf .

Given two sets L,M ∈ Sn, we define their radial sum as the star set L+̃M whose
radial function is ρL + ρM .

For L1, ..., Ln ∈ Sn
0 their dual mixed volume is defined as

Ṽ (L1, ..., Ln) =
1

n

∫

Sn−1

ρL1
(u)...ρLn

(u)du.

In [17] Lutwak came up with the following analogous result to Minkowski’s the-
orem for mixed volumes mentioned earlier: given for sets L1, ..., Lm ∈ Sn

0 and
λ1, ..., λm > 0 the volume of the radial sum verifies

|L1+̃...+̃Lm| =
∑

1≤i1,...,in≤m

λi1 ...λin Ṽ (Li1 , ..., Lin).

That is, |L1+̃...+̃Lm| is an homogeneous polynomial of degree n in the vari-

ables λ1, ..., λm where each coefficient Ṽ (Li1 , ..., Lin) depends only on the bodies
Li1 , ..., Lin .

We state now the definitions and results from the theory of polymeasures that
we will need for our results.

Let Σi (1 ≤ i ≤ m) be σ-algebras (or simply algebras) of subsets on some
non void sets Si. A function γ : Σ1 × · · · × Σm −→ R is a (countably additive)
m-polymeasure if it is separately (countably) additive.

Same as in the case m = 1, we can define the variation of a polymeasure as
the set function

v(γ) : Σ1 × · · · × Σm −→ [0,+∞]

given by

v(γ)(A1, . . . , Am) = sup
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where the supremum is taken over all the finite Σi-partitions (A
ji
i )

ni

ji=1 of Ai (1 ≤
i ≤ m).

We can define also its semivariation

‖γ‖ : Σ1 × · · · × Σm −→ [0,+∞]

by

‖γ‖(A1, . . . , Am) = sup
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where the supremun is taken over all the finite Σi-partitions (A
ji
i )

ni

ji=1 of Ai (1 ≤

i ≤ m), and all the collections (ajii )
ni

ji=1 contained in the unit ball of the scalar field.

If γ has finite semivariation, an elementary integral
∫

(f1, f2, . . . fm) dγ can be
defined, where fi are bounded, Σi-measurable scalar functions, just taking the
limit of the integrals of m-uples of simple functions (with the obvious definition)
uniformly converging to the fi’s (see [8]).

Polymeasures can be used to represent continuous multilinear forms in spaces
of continuous functions. We need some notation. Given a Hausdorff compact set
S, ΣS is the σ-algebra of its Borel sets. S(S) is the set of Borel simple functions
with support in ΣS . B(S) is the completion of S(S) with respect to the supremum
norm. C(S) is the space of the continuous functions defined on the compact set S,
endowed with the supremum norm.

C(S) is naturally contained in B(S), and, in turn B(S) is naturally contained
in the bidual space C(S)∗∗, the inclusion being given by

〈g, µ〉 =

∫

gdµ

for every g ∈ B(S), µ ∈ C(S)∗. In particular, this implies that every continuous
linear form T : C(S) −→ R can be extended by weak∗ continuity over C(S)∗∗ to a
continuous linear form T : B(S) −→ R. The same fact remains true for multilinear
forms, where measures are replaced by polymeasures.

Theorem 2.1 ([2]). Let S be a compact Hausdorff space and Σ its Borel σ-algebra.
Every m-linear continuous form T : C(S) × · · · × C(S) −→ R has a unique rep-
resenting polymeasure γ : Σ × · · ·Σ → R with finite semivariation. T and γ are
related by the formula

T (f1, . . . , fm) =

∫

(f1, . . . , fm) dγ for every f1, . . . , fm ∈ C(S).

γ is separately countably additive and regular .
Conversely, if γ : Σ×· · ·Σ → R is a regular countably additive polymeasure then

it has finite semivariation and

T (f1, . . . , fm) =

∫

(f1, . . . , fm) dγ

defines a continuous multilinear form T : C(S) × · · · × C(S) −→ R that satisfies
‖T ‖ = ‖γ‖.

Moreover, there exists a unique extension T ∗∗ : C(S)∗∗ × · · · × C(S)∗∗ −→ R of
T that is separately weak∗ continuous.
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This extension can be defined the following way: For (z1, . . . , zm) ∈ (C(S)∗∗ ×
· · · × C(S)∗∗) we can choose, for every 1 ≤ i ≤ m, a net (fαi

)αi
⊂ C(S) such that

limαi
fαi

= zi in the weak∗ topology. Then

T ∗∗(z1, . . . , zm) = lim
α1

· · · lim
αm

T (fα1
, . . . , fαm

).

In particular, the restriction to the product of the B(S)’s defines a continuous
multilinear form

T : B(S)× · · · ×B(S) −→ R

such that, for all Borel sets (A1, . . . , Am) ∈ ΣS × · · · × ΣS,

T (χA1
, . . . , χAm

) = γ(A1, . . . , Am).

Given a polymeasure γ we can consider the set function γm defined on the semi-
ring of all measurable rectangles A1 × · · · ×Am (Ai ∈ Σ) by

γm(A1 × · · · ×Am) := γ(A1, . . . , Am)

It follows, for instance, from [7, Prop. 1.2], that γm is finitely additive and then it
can be uniquely extended to a finitely additive measure on the algebra a(Σ×· · ·×Σ)
generated by the measurable rectangles. In general, this finitely additive measure
is not bounded and therefore it can not be extended to the σ-algebra Σ ⊗ · · · ⊗ Σ
generated by Σ× · · · × Σ.

The extension of polymeasures to measures defined on the product σ-algebra is
related to the extension of multilinear operators from the projective tensor product
of Banach spaces to the injective tensor product.

We refer to [5] for the definition of projective and injective tensor product of
Banach spaces. Following the usual notation, we refer to them as X⊗̂πX and
X⊗̂ǫX respectively. We recall that C(S × S) is isometric to the injective tensor
product C(S)⊗̂ǫC(S).

A continuous multilinear form T : X × · · · ×X −→ R on the product of Banach
spaces induces a continuous form T : X⊗̂π · · · ⊗̂πX −→ R.

In general, this form will not be continuous when considered defined on the
injective tensor product.

The continuity of a multilinear form T : C(S)×· · ·×C(S) −→ R when considered
defined on the injective tensor product C(S)⊗̂ǫ · · · ⊗̂ǫC(S) = C(S × · · · × S) is
equivalent to the extendability of the associated polymeasure γ to a measure on
the Borel sets of S × · · · × S. This is the content of the next result, proved in [3].
As mentioned there, the result was proven for the special case of bilinear forms in
[16], but it does not seem possible to extend the proof techniques of [16] to m > 2.

Theorem 2.2. Let T : C(S) × · · · × C(S) −→ R be an m-linear form with repre-
senting polymeasure γ.

Then the following are equivalent:
a) v(γ) < ∞.
b) T : C(S)⊗̂ǫ · · · ⊗̂ǫC(S) −→ R is continuous.
c) γ can be extended to a regular measure µ on the σ-algebra of the Borel sets of

S × · · · × S.
d) γ can be decomposed as the sum of a positive and a negative polymeasure.

Let us also recall that, if S is compact metrizable, then ΣS⊗· · ·⊗ΣS = ΣS×···×S ,
where ΣL denotes the Borel σ-algebra of a set L and ΣS ⊗ · · · ⊗ ΣS denotes the
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product σ-algebra, i.e., the smallest σ-algebra that contains the rectangles (A1 ×
· · · ×Am) ⊂ Sm, with Ai ∈ ΣS (1 ≤ i ≤ m) (see [4, 7.6.2 and 7.1.12]).

It follows from the previous paragraph that we can identify Σn ⊗ · · · ⊗ Σn with
Σ(Sn−1)m , the σ-algebra of the Borel sets of Sn−1 × · · · × Sn−1.

Before we state our last result from the theory of polymeasures, we need one
more definition.

Given a Banach lattice X and a Banach space Y (in our case Y will be the scalar
field), a function ϕ : X −→ Y is called orthogonally additive if, for every f, g ∈ X

with disjoint support, ϕ(f +g) = ϕ(f)+ϕ(g). Orthogonally additive functions and
their representations have been studied by several authors since the sixties ([9], [11],
[12]).

The following result was proven in [20] and, independently, in [1].

Theorem 2.3. Let P : C(S) −→ R be an orthogonally additive n- homogeneous
polynomial with associated multilinear form T . Then, there exists a continuous
linear form ϕ ∈ C(S)∗, with associated measure ν : Σ −→ R, such that ‖ϕ‖ = ‖T ‖
and such that, for every f ∈ C(S),

P (f) = ϕ(fn) =

∫

S

fndν.

3. Characterizing the dual mixed volume

In this section we state and prove our characterizations of the dual mixed volume.
Following [19] and [10], our approach is to characterize the dual mixed volume based
on its functional properties.

When working with radial sets, the natural sum is the radial sum +̃ defined
above. Therefore, whenever we say in this note that a function defined on Sn

0 is
additive we will mean additive with respect to the radial sum.

One of the properties we will use to characterize the dual mixed volume is its
separate additivity. Let us consider a cone V and an additive function f : V −→ R.
Then, for every L ∈ V the function fL : R+ −→ R defined by fL(λ) = f(λL) is

additive and can be extended trivially to an additive function f̃L : R −→ R by
f̃L(−λ) = −fL(λ)

Real additive functions are either homogeneous or quite pathological. For in-
stance, given an additive function f : R −→ R which is not homogeneous, its graph
is dense in R

2. So, an additive function f : R −→ R, or f : R+ −→ R becomes
homogeneous if it takes values in [0,∞), or it is continuous in one point, monotonic
on any interval, or bounded on any interval.

For this reason, we will require our functions to be additive and positive homoge-
neous, rather than just additive. We feel this improves the clarity of the reasonings.

Thus, the starting point for our characterization will be a separately additive
and positively homogeneous F : Sm

0 −→ R.
One such F induces a separately additive and positively homogeneous application

TF : C(Sn−1)+ × · · · × C(Sn−1)+ −→ R

defined by

TF (f1, . . . , fm) = F (Lf1 , · · · , Lfm),

and TF can be extended to a separately linear application TF : C(Sn−1) × · · · ×
C(Sn−1) −→ R in the natural way: for (f1, . . . , fm) ∈ C(Sn−1)m, consider the
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decomposition fi = f+
i − f−

i , with f+
i , f−

i ∈ C(Sn−1) and define

TF (f1, . . . , fm) = TF (f
+
1 − f−

1 , . . . , f+
m − f−

m) =

= TF (f
+
1 , f+

2 , . . . , f+
m)− TF (f

+
1 , f+

2 , . . . , f−
m) + · · ·+ (−1)mTF (f

−
1 , f−

2 , . . . , f−
m).

In general, TF is not separately bounded (equivalently, continuous). To see an
example of this, consider m = 1 and TF : C(Sn−1) −→ R any linear not continuous
application.

But even if TF is separately bounded, it could well be that it can not be extended
to a linear bounded application T : C(Sn−1 × · · · × Sn−1) −→ R. As mentioned in
the introduction, the reason for this is that TF need not be a priori continuous for
the injective topology in C(Sn−1)⊗̂ǫ · · · ⊗̂ǫC(Sn−1).

Clearly, we are not interested in unbounded functions on the product of the unit
spheres as candidates for representing the dual mixed volume. Therefore, we first
characterize those separately linear functions which can be extended to bounded
linear applications on the product of the unit spheres. First we give a condition on F

that characterizes the fact that TF is separately continuous, equivalently continous
as a multilinear form.

Proposition 3.1. Let F : Sm
0 −→ R be separately additive and positively homoge-

neous. Let us also suppose that F is separately bounded, in the following sense:
For every choice of (L2, . . . , Lm) ∈ Km−1

0 there exists a constant C such that
|F (L,L2, . . . , Lm)| ≤ C for every L totally contained in the unit ball of Rn, and
the same condition holds when the role of the first variable is played by any other
variable.

Then, there exists a separately regular polymeasure γ : Σn × · · ·×Σn −→ R such
that, for every (L1, . . . , Lm) ∈ Sm

0 ,

F (L1, . . . , Lm) =

∫

(ρL1
(t1), . . . , ρLm

(tm))dγ(t1, . . . , tm).

Conversely, given a separately regular polymeasure γ : Σn × · · · × Σn −→ R

it induces a separately additive, positively homogeneous and bounded application
F : Sm

0 −→ R by

F (L1, . . . , Lm) =

∫

(ρL1
(t1), . . . , ρLm

(tm))dγ(t1, . . . , tm),

for every (L1, . . . , Lm) ∈ Sm
0 ,

Proof. Let us consider the function TF defined above. The separate bounded-
ness condition implies that for every choice of positive functions (f2, . . . , fm) ∈
C(Sn−1)+ × · · · ×C(Sn−1)+, there exist a constant C such that the induced map-
ping TF (·, f2, . . . , fm) : C(Sn−1) −→ R verifies

|T (f1, f2, . . . , fm)| ≤ C

for every f1 ∈ C(Sn−1)+ with ‖f1‖ ≤ 1.
Given f ∈ C(Sn−1) with ‖f‖ ≤ 1, f can be decomposed as f = f+ − f−, where

f+, f− ∈ C(Sn−1)+ and ‖f+‖ ≤ 1, ‖f−‖ ≤ 1.
Therefore,

|T (f1, f2, . . . , fm)| ≤ 2C

for every f1 ∈ C(Sn−1) with ‖f1‖ ≤ 1.
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Now, given (f2, . . . , fm) ∈ C(Sn−1)m−1, we can decompose each of them as the
difference of two positive functions, and standard reasonings show that TF (·, f2, . . . , fm)
is continuous. Multilinear separately continuous functions are jointly continuous,
therefore TF : C(Sn−1)× · · · × C(Sn−1) −→ R is continuous.

Now, we just have to apply Theorem 2.1 to obtain γ.
The converse statement follows immediately from Theorem 2.1.

�

As mentioned before, in general, γ defined as above can not be extended to a
regular measure µ : Σn ⊗ · · · ⊗ Σn −→ R. Therefore, as a consequence of this and
Proposition 3.1, not every separable additive, homogeneous and bounded applica-
tion F : Sm

0 −→ R can be represented by a measure on Σn ⊗ · · · ⊗ Σn.
In the next proposition we give a condition which characterices the extendability

of γ, and, hence, the representability of F by a measure. Note that we do not need
to assume a priori that F is separately bounded.

Proposition 3.2. Let F : Sm
0 −→ R be separately additive and positively homoge-

neous. Then the following are equivalent:

(1) There exist two separately additive positively homogeneous functions F+ :
Sm
0 −→ [0,∞), F− : Sm

0 −→ [0,∞) such that F = F+ − F−.
(2) There exists a radon measure on ν : Σ(Sn−1)m −→ R such that

F (L1, . . . , Lm) =

∫

ρL1
⊗ · · · ⊗ ρLm

(t1, . . . , tm)dν(t1, . . . , tm).

Proof. Let us suppose (1). We use TF∗ for any of TF+ or TF− .
Let us first see that TF∗ is separately monotone in the following sense: If f ≥

g ≥ 0, then for every f2, . . . , fm ∈ C(Sn−1)+

TF∗(f, f2, . . . , fm) ≥ TF∗(g, f2, . . . , fm)

This follows from the separate additivity of F ∗ by

TF∗(f, f2, . . . , fm) = TF∗(g, f2, . . . , fm)+TF∗(f−g, f2, . . . , fm) ≥ TF∗(g, f2, . . . , fm).

By standard reasonings, it is easy to prove now that TF∗ is monotone in the
following sense: If fi ≥ gi ≥ 0 (1 ≤ i ≤ m), then

TF∗(f1, . . . , fm) ≥ TF∗(g1, . . . , gm).

To see that TF∗ is continuous, we just need to prove that it is bounded on norm
one functions. Decomposing functions into positive and negative part, if suffices to
prove that it is bounded for positive norm one functions. If this was not the case,
there would exist a sequence (f i

1, . . . , f
i
m)i∈N ⊂ C(Sn−1)+ × · · · × C(Sn−1)+, with

‖f i
j‖ ≤ 1 for every i, j such that, for every i ∈ N,

TF∗(f i
1, . . . , f

i
m) ≥ i.

For 1 ≤ j ≤ m we define ϕj = supi f
i
j . Then ϕj ∈ C(Sn−1)+, ‖ϕj‖ ≤ 1, and we

have

F ∗(Lϕ1
, . . . , Lϕm

) ≥ i

for every i ∈ N, a contradiction with the fact that F ∗ is bounded.
Therefore, according to Theorem 2.1, there exists a separately regular polymea-

sure γF∗ : Σ(Sn−1)× · · · × Σ(Sn−1) −→ R such that
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TF∗(f1, . . . , fk) =

∫

(f1(t1), . . . , fm(tm))dγF∗(t1, . . . , tm).

Let us see that γF∗ is positive: Pick (A1, . . . , Am) ∈ Σn × · · · × Σn and ǫ > 0.
Applying [20, Lemma 2.5] we know of the existence of compact sets Ki ⊂ Ai

(1 ≤ i ≤ m) such that

|γF∗(A1, . . . , Am)− γF∗(K1, . . . ,Km)| < ǫ.

Applying again the same lemma, we obtain the existence of open sets Gi ⊃ Ki

(1 ≤ i ≤ m) such that

|γF∗(G1, . . . , Gm)− γF∗(K1, . . . ,Km)| < ǫ.

We can now use Urysohn’s Lemma to find, for every 1 ≤ i ≤ m, a function
fi ∈ C(Sn−1)+ with suppfi ⊂ Gi and fi(t) = 1 for every t ∈ Ki.

We now have

γF∗(A1, . . . , Am) > γF∗(K1, . . . ,Km)− ǫ >

> γF∗(G1, . . . , Gm)− 2ǫ ≥

∫

(f1(t1), . . . , fm(tm)dγF∗(t1, . . . , tm)− 2ǫ ≥ −2ǫ.

This proves that γF∗ is positive. Therefore, γ = γF+ − γF− is the sum of a
positive and a negative polymeasure. Now, Theorem 2.2 proves that TF can be
represented by a regular measure ν defined on Σ(Sn−1)m , and (2) follows.

Conversely, suppose that F can be represented by a measure ν as in (2). It
is very easy to check that in that case ν also represents TF . The decomposition
ν = ν+ − ν− (see [4]) induces now the decomposition F = F+ − F− with the
required properties. �

Before we can state our main theorem, we isolate a technicality of the proof for
clarity in the presentation. It is a direct translation of [20, Lemma 2.6].

Lemma 3.3. Let TF : C(Sn−1)× · · ·×C(Sn−1) −→ R be a continuous multilinear
form and let γF : Σn × · · · × Σn −→ R be its representing polymeasure. Suppose
that TF (f1, . . . , fm) = 0 whenever there exist 1 ≤ i, j ≤ m such that fi and fj have
disjoint support. Then, if we choose open sets (G1, . . . , Gm) ∈ Σn × · · ·Σn, such
that there exist 1 ≤ i, j ≤ m with Gi ∩Gj = ∅ we have

γ(G1, . . . , Gm) = 0.

Proof. Given an open set Gl ∈ Σn, we can consider the directed set of the Borel
compact sets Cl ⊂ Gl with the order given by the inclusion. Applying Urysohn’s
lemma, for every such Cl we can choose fCl

∈ C(Sn−1), with χCl
≤ fCl

≤ χGl
. It

follows from the regularity of the measures representing C(Sn−1)∗ that the net fCl

converges weak∗ to χGl
. Hence, as explained in Theorem 2.1,

γ(G1, . . . , Gm) = lim
C1

· · · lim
Cm

TF (fC1
, . . . , fCm

) = 0.

�

Our purpose is to characterize the dual mixed volume by functional properties
of F . The conditions above clearly do not suffice for this. In Theorem 3.4 below
we give conditions which do suffice. Condition (1) below appeared already in [10].
Condition (2) is new. This condition is based on the behaviour of the associated
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polynomial, which in this case turns out to be the n-dimensional volume, rather
than the multilinear function. Let us note that this new condition is satisfied in
case the polynomial is a valuation on the star bodies. This could our result more
useful for certain applications.

We state and prove the result for star bodies. It remains true for star sets,
replacing regular measure by bounded additive measure in condition (3) below. The
proof for the case of star sets are slightly simple and we omit it.

Our main result is the following:

Theorem 3.4. Let F : Sm
0 −→ R be separately additive and positively homoge-

neous. Let us also assume that F verifies one of the following conditions:

(A) F = F+−F−, where F+ and F− are also separately additive and positively
homogeneous.

(B) F is separately bounded, in the sense of Proposition 3.1.

Then, the following are equivalent:

(1) F (L1, . . . , Lm) = 0 whenever there exist 1 ≤ i1, i2 ≤ m such that Li1∩Li2 =
{o}.

(2) F is symmetric and the associated polynomial PF verifies PF (L+̃M) =
PF (L) + PF (M) whenever L ∩M = {o}

(3) There exists a regular measure µ : Σn −→ R such that

F (L1, . . . , Lm) =

∫

ρL1
(t) · · · ρLm

(t)dµ(t).

Moreover, if F is rotationally invariant, then there exists a constant c ∈ R such
that F (L1, . . . , Ln) = cṼ (L1, . . . , Ln)

Proof. Clearly (3) implies (1) and (2). Let us see that (1) implies (2):
In the presence of (A) or (B), Propositions 3.1 and 3.2 imply that

TF : C(Sn−1)× · · · × C(Sn−1) −→ R

is continuous and can be represented by a separately regular polymeasure

γF : Σn × · · · × Σn −→ R

Let us see that γF verifies that, for every (A1, . . . , Am) ∈ Σn × · · · ×Σn, if there
exist 1 ≤ j, l ≤ m such that Aj ∩ Al = ∅, then γF (A1, . . . , Am) = 0.

Let us suppose without loss of generality that A1 ∩ A2 = ∅, and let us choose
ǫ > 0. We apply [20, Lemma 2.5] and obtain compact sets Ci ⊂ Ai (1 ≤ i ≤ m)
such that

|γF (A1, . . . , Am)− γF (C1, . . . , Cm)| < ǫ.

We apply again [20, Lemma 2.5] and the normality of Sn−1 to obtain open sets
Gi ⊃ Ci (1 ≤ i ≤ m), with G1 ∩G2 = ∅ such that

|γF (G1, . . . , Gm)− γF (C1, . . . , Cm)| < ǫ.

Now, applying Lemma 3.3 we get

|γF (A1, . . . , Am)| < |γF (C1, . . . , Cm)|+ ǫ < 2ǫ.

Since this happens for arbitrary ǫ > 0, we get that γF (A1, . . . , Am) = 0.
To see that TF is symmetric, it suffices to check that TF : B(Σn) × · · · ×

B(Σn) −→ 0 is symmetric. By density, it is enough to check symmetry for simple
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functions. To see this, pick simple functions g1, . . . , gm. There exist a finite col-
lection of disjoint sets (Al)

s
l=1 such that, for every 1 ≤ i ≤ m, gi =

∑s
l=1 a

i
lχAl

.
Therefore

TF (g1, . . . , gm) = TF (

s
∑

l1=1

a1l1χAl1
, . . . ,

s
∑

lm=1

amlmχAlm
) =

=

s
∑

l1=1

· · ·
s

∑

lm=1

a1l1 · · · a
m
lm
γF (χAl1

, . . . , χAlm
).

We can use the previous reasonings to cancel all the terms where the Ali do not
all coincide, and we get

TF (g1, . . . , gm) =
s

∑

l=1

a1l · · · a
m
l γF (χAl

, . . . , χAl
)

and this expression is clearly symmetric.
Finally, let L,M be radial bodies verifying L ∩M = {o}. Then

PF (M+̃L) = TF (L,L, · · · , L) + TF (L, . . . , L,M) + · · ·+ TF (M,M, . . . ,M) =

= TF (L,L, · · · , L) + TF (M,M, . . . ,M) = PF (L) + PF (M),

and (2) follows.

To see that (2) implies (3), note first that, reasoning as before, we can assure the
existence of TF and γF . Condition (2) now implies that the polynomial associated
to TF is orthogonally additive. Now, Theorem ?? suffices to finish.

Finally, if F is rotationally invariant we proceed as follows. Let A ⊂ Sn−1 be a
Borel set, let φ be a rotation on Sn−1 and let S = {f ∈ C(Sn−1) : f ≤ χA}. The
regularity of µ implies that µ(A) = supf∈S

∫

fdµ. Let us note that φS = {φf :

f ∈ S} = {g ∈ C(Sn−1) : g ≤ χφA)}. Thus, using the rotational invariance of F ,
we get

µ(A) = sup
f∈S

∫

fdµ = sup
f∈S

∫

φfdµ = sup
φf∈φS

∫

φfdµ = sup
g∈φS

∫

gdµ ≤ µ(φ(A)),

where g = φ(f). We can reason similarly to obtain µ(φA) ≤ µ(A). This, together
with the uniqueness (up to constant multiplication) of the Lebesgue measure among
rotation invariant measures on Sn−1, concludes the proof. �

Let us note that we need some condition guaranteeing the continuity of TF .
Consider a sequence (xi)i∈N ⊂ Sn−1, with xi 6= xj for every i 6= j. Consider now
a sequence of disjoint open sets Gi ⊃ xi and positive functions fi ∈ C(Sn−1)+

verifying ‖fi‖ = 1, fi(xi) = 1 and suppfi ⊂ Gi. Clearly the set {fi; i ∈ N} ⊂
C(Sn−1) is linearly independent. Therefore, it can be completed to a Hamel basis
B of C(Sn−1). Consider now the bilinear form

T : C(Sn−1)× C(Sn−1) −→ R

defined on the basis B by

T (fi, fj) = δij , T (b, b
′) = 0 for any other choice of b, b′ ∈ B,

and T defined by linearity on the rest of C(Sn−1)× C(Sn−1).
Consider now the function F : K2

0 −→ R defined by F (L,M) = T (ρL, ρM ).
Then F is linear, but it can not be represented by a polymeasure γ.
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The result above includes and extends the main results in [10]. To see this,
note that, as the authors mention in that paper, additive functions taking values
in [0,∞) are always positively homogenenous.

In that same paper, the authors study the following question

Question 3.5. Let F : Sn
0 −→ R be separately additive, rotation invariant, and

vanishes when the intersection of two of the arguments is {o}. Does there exists a

constant c ∈ R such that F (L1, . . . , Ln) = cṼ (L1, . . . , Ln) ?

They show that, thus formulated, in the presence of the Axiom of Choice the
question is false. The counterexample follows from the existence of additive non
linear functions. Next, they ask if a positive answer to the question is compatible
with ZF. A path to answer this could be to study if the reasonings in [20] apply
in the Solovay model, since in that case additive functions are automatically linear
and continuous.
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