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Abstract. We generalize, on one hand, some results known for composition

operators on Hardy spaces to the case of Hardy-Orlicz spaces HΨ: construction

of a “slow” Blaschke product giving a non-compact composition operator on HΨ;

construction of a surjective symbol whose composition operator is compact on

HΨ and, moreover, is in all the Schatten classes Sp(H
2), p > 0. On the other

hand, we revisit the classical case of composition operators on H2, giving first a

new, and simplier, characterization of closed range composition operators, and

then showing directly the equivalence of the two characterizations of membership

in the Schatten classes of Luecking and Luecking and Zhu.
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1 Introduction

The study of composition operators on Hardy spaces is now a classical sub-
ject (see [18], [3] for example). In [8] (see also [7]), we considered a more general
setting and studied composition operators on Hardy-Orlicz spaces; we gave there
a characterization of their compactness in terms of the Carleson function of their
symbol (and in terms of the Nevanlinna counting function in [11]). This work
was continued in [10]: we compared the compactness on Hardy spaces versus
the compactness on Hardy-Orlicz spaces. For instance, we showed that there
is, for every 1 ≤ p < ∞, an Orlicz function Ψ such that Hp+ε ⊆ HΨ ⊆ Hp for
every ε > 0, and a composition operator Cϕ such that Cϕ is compact on Hp

and Hp+ε, but which is not compact on HΨ.
We carry on this study in the present work. In a first part (Section 3 and

Section 4), we shall improve, and extend to the Hardy-Orlicz case, results known
for Hardy spaces; in a second part (Section 5 and Section 6), we shall give new

1

http://arxiv.org/abs/1001.3328v1


lights on some results concerning Hardy spaces. More precisely, the content of
this paper is as following.

B. McCluer and J. Shapiro ([14], Theorem 3.10; see also [18], § 3.2) proved
that, when their symbol ϕ is finitely-valent, compactness of composition op-
erators Cϕ on the Hardy space H2 can be characterized by the behaviour of
the modulus of ϕ near the frontier of D: compactness is equivalent to 1− |z| =
0
(
1−|ϕ(z)|

)
as |z| → 1, but that is not equivalent in general ([14], Example 3.8;

see also [18], § 10.2). In [11], Theorem 5.3, we gave such a characterization for
composition operators, with finitely-valent symbol, on Hardy-Orlicz spaces. In
Section 3, we construct a “slow” Blaschke product (generalizing [18], § 10.2 and
[8], Proposition 5.5) showing that this condition is not sufficient in general.

In Section 4, we construct a compact composition operator Cϕ : H
Ψ → HΨ

with surjective symbol ϕ and such that Cϕ : H
2 → H2 is in all the Schatten

classes Sp(H
2), p > 0. This generalizes and improves a result of B. McCluer

and J. Shapiro ([14], Example 3.12; see also the survey [16], § 2).

In Section 5, we give a characterization of composition operators Cϕ : H
p →

Hp, 1 ≤ p < ∞, with a closed range, simpler than the former ones (see [1] and
[20]).

Finally, based on the main result of [11], we show directly, in Section 6,
the equivalence of Luecking’s and Luecking-Zhu’s criteria ([12], [13]) for the
membership of Cϕ : H

2 → H2 in the Schatten classes.

Acknowledgement. Part of this work was made during the fourth-named
author visited the University of Lille 1 and the University of Artois (Lens)
in June 2009. This fourth-named author is partially supported by a Spanish
research project MTM2006-05622.

2 Notation

The open unit disk is denoted by D = {z ∈ C ; |z| < 1} and its boundary,
the unit circle, by T = {z ∈ C ; |z| = 1}. The normalized Lebesgue measure
dt/2π on T is denoted by m. The normalized area measure dx dy/π is denoted
by A.

The Hardy space H1 is the space of analytic functions f : D → C such that

supr<1

∫ 2π

0
|f(reiθ)| dθ < ∞. Every f ∈ H1 has almost everywhere boundary

values on T, which are denoted by f∗.
An Orlicz function is a convex nondecreasing function Ψ: [0,∞) → [0,∞)

such that Ψ(0) = 0 and Ψ(∞) = ∞. If µ is a positive measure on some
measurable space S, the Orlicz space LΨ(µ) is the set of all (classes of) mea-
surable functions f : S → C such that

∫
S Ψ(|f |/C) dµ < ∞ for some C > 0;

the norm ‖f‖Ψ is defined as the infimum of the positive numbers C for which∫
S Ψ(|f |/C) dµ ≤ 1.

The Hardy-Orlicz space HΨ is the linear subspace of f ∈ H1 such that
f∗ ∈ LΨ(m) (see [8]).
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Every analytic self-map ϕ : D → D defines a bounded composition operator
Cϕ : f ∈ HΨ 7→ f ◦ ϕ ∈ HΨ (see [8]).

For every ξ ∈ T and 0 < h < 1, the Carleson window is the set W (ξ, h) =
{z ∈ D ; |z| ≥ 1−h and | arg(z ξ̄| ≤ h}. The Carleson function ρϕ of the analytic
self-map ϕ : D → D is defined, for 0 < h < 1, by:

ρϕ(h) = sup
ξ∈T

m
(
{eiθ ∈ T ; ϕ∗(eiθ) ∈ W (ξ, h)}

)
.

Alternatively, ρϕ(h) = supξ∈T
mϕ[W (ξ, h)], where mϕ is the pull-back measure

of m by ϕ. We shall also use, instead of W (ξ, h), the set S(ξ, h) = {z ∈
D ; |z − ξ| ≤ h}, which has an equivalent size.

The Nevanlinna counting function Nϕ is defined, for w ∈ ϕ(D) \ {ϕ(0)}, by

Nϕ(w) =
∑

ϕ(z)=w

log
1

|z| ,

each term log 1
|z| being repeated according to the multiplicity of z, and Nϕ(w) =

0 for the other w ∈ D.

3 Slow Blaschke products

B. McCluer and J. Shapiro ([14], Theorem 3.10; see also [18], § 3.2) proved
that, when ϕ is finitely-valent (meaning that, for some s ≥ 1, the equation
ϕ(z) = w has at most s solutions), the composition operators Cϕ : H

p → Hp is
compact, 1 ≤ p < ∞, if and only if ϕ has an angular derivative at no point of
T; that means that:

(3.1) lim
|z|→1

1− |z|
1− |ϕ(z)| = 0 .

In [11], Theorem 5.3, we generalized this result to Hardy-Orlicz spaces and
proved that if ϕ is finitely-valent, the composition operator Cϕ : H

Ψ → : HΨ is
compact if and only if:

(3.2) lim
|z|→1

Ψ−1

[
1

1− |ϕ(z)|

]

Ψ−1

[
1

1− |z|

] = 0 .

Without the assumption that ϕ is finitely-valent, condition (3.2) is no longer
sufficient to ensure the compactness of Cϕ : H

Ψ → HΨ. Indeed, we are going to
construct a Blaschke product satisfying (3.2), but whose associated composition
operator is of course not compact on HΨ, as this is the case for every inner
function. A Blaschke product satisfying (3.1) is constructed in [18], § 10.2;
that construction uses Frostman’s Theorem. Our construction, which is more
general, is entirely elementary.
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Theorem 3.1 Let δ : (0, 1) → (0, 1/2] be any function such that lim
t→0

δ(t) = 0.

Then, there exists a Blaschke product B such that:

(3.3) 1− |B(z)| ≥ δ(1− |z|), for all z ∈ D.

Corollary 3.2 For every Orlicz function Ψ there exists a Blaschke product B
which satisfies:

lim
|z|→1

Ψ−1

[
1

1− |B(z)|

]

Ψ−1

[
1

1− |z|

] = 0 .

though the composition operator CB : HΨ → HΨ is not compact.

Proof. CB is not compact since every compact composition operator should
satisfy |ϕ∗| < 1 a.e. (see [8], Lemma 4.8). It suffices then to chose δ(t) =
1/Ψ

(√
Ψ−1(1/t)

)
, which satisfies the hypothesis of Theorem 3.1. Moreover:

Ψ−1
(
1/δ(t)

)

Ψ−1(1/t)
=

1√
Ψ−1(1/t)

−→
t→0

0 ,

and condition (3.3) gives the result. �

Proof of Theorem 3.1. We shall essentially construct our Blaschke product
B as an infinite product of finite Blaschke products

∏

n

Bn ,

where each finite Blaschke product Bn has pn zeros equidistributed in the cir-
cumference of radius rn. That is, we will have, writing θk = 2πk/pn and
zk = rn e

iθk , for k = 1, 2, . . . , pn:

(3.4) Bn(z) =

pn∏

k=1

|zk|
zk

zk − z

1− zkz
=

pn∏

k=1

rn − e−iθkz

1− rne−iθkz
·

We shall need the following estimate for the finite Blaschke product in (3.4).

Lemma 3.3 Let p ∈ N, and 0 < r < 1. Consider the finite Blaschke product

(3.5) G(z) =

p∏

k=1

r − e−iθkz

1− re−iθkz
,

where θk = 2kπ
p , for k = 1, 2, . . . , p.

(a) Then, for every z ∈ D with |z| = r,

(3.6) |G(z)| ≤ 2rp

1 + r2p
= 1− (1 − rp)2

1 + r2p
·
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(b) If besides we have p h ≤ 1/2, where h = 1 − r, we also have, for every

z ∈ D with |z| = r,

(3.7) |G(z)| ≤ 1− (p h)2

2e
·

Let us continue the proof of the theorem. Define χ : (0, 1) → (0, 1] by:

(3.8) χ(x) = sup
t≤x

[
max{2δ(t),

√
t}
]
.

Then χ is non-decreasing, limx→0 χ(x) = 0 and limx→1 χ(x) = 1. We can find a
decreasing sequence (hn)n≥0 of point hn ∈ (0, 1), such that χ(hn) ≤ 2−n. This
sequence converges to 0; in fact,

√
hn ≤ χ(hn) ≤ 2−n, by (3.8), and hence:

(3.9) hn ≤ 2−2n .

We now define, for every n ∈ N, a positive integer pn, by:

(3.10) pn = min{p ∈ N ;
p2h2

n

2e
> 2−n }.

We have pn > 1 because h2
n/2e < h2

n ≤ 2−4n. So, for every n, we have
4(pn − 1)2 ≥ p2n, and then:

(3.11) 4 · 2−n ≥ 4(pn − 1)2h2
n

2e
≥ p2nh

2
n

2e
·

This yields, for n ≥ 7, that (pnhn)
2 ≤ 8e 2−n ≤ 1/4. Therefore pnhn ≤ 1/2,

and we can use the estimate in part (b) of Lemma 3.3.

Now, for n ≥ 7, let Bn be the finite Blaschke product defined by (3.4), where
rn = 1−hn. Using (b) in Lemma 3.3, the Maximum Modulus Principle and the
definition of pn in (3.10), we have:

(3.12) |Bn(z)| ≤ 1− p2nh
2
n

2e
< 1− 2−n, for |z| ≤ rn.

Consider then the Blaschke product D defined by:

(3.13) D(z) =
∞∏

n=7

Bn(z).

This product is convergent since, by (3.11), we have:

∑
pn(1− rn) =

∑
pnhn ≤

∑√
8e 2−n < +∞ .

Finally, take N ∈ N big enough to have rN6 < 1/2, and define:

(3.14) B(z) = zN D(z).
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Thus B is a Blaschke product, and, if |z| ≤ r6, we have, since δ(t) ≤ 1/2:

(3.15) |B(z)| ≤ |zN | ≤ rN6 < 1/2 ≤ 1− δ(1− |z|).

If 1 > |z| > r6, there exists k ≥ 7 such that rk ≥ |z| > rk−1. Therefore,
thanks to (3.12),

(3.16) |B(z)| ≤ |D(z)| ≤ |Bk(z)| ≤ 1− 2−k.

On the other hand rk ≥ |z| > rk−1 implies hk ≤ 1− |z| < hk−1, and so:

(3.17) δ(1− |z|) ≤ 1

2
χ(1− |z|) ≤ 1

2
χ(hk−1) ≤ 2−k .

Combining (3.16) and (3.17) we get |B(z)| ≤ 1−δ(1−|z|), when 1 > |z| > r6.
From this and (3.15), Theorem 3.1 follows. �

Proof of Lemma 3.3. It is obvious that, for all a, z ∈ C,

p∏

k=1

(z − aeiθk) = zp − ap .

Using this we have:

(3.18) G(z) =

p∏

k=1

r − e−iθkz

1− re−iθkz
=

p∏

k=1

z − reiθk

rz − eiθk
=

zp − rp

(rz)p − 1
·

Now, if |z| = r, we can write zp = rpu, for some u with |u| = 1. Then
|G(z)| = |T (u)|, where T is the Moebius transformation

T (u) =
rp(u − 1)

r2pu− 1
·

This transformation T maps the unit circle ∂D onto a circumference C. As T
maps the extended real line R∞ to itself, and ∂D is orthogonal to R∞ at the
intersection points 1 and −1, C is the circumference orthogonal to R∞ crossing
through the points T (1) = 0 and T (−1) = α. It is easy to see that |w| ≤ |α|,
for every w ∈ C; consequently:

|G(z)| ≤ sup
u∈∂D

|T (u)| = |T (−1)| = 2rp

1 + r2p
·

This finishes the proof of the statement (a).

To prove part (b), observe that, 1 + r2p ≤ 2, and so, for |z| = r,

(3.19) |G(z)| ≤ 1− (1− rp)2

1 + r2p
≤ 1− (1− rp)2

2
·

Remember that r = 1− h, so r ≤ e−h, and rp ≤ e−ph. Thus 1− rp ≥ 1− e−ph.
Now, if x ∈ [0, 1/2], we have, by the Mean Value theorem:

1− e−x ≥ x√
e
·
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Since p h ≤ 1/2, we can apply this last estimate to (3.19) to get, as promised,

|G(z)| ≤ 1− (1− e−ph)2

2
≤ 1− p2h2

2e
,

and ending the proof of Lemma 3.3. �

Remark. The key point in the proof of Theorem 3.1 is the inequality (3.6)
in Lemma 3.3. This inequality may be viewed as a consequence of the strong
triangle inequality (applied to a = zp, b = rp and c = 0):

(3.20) d(a, b) ≤ d(a, c) + d(c, b)

1 + d(a, c) d(c, b)

for the pseudo-hyperbolic distance d(u, v) = |u−v|
|1−ūv| on D. Let us recall a proof

for the convenience of the reader: by conformal invariance, we may assume that
c = 0; then:

1− [d(a, b)]2 =
(1 − |a|2)(1− |b|2)

|1− āb|2 ≥ (1 − |a|2)(1− |b|2)
(1 + |a| |b|)2 = 1− [d(|a|,−|b|)]2 ,

so that:

d(a, b) ≤ d(|a|,−|b|) = |a|+ |b|
1 + |a| |b|

,

proving (3.20), since d(a, 0) = |a| and d(0, b) = |b|.

4 A compact composition operator with a surjec-

tive symbol

A well-known result of J. H. Schwartz ([17], Theorem 2.8) asserts that the
composition operator Cϕ : H

∞ → H∞ is compact if and only if ‖ϕ‖∞ < 1. In
particular, the compactness of Cϕ : H

∞ → H∞ prevents the surjectivity of ϕ.
It may be therefore to be expected that, the bigger Ψ, the more difficult it will
be to obtain both the compactness of Cϕ : H

Ψ → HΨ and the surjectivity of ϕ.
Nevertheless, this is possible, as says the following theorem, and the case H∞

appears really as a singular case (corresponding to an “Orlicz function” which
is discontinuous and can take the value infinity).

Theorem 4.1 For every Orlicz function Ψ, there exists a symbol ϕ : D → D

which is 4-valent and surjective and such that Cϕ : H
Ψ → HΨ is compact.

Moreover, ϕ can be taken so as Cϕ : H
2 → H2 is in all the Schatten classes

Sp(H
2), p > 0.

In the case of H2 (Ψ(x) = x2), B. McCluer and J. Shapiro ([14], Exam-
ple 3.12) gave an example based on the Riemann mapping theorem and on the
fact that, for a finitely valent symbol ϕ, we have the equivalence:

(4.1) Cϕ : H
2 → H2 compact ⇐⇒ lim

|z|
<
→ 1

1− |ϕ(z)|
1− |z| = ∞.

7



A specific example is as follows. Take

(4.2) R =
{
z = x+ iy ∈ C ; x > 0 and

1

x
< y <

1

x
+ 4π

}
,

let g : D → R be a Riemann map and set ϕ = e−g. Then, ϕ is 2-valent,
ϕ(D) = D∗ (where D∗ = D \ {0}), and the validity of (4.1) is tested through
the use of the Julia-Carathéodory theorem (see [16] for details). To get a fully
surjective mapping ϕ1, just compose ϕ with the square of a Blaschke product:

ϕ1(z) = B ◦ ϕ, with B(z) =
( z − α

1− αz

)2

, α ∈ D∗ = D \ {0}

(note that B(0) = B(2α/1 + |α|2). Since Cϕ1
= Cϕ ◦ CB, we see that Cϕ1

is
compact as well and we are done.

Here, we can no longer rely on the Julia-Carathéodory theorem. But we shall
use the following necessary and sufficient condition, in terms of the maximal
Carleson function ρϕ, which is valid for any symbol, finitely-valent or not (see
[8], Theorem 4.18 – or [7], Théorème 4.2, where a different, but equivalent,
formulation is given):

(4.3) Cϕ : H
Ψ → HΨ compact ⇐⇒ lim

h
>
→ 0

Ψ−1(1/h)

Ψ−1
(
1/ρϕ(h)

) = 0 .

For the sequel, we shall set:

(4.4) ∆(h) =
Ψ−1(1/h)

Ψ−1
(
1/ρϕ(h)

) ·

Our strategy will be to elaborate on the previous example to produce a
(nearly) surjective ϕ such that ρϕ(h) is very small (depending on Ψ) for small
h. The tool will be the notion of harmonic measure for certain open sets of the
extended plane Ĉ = C ∪ {∞}, called hyperbolic (see [2], Definition 19.9.3); for
example, every conformal image of D is hyperbolic (see [2], Proposition 19.9.2
(d) and Theorem 19.9.7). If G is a hyperbolic domain and a ∈ G, the harmonic

measure of G at a is the probability measure ωG(a, . ) supported by ∂G (here,
and throughout the rest of this section, boundaries and closures will be taken
in Ĉ) such that:

u(a) =

∫

∂G

u(z) dωG(a, z)

for each bounded and continuous function u on G, which is harmonic in G (see
[2], Definition 21.1.3). The harmonic measure at a of a Borel set A ⊆ ∂G will
be denoted by ωG(a,A). Clearly,

ωD(0, . ) = m,

the Haar measure (i.e. normalized Lebesgue measure) of ∂D.
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R. Nevanlinna (see [2], Proposition 21.1.6) showed that harmonic measures
share a conformal invariance property. Namely, assume that G is a simply
connected domain, in which the Dirichlet problem can be solved (a Dirichlet

domain), and τ : D → G is a continuous function which maps conformally D

onto G; then τ maps ∂D onto ∂G, and, if τ(0) = a:

(4.5) ωG(a,A) = m
(
τ−1(A)

)

for every Borel set A ⊆ ∂G. This explains why harmonic measures enter the
matter when we consider composition operators Cϕ: such an operator induces
a map HΨ → LΨ(mϕ), where mϕ = ϕ∗(m) appears as an image measure of m,
as it happens for the harmonic measure of G at a in (4.5).

A useful alternative way of defining the harmonic measure, due to S. Kaku-
tani, and completed by J. Doob (see [19], page 454, and [6], Appendix F,
page 477) is the following: Let (Bt)t>0 be the 2-dimensional Brownian motion
starting at a ∈ G (i.e. B0 = a), and τ be the stopping time defined by:

(4.6) τ = inf{t > 0 ; Bt /∈ G} ;

we have:

(4.7) ωG(a,A) = Pa(Bτ ∈ A),

i.e. the harmonic measure of A at a is the probability that the Brownian motion
starting at a exits from G through the Borel set A ⊆ ∂G. The following lemma
will be basic for the construction of our example. We shall provide two proofs,
the second one being more illuminating.

Lemma 4.2 (Hole principle) Let G0 and G1 be two hyperbolic open sets and

H ⊆ ∂G0 a Borel set such that

G0 ⊆ G1 and ∂G0 ⊆ ∂G1 ∪H.

Then, for every a ∈ G0, we have the following inequality:

(4.8) ωG1
(a, ∂G1 \ ∂G0) ≤ ωG0

(a,H).

Proof 1. From [2], Corollary 21.1.14, with ∆ = ∂G0∩∂G1, one has ωG0
(a,∆) ≤

ωG1
(a,∆). But ∂G1 \∆ = ∂G1 \ ∂G0, and hence, since harmonic measures are

probability measures,

ωG1
(a, ∂G1 \ ∂G0) = ωG1

(a, ∂G1 \∆) = 1− ωG1
(a,∆) ≤ 1− ωG0

(a,∆);

we get the result since ∂G0 = H ∪∆, which implies 1 ≤ ωG0
(a,H) + ωG0

(∆).
�

Proof 2. Let us define

(4.9) τ0 = inf{t > 0 ; Bt /∈ G0}, τ1 = inf{t > 0 ; Bt /∈ G1}

9



and

(4.10) E = {Bτ1 ∈ ∂G1 \ ∂G0}, F = {Bτ0 ∈ H}.

Inequality (4.8) amounts to proving that Pa(E) ≤ Pa(F ), which will follow
from the inclusion E ⊆ F . Suppose that the event E holds. Since G0 ⊆ G1, one
has τ0 ≤ τ1. The Brownian path (Bs)0≤s≤τ1 being continuous with B0 = a ∈ G0,
one has Bτ0 ∈ ∂G0 ⊆ ∂G1∪H . If we had Bτ0 ∈ ∂G1, we should have Bτ0 /∈ G1,
since G1 is open, and hence τ0 = τ1, since we know that τ0 ≤ τ1. But then
Bτ1 = Bτ0 ∈ ∂G0, contrary to the definition of E. Therefore, Bτ0 ∈ H and F
holds. �

We also shall need the following result (see [2], Proposition 21.1.17).

Proposition 4.3 (Continuity principle) If G is a hyperbolic open set and

a ∈ G, then the harmonic measure ωG(a, . ) is atomless.

Proof of Theorem 4.1. It will be enough to construct a 2-valent mapping
ϕ : D → D such that ϕ(D) = D∗ and Cϕ : H

Ψ → HΨ is compact. We can then
modify ϕ by the same trick as the one used by B. McCluer and J. Shapiro. Note
that every point in D∗ is the image by e−z of two distinct points of R, except
those which are the image of points of the hyperbola y = (1/x)+2π, which have
only one pre-image.

For a positive integer n, set:

(4.11) bn =
1

4nπ
,

and let εn > 0 such that:

(4.12)
Ψ−1(2/bn+1)

Ψ−1(1/εn)
≤ 1

n
·

We now modify the domain R, including “barriers” in it (not in the sense of
potential theory, nor of Perron!) in the following way.

Let, for every n ≥ 1, Mn be the intersection point of the horizontal line
y = 4πn and of the hyperbola y = (1/x) + 2π, that is Mn = 1

4πn−2π + 4πni.

Define inductively closed sets P+
n and P−

n , which are like small points of
swords (two segments and a piece of hyperbola), in the following way:

• The lower part of P+
n and P−

n are horizontal segments of altitude 4nπ.

• Those two horizontal segments are separated by a small open horizontal
segment Hn whose middle is Mn.

• The upper part of P+
n is a slant segment whose upper extremity c+n lies

on the hyperbola y = 1/x.

• The upper part of P−
n is a slant segment whose upper extremity c−n lies

on the hyperbola y = (1/x) + 4π.

10



• The curvilinear part of P+
n is supported by the hyperbola y = 1/x.

• The curvilinear part of P−
n is supported by the hyperbola y = (1/x)+ 4π.

• One has 4(n+ 1)π − Im c±n > 2π.

The size of the small horizontal holes will be determined inductively in the
following way. Fix once and for all a ∈ R such that Im a < 4π. Suppose that
H1, H2, . . . , Hn−1 have already been determined. Set:

(4.13) Ωn =
{
z ∈ R \

⋃

j<n

(P+
j ∪ P−

j ) ; Im z < 4nπ
}
.

We can adjust Hn so small that:

(4.14) ωΩn(a,Hn) ≤ εn.

Indeed, Ωn is bounded above by the horizontal segment [bn+4inπ, bn−1+4inπ],
where the point Mn lies. If Hn = [Mn − δ,Mn + δ], we see that Hn decreases
to the singleton {Mn} as δ decreases to zero. Therefore, by Proposition 4.3, we
can adjust δ so as to realize (4.14).

We now define our modified open set Ω by the formula

(4.15) Ω = R \
⋃

n≥1

(P+
n ∪ P−

n ) =
⋃

n≥1

Ωn.

It is useful to observe that:

(4.16) inf
w∈∂Ωn

Rew = bn .

This is obvious by the way we defined the upper part of ∂Ωn.

Now, we can easily finish the proof. Fix h ≤ b1/2 and let n be the integer
such that:

(4.17) bn+1 < 2h ≤ bn .
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Let g : D → Ω be a conformal mapping such that g(0) = a. Since ∂∞Ω is con-
nected, Caratheodory’s Theorem (see [15]) ensures that g can be continuously
extended from D onto Ω. More explicitly, using the Moebius transformation
T (z) = 1/z, we see that there exists an automorphism of the extended complex
plane such that Ω is sended onto a compact subset of C; so, we can apply to Ω
many results stated for bounded domains. For instance, the boundary of Ω is
a continuous path in the extended plane; so, by [2], Theorem 14.5.5, g can be
extended to a continuous function (for the extended plane topology) g : D → G.
In particular, g has boundary values g∗.

We define ϕ = e−g.
As in the proof of B. McCluer and J. Shapiro ([14]), we have that ϕ is 2-

valent (see the remark made at the beginnig of this proof), and we still have
ϕ(D) = D

∗, since, in the process for constructing Ω from R, for every point of
D∗, at least one of the preimages by e−z in R has not been removed. Observe
that, in particular, we did not remove any point in the hyperbola y = (1/x)+2π,
thanks to the choice of Mn.

Moreover, Ω is a Dirichlet domain (because each component of ∂Ω has more
than one point: see the comment after Definition 19.7.1 in [2]), so we can use the
conformal invariance. Then by (4.5), (4.14), (4.16) and by the hole principle,
we see that, if A = {Re g∗(eit) < 2h}:

ρϕ(h) ≤ mϕ({|z| > 1− h}) = m({e−Re g∗(eit) > 1− h})(4.18)

= m({Re g∗(eit) < log(1/1− h)})
≤ m({Re g∗(eit) < 2h}) = ωD(0, A)

= ωg(D)

(
g(0), g(A)

)
= ωΩ(a, {Rew < 2h})

≤ ωΩ(a, {Rew ≤ bn})
≤ ωΩ(a, ∂Ω \ ∂Ωn) ≤ ωΩn(a,Hn) ≤ εn.

It remains to observe that:

∆(h) =
Ψ−1(1/h)

Ψ−1(1/ρϕ(h))
≤ Ψ−1(2/bn+1)

Ψ−1(1/εn)
≤ 1

n
≤ Ch ,

in view of (4.12) and of the choice of n, C being a numerical constant. We
should point out the fact that we applied the hole principle to the domains
G0 = Ωn and G1 = Ω and that this was licit because the assumptions of the
hole principle (in particular the inclusion ∂Ωn ⊆ ∂Ω ∪ Hn) are satisfied. We
have therefore proved that:

lim
h

>
→ 0

∆(h) = 0 ,

and this ends, as we already explained, the first part of the proof of Theorem 4.1.

To prove the last part, let us remark that in (4.12) we may take εn arbitrarily
small. If one takes εn ≤ e−n, one has, for some constant c > 0, ρϕ(h) ≤ e−c/h,
by using (4.17) and (4.18). In particular, ρϕ(h) ≤ C hα for every α > 1. By
Luecking’s criterion, that implies that Cϕ ∈ Sp(H

2) for every p > 0 (see [9],
Corollary 3.2). �
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Remark. Let us note that our result is stronger than McCluer-Shapiro’s, since
our Cϕ is in all the Schatten classes Sp(H

2), p > 0. Though our construction
follows McCluer-Shapiro’s, it is the introduction of the “barriers” P+

n and P−
n

which allows to get this improvement.

5 Composition operators with closed range

In [1], J. Cima, J. Thomson and W. Wogen gave a characterization of com-
position operators Cϕ : H

p → Hp with closed range. This characterization
involves the Radon-Nikodym derivative of the restriction to ∂D of mϕ. They
found it not satisfactory, and asked a characterization with the range of ϕ itself.
N. Zorboska ([20]) gave such a characterization, but her statement is somewhat
complicated. We shall give here more explicit characterizations, either in terms
of the Nevanlinna counting function Nϕ, or in terms of the Carleson measure
mϕ.

Theorem 5.1 Let ϕ : D → D be a non-constant analytic self map. Then the

composition operator Cϕ : H
p → Hp, 1 ≤ p < ∞, has a closed range if and only

if there is a constant c > 0 such that, for 0 < h < 1,

(5.1)
1

A
(
S(ξ, h)

)
∫

S(ξ,h)

Nϕ(z) dA(z) ≥ c h , ∀ξ ∈ ∂D .

Theorem 5.1 will follow immediately from the next theorem, applied to µ =
mϕ, and from [11], Theorem 4.2.

Theorem 5.2 Let µ be a finite positive measure on D. Assume that the canon-

ical map J : Hp → Lp(µ) is continuous, 1 ≤ p < ∞. Then J is one-to-one

and has a closed range if and only if there is a constant c > 0 such that, for

0 < h < 1,

(5.2) µ
[
W (ξ, h)

]
≥ c h , ∀ξ ∈ ∂D .

Proof. 1) Assume that J has a closed range. By making a rotation on the
variable z, we only have to find a constant c > 0 such that

(5.3) µ(Sh) ≥ c h ,

for h > 0 small enough, where Sh = S(1, h).
Since J is one-to-one, there is a constant C > 0 such that:

(5.4) ‖f‖pLp(µ) ≥ Cp ‖f‖pp , ∀f ∈ Hp.

We are going to test (5.4) on

(5.5) fN(z) =

(
1 + z

2

)N

.

13



It is classical that there is a constant cp > 0 such that:

(5.6) ‖fN‖pp =

∫ π

−π

∣∣∣ cos t
2

∣∣∣
pN

dt ≥ cp√
N

·

Now, since |z + 1|2 + |z − 1|2 = 2(|z|2 + 1) ≤ 4 for every z ∈ D, one has:

|fN(z)| ≤
(
1− |z − 1|2

4

)N/2

≤ e−
N
8

|z−1|2 .

Hence, using |fN(z)| ≤ 1 when |z − 1| ≤ h, one has:

‖fN‖pLp(µ) ≤ µ(Sh) +

∫

|z−1|>h

e−pN
8

|z−1|2 dµ

= µ(Sh) +

∫ e−pNh2/8

0

µ
(
{e−pN

8
|z−1|2 > u}

)
du ,

that is, making the change of variable u = e−pN
8

x2

,

‖fN‖pLp(µ) ≤ µ(Sh) +

∫ ∞

h

µ({|z − 1| ≤ x}) pN
4

x e−pN
8

x2

dx .

Now, the continuity of J means, by Carleson’s Theorem see [4], Theo-
rem 9.3), that there is a constant K > 0 such that:

(5.7) sup
|ξ|=1

µ
(
S(ξ, x)

)
≤ K x , 0 ≤ x < 1 .

We get hence:

‖fN‖pLp(µ) ≤ µ(Sh) +

∫ ∞

h

K x
pN

4
x e−pN

8
x2

dx

= µ(Sh) +
K
√
8√
p

1√
N

∫ ∞

h
√

pN
8

y2 e−y2

dy .

We take now for N the smaller integer > 1/h2, multiplied by some constant
integer ap, large enough to have:

K
√
8√
p

∫ ∞

√
pap
8

y2 e−y2

dy ≤ cp C
p

2
·

We get then, from (5.4) and (5.6):

µ(Sh) ≥
Cp cp
2

1√
N

,

which gives (5.3).
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2) Conversely, assume that (5.2) holds. Since the disk algebra A(D) is dense
in Hp, it suffices to show that there exists a constant C > 0 such that ‖f‖Lp(µ) ≥
C ‖f‖p for every f ∈ A(D).

Let f ∈ A(D) such that ‖f‖p = 1. Choose an integer N such that:

1

N

N∑

n=1

|f(e2πin/N )|p ≥ 1

2

∫

∂D

|f(ξ)|p dm(ξ) =
1

2
,

and such that, due to the uniform continuity of f ,

z, z′ ∈ D and |z − z′| ≤ 2π

N
=⇒ |f(z)− f(z′)| ≤ 1

2(p+1)/p
·

Then, setting Wn = W (e2πin/N , π/N), 1 ≤ n ≤ N , one has:

‖f‖pLp(µ) =

∫

D

|f |p dµ ≥
N∑

n=1

∫

Wn

|f |p dµ .

If we choose zn ∈ Wn such that |f(zn)| = minz∈Wn |f(z)|, we get, using (5.2):

‖f‖pLp(µ) ≥
N∑

n=1

|f(zn)|p µ(Wn) ≥
cπ

N

N∑

n=1

|f(zn)|p .

Since Ap ≤ 2p−1[(A−B)p +Bp], by Hölder’s inequality, one has:

|f(zn)|p ≥ 1

2p−1
|f(e2πin/N )|p − |f(zn)− f(e2πin/N )|p

and hence:

‖f‖pLp(µ) ≥
cπ

N

N∑

n=1

[
1

2p−1
|f(e2πin/N )|p − |f(zn)− f(e2πin/N )|p

]
.

Now, since zn ∈ Wn, one has:

|zn − e2πin/N | ≤
∣∣∣∣zn − zn

|zn|

∣∣∣∣+
∣∣∣∣
zn
|zn|

− e2πin/N
∣∣∣∣ ≤

π

N
+

π

N
=

2π

N
;

therefore |f(zn)− f(e2πin/N )| ≤ 1/2p+1 and we get:

‖f‖pLp(µ) ≥ cπ

[
1

N

N∑

n=1

1

2p−1
|f(e2πin/N )|p − 1

2p+1

]

≥ cπ
( 1

2p−1

1

2
− 1

2p+1

)
=

cπ

2p+1
·

That ends the proof of Theorem 5.2. �
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Remark. To make the link with Cima-Thomson-Wogen’s criterion, we shall
see that condition 5.2 implies that the restriction of µ to the boundary T = ∂D
of the disk dominates the Lebesgue measure m. In fact, let I be an arc of T. If
m(I) = h, we can write:

I =
⋂

n≥1

n⋃

j=1

W (ξn,j , h/2n) ,

with disjoint windows W (ξn,1, h/2n), . . . ,W (ξn,n, h/2n); hence:

µ(I) = lim
n→∞

n∑

j=1

µ[W (ξn,j , h/2n)] ≥ c
n∑

j=1

h

2n
=

c

2
h .

6 Composition operators in Schatten classes

In [12], D. Luecking characterized composition operators Cϕ : H
2 → H2

which are in the Schatten classes, by using, essentially, the mϕ-measure of Car-
leson windows. Five years later, D. Luecking and K. Zhu ([13]) characterized
them by using the Nevanlinna counting function of ϕ. We shall see in this section
how the result of [11] makes these two characterizations directly equivalent.

It will be convenient here to work with modified Carleson windows, namely:

Wn,j =

{
z ∈ D ; 1− 2−n ≤ |z| ≤ 1 and

(2j − 1)π

2n
≤ arg z <

(2j + 1)π

2n

}

(j = 0, 1, . . . , 2n − 1, n = 1, 2, . . .). We shall say that Wn,j is the Carleson
window centered at e2πij/2

n

with size 2−n.

Theorem 6.1 For p > 0 the two following conditions are equivalent:

a)
Nϕ(z)

log(1/|z|) ∈ Lp/2(λ) , where dλ(z) = (1 − |z|)−2 dA(z) and A is the

normalized area measure on D;

b)
∞∑

n=1

2n−1∑

j=0

[
2n mϕ(Wn,j)

]p/2
< ∞ .

Condition b) in the last theorem yields that limn→∞ maxj 2
nmϕ(Wn,j) = 0,

and it is not difficult to see that this implies that mϕ(∂D) = 0, or equivalently,
that |ϕ∗| < 1 almost evereywhere on ∂D. In this situation we know ([9], Propo-
sition 3.3) that b) in Theorem 6.1 is equivalent to Luecking’s condition in [12].
In fact the characterization of belonging to a Schatten class in [12] includes the
requirement mϕ(∂D) = 0.

Proof. We may, and do, assume that ϕ(0) = 0.

1) Assume first that condition b) is satisfied. Let:

Rn,j =
{
z ∈ D ; 1−2−n ≤ |z| < 1−2−n−1 and

(2j − 1)π

2n
≤ arg z <

(2j + 1)π

2n

}
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be the (disjoint) Luecking windows (0 ≤ j ≤ 2n − 1, n ≥ 0). One has Rn,j ⊆
Wn,j .

By [11], Theorem 3.1, there are a constant C > 0 and an integer K such

that Nϕ(z) ≤ Cmϕ(W̃n,j), for every z ∈ Rn,j , where W̃n,j is the window
centered at e2πij/2

n

, as Wn,j , but with size 2K−n. The windows Wn−K,j , j =

0, 1, . . . , 2n−K − 1, have the same size as the windows W̃n,j , but may have

a different center; nevertheless, each W̃n,j can be covered with two windows

Wn−K,l: for n > K, W̃n,j ⊆ Wn−K,l ∪ Wn−K,l+1, for some l = 1, 2, . . . , 2n−K

(where l+1 is understood as 0 if l = 2n−K − 1), we get (we shall use . to mean
≤ up to a constant):

∫

D

(
Nϕ(z)

)p/2

(1− |z|) p
2
+2

dA(z) ≤
∑

n,j

∫

Rn,j

(2n)
p
2
+2

(
Nϕ(z)

)p/2
dA(z)

.
∑

n,j

∫

Rn,j

(2n)
p
2
+2

(
mϕ(W̃n,j)

)p/2
dA(z)

.
∑

n,j

(2n)p/2
(
mϕ(W̃n,j)

)p/2

.
∑

ν,l

(2ν)p/2
(
mϕ(Wν,l)

)p/2
< ∞,

and a) holds.

2) Conversely, assume that a) is satisfied. We shall use the following in-
equality, whose proof will be postponed (for p ≥ 2, (6.1) follows directly from
[11], Theorem 4.2, and Hölder’s inequality):

(6.1) [mϕ(Wn,j)]
p/2 .

1

A(W̃n,j)

∫

W̃n,j

[Nϕ(z)]
p/2 dA(z) ,

where W̃n,j is a window with the same center as Wn,j but with a bigger pro-
portional size; say of size 2−n+L. We get:

∑

n,j

[2nmϕ(Wn,j)]
p/2 .

∑

n,j

2np/2 22n
∫

W̃n,j

[Nϕ(z)]
p/2 dA(z)

=

∫

D

(∑

n

2n(2+
p
2
)
[∑

j

1I
W̃n,j

(z)
])

[Nϕ(z)]
p/2 dA(z) .

Let k = 0, 1, . . . such that 1 − 2−k+1 < |z| ≤ 1 − 2−k. One has z ∈ W̃n,j only

if n ≤ k + L, and then, for each such n, z is at most in 2L windows W̃n,j . It
follows that:

∑

n

2n(2+
p
2
)
∑

j

1I
W̃n,j

(z) ≤ 2(k+L+1)(2+ p
2
) × 2L .
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But |z| ≥ 1− 2−k+1 implies 2(k+L+1)(2+ p
2
) ≤ Cp/(1− |z|)2+ p

2 ; hence:

∑

n,j

[2n mϕ(Wn,j)]
p/2 .

∫

D

[Nϕ(z)]
p/2

(1− |z|) p
2
+2

dA(z) < ∞ ,

and b) holds.

It remains to show (6.1).
By [11], Theorem 4.1, we can find a window W with the same center as

Wn,j , but with greater size ch (h = 2−n is the size of the window Wn,j), such
that:

mϕ(Wn,j) . sup
w∈W

Nϕ(w).

There is hence some w0 ∈ W such that:

mϕ(Wn,j) . Nϕ(w0).

Take R = |w0| + ch (one has R ≥ 1 since w0 ∈ W and W has size ch) and
set ϕ0(z) = ϕ(z)/R. One has Nϕ0

(z) = Nϕ(Rz) for |z| < 1/R and Nϕ0
(z) = 0

if |z| ≥ 1/R.
Let now u be the upper subharmonic regularization of Nϕ0

([13], Lemma 1,
and its proof page 1140): u is a subharmonic function on D \ {0} such that
u ≥ Nϕ0

and u = Nϕ0
almost everywhere, with respect to dA.

A result of C. Fefferman and E. M. Stein ([5], Lemma 2), generously at-
tributed by them to Hardy and Littlewood, asserts that for any q > 0, there
exists a constant C = C(q) such that

(6.2) [u(a)]q ≤ C

A
(
D(a, r)

)
∫

D(a,r)

[u(z)]q dA(z)

for every nonnegative subharmonic function u on a domain G and every disk
D(a, r) ⊆ G (see also [13], Lemma 3).

If ∆ is the disk centered at w0/R and of radius 1−|w0|/R (which is contained
in D \ {0} since R > |w0|), one has, by (6.2):

[Nϕ(w0)]
p/2 = [Nϕ0

(w0/R)]p/2 ≤ [u(w0/R)]p/2

≤ C

A(∆)

∫

∆

[u(z)]p/2 dA(z)

=
C

A(∆)

∫

∆

[Nϕ0
(z)]p/2 dA(z)

=
C

A(∆)

∫

∆∩D(0,1/R)

[Nϕ(Rz)]p/2 dA(z)

=
C

A(∆̃)

∫

∆̃∩D

[Nϕ(w)]
p/2 dA(w) ,

where ∆̃ = D(w0, R− |w0|) = D(w0, ch).
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Since the center w0 of ∆̃ is in D, ∆̃ ∩ D contains more than a quarter of
∆̃ (at least for ch ≤ 1), and hence A(∆̃ ∩ D) ≥ A(∆̃)/4 = c2h2/4π. Now,
let W̃n,j be the window with the same center as Wn,j and of size 2ch. Since

2ch ≥ ch + (1 − |w0|), W̃n,j contains ∆̃ ∩ D and A(W̃n,j) ≈ h2 ≈ A(∆̃) (≈
meaning that the ratio is between two absolute constants). We therefore get:

[Nϕ(w0)]
p/2 .

1

A(W̃n,j)

∫

W̃n,j

[Nϕ(w)]
p/2 dA(w) ,

proving (6.1). �
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