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LINEAR PREDICTION OF WEAK RECORDS:
THE DISCRETE CASE∗
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Abstract. We characterize the family of discrete distributions for which the best mean square
error predictor of a future weak record is a linear function of a past or observed weak record.
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1. Introduction. A problem of interest is the prediction of a future record value,
Ri+s (s > 0), with the information provided by a past or observed record Ri. A common
procedure for obtaining a predictor is to minimize the mean square error (MSE). It is well
known that the best MSE predictor is the conditional expectation E[Ri+s |Ri]. The func-
tional form of this predictor may be complicated — for that reason it is sometimes desirable
to find a predictor which is best within a class of simple predictors. Of special interest, due
to their simplicity, are the linear predictors of the form β0 + β1Ri.

A natural question arises: What are the distributions for which the best MSE predictor,
E[Ri+s |Ri], is a linear function of Ri? Nagaraja [7] solved the problem of linearity of
regression for the adjacent record values (i.e., s = 1) in the case of continuous distributions.
For further results see also [8]. The case s = 2 was solved by Ahsanullah and Weso�lowski [1].
López-Blázquez [5] solved the problem for an arbitrary s by imposing some smoothness
conditions; see also [6]. Recently, Dembińska and Weso�lowski [3] solved the problem in the
continuous case without any smoothness assumptions.

A modification of the definition of records for discrete distributions was given by Ver-
vaat [10] by introducing weak records. This modification basically permits ties between
records. For this reason, weak records are well defined for discrete distributions with bounded
support, while usual records are not. Stepanov [9] investigated linearity of regression for weak
records in the adjacent case for discrete distributions. More general forms for the regression
function in the adjacent case have been studied by Aliev [2]. Weso�lowski and Ahsanul-
lah [11] have characterized the discrete distributions with linear regression between weak
records when the spacing is s = 2.

The aim of this paper is to give the class of discrete distributions for which the best
MSE predictor is linear for an arbitrary spacing s > 0. Our main result states that such
a class consists of geometric, beta-binomial and beta-negative-binomial distributions, which
are just the families characterized in the adjacent case.

2. Weak records. Let X be a random variable with a distribution concentration on
a lattice of real numbers. Since the problems we are concerned with here are invariant under
scale and shift transformations, without loss of generality we will restrict ourselves to the
case in which the support of X is supp(X) = {0, 1, . . . , N}, where N � ∞. If N = ∞, the
symbol {0, 1, . . . , N} has to be understood as {0, 1, 2, . . . }. We denote pk = P{X = k},
qk = P{X � k}, and ck = pk/qk for k ∈ {0, 1, . . . , N}.

Let {Xn}n�1 be a sequence of independent and identically distributed random variables

with Xn
d
= X. Consider the sequence {U(i)}i�1 defined recurrently by

U(1) = 1, U(i) = min
{
m : m > U(i− 1) and Xm � XU(i−1)

}
, i � 2.
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LINEAR PREDICTION OF WEAK RECORDS 719

The random variable Ri = XU(i) is called the ith weak (upper) record of the sequence {Xn}n�1.
The joint probability mass function (p.m.f.) of the first m weak records is

P{R1 = j1, . . . , Rm = jm} = pjm

m∏
i=1

cji , 0 � j1 � · · · � jm � N(2.1)

(obviously, if N = ∞, the last inequality is strict). From (2.1), it can easily be deduced that
the conditional p.m.f. of Ri+1 given Ri = j is

P[Ri+1 = k | Ri = j] =
pk
qj

, 0 � j � k � N.(2.2)

Note that the conditional probability given in (2.2) does not depend on i. In the same way,

P[Ri+2 = k | Ri = j] =
pk
qj

k∑
l=j

cl, 0 � j � k � N,(2.3)

which is again a probability that does not depend on i. Following with this argument, it can
be shown that for fixed s > 0, P[Ri+s = k |Ri = j] does not depend on i.

We denote em(j) = E[Ri+m |Ri = j], m > 0, j � 0, i � 0. So we have

e1(j) =
1

qj

N∑
k=j

kpk,(2.4)

and changing summation symbols and using (2.4), we get

e2(j) =
1

qj

N∑
k=j

kpk

k∑
l=j

cl =
1

qj

N∑
l=j

ple1(l),(2.5)

and by recurrence it can be shown that

em+1(j) =
1

qj

N∑
l=j

plem(l) for any m � 0 and j � 0(2.6)

with e0(j) = j for all j � 0.
Consider the following families of discrete distributions (see [4]):
(a) The negative hypergeometric distribution of the first kind (or beta-binomial), de-

noted by nhI(α, β, n) and with p.m.f.

pk =

(
α+k−1

k

) (
β−α+n−k

n−k

)
(
β+n
n

) , k = 0, 1, . . . , n,

where α and β are real numbers such that β + 1 > α > 0 and n is a natural number;
(b) the negative hypergeometric distribution of the second kind (or beta-negative-

binomial), denoted by nhII(α, β, γ) and with p.m.f.

pk =
γ

γ + k

(
β
γ

) (
α+k−1

k

)
(
α+β+k

k

) , k = 0, 1, 2, . . . ,

where α, β, and γ are real numbers such that α > 0, β + 1 > γ > 0;
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720 F. LÓPEZ-BLÁZQUEZ

(c) the geometric distribution, denoted by ge(p), with p.m.f. pk = (1 − p)kp, k =
0, 1, 2, . . . , where p ∈ (0, 1).

Let Cs be the class of discrete distributions with support on {0, 1, . . . , N}, for certain
N � ∞, such that E[Ri+s |Ri] is linear. The following lemma gives a characterization of C1.

Lemma 1. Let X be a discrete distribution with support on {0, 1, . . . , N} such that
E[Ri+1 |Ri] = γ0 + γ1Ri, where γ0 and γ1 are some real numbers. Then γ0 and γ1 are
positive and

(i) if 0 < γ1 < 1, then γ0/(1 − γ1) is a natural number and

X ∼ nhI

(
1,

γ1

1 − γ1
,

γ0

1 − γ1

)
;

(ii) if γ1 = 1, then

X ∼ ge

(
1

1 + γ0

)
;

(iii) if γ1 > 1, then

X ∼ nhII

(
1,

γ0 + 1

γ1 − 1
,

γ0

γ1 − 1

)
.

Proof. See the paper by Stepanov [9]. Note that in his result the case (i) is missing due
to his unnecessary assumption of unboundedness of the support of X. This fact has been
noted by Weso�lowski and Ahsanullah [11].

Let X be a random variable such that E[Ri+1 |Ri] = γ0 + γ1Ri (i.e., X follows one of
the distributions characterized in Lemma 1). Then e1(l) = γ0 + γ1l, for l ∈ {0, 1, . . . , N}, or
equivalently, from (2.4),

N∑
k=l

kpk = (γ0 + γ1l) ql for all l = 0, 1, . . . , N.(2.7)

From (2.5), using (2.7), after some elementary algebra, we get

e2(j) = γ0(1 + γ1) + γ2
1j, j = 0, 1, . . . , N,

and by recurrence, using (2.6), we obtain

es(j) = E[Ri+s | Ri = j] = γ0
1 − γs

1

1 − γ1
+ γs

1j, j = 0, 1, . . . , N.

(In order to have a compact notation, in the following we assume that (1− γs
1)/(1− γ1) = s

if γ1 = 1.)
Summing up, if X is a random variable such that E[Ri+1 |Ri] = γ0 + γ1Ri, then, for

any s � 1, E[Ri+s |Ri] is also linear with

E[Ri+s | Ri] = β0 + β1Ri,

where β0 = γ0(1 − γs
1)/(1 − γ1) and β1 = γs

1 ; in other words, C1 ⊆ Cs.
Our aim is to prove the opposite inclusion. This is the main result of the following

section.

3. The main result. In order to prove that Cs ⊆ C1 we need some previous results.
Let us denote by v = (v(0), v(1), . . . , v(N))t a generic vector in RN+1. (If N = ∞, v is

a sequence of real numbers.) Let X be a random variable with support on {0, 1, . . . , N},
{pk}Nk=0 its p.m.f., and qk = P{X � k}. Let DN be the subset of RN+1 formed by the

vectors v such that
∑N

k=0
|v(k)| pk < ∞. Note that, if N is finite, DN = RN+1. Consider

the linear operator defined on the elements of DN as

T (v) = w, v ∈ DN ,(3.1)
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LINEAR PREDICTION OF WEAK RECORDS 721

where w(j) = q−1
j

∑N

k=j
v(k) pk, j = 0, 1, . . . , N .

The matrix (an infinite matrix if N = ∞) associated to the linear operator defined
in (3.1) is

A =

⎡
⎢⎢⎢⎢⎣

p0 p1 p2 · · · pN
0 p1/q1 p2/q1 · · · pN/q1
0 0 p2/q2 · · · pN/q2
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎦ ,

which is an upper triangular matrix. If N is finite, the determinant of A is detA =∏N

k=0
(pk/qk) > 0, and this implies that the linear operator T : RN+1 → RN+1 is bijec-

tive. In the case N = ∞, the condition pk/qk �= 0 for all k � 0 implies that T is a bijective
operator that maps D∞ onto its image.

If em denotes the vector with components em(j) = E[Ri+m |Ri = j], j = 0, 1, . . . , N ,
from (2.6) we have T (em) = em+1 and, by recurrence,

es = T s−1(e1) for all s > 1,(3.2)

where T k = T ◦ · · · ◦ T (k times).
Theorem 1. Let X be a discrete distribution with support on {0, 1, . . . , N} such that

E[Ri+s | Ri] = β0 + β1Ri,(3.3)

where β0 and β1 are some real numbers and s � 1. Then β0 and β1 are positive. Let γ0

and γ1 be unique positive solutions to the equations

β1 = γs
1 , β0 = γ0

1 − γs
1

1 − γ1
.(3.4)

Then
(i) if 0 < β1 < 1, then γ0/(1 − γ1) is a natural number and

X ∼ nhI

(
1,

γ1

1 − γ1
,

γ0

1 − γ1

)
;

(ii) if β1 = 1, then

X ∼ ge

(
1

1 + γ0

)
;

(iii) if β1 > 1, then

X ∼ nhII

(
1,

γ0 + 1

γ1 − 1
,

γ0

γ1 − 1

)
.

Proof. Observe that as X is nondegenerate, es(l) = E[Ri+s |Ri = l] is strictly increasing,
so that β1 must be positive. Also note that β0 = es(0); then β0 is positive. Let γ0 and γ1

be unique positive solutions to (3.4). For m = 1, . . . , s, let us write

em(j) = γ0
1 − γm

1

1 − γ1
+ γm

1 j + dm(j), j = 0, 1, . . . , N.(3.5)

Obviously, from (3.3), ds(j) = 0 for j = 0, 1, . . . , N . Combining (2.6) and (3.5), after some
algebra, we obtain

dm+1(j) = γm
1 d1(j) +

1

qj

N∑
l=j

pldm(l), j = 0, 1, . . . , N,(3.6)

for m = 1, . . . , s− 1.
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722 F. LÓPEZ-BLÁZQUEZ

Consider the (N + 1) × (N + 1) matrix (an infinite matrix if N = ∞)

A =

⎡
⎢⎢⎢⎢⎣

p0 p1 p2 · · · pN
0 p1/q1 p2/q1 · · · pN/q1
0 0 p2/q2 · · · pN/q2
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎦

and the (N + 1)-dimensional vectors (infinite sequences if N = ∞)

dm =
(
dm(0), dm(1), . . . , dm(N)

)t
, m = 1, . . . , s.

With this notation, (3.6) can be written in the matrix form as dm+1 = γm
1 d1 + Adm,

m = 1, . . . , s− 1, from which we get

dm = Bmd1, m = 1, . . . , s, with Bm =

m−1∑
k=0

γm−k−1
1 Ak.(3.7)

Note that Bm is an upper-triangular matrix with nonzero diagonal entries; then Bm has an
inverse (even in the infinite case). Then

d1 = B−1
m dm for m = 1, . . . , s,(3.8)

by hypothesis ds = 0, and then from (3.8) we get d1 = 0, or equivalently, from (3.5)

E[Ri+1 | ri = j] = γ0 + γ1j, j = 0, 1, . . . , N,

and the conclusion of the theorem follows immediately from Lemma 1.
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