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Abstract

This is an expository paper where we relate some aspects of the
problem of looking for holomorphic functions with maximal cluster
sets under the action of operators defined on spaces of holomorphic
functions. Some functional generalizations of cluster sets, as well as
special spaces of analytic functions, are also considered.

1 Introduction and Notation

In this paper, which has an expository nature, we consider the so called
cluster sets, that is the set of accumulation points of the set of values taken
by a (usually, holomorphic) function on prescribed subsets. We are specially
interested in the action of holomorphic operators in order to obtain maximal
cluster sets, see below for details. Extensions of classical cluster sets, where
they are replaced by adequate families of functions, as well as special spaces
of analytic functions (such as Hardy or Bergman spaces) are also included in
this survey. Firstly, we fix some notation.

Throughout this paper, Z will stand for the set of all integers, N is the
set of positive integers, N0 := N ∪ {0}, C is the complex plane and Ĉ is its
one-point compactification or Riemann sphere C∪{∞}. We denote by D the
open unit disk {z ∈ C : |z| < 1} and by T the unit circle {z ∈ C : |z| = 1}.
If A ⊂ C then A′, A◦ and ∂A represent its set of accumulation points,
its interior and its boundary in Ĉ, respectively. Also, if F : A → C is a
function on A then ∥F∥A := supz∈A |F (z)|. Moreover, if G is a domain (:=
connected, nonempty open subset) of C, then H(G) will stand for the space
of holomorphic functions on G. It becomes a completely metrizable space
(hence a Baire space) when it is endowed with the compact open topology
(see [25, pages 238–239]). The symbol K(G) will stand for the family of all
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compact subsets of G while KC(G) is the family of compact subsets K of G
such that C \K is connected. A Jordan domain is a domain G of C whose

boundary in Ĉ is a topological image of T, and a simply connected domain
is a domain G whose complement in Ĉ is also connected. Finally, if K ⊂ C
is compact, we denote by A(K) the family of all continuous functions on K
that are holomorphic in K◦.

IfG is a domain in C, then a curve inG tending to the boundary (notation:
γ → ∂G) is a continuous map γ : [0, 1) → G such that for each compact
set K ⊂ G there is u0 = u0(K) ∈ [0, 1) with γ(u) ∈ G \ K for all u >
u0 (in particular if G = D then γ tends to the boundary T if and only
if limu→1− |γ(u)| = 1). By abuse of language, we will usually make the
identification γ := γ([0, 1)).

Finally if A is a subset of a topological space X, we say that A is residual
if its complement is of Baire first category, or equivalently, if it contains a
Gδ-dense set (cf. [36]).

The notion of cluster set was first introduced by P. Painlevé [37] as a tool
to study intuitively the behavior of an analytic function around one of its
singularities. Although we are considering only the case of analytic functions,
this is not a real restriction, because the notion of cluster set only depends
of the existence of a limit. For the essential background on cluster sets the
reader is referred to the surveys [18] and [35] by Collingwood-Lowhater and
Noshiro, respectively. Let us recall some notions.

Definition 1.1. Let G be a domain of C, F : G → C be a function and A
be a subset of G with A′ ∩ ∂G ̸= ∅. The cluster set of F along A is the set

CA(F ) = {w ∈ Ĉ : there exists a sequence {zn}∞n=1 ⊂ A tending to
some point of ∂G such that limn→∞ F (zn) = w}.

Moreover, if t0 ∈ A′ ∩ ∂G, then the cluster set of F along A at t0 is the set

CA(F, t0) = {w ∈ Ĉ : there exists a sequence {zn}∞n=1 ⊂ A tending to t0
such that limn→∞ F (zn) = w}.

It is clear that both CA(F ) and CA(F, t0) are closed subsets of Ĉ and that

CA(F ) is the Ĉ-closure of
∪
t∈∂G CA(F, t). If A = G then the subscript “A”

and the expression “along A” are usually omitted and we speak about the
global cluster set. A special important case occurs when G = D, t0 ∈ T and
A is the radius A := {ut0 : u ∈ [0, 1)}; then we can define the radial cluster
set as the set Cϱ(F, t0) := CA(F ) = CA(F, t0). We will say that a cluster set

is maximal when it is equal to Ĉ.

Historically, the problem of looking for holomorphic functions with maxi-
mality properties of cluster sets has been of interest for mathematicians. And
this is the field we are interested in for this survey. For example, if z0 is an
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isolated essential singularity of a holomorphic function f , then the cluster set
C(f, z0) is maximal due to the Casorati-Weierstrass Theorem (see [1]). This
is a first method of finding functions with (one) maximal cluster set, but it
does not allow to prefix how to approach the boundary, in other words, it
only tells about global cluster sets.

An example of the above situation but prescribing a set to approach ∂G
can be easily obtained thanks to the next well known Weierstrass’ interpola-
tion theorem [38, Theorem 15.13].

Theorem 1.1. Let G ⊂ C be a domain, (an)n ⊂ G be a sequence in G
of distinct points without accumulation points in G and (ωn)n ⊂ C be any
complex sequence. Then there is a function f ∈ H(G) such that f(an) = ωn
for all n ∈ N.

As a consequence, if we fix a non-relatively compact subset A of G, then
we can find a sequence (an)n ⊂ A satisfying the hypothesis of the last the-
orem. By choosing as (wn)n an enumeration of the set Q[i] := Q + iQ of
rational complex numbers, we obtain a function f ∈ H(G) such that CA(f)
is maximal. If we also fix a boundary point t0 ∈ A′ ∩ ∂G (that is, acces-
sible through A), a similar reasoning gives us a function f ∈ H(G) with

CA(f, t0) = Ĉ.

At this point, several questions arise. In this survey we will be interested
in studying the “size” (in a topological or algebraic sense) of functions with
maximality properties of their cluster sets as well as in looking for functions
with maximality properties at every boundary point or along suitable paths.
We will be specially concerned in looking for functions such that their images
under the action of operators present maximality properties for cluster sets,
and in some “functional” generalizations of the concept of cluster set.

2 Operators generating maximal cluster sets

2.1 Maximal global cluster sets

The last result of the preceding section allows us to obtain holomorphic
functions with maximal cluster sets along any prefixed non-relatively com-
pact subset of G. But it is also interesting to study the topological size of
the set of functions with this properties, specifically the size of the set of
functions with this property at “many” boundary points and even such that
their derivatives have also maximal cluster sets. Following this line, in 1992,
Bernal [4] introduced the concept of (holomorphic) omnipresent operator in
the following way.

Definition 2.1. Let G be a domain of C and T : H(G) → H(G) be a (not
necessarily linear) continuous operator. We say that T is omnipresent if and
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only if the set

{f ∈ H(G) : C(Tf, t) = Ĉ for all t ∈ ∂G}

is residual.

It is also showed in [4] –by using Cauchy’s formula for derivatives, together
with Runge’s approximation theorem and Mergelyan’s approximation theo-
rem (see [21])– that the derivative operator of any order m, Dm : f 7→ f (m),
and the antiderivative operator of any order m, D−m : f 7→ f (−m) (in the
case of a simply connected domain G and for any m ∈ N, f (−m) is defined by
fixing a point a ∈ G and saying that f (−m) is the unique function F ∈ H(G)
such that F (m) = f and F (h)(a) = 0 for h = 0, 1, . . . ,m−1) are omnipresent,
so given a simply connected domain G ⊂ C and any j ∈ Z, the residuality of
the set

{f ∈ H(G) : C(f (j), t) = Ĉ for all t ∈ ∂G}

is provided. But thanks to Baire’s Theorem we get the next result (see also
[31] and [23, Kapitel 3]).

Theorem 2.1. Assume that G is a domain of C. We have:

(a) The set

{f ∈ H(G) : C(f (j), t) = Ĉ for all t ∈ ∂G and all j ∈ N0}

is residual in H(G).

(b) If G is simply connected, then the set

{f ∈ H(G) : C(f (j), t) = Ĉ for all t ∈ ∂G and all j ∈ Z}

is residual in H(G).

The above theorem deals with the maximality of global cluster sets of
holomorphic functions. Later, in 1995 the same author [5] extended this
result by prefixing where to approach the boundary in the case of derivative
operators (in turn, Calderón [16, Theorems 2.1 and 3.5] extended it to an
infinite order differential operator).

Theorem 2.2. Let G ⊂ C be a domain. Given any non-relatively compact
subset A of G, the set

{f ∈ H(G) : CA(f
(n)) = Ĉ for all n ∈ N0}

is residual in H(G).
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Now, if we fix a boundary point t0 ∈ A′ ∩ ∂G, we get also the residuality
of the set {f ∈ H(G) : CA(f

(n), t0) for all n ∈ N0}. Observe that, as
we said before, this result allows us to prescribe how the sequence reaches
the boundary (through a segment, a sector, a curve, etc) while with the
omnipresence we cannot make this restriction.

As a direct consequence of Theorem 2.2, if we prefix any countable set Γ
of curves in G tending to the boundary, the Baire Theorem provides a resid-
ual subset M of H(G) such that Cγ(f

(j)) = Ĉ for all integer j ≥ 0, all γ ∈ Γ
and all f ∈ M . In particular, if G = D and we prefix a dense and countable
subset Λ ⊂ T we get the residuality of the set {f ∈ H(D) : Cϱ(f (j), t) = Ĉ
for all t ∈ Λ and all j ≥ 0}. Analogously, if for every boundary point t ∈ Λ

we fix a sequence (a
(t)
n )n ⊂ G such that a

(t)
n → t (n → ∞), then we get

the existence of a residual set of functions f ∈ H(G) with C
(a

(t)
n )n

(f, t) = Ĉ
for all t ∈ Λ. Observe that in this situation, if G = D, we can prefix se-
quences with tangential (non-tangential, respectively) approximation to any
boundary point of Λ.

2.2 Maximal radial cluster sets

This subsection is devoted to describe the problem of maximal radial clus-
ter sets in D, mainly under the action of operators on holomorphic functions.
In this direction, R. Tenthoff [40] in 2000 proved, among other results, the
next theorem about maximality of radial cluster sets.

Theorem 2.3. There is a dense subset D ⊂ H(D) such that for every integer

number j ∈ Z, and every boundary point t ∈ T, Cϱ(f (j), t) = Ĉ.

By using the Osgood-Carathéodory theorem on continuous extensions of
isomorphisms up to the boundary (see [24]), Theorem 2.3 can be extended
to any Jordan domain G of C in this way. Given any Jordan domain G there
is a family Γ = {γt : t ∈ ∂G} of curves in G with γt → t for all t ∈ ∂G,
satisfying that the set of functions f ∈ H(G) such that for every j ∈ Z and
every t ∈ ∂G, the cluster set Cγt(f

(j), t) is maximal, is dense in H(G).

In view of this result, one may ask about the residuality of the set of
functions f ∈ H(D) such that for each j ∈ Z and all t ∈ T, the equality

Cϱ(f
(j), t) = Ĉ holds.

A first attempt in this direction can be derived of a statement of Kierst
and Szpilrajn (cf. [28, Section 4]). In particular, they proved the residuality
of the set of holomorphic functions in D with maximal radial cluster set at
any boundary point.

A recent statement by Bernal, Calderón and the author [13, Theorem 2.2]
(see Theorem 2.4 below) gives a partial answer to the above question. But
we first need two definitions.
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Definition 2.2. Let G ⊂ C be a domain and T : H(G) → H(G) be a (not
necessarily linear) continuous operator. We say that T is locally stable near
the boundary if for each K ∈ K(G) there exists a compact subset M ∈ K(G)
such that for each compact subset L ∈ KC(G) with L ⊂ G\M , each function
f ∈ H(G) and each positive number ε > 0, there exist a compact subset
L′ ∈ KC(G) with L′ ⊂ G \K and a positive number δ > 0 such that

[g ∈ H(G) and ∥f − g∥L′ < δ] implies ∥Tf − Tg∥L < ε.

Definition 2.3. Let G ⊂ C be a domain, T : H(G) → H(G) be a (not
necessarily linear) continuous operator and A ⊂ H(G). We say that T has
locally dense range at A near the boundary if there exists a compact subset
S ∈ K(G), such that for each f ∈ A, each compact subset L ∈ KC(G) with
L ⊂ G \ S and each positive number ε > 0, there is a function F ∈ H(G)
such that ∥TF − f∥L < ε.

We are now able to state the promised result. Again, Runge’s theorem is
an essential tool in the proof.

Theorem 2.4. Let T be a locally stable continuous operator on H(D) with
locally dense range at the constant functions near the boundary. Then the set
Mϱ(T ) := {f ∈ H(D) : Cϱ(Tf, t) = Ĉ for all t ∈ T} is dense in H(D).

An operator T on H(D) with the property that Mϱ(T ) is dense in H(D)
is called to have the maximal radial cluster set property (in short, MRCS
property). In particular, every derivative operator (including the identity
operator I) satisfies the MRCS property. Hence we get the next corollary
just by taking into account that Mϱ(T ) is always a Gδ-subset.

Corollary 2.5. There exists a residual set of functions f ∈ H(D) such that
the cluster set Cϱ(f

(j), t) is maximal for all t ∈ T and all j ≥ 0.

Observe that the antiderivative operator of any order is not locally stable,
so we cannot apply Theorem 2.4 and the problem of the residuality of the
set {f ∈ H(D) : Cϱ(f (j), t) = Ĉ for all t ∈ T and all j ∈ Z} is still open.

In the same work –see [13, Section 3]– the authors also proved that many
classical operators, including composition, multiplication, superposition ope-
rators (under suitable conditions) and non-zero infinite order differential ope-
rators have the MRCS property. But before state the result, let us define
precisely the operators we need.

Definition 2.4. Let G be a domain in G

1. Let Φ(z) =
∑
k≥0 ϕkz

k be an entire function of subexponential (resp.
exponential) type, that is, for all number ε > 0 there is a constant A =
A(ε) > 0 such that |Φ(z)| ≤ Aeε|z| (resp. there are positive constants A
and B such that |Φ(z)| ≤ AeB|z|), or equivalently, limk→∞(k!|ϕk|)1/k =
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0 (resp. lim supn→∞(n!|an|)1/n < +∞), then Φ(D) :=
∑
k≥0 ϕkD

k

defines a linear continuous operator on H(D) (actually on H(G) with
G any domain in C) called infinite order differential operator, where
D0 := the identity operator (see [3, §6.4]).

2. Let ψ ∈ H(G). We define the multiplication operator on H(G) as
follows:

Mψ : f ∈ H(G) 7→ ψ · f ∈ H(G).

3. Let H(G,G) = {g ∈ H(G) : g(G) ⊂ G}. Given φ ∈ H(G,G) we define
the (right) composition operator Cφ as

Cφ : f ∈ H(G) 7→ f ◦ φ ∈ H(G).

4. Let φ be an entire function. The superposition operator on H(G) is
defined as

Lφ : f ∈ H(G) 7→ φ ◦ f ∈ H(G).

We are now able to present the result, that collects the main examples of
operators with the MRCS-property.

Theorem 2.6.

1. Let Φ ∈ H(C) be a nonzero entire function of subexponential type. Then
the associated differential operator Φ(D) has the MRCS-property.

2. Let ψ ∈ H(D) and Z(ψ) be the set of zeros of ψ. If Z(ψ) is finite then
the multiplication operator Mψ has the MRCS-property.

3. Let φ ∈ H(D) be proper, that is, the preimage of every compact is also
compact. Then the composition operator Cφ has the MRCS-property.

4. Let φ be an entire function. Then the superposition operator Lφ gene-
rated by φ has the MRCS-property if and only if φ is non constant.

5. Let T, S : H(D) → H(D) be operators such that T has the MRCS-
property and S is linear and onto. Then T ◦S has the MRCS-property.
In particular, every linear and onto operator has the MRCS-property.

2.3 Maximal cluster sets along curves

Going back to cluster sets along arbitrary curves in general domains, we
find the next statement, which can be derived from an old, not very known
result due to Kierst and Szpilrajn [28, Section 4].

Theorem 2.7. The set of functions f ∈ H(D) such that Cγ(f, t) = Ĉ for
each t ∈ T and all curve γ ⊂ D with γ → T and disjoint of some segment
-depending on γ- in D ending at T is residual in H(D).
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The condition on each curve γ given in Theorem 2.7 is fulfilled (for G = D)
if γ is an admissible curve. This means that the set of oscillation values (or
ω-limit) of a curve γ ⊂ G with γ → ∂G, given by

Osc(γ) := {t ∈ ∂G : exists (zn)n ⊂ γ with lim
n→∞

zn = t},

is non-total, that is, Osc(γ) ̸= ∂G, or equivalently, γ′ ∩ ∂G ̸= ∂G.

Recently, in 2002, A. Boivin, P. M. Gauthier and P. V. Paramonov [14,
Theorem 5] have shown a result on elliptic differential operators L on RN . In
the special case of the Cauchy operator L = ∂ = 1

2 (∂x + i∂y) (with N = 2),
such result reads as follows.

Theorem 2.8. Let G be a domain in C such that its boundary ∂G has no
connected component consisting of a single point. Then there exists a function
f ∈ H(G) with the property that for each point t ∈ ∂G, for each curve γ ⊂ G
ending at t and each j ∈ N0, the cluster set Cγ(f

(j), t) is maximal.

It is also observed in [14] that this result is close to being sharp. Indeed,
it is shown in [14, Proposition 4] that if ∂G has an isolated point b, then for
each function f ∈ H(G), there exists a curve γ ⊂ G ending at b such that
Cγ(f) collapses to a single point.

The following theorem due to the Bernal, Calderón and the author [12]
extends the result of Kierst and Szpilrajn by setting the large “algebraic”
(not only “topological”) size of the set of functions f ∈ H(D) with maximal
cluster set along any admissible curve. The Nersesjan approximation theorem
(see [21] and [34]) is an important ingredient in its proof.

Theorem 2.9. Let G be a Jordan domain. Then there is a dense linear
manifold D ⊂ H(G) such that for every f ∈ D \ {0} and every admissible

curve γ ⊂ G we have Cγ(f) = Ĉ.

A natural question arising in this context is whether one can replace the
(almost) arbitrary curve γ to an arbitrary sequence {zn}∞n=1 tending to the
boundary. But the next assertion (see [12, Proposition 2.2]) answers it in the
negative.

Proposition 2.10. If G ⊂ C is a bounded domain and f ∈ H(G) then there
are a point t ∈ ∂G, a value A ∈ C and a sequence {zn}∞n=1 ⊂ G with zn → t
(n→ ∞) such that limn→∞ f(zn) = A.

To end this section, we remark that it is possible to extend the searching
of large sets of functions with maximal cluster sets along arbitrary curves to
more general settings (see for instance[14] and [6]).

We point out that Theorem 2.9 has been recently extended (see [6]) to
domains in RN having no connected component consisting of a single point,
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to elliptic differential operators L and to certain class of operators T acting
on the space of L-analytic functions; the holomorphic case and the operators
T = Dn are contained as special cases.

3 Generalized cluster sets

In this section we are interested in some generalizations of the notion of
cluster set. Such generalizations were first introduced by Luh [31]. Let us
recall that the classical (global) cluster set of a holomorphic function f on a

domain G is the set of complex points ω ∈ Ĉ such that there exists a sequence
(zn)n in G tending to some boundary point with f(zn) → ω (n → ∞) (see
Definition 1.1).

The generalization proposed by Luh starts with the question of the behav-
ior of such a function f , when the sequence (zn)n occurring above depends
slightly on a complex variable z. To be precise, the aim of this new notion
is to investigate the behavior of the functions f(anz+ bn) when z belongs to
some complex subset S, anz + bn ∈ G for all z ∈ S and anz + bn tends, in
some sense, to some boundary point of G. These modified cluster sets intro-
duced by Luh are of the three types given in the next definition (see [31]),
and depend on the concept of limit taken in the function space considered.

Definition 3.1. Let G be a domain in C. For each compact subset K ⊂ C,
each open set U ⊂ C and each (Lebesgue) measurable set S ⊂ C, for each
boundary point t of G, and each function f ∈ H(G), we define:

• S(f,G, t,K) will be the set of functions φ : K → C for which there
exists a sequence of linear affine mappings τn(z) = anz + bn such that
τn(K) ⊂ G for all n ∈ N, an → 0, bn → t (n → ∞) and f(τn(z)) → φ
uniformly on K.

• R(f,G, t, U) will denote the set of functions φ : U → C for which there
exists a sequence of linear affine mappings τn(z) = anz + bn such that
τn(U) ⊂ G for all n ∈ N, an → 0, bn → t (n → ∞) and f(τn(z)) → φ
uniformly on compacta of U .

• T (f,G, t, S) will be the set of functions φ : S → Ĉ for which there
exists a sequence of linear affine mappings τn(z) = anz + bn such that
τn(S) ⊂ G for all n ∈ N, an → 0, bn → t (n → ∞) and f(τn(z)) → φ
almost everywhere on S.

It is quite obvious that S(f,G, t,K) ⊂ A(K), R(f,G, t, U) ⊂ H(U) and

T (f,G, t, S) ⊂ M(S) : {f : S → Ĉ : f is measurable}. Also in the special
case K = {0} = S, we get S(f,G, t,K) = C(f, t) = T (f,G, t, S), that is, we
recover the classical cluster sets.
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The first result about maximality of modified cluster sets can be found in
[29], where it is showed the existence of a holomorphic function f on D, such
that S(f,D, t,K) = A(K) for all compact set K ∈ KC(C). This statement
was strongly extended by Luh in [31], as follows.

Theorem 3.1. Let G ⊂ C, G ̸= C, be an open set with simply connected
components. Then there exists a function f ∈ H(G) such that

(a) S(f,G, t,K) = A(K) for every compact subset K ∈ KC(C).

(b) Each derivative f (j) (j ∈ N) of f and each antiderivative of f of arbi-
trary order has the same boundary behavior described in (a).

Functions satisfying (a) and (b) are called holomorphic monsters (in the
sense of Luh). In addition, he shows in [31] that the set M(G) of holomorphic
monsters in G is dense in H(G). But this is not the unique wild behavior of
holomorphic monsters. In fact, Luh also proved that the maximality of modi-
fied cluster sets of the first type, implies the maximality of modified cluster
sets of the other types. As in [30], Mergelyan’s theorem on polynomial ap-
proximation and Lusin’s theorem on approximation of measurable functions
by continuous ones, are crucial tools.

Theorem 3.2. Let G ⊂ C, G ̸= C, be an open set with simply connected
components, t ∈ ∂G be a fixed boundary point and f ∈ H(G) satisfying that
S(f,G, t,K) = A(K) for all compact subset K ∈ KC(C). Then the function
f has the following properties:

(1) For every bounded open set U ⊂ C with simply connected components,
R(f,G, t, U) = H(U).

(2) For every bounded measurable set S ⊂ C, T (f,G, t, S) =M(S).

In fact, combining the last two theorems, we conclude that if f is a holo-
morphic monster, then every derivative and every antiderivative of f and
the function f itself have maximal modified cluster sets of the three types.
Monster with additional properties were also constructed by Luh [32], Schnei-
der [39] (monsters with properties of univalence) and Luh, Martirosian and
Müller [33] (monsters with gap power series). Kanatnikov [26, 27] studied in
the eighties universal boundary behavior (only of f itself) for meromorphic
functions.

In 1987, Grosse-Erdmann [22, Kapitel 3], continued the study of these
modified cluster sets and showed that a function f ∈ H(G) is a holomorphic
monster if and only if every derivative and every antiderivative of arbitrary
order (say F ) satisfies that for each Jordan domain Ω ⊂ C and each boundary
point t ∈ ∂G, the modified cluster set R(F,G, t,Ω) equals H(Ω). In fact [22,
Satz 3.0.2] it suffices to take Ω = D. In addition, he also proved, using
universality techniques, the residuality of the set M(G).
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Recently, Armitage [2], and Calderón and Müller [17] have shown the
existence of harmonic functions with such a wild behavior near the boundary.
The last two authors have considered a more general setting, namely, the
space of L-analytic functions for an elliptic operator L.

Following the study of holomorphic monsters, Bernal and Calderón gen-
eralized in [7] the concept of monster by introducing holomorphic operators.

Definition 3.2. Let G be an arbitrary open subset of C, G ̸= C and let
T : H(G) → H(G) be a (not necessarily linear) continuous operator. A
function f ∈ H(G) is said to be a T -monster if for each Jordan domain Ω ⊂ C
and each boundary point t ∈ ∂G, the modified cluster set R(Tf,G, t,Ω) is
maximal. The set of all T -monsters will be denoted by M(T,G).

Thanks to the observation by Grosse-Erdmann, a function f ∈ H(G) is a
holomorphic monster in the sense of Luh if and only if it is a Dj-monster for
every j ∈ Z. In addition, it is also proved in [7] that it suffice to take Ω = D
in the definition of T -monster.

Now, the problem is to determine when an operator T supports a T -
monster and, in this case, to determine how big is the set of T -monsters. In
this direction, the next definition is introduced in [7].

Definition 3.3. Let G be an arbitrary open subset of C, G ̸= C. A (not
necessarily linear) continuous operator T : H(G) → H(G) is said to be
strongly omnipresent, when the set M(T,G) of T -monsters is residual in
H(G).

Up to now, we know that every derivative or antiderivative operator
of arbitrary order is strongly omnipresent. But it would be desirable to
find more operators with this wild behavior. A general study of strongly
omnipresent operators have been made by Bernal, Calderón and Grosse-
Erdmann in [7, 10, 11], where they provide necessary and sufficient condi-
tions on the operator T to be strongly omnipresent and apply them then to
furnish several examples of these operators. The next statement collects the
main examples of strongly omnipresent operators.

Theorem 3.3. Let G be an open subset of C with G ̸= C.

1. Let Φ ∈ H(C) be a nonzero entire function of subexponential type. Then
the associated differential operator Φ(D) is strongly omnipresent.

2. Let Cφ be the composition operator on H(G) generated by a function
φ ∈ H(G,G). Then Cφ is strongly omnipresent if and only if, for every
open set V with V ∩∂G ̸= ∅, the set φ(V ∩G) is not relatively compact
in G.
In particular, if φ is an entire function, then the associated composition
operator Cφ on H(C) is strongly omnipresent if and only if φ is non-
constant.
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3. Let Lφ be the superposition operator on H(G) defined by a function
φ ∈ H(C). Then Lφ is strongly omnipresent if and only if the operator
Lφ on H(D) has dense range.

4. If ψ ∈ H(G) is a non-zero function, then the multiplication operator
Mψ is strongly omnipresent.

5. Let T be a strongly omnipresent operator and S an onto linear operator.
Then T ◦ S is strongly omnipresent. In particular, every onto linear
operator is strongly omnipresent.

6. Assume that G is a simply connected domain, a ∈ G, N ∈ N0, an ∈
H(G) (0 ≤ n ≤ N) and that φ : G×G→ C is a function holomorphic
in both variables. Consider the integral-differential operator T on H(G)
defined by

Tf(z) =

N∑
n=0

an(z)D
nf(z) +

∫ z

a

f(t)φ(z, t)dt (z ∈ G),

where the integral is taken along any rectificable curve in G joining a
to z. If either aN or ϕ are non identically null, then T is strongly
omnipresent.

The concept of strongly omnipresence is related to the existence of a
big set (in a topological sense) of functions with maximal modified cluster
sets. But we can also tell something about the “algebraic size” of the set
of these functions. For this, in [8] the concept of strongly omnipresence is
generalized. Before going in, in order to concrete the connection to cluster
sets, let us introduce a new kind of functional cluster sets.

Let G ⊂ C be a domain, U ⊂ C be an arbitrary open subset and t ∈
∂G. Assume that T = (τn) is a sequence of affine linear transformations
τn(z) = anz + bn with τn(U) ⊂ G (n ∈ N) an → 0 and bn → t (n→ ∞). By
RT (f,G, t, U) we will denote the set of functions g : U → C satisfying that
for every g ∈ H(G) there exists a strictly increasing sequence (nk) ⊂ N such
that f(τnk

(z)) → g(z) uniformly on compact subsets of G.

Roughly speaking, this definition is the functional analogue of the classical
cluster set along a non-relatively compact subset of G.

Definition 3.4. Let G be a complex domain and T a (not necessarily linear)
continuous operator on H(G). T is said to be totally omnipresent if for every
t ∈ ∂G and every sequence of affine linear transformations τn(z) = anz + bn
with τn(D) ⊂ G (n ∈ N), an → 0 and bn → t (n → ∞), there exists a dense
set of functions f ∈ H(G) satisfying that R(τn)(Tf,G, t,D) = H(D).

Observe that, in particular, a totally omnipresent operator has a dense set
of holomorphic functions f such that for every t ∈ ∂G the modified cluster
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set R(Tf,G, t,D) equals H(D). This observation together with the fact that
such a modified cluster set is always a Gδ subset allows us to state that every
totally omnipresent operator is strongly omnipresent.

To conclude this section, we establish (see [8]) the promised result about
the algebraic size of holomorphic monsters and T -monsters. Again, the
derivative and the antiderivative operators are totally omnipresent.

Theorem 3.4. Let T be a totally omnipresent operator on H(G). Then there
exists a dense linear manifold D ⊂ H(G) such that M(T,G) ⊃ D \ {0}.
In particular, if G is a simply connected domain, then there exists a dense
linear submanifold of H(G) all of whose non-zero members are holomorphic
monsters in the sense of Luh.

The proof relies again on techniques taken from hypercyclicity theory.

4 Cluster sets on Banach spaces of holomor-
phic functions

In this final section we are concerned with looking for functions in some
classical Banach spaces of H(D) (namely, Hardy and Bergman spaces) with
properties of maximality of classical and functional cluster sets.

If p ∈ [1,∞) then the Hardy space Hp is the class of functions f ∈ H(D)
for which

∥f∥Hp := sup
0<r<1

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

<∞.

The Bergman space Ap is the class of functions f ∈ H(D) such that

∥f∥Ap :=

(∫ ∫
D
|f(z)|pdσ(z)

)1/p

<∞,

where dσ(z) is the normalized area measure. Each of them becomes a Banach
space when endowed with the norm ∥f∥Hp and ∥f∥Ap , respectively. Recall
also that Hp ⊂ Ap with dense continuous inclusion. For more information
about these spaces see [19] and [20].

If f is in the Hardy space Hp then Fatou’s theorem asserts that the
radial limit limr→1− f(re

iθ) exists and is finite for almost every θ ∈ [0, 2π],
see [19]. Therefore Cγ(f) is a singleton for almost every radial curve γ =
{reiθ : r ∈ [0, 1)}. However, for Bergman spaces this argument falls down,
because there are functions in Ap without radial limits almost everywhere,
see [20]. But, though this “boundary stability” of Hardy functions, in 1972
Brown and Hansen provided the next result about wild behavior of functions
in Hp (0 < p <∞) at every boundary point, see [15, Theorem 3], that in the
language of cluster sets says as follows.
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Theorem 4.1. For every 0 < p < ∞, there exists a residual set M ⊂ Hp

such that for each f ∈M and each t ∈ T, the cluster set C(f, t) is maximal.

This result only speaks about global cluster sets but Fatou’s theorem
avoid us to obtain maximality of radial cluster sets. Nevertheless, we could
ask whether at least for a prescribed countable family of curves in D tending to
T the assertion of Theorem 2.9 holds inHp. The next result (see [12, Theorem
2.5]) gives a positive answer, even without the restriction Osc (γ) ̸= T.

Theorem 4.2. Suppose that p ∈ [1,∞) and that Γ is a countable collection
of curves in D tending to the boundary. Then there is a dense linear manifold
D in Hp such that Cγ(f) = Ĉ for every f ∈ D \ {0} and every γ ∈ Γ.

In view of the last theorem, we cannot expect good assertions on maxi-
mality of cluster sets along arbitrary curves. Nonetheless, making a link with
Theorem 4.1 Section 3, we can ask about the existence of functions in Hp or
Ap with maximal functional cluster sets, that is to say, holomorphic monsters
or T -monsters.

By following this line Bernal and Calderón [9] proved a negative result
concerning holomorphic monsters.

Theorem 4.3. There are no holomorphic monsters (in the sense of Luh) in
any Bergman space Ap (1 ≤ p <∞), so in any Hardy space Hp (1 ≤ p <∞).

The proof of this theorem point out that the antiderivatives are to blame
for the existence of holomorphic monsters. So we can expect positive results
about the existence of T -monsters, at least for differential operators. Using
several tools from the modern theory of hypercyclicity (roughly speaking, an
operator is said to be hypercyclic if it possesses a dense orbit; see the survey
[23]), Bernal and Calderón [9, Theorem 2.5] proved the next statement.

Theorem 4.4. Assume that 1 ≤ p <∞. Then we have for X = Hp or Ap,
that the set {f ∈ X : f is an Id-monster} is residual in X.

In fact, we can also establish the large “algebraic” size of the set of these
functions, as the following theorem shows (see [9, Theorem 2.9]).

Theorem 4.5. For each 1 ≤ p <∞, there exists a dense linear submanifold
D of Hp such that each function f ∈ D\{0} is an Id-monster. Consequently,
the same holds for the Bergman space Ap.

As we said before, the problem of looking for holomorphic monsters in
Hardy or Bergman spaces are the antiderivatives, but it is possible to obtain
T -monsters for derivative operators. The next result, that concludes the
paper, established a more general property.

Theorem 4.6. Let P (z) be a complex non-zero polynomial. Then for each
1 ≤ p <∞ there exists some P (D)-monster in Hp, hence in Ap.
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