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Abstract

In this paper we characterize various kinds of cyclicity of sequences
of coefficient multipliers, which are operators defined on spaces of
holomorphic functions. In the case of a single coefficient multiplier
we characterize its cyclicity, which contrasts with the fact that such
operators are never supercyclic. Moreover, it is proved that for each
cyclic function there is a dense part of the linear span of its orbit all
of whose vectors are cyclic.

1 Introduction

In this paper we are concerned with the various kinds of cyclicity of cer-
tain operators or sequences of operators defined on spaces of holomorphic
functions. Let us first recall some basic terminology, which is standard in
the setting of linear dynamical systems.

By N, Ny, R, C we denote the set of positive integers, the set N U {0},
the real line and the complex plane, respectively. If X is a (Hausdorff) topo-
logical vector space over R or C, then an operator on X is a continuous
linear selfmapping of X. If A C X then span(A) will stand for the linear
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span of A. We say that a sequence (7},), of operators on X is hypercyclic if
there exists a vector x € X —called hypercyclic for (7},),,— such that its orbit
Orb((7,,),x) := {Thz : n € N} is dense in X. If we replace the orbit of the
vector z to its projective orbit {\T,x : n € N, A € K} (K=R or C) or
to span(Orb((7},), z)), respectively, we obtain the (weaker) notions of super-
cyclicity and cyclicity. The set of cyclic (supercyclic, hypercyclic) vectors for
(T},)n will be denoted by C((T,)) (SC((T,)), HC((T,)), respectively). If now
we have a single operator T, then we say that 7" is cyclic (supercyclic, hyper-
cyclic) whenever the sequence of its iterates (1™),>o is cyclic (supercyclic,
hypercyclic, resp.). Here T = I = the identity on X, T' =T, T> =T oT
and so on.

Recall that an F-space is a complete metrizable topological vector space.
For instance, the space H(G) of holomorphic functions on a domain (=
nonempty connected open subset) G of C, endowed with the compact-open
topology, is an F-space.

The diverse kinds of cyclicity considered above have been extensively
studied during the last decades for the shift-type operators (weighted, non-
weighted, forward, backward, bilateral) on spaces of holomorphic functions
and on diverse sequences spaces, see for instance [22], [24], [9], [18], [3], [11],
[12], [17], [19], among others. Nevertheless, as far as we know, no such study
on spaces of holomorphic functions has been performed yet for operators in
which a sequence of weights is applied on the coefficients without shifting
them.

The purpose of this paper is to contribute to filling in the last gap. The
adequate operators —the coefficient multipliers— will be defined in Section
2. In Section 3, the cyclic (supercyclic, hypercyclic) sequences of coefficient
multipliers are characterized, as well as the cyclicity of a single such opera-
tor. It is also shown that no coefficient multiplier is supercyclic, and that a
sequence of such operators never satisfies the so-called Hypercyclicity Crite-
rion, in spite of the fact that hypercyclic sequences of coefficient multipliers
do exist. Finally, in Section 4 it is shed light on the linear structure of the
set of cyclic functions; namely, we demonstrate that for each cyclic function
there is a dense part of the linear span of its orbit all of whose vectors are
also cyclic.



2 Coefficient multipliers

Let G be a domain of C with 0 € G. Assume that X is a topological
vector space of holomorphic functions on G (so X C H(G)). We say that
an operator T': X — X is a coefficient multiplier if there exists a sequence
o = (a)k>0 in C such that for any f € X with f(z) = Y oo f¥z" around
the origin, we have

Tf(z)= Z arfrz® around the origin.
k=0

If T is as above then we will denote T' = T,,. Hence T acts like a “diagonal”
operator.

Examples of this kind of operators can be found in the literature. Let us
collect some of them.

1. G=C (G={2€C: |z|] < R} with 0 < R < c0) then any sequence
(ax)r>0 in C such that limsup,,_, . |ax|'/* < oo (limsup,,_, .. |ax|'/* < 1, resp.)
defines a coefficient multiplier on H(G).

2. For o € C and sets A, B C C we denote vA = {aa: a € A}, A-B = {ab:
a€ A, be Bfand A® B = (A°- B)°. Let Gy, Gy be domains in C with
0 € G1NGs. Then for any function g € H(G;) with g(z) = >0, gx2", we can
consider the Hadamard product operator Hy : H(G2) — H(G1 ® G3) defined
as follows. If f € H(Gs) and f(z) = >, frz" around the origin then
H,f(z) = Y7, gk frz" around the origin. We have that H, is well-defined,
continuous and linear (see [21, Theorem HJ). In particular, if G; = C\ {1}
and Gy = G is any domain with 0 € G we have that G; © G2 = G (see [5])
and H, becomes a coefficient multiplier operator on H(G).

3. Let D be the operator on H(G) given by Df(z) = zf'(z) and set D" =
Do---0D (n-fold), where D° denotes the identity operator. For each entire
function ®(z) = > ., ¢n2" of subexponential type —that is, satisfying that
for every € > 0 there is a constant K = K(g) € (0,+00) such that |®(2)| <
Kefl?l (z € C)-, we have that ® induces an operator ®(D) on H(G), called
the Euler differential operator, by ®(D)f := > ¢,D"f. Moreover, if f(z) =

n>0

> fnz™ around the origin, then
n>0

(D) f(z) = Z ®(n)f,2z" around the origin.

n>0



Hence ®(D) is a coefficient multiplier on H(G). See [16, pages 46-54] and
8] for properties about the Euler differential operator.

4. Let D:={z € C: |z <1}and D := {z € C: |z| < 1} be the open
unit disk and the closed unit disk, respectively. Let S, (v € R) denote the
Hilbert space of functions f(z) = >">°  ja,2" € H(D) for which the norm
£l = 207 lan]*(n + 1)2)/2 is finite. Observe that for v = —1/2,0,1/2
the space S, is, respectively, the classical Bergman space B2, the Hardy space
H?, the Dirichlet space D (see for instance [25] for the fundamentals on these
spaces). Consider also the space A~ := {f € H(D) : f™ has continuous
extension on D for all n € Ny}, which is an F-space when endowed with the
topology of the uniform convergence on D for all derivatives. By using the
Cauchy estimates it is easy to see that A® = {f(z) = > ja,2" € HD) :
(n™)an|)nso is bounded for every N € N}. If ¢ = (ag)r>0 is a bounded
sequence then from the definition of S, and the second expression of A® we
obtain easily that the coefficient multiplier T, is a well-defined operator on
both S, and A*. For purposes which will appear clearer later, we point out
that the polynomials are dense in each S, (A*) and that the topology on S,
(A resp.) is finer than that of locally uniform convergence in D.

5. Also the Hardy spaces H?, the Bergman spaces B? (0 < p < +o0) and
the spaces AY = {f € H(D) : f™ has continuous extension on D for
n=0,1,...,N} (N € Ny), endowed with their respective natural distances,
are F-spaces that satisfy the last two properties (see [1] and [7]), but in this
case we do not know a good class of sequences ¢ such that T, is well-defined
on them. Of course, if 0 = (ay)r>o satisfies a,, = amy1 = Apye = -+ for

some m, then T, is an operator on all above spaces.

3 Cyclicity of coefficient multipliers

From now on, we will denote by G' a domain in C with 0 € G, and by X
a topological vector space of holomorphic functions on GG. We represent by
(T,,) a sequence of coefficient multipliers 75, = T4,y (n € N) on X. Therefore
o(n) = (akn)k>o0 for each n € N, where the values ay,, are complex numbers.
Hence, if f € X and f(z) =Y -, /12" around the origin, we have

Tof(2) = agnfi?® (1)
k=0

4



around the origin.

Let us denote by P the class of polynomials with complex coefficients. In
order to isolate the adequate spaces of holomorphic functions, we introduce
the following concept.

Definition 3.1. Suppose that X is an F-space of holomorphic functions on
a domain G of C. We say that X is a CP-space on G whenever the next
properties hold:

(i) Convergence in X implies uniform convergence on compacta in G; in
other words, the inclusion X C H(G) is continuous.

(ii) The set P is a dense subset of X.

For instance, if G is simply connected then due to Runge’s approximation
theorem the space H(G) is a CP-space. Also the spaces S, (v € R), H?, BP
(0 < p < +0) and AN (N € Ny U {oc}) are CP-spaces. Of course, if G is
any domain of C, the closure of P in H(G) is a CP-space too.

In the next theorem we will characterize the cyclicity of a sequence (7},) as
defined by (1). From now on, the set CNo will be endowed with the product
topology. Recall that a subset A of a Baire topological space Y is called
residual whenever its complement is of first category; so such a subset A is
“very large” in Y.

Theorem 3.2. Let G be a domain of C with 0 € G. Assume that X s a
CP-space on G and that (T),) is a sequence of coefficient multipliers on X
with associated sequences (agy)r>0 (n € N). Then the following conditions
are equivalent:

(a) The set C((T,)) is residual in X.
(b) The sequence (T,) is cyclic.
(c) The span of {(arn)ks0: n € N} is dense in CNo.

Proof. 1t is trivial that (a) implies (b). Assume that (b) is satisfied, that
is, there exists a function f € C((T,)). Then f(z) = > po, fxz" around 0
with f # 0 for all £ € Ny. Indeed, condition (i) of Definition 3.1 together
with the Weierstrass convergence theorem yield that each projection Il :
Szt € X = (go,...,95) € CNT (N € Ny) is continuous. But due to
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condition (ii) we obtain that Il is also onto. In particular, each projection
Py : S grz® € X +— gy € C is also continuous and onto, so the cyclicity of
f forces to fx # 0 (N € Ny). Now, the set {P(T,,)f : n €N, P e P} is
dense in X. Consequently, IIn({P(7,,)f : n € N, P € P}) must be dense in
CN*+1. This implies that the span of {(axn,fx)rs0 : n € N} is dense in CMNo.
But the last span is the same as the span of {(ax,)r>0 : n € N}, because
fr # 0 for all k. Hence (c) has been proved.

It remains only to show that (c) implies (a). Observe that X is a second-
countable Baire space, because it is an F-space and P is a dense subset of
it. Therefore by [10, Theorem 1] (as applied to Y = X and to the family of
operators {Zgil AT, N eN; A,..., Ay € C}), we have to see that the
set

N
S ={(fDd MTf): NEN; Aj,... ., Ay €C; feX} (2)
n=1

is dense in X x X.

Fix two polynomials p(z) = > 4_,pkz®, q(z) = Zi:a q?® (so p, q € X)
with py # 0 for all k € {0, ..., a}. We can suppose with no loss of generality
that a < .

By hypothesis, there exist a sequence (IN;); C N and finite sequences

()\j,n),]:[il (7 € N) of complex numbers such that

N; )
a/pr i 0<k<a« .
Zl)\j’"ak’”_}{ 00 if a+1<k<p (7 = 0). (3)

Observe that we can assume with no loss of generality that no sum s(j, k) :=
SN Nintkn (7 € N, k € {0,...,5}) is zero. For each j € N and k €
{0,1,..., 3} we define

fo— P if 0<k<a
ST a/sGik) i et 1<k < Bl

Hence, by (3),

o if 0<k<a .

and
s(J k) fe; — @ (j > 00) foral k=0,...,0. (5)
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For each j € N we consider the polynomial f; given by f;(z) := Zi:o fr2"
Therefore, by (4) and the fact that the sum and the scalar multiplication are
continuous operations on the topological vector space X, we get

fi=p (= 00). (6)
On the other hand,
N; N; 3 3
S NaTu | fi(2) = [ D NaTu | O faiz®) =D s(i, k) frs2.
n=1 n=1 k=0 k=0

So, by (5) and again by the fact that X is a topological vector space,

N;
> NaTu | fi=a (7= o) (7)
n=1

Finally, (6) and (7) tell us that the closure of the set S contains the set of
all pairs (p, q) (p, ¢ polynomials; p with all its coefficients nonzero). But the
set of such polynomials p is dense in P, because if P(z) := > - cx2" € P
and A:={k € {0,...,m}: ¢t = 0} then the sequence P,(z) := >, Ckn2"
(n € N) given by ¢, = { ik/n i ]l:‘ i :3 satisfies P, = P (n — o00) in X
(still one more we have used that the sum and the multiplication by scalars
are continuous operations on X) and every coefficient of every P, is nonzero.
Thus, the closure of S contains P x P, which is dense in X x X because X
is a CP-space. Consequently, S is dense in X x X, as required. O]

We can give similarly a characterization of the other kinds of cyclicity of
a sequence of coefficient multipliers. The proof is analogous, so it is left to
the reader.

Theorem 3.3. Under the same notations and conditions of Theorem 3.2,
we have that the following conditions are equivalent:

(a) The set SC((T,,)) (HC((Ty))) is residual in X .
(b) The sequence (T,,) is supercyclic (hypercyclic, resp.).

(c) The set {Aakn)is0 : A € C,n € N} ({(akn)kso : n € N}, resp.) is
dense in CNo.



Thanks to Theorem 3.3 we will be able to establish the non-supercyclicity,
so the non-hypercyclicity, of every single coefficient multiplier T, .

Corollary 3.4. Assume that T, is a coefficient multiplier on a CP-space
defined on some domain G C C with 0 € G. Then T, is not supercyclic, so
it 1s not hypercyclic.

Proof. Assume, by way of contradiction, that T, is supercyclic. Let ¢ =
(ag)k>0. From Theorem 3.3(c), we have that the set {A(af,a}) : X €
C, n € N} must be dense in C?>. But this would imply that the operator
A (z,w) € C* = (apz,ayw) € C? is supercyclic, which is absurd because
no finite-dimensional space with dimension strictly larger than 1 supports a
supercyclic operator (see [15]). O

Notice that in the case of a sequence (T,,) of coefficient multipliers we can
get examples of hypercyclicity, even if we look for special cases, like Euler
differential operators or Hadamard operators.

Proposition 3.5. (a) In every CP-space there exists a hypercyclic sequence
of coefficient multipliers.

(b) If G is a simply connected domain in C with 0 € G then there exist a
hypercyclic sequence of Hadamard operators and a hypercyclic sequence
of Euler differential operators on H(G).

Proof. (a) Assume that X is a CP-space on some domain G C C contain-
ing the origin and that o = (a;,)r>0 € CY° is an almost null sequence, that
is, there exists N € N such that ap = 0 for all £k > N. If f € X and
f(z) =322, frz" around the origin then T, f(z) = Zivzo apfr?, s0T,f € X
because P C X. In addition, we already know that each coefficient functional
feX— fi=f®0)/k! € C (k€ Ny) is continuous. Since X is a topologi-
cal vector space we get that the mapping f — Z,ZCVZO ay fr2" is continuous or,

that is the same, the coefficient multiplier 7}, is a well-defined operator on
X.

Consider now the countable set C' := {o(n) = (agn)r>0} C CY of all
almost null sequences whose entries have rational real and imaginary parts.
It is clear that C is dense in CNo. Therefore, by Theorem 3.3, the sequence
(T (ny) is hypercyclic on X.



(b) If C is the same countable set of the proof of (a) and o(n) = (akn)k>0 €
C' then there exists m(n) € N such that ay, = 0 for all £ > m(n). Now,
there exists a (Lagrange interpolation) polynomial ®,, such that

P, (k) = akn, (k=0,...,m(n)).

But, due to the structure of the open subsets of CNo, the set C := {s(n) =
(®,(k))k>0 : n € N} is also dense in CM°. Finally, H(G) is a CP-space and,
trivially, each ®,, belongs to H(C\ {1}) and it is an entire function of subex-
ponential type, so the Hadamard operator Hg, and the Euler differential
operator ®, (D) are defined on H(G), and Hg, = Ty = Pn(D) (n € N).
Finally, (Ts,)) is a hypercyclic sequence due to Theorem 3.3. This concludes
the proof. n

In contrast to Corollary 3.4, cyclic coefficient multipliers do exist. In fact
we get a characterization of such operators.

Theorem 3.6. Let X be a CP-space on some domain containing the origin
and let T' =T, be a coefficient multiplier on X. Let o0 = (ax)r>0. Then T is
cyclic if and only if the points a (k > 0) are pairwise different. In this case,
the set of cyclic functions for T is residual in X .

Proof. The last part of the statement comes from Theorem 3.2 and from the
facts that 7" is cyclic if and only if (7™),>¢ is cyclic and that T™ = T,
(n > 0), where o(n) = (a})r>o-

As for the equivalence of the first part of the statement, we obtain from
Theorem 3.2 that T is cyclic if and only if the set

S :=span({(a})g>0 : n € N})

is dense in CNo. Observe now that S = {(P(ax))i>0: P € P}.

Assume that there are p, ¢ € Ny with p # ¢ and a, = a,. If S were dense
in C"o then the set {(P(a,), P(a,)) € C*: P € P} would be dense in C?,
which is obviously false because it lies on the diagonal of C2. Thus, S is not
dense.

Conversely, suppose that the points ay (k > 0) are pairwise different. It
suffices to show that for given N € Ny the set Sy := {(P(ao), ..., Play)) €
CN*L: P e P}isdense in CN*L. In fact, Sy = CN*!; indeed, an interpola-
ting polynomial P for the (different) points ay, . .., ay and the corresponding
prefixed complex values wy, ..., wy is at our disposal, and we are done. []
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Remark 3.7. Theorem 3.6 could also have been derived by using [14, Propo-
sition 3.6] —which deals with upper triangular operators— along with a “pro-
jecting onto coordinates” argument.

If X is an F-space, then a sequence (7)) of operators on X is said to
satisfy the Hypercyclicity Criterion provided there exist dense subsets X
and Yy of X and an increasing sequence (n;) C N satisfying the following
condition: T,z — 0 (j — oo) for all z € Xy, and for any y € Y there is a
sequence (u;) in X such that u; — 0 and T;,,u; — y (j — o00). Note that
this is an equivalent reformulation of the Hypercyclicity Criterion as stated
in [4, Definition 1.2 and Remark 2.6], see also [10] and [2]. It gives a sufficient
condition under which a sequence of operators is hypercyclic. It is still an
open problem whether every hypercyclic operator satisfies the Hypercyclicity
Criterion, that is, whether the sequence (T™) of its iterates satisfies it.

We have seen that there are hypercyclic sequences of coefficient multipli-
ers. To finish this section, we now prove that, on the contrary, no sequence
(T,,) on a CP-space X satisfies the Hypercyclicity Criterion: Assume, by
way of contradiction, that (7),) satisfies it, and let (n;) be the sequence
of positive integers given by such criterion. Then any subsequence (m;)
of (n;) also satisfies the Hypercyclicity Criterion, whence (7,,) is also hy-
percyclic. Let T, = T,y with o(n) = (agn)k>0, so that if f € X and
f(z) = D202, fxz" around the origin then T, f(z) = > po, aknfrz" around
the origin. If f € HC((T,,;)) then the sequence (a,n; fi) >0 must be dense in
C for all £ > 0 (and fx # 0) because convergence in X implies convergence
of the Taylor coefficients at the origin. In particular, (aq,;);>0 is dense in C.
Therefore there exists an increasing subsequence (my) of (n;) with ag,, — 0
(j = o0). But according to Theorem 3.3 this yields the non-hypercyclicity
of (T},.), that is absurd.

J

4 Linear structure

In order to conceive more specifically how big the set C(T") of cyclic vectors
of a cyclic coefficient multiplier T can be, we establish in Theorem 4.2 that if
f is cyclic for T then “many” functions in the span of its orbit {T™f : n > 0}
are also cyclic. This statement can be improved if, in addition, X is Banach.

In the setting of Banach spaces we will need some background about
Dunford’s functional calculus and general spectral theory (see, for instance,
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(6, Chapter 1] or [23, Chapter 10]). If L is an operator on a complex Banach
space E then o(L) will stand for its spectrum, that is, o(L) = {\ € C: L—\I
is not invertible}. If L* is the adjoint of L, then o(L) = o(L*). The point
spectrum o,(L) of L is the set of eigenvalues of L, that is, the set of A € C
such that L — Al is not one-to-one (so o,(L) C o(L)). Denote by F(L)
the family of all functions ® which are holomorphic on some domain D(®)
containing o(L). Hence H(C) C F(L) = F(L*). Let & € F(L) and v be a
positively oriented Jordan cycle surrounding counterclockwise o (L) such that
both 7 and its geometric interior are contained in D(®). Then the operator
®(L) is defined by the following equation, where the integral exists as a limit
of Riemann sums in the norm of the space of operators on E:

1
O(L) = —_j[cp(x)w —T)~tdA.
2mi J,

Then ®(L) depends only of ®, and the notion of ®(L) extends the definition
P(L) = Z;V:o a;L7 when P(z) is the polynomial P(z) = Z;‘V:o a;z?. Another
important property is that ®(L*) = ®(L)*.

We will make use of the following result, which might be of some interest
in itself.

Lemma 4.1. Let T' = T, be a coefficient multiplier defined on a Banach
CP-space X by a complex sequence o. Then

o,(T") = 0.
In particular, o is bounded.

Proof. We have that X is a CP-space on some domain G C C with 0 €
G. The last sentence of the statement derives from the inclusion o,(7*) C
o(T*) = o(T) and from the compactness of the spectrum of an operator on
a Banach space.

As for the first part, suppose that o = (ax)r>0. Fix k € Ny and consider
the linear functional ¢ € X* (:= the topological dual space of X) defined as
follows: If f € X and f(2) = 3_)2, f;#’ around the origin, then o(f) = fj.
Note that the continuity of ¢ is a consequence of the fact that X is a CP-
space. Then ¢ # 0. On the other hand, (T*¢)(f) = (Tf) = arfr = arp(f)
for all f € X, so T"p = app. Consequently, ¢ is an eigenvector for 1™ with
eigenvalue ay. Thus, ay € 0,(T*) (k € Ny) and o C 0,(T™).
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Conversely, assume that A € 0,(7%). Then there must be a functional
v € X*\ {0} with T*p = Ap. By linearity and the denseness of P in X, we
can find m € Ny such that ¢(h,,) # 0, where h,,(2) := 2. But (T*¢)(hy) =
Ap(hm), s0 o(Thy) = Ap(hy). Now, @(Thw) = @(amhn) = ane(hn),
whence a9 (hm) = Ap(hp). Since ¢(hy,) # 0, we obtain A = a,, € o, which
yields 0,(T*) C o, as desired. O

We remark that due to the last lemma any function ® € F(T,) makes
sense on the points of o.

Theorem 4.2. Assume that X is a CP-space on some domain containing
the origin and that f € C(T,), where T, is a coefficient multiplier defined
on X by a sequence o = (ag)r>o. Let us set S :=span({T2f: n > 0}) and
A:={P(T,)f: PP, Plag) # 0 for all k € No}. We have the following:

(a) The set A is a subset of S which is dense in S, hence in X.
(b) AcC C(T,).
(¢) If X is a Banach space and
B:={0(1,)f: e F(T,), ®(ar) # 0 for all k € Ny},
then A C B C C(T,). In particular, B is dense in X.

Proof. For the sake of simplicity, we denote T' = T,,. Note first that, since T
is cyclic and f € C(T), the points ay (k € Ny) are pairwise different and the
set S is dense in X.

(a) Observe that S = {P(T)f : P € P}, whence A C S. As for
the density, fix a function g € S\ A and a neighbourhood U of ¢ in X.
Then g = P(T)f for some P € P with some zero in {a; : k& > 0}. We
can suppose that g Z 0, for in this case a multiple \f of f, where \ is an
adequate nonzero small constant, satisfies \f € ANU. Therefore P(z) =
YTy (2 = o)™ - TT0_ (2 — B;)"9) for certain r € N, s € N, v € C\ {0},
aj €{ag: >0} (j=1,...,r), 8, € C\{ar: k>0} (j =1,....s),
m(j) eN(j=1,...,r),n(j) €Ny (j =1,...,5s). Since the coefficients of a
polynomial depend continuously on its roots and C \ {ay}x>o is dense in C,
we can move slightly a4, ..., to respectively close points af,...a. which
are not in {ag}r>o0, in such a way that P (T)f € U (we have used again
that X is a topological vector space), where P;(z) has the same expression
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as P(z) except that the points a; are replaced to o} (j = 1,...,7). So
P(T)f € AN U, which shows the density of A in S.

(b) In order to prove that A C C(T'), wefix g = Q(T)f € A. Then Q € P
and Q(ay) # 0 for all k € Nyg. We should show that span({7T™g : n > 0}) is
dense in X. But

span({T"g: n>0}) = {P(D)Q(T)f: PP}
EEJ)D(T)f : PeP})

We now recall that S is dense in X. Thus, the proof of this part will be
finished as soon as we show that the operator Q(7T') has dense range. For
this, observe that Q(7") has a compositional factorization into finitely many
operators of the form pul (p € C\{0}), T — A (A € C\{ax : k > 0}).
An operator pl has obviously dense range, so we have only to prove that
T — Al has dense range. Since X is a CP-space, it is enough to see that
(T — M )(X) D P. By linearity, it is in turn enough to show that each
monomial 2™ (m € Ny) is in (7T'— AI)(X). This is easy, because the function
F(z) :=2"/(am — A) is in X (recall that P C X and that a,, — A # 0) and
(T = AN)F(z) = 2™

(c) Since P C H(C) we have that, trivially, A C B. Therefore our goal
is to show that every member of B is a cyclic function for 7. Consider
a function g € B. Then there is & € F(T') such that ¢ = ®(T)f, ® is
holomorphic on a domain D(®) D o(T) and ®(ax) # 0 for all k € Ny. At
this point we distinguish two cases.

= Q(T)
= Q(T)

If ¢ is constant, say ®(z) = A # 0, then g = A\f. Hence g is obviously
cyclic because f is.

If @ is nonconstant, then a refinement of the spectral mapping theorem
23, Theorem 10.33] asserts that o,(®(7*)) = ®(0,(77)). By Lemma 4.1, we
get 0,(P(T*)) = ®({ar : k € Ng}). Thus, 0 € 0,(®(T")). But ®(T*) =
O (T)*, whence 0 ¢ 0,(®(7)*). Now, a direct application of the Hahn-Banach
theorem drives us to assert that ®(7") has dense range. Finally, similarly to
the proof of (b), we have

span({T"¢g : n € No}) ={P(T)®(T)f : PP} =d(T)(S5).

Consequently, the last span is dense in X because S is dense and ®(7") has
dense range. In other words, g € C(T), as required. O]
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We have shown in Theorem 3.2 that the set of cyclic functions of a cyclic
sequence (7)) of coefficient multipliers is in fact residual; in less precise words,
such set is large in a topological sense. On the other hand, it is evident that a
sum f+g of two cyclic functions f, g is in general noncyclic (take g = —f), so
C((T;)) is not a linear manifold. Of course, if A € C\ {0} and f € C((T},))
then \f € C((T,)). Then a natural question arises: Is C((T})) large in
an algebraic sense, that is, is there a “large” manifold M C X such that
M\ {0} C C((T,))? The existence of such “large” —in several ways: dense,
infinite-dimensional closed, etc— manifolds has appeared in the literature for
hypercyclic and supercyclic operators or sequences of operators (see the sur-
veys [10], [13], [20]). As for the coefficient multipliers, the definitive answer
is a little disappointing, as stated in the next proposition, which puts the
end on this paper.

Proposition 4.3. Let (T,,) be a cyclic sequence of coefficient multipliers
defined on a CP-space X, and M # {0} be a linear submanifold such that
M\ {0} Cc C((T},)). Then dim M = 1.

Proof. Assume, by way of contradiction, that dim M > 2. Then there are
f, g € M such that f +Ag Z 0 and f + A\g € C((1,,)) for all A € C. Let
f(z) = 3207, fez®, 9(z) = > ore gk2" around the origin. Then, as in the
proof of Theorem 3.2, fir # 0 # gr (k € Ny). In particular, fy # 0 # go.
Define A := —fy/go and h := f 4+ Ag. Then h € M \ {0} but h ¢ C((T}))
because hg = 0. This is the desired contradiction. O
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