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At sufficiently low temperatures, the reaction rates in solids are controlled by quantum rather than by 

thermal fluctuations. We solve the Schrödinger equation for a Gaussian wave packet in a nonstationary 

harmonic oscillator and derive simple analytical expressions for the increase of its mean energy with 

time induced by the time-periodic modulation. Applying these expressions to the modified Kramers 

theory, we demonstrate a strong increase of the rate of escape out of a potential well under the time-

periodic driving, when the driving frequency of the well position equals its eigenfrequency, or when the 

driving frequency of the well width exceeds its eigenfrequency by a factor of ~2. Such regimes can be 

realized near localized anharmonic vibrations (LAVs), in which the amplitude of atomic oscillations 

greatly exceeds that of harmonic oscillations (phonons) that determine the system temperature. LAVs 

can be excited either thermally or by external triggering, which can result in strong catalytic effects due 

to amplification of the Kramers rate.  
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1. Introduction 

Theory of escape rates over a potential barrier, first proposed by Kramers in 1940 [1] is an archetype 

model for chemical reactions, and it has many applications in chemistry kinetics, diffusion in solids, 

nucleation and other phenomena [2]. The model considers a Brownian particle moving in a symmetric 

double-well potential U(x) (Fig. 1a). The position of the particle represents the (free) energy of a system 

including the ‘reaction site’ in the phase space energy-reaction coordinate. The particle is subject to 

fluctuational forces that cause transitions between the neighboring potential wells with a rate given by 

the celebrated Kramers rate: 
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where 0 2   is the natural attempt frequency, 0  being the angular frequency of the harmonic oscil-

lator determined by the curvature of the first energy minimum (i.e. the reactants), and 0E  is the height 

of the potential barrier separating the two stable states, corresponding to the reactants and products,  



 D T  is the strength of the Gaussian white noise induced by thermal and quantum fluctuations. In a 

general case,  D T  is given by [3] 
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where ZPOE  is the energy of zero-point oscillations, i.e. the ground state energy of the harmonic oscilla-

tor,  is the Plank constant, bk is the Boltzmann constant and T  is the temperature. It is quite natural to 

use the noise strength (2) in the calculation of the Kramers escape rate of the potential well, which results 

in a non-vanishing escape rate even if 0T  [3]. At sufficiently high temperatures, the noise strength 

becomes equal to Bk T , and the Kramers rate (1) provides a theoretical basis for the Arrhenius law, 

whereas at low temperatures, significant deviations from this low are predicted due to quantum effects.  

 The original Kramers model assumes a stationary potential landscape for a Brownian particle, 

which can be questioned in the situations where the reaction site is in the vicinity of localized anhar-

monic vibrations (LAVs) of atoms known also as ‘discrete breathers’ [4-8] or ‘intrinsic localized modes’ 

[9, 10] arising in regular crystals. In contrast to phonons, LAVs are large amplitude and periodic in time, 

and therefore they can induce a time-periodic modulation (driving) of the reaction potential landscape. 

It can involve the time-periodic oscillation of the potential barrier height and shape. The former case 

was analyzed by Dubinko et al [4, 5] who showed that if the driving frequency   is about or lower than 

the natural frequency, 0  , one can use an ‘adiabatic’ approximation. In this case, the reaction rate

KR , averaged over times exceeding the driving period, has been shown to increase with respect to the 

ground value KR according to the following expression 
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where the amplification factor can be approximated by the zero order, modified Bessel function of the 

first kind  xI 0  with the argument determined by the ratio of the driving amplitude V to the temperature, 

and it weakly depends on the driving frequency or the barrier height [5].  



Figure 1b shows that the LAV-induced periodic driving of the barrier height can amplify the average 

reaction rate drastically if the ratio BV k T  is high enough. That is expected to be the case in the reaction 

site interacting with a nearby LAV, since MD simulations using realistic interatomic potentials of vari-

ous materials show that a typical deviation of the potential energy of atoms within a LAV is of the order 

of several fractions of eV [7-10]. 
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Fig. 1. (a) Sketch of the double-well potential U(x) = (1/4)bx4 - (1/2)ax2 (red curve) The minima are 

located at mx , where   21
baxm  . These are stable states before and after reaction, separated by a 

potential ‘barrier’ with the height 
2

0 4E a b changing periodically within the V band. The green and 

blue curves represent the two maximally tilted energy landscapes. (b) Amplification factor for the escape 

rate of a thermalized Brownian particle at T = 300 K from a periodically driven potential well vs. the 

driving amplitude, according to eq. (3) [5].  

 

In the present paper, we consider effects due to the periodic driving of the potential landscape shape, 

which are not taken into account by the amplification factor (3) that is sensitive only to the modulation 

of the barrier height. Driving of the potential landscape shape (without changing the barrier height), can 

result in the time-periodic modulation (i) of the curvature and (ii) of the positions of the potential min-

ima. We will consider the corresponding effects separately, since the quantum dynamics of the oscillat-

ing wave functions in these limiting cases are qualitatively different. 

2. Solution of the Schrödinger equation for a harmonic oscillator with time-dependent frequency 

Initial state of the system (reactants) can be described by a wave function of the Gaussian form placed 

near the first energy minimum that can be approximated by a parabolic potential [11]: 
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Time-periodic modulation of the potential curvature will result in time-periodic modulation of the 

harmonic oscillator eigenfrequency.  A harmonic oscillator with time-dependent frequency for a particle 

with the mass m obeys the nonstationary Schrödinger equation of the form 
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The solution of the equation (5) can be expressed using the Green`s function (or propagator) and the 

following initial condition [12]:  
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The expression for the propagator has the form [12]: 

   0 0, ; , exp
2

G

m
G x t x t

i Z



 ,   2 2

0 02
2

G

im dZ
x xx Yx

Z dt


 
   

 
,   (7) 

where the functions  Y Y t ,  Z Z t  are defined by the following equations and initial conditions 

that can be derived from the condition (7): 
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Then the expression for the wave function for the arbitrary moment of time 
0 0t t    can be obtained 

in the following form: 
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The probability density of finding the particle at (x, t) is given by the square of the wave function:  
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while dispersions of coordinate and momentum are given by: 
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At a constant eigenfrequency:   0t const   , the x and p dispersions are constant as well as the 

mean oscillator energy 
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maximum mean square displacement from the equilibrium position, i.e. the ZPO amplitude 
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In a special case of parametric time-periodic modulation of the eigenfrequency with the driving fre-

quency 02   considered in ref. [12], the equations (8), (9) are the Mathieu equations:  

 2
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which solution can be written explicitly in the first approximation to the small modulation amplitude 

1g , and one obtains the first approximations for dispersion of the coordinate and momentum, which 

describe fully the evolution of the Gaussian wave packet in time: 
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In particular, the ZPO mean energy and amplitude increase with time as: 
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Fig. 2a shows that the parametric modulation of a parabolic potential well increases the dispersion of 

the wave packet with increasing number of oscillation periods, 
0 2N t  , which results in rapidly 

increasing probability to find the oscillating particle far beyond the characteristic length of the stationary 

well  0 2ZPOA  . Another significant effect of the modulation is the continuous increase of the ZPO 

energy (Fig. 2b), which is different from the quantum energy increase to the higher oscillation levels:

 0 1 2nE n  , when the probability density becomes concentrated at the classical "turning points". 

In contrast to that, we clearly deal with the ground (zero-point) state, in which the probability density is 

concentrated at the origin, which means that the particle spends most of its time at the bottom of the 

potential well, whereas the dispersion of its position and momentum increases along with its zero-point 

energy due to the parametric modulation.  

Although analytical solution of the problem for an arbitrary modulation frequency cannot be obtained, 

numerical analysis shows that the maximum effect is produced by a parametric modulation at 02  . 

In the following section, we will consider another type of the harmonic well modulation that conserves 

its eigenfrequency but changes the position of the well minimum. 

           a 

 
 

Fig. 2. (a) Localization probability distribution vs. the number of oscillation periods 

0 2N t t T   in the parametric regime 02   at 0.1g   according to eq. (12). (b) Ratio of the 

zero-point energy to its stationary value in the parametric regime at 0.1g  according to eq. (19).  



3. Solution of the Schrödinger equation for a harmonic oscillator with time-dependent position of 

the potential minimum 

 

In this case, the Schrödinger equation takes the following form: 
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Its solution is given by eq. (6) with the Green function of the form [13]  
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Then for the initial wave packet given by eq. (4), an expression for the wave function for the arbitrary 

moment of time 
0 0t t    can be obtained in the following form: 
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Accordingly, the probability density distribution is given by  
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Time-periodic modulation has a maximum effect on the oscillator when the modulation frequency 

equals the eigenfrequency, when one has a wave packet concentrated around a ‘centre of mass’ with a 

coordinate  t  that oscillates with amplitude linearly increasing in time (Fig.3 a) and the mean energy 

that increases as 
2t (Fig. 3b):  
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Fig. 3. (a) Localization probability distribution by eq. (31) and (b) ratio of the mean energy to its station-

ary value by eq. (32) vs. the number of oscillation periods 
0 2N t t T    at 0  , 0.5Ag  . 



The driving of the well position does not affect the wave packet dispersions in the p and x space that 

remain constant: 
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which means that the wave packet deviates from the well bottom as a whole, and the uncertainty of the 

particle position does not increase with time, in a marked contrast to the well eigenfrequency modulation 

considered in the previous section (Fig.2.). 

 In the following section, we will discuss the applications of the above analysis of quantum dynamics 

of non-stationary harmonic oscillators to the modified Kramers rate of escape out of a potential well 

with account of the time-periodic driving. 

4. Discussion 

It is known that tunnel effect is inherently related to the operation of the uncertainty principle similar 

to the ZPO energy, the difference being that for the tunnel effect the coordinate is one in which the 

potential energy passes through a maximum, whereas for ZPO energy it passes through a minimum [14]. 

This thesis is well illustrated by the Kramers model of escape out of a potential well modified with 

account of ZPO energy [3], according to which the strength of the Gaussian white noise is determined 

by a synergetic action of thermal and quantum fluctuations, as described by eq. (2).   

In Section 2, we have demonstrated that the parametric modulation of the well eigenfrequency in-

creases the strength of quantum fluctuations manifested by the wave packet broadening and by the in-

crease of its ZPO energy given by eq. (19). Substituting eq. (19) into eqs. (1), (2) one can evaluate the 

rate of escape from a well with a given parameters, which will increase with increasing number of os-

cillation periods, as illustrated in Fig. 4a for a potential well with a depth of 1 eV, and with eigenfre-

quency ranging from 5 to 50 THz.  



 

 

Fig. 4. (a) Escape rate from a well of a depth E0 = 1 eV, eigenfrequency 5 THz (solid curve) and 50 THz 

(dashed curve) at 300 K vs. the number of oscillation periods in the parametric regime 02   at 

0.1g  . (b)  Increase of the quantum to thermal noise strength, EZPO/kbT, with increasing number of 

oscillation periods at different temperatures 300 K and 1300 K.  

 

 Such a well depth is typical for many chemical reactions, and the lower frequency limit of ~5 THz is 

typical for the oscillation frequencies of metal (heavy) atoms while 50 THz is more close to the frequen-

cies of light atoms such hydrogen etc. imbedded in a crystal lattice of more heavy atoms. A characteristic 

example is hydrogen or deuterium atoms in metal hydrides/deuterides, such as NiH or PdD, in the vi-

cinity of gap breathers - a subclass of LAV arising in a regular lattice [15]. The large mass difference 

between H or D and the metal atoms provides a gap in phonon spectrum, in which gap breathers can be 

excited either by thermal fluctuations at elevated temperatures or by external driving such as irradiation 

at low temperatures [16]. As has been argued in [15], the interplay between harmonic and anharmonic 

forces operating in the gap breather can result in a parametric driving of the potential wells of neighbor-

ing light atoms with a double frequency in relation to their eigenfrequencies. Accordingly, various reac-

tions involving hydrogen atoms can be greatly accelerated by external energy input producing LAVs, in 

agreement with experimental results [17].  

 Another important consequence of the parametric driving of the well eigenfrequency is the increase 

of the quantum noise strength as compared to the thermal noise strength represented by the ratio EZPO/kbT 



that increases with increasing number of oscillation periods (Fig. 4b). It means that one can expect quan-

tum effects to dominate over the thermal ones even at elevated temperatures, which may be manifested 

by a strong deviation from the Arrhenius law. 

  The parametric driving 02   considered above requires rather special conditions similar to those 

in gap breathers in diatomic crystals [15], while in many other systems [7], e.g. in metals [8-10], oscil-

lations of atoms in a discrete breather have different amplitudes but the same frequency. This case is 

more close to the driving of the potential well positions with 0  , which also results in increasing 

mean energy of the quantum oscillator (eq. (32)), but it does not increase the quantum noise strength 

since the wave packet dispersion remains constant (eq. (33)). Accordingly, one could expect an acceler-

ation of the escape from a well to occur due to the effective decrease of the well depth given by  
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where E is the mean oscillator energy increasing with time according to eq. (32).  The corresponding 

rate of escape from a well with a given parameters in this driving regime is presented in Fig. 5 for a 

potential well with a depth of 1 eV. It can be seen that the oscillator energy gradually increases up to the 

activation energy value resulting in a significant increase of the reaction rate, especially at low temper-

atures.  

 Note that in a real situation, anharmonicity of the potential well could limit the energy gained by the 

driving, which should be taken into account in order to make quantitative evaluations of the reaction 

acceleration by the present mechanism. 



 

 

Fig. 5. Escape rate from a well of a depth E0 = 1 eV, eigenfrequency 5 THz at different temperatures (a) 

and the oscillator mean energy (b) vs. the number of oscillation periods at 0  , 0.5Ag  . 

 

 

5. Conclusions and outlook 

 Analytical solution of the Schrödinger equation for a periodically driven harmonic oscillator is 

derived.  

 The oscillator zero-point energy is shown to increase in response to parametric modulation of 

the oscillator eigenfrequency at 02  . Based on that, a drastic increase of the escape rate with 

increasing number of modulation periods is demonstrated in the framework of the modified Kra-

mers theory, which takes into account the quantum noise strength that increases due to the time-

periodic driving. 

 Time-periodic driving of the potential well positions at 0   results in increasing mean energy 

of the quantum oscillator at a constant dispersion of the wave packet. It results in lowering of the 

effective activation barrier, which may amplify the escape rate significantly, especially at low 

temperatures.  

 The analysed driving modes can be induced by LAVs that can be excited in a crystal bulk or at 

crystal defects either thermally or by external triggering, which can result in strong catalytic 

effects. Further investigations in this field based on atomistic modeling of LAV excitation in 

solids may open the ways of engineering of new catalysts. 
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