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Abstract

We study the estimation of the finite population distribution func-
tion under several sampling strategies based on a PPS cluster sam-
pling, that is to say, with cluster selection probabilities proportional
to size.

For the estimation of population means and totals, is well-known
that this type of strategies give good results if the cluster selection
probabilities are proportional to the total of the study variable or to
a related auxiliary variable, over the cluster. We prove that, for the
estimation of the distribution function using cluster sampling, this
solution in general is not good and, under an appropriate criteria, we
obtain the optimal cluster selection probabilities in order to minimize
the variance of the estimation.

We apply our methodology for two classical PPS sampling stra-
tegies: the sampling with replacement with the Hansen-Hurwitz es-
timator, and the random groups sampling procedure with the Rao-
Hartley-Cochran estimator. We will present a small simulation to
compare the efficiency of this approach with other methods.
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1 Introduction

Usually, the theory of sampling from finite population is centered on the
point estimation of some parameters as the finite population means, va-
riances and ratios. In this paper, we consider the estimation of a functional
parameter, the distribution function in relation to a numerical variable,
defined over the population.

In literature we can find different approaches to this estimation problem.
Chambers and Dunstan (1986) assume a model-based approach to develop
an estimating procedure. Kuk (1988) studies several estimators of the dis-
tribution function under sampling with unequal probabilities, proportional
to an auxiliary variable and Rao, Kovar and Mantel (1990) by means of
the auxiliary information. In the same lines, we also can cite the papers of
Chambers et al. (1992), Rao (1994), and Welsh and Ronchetti (1998).

We propose an alternative approach based on the application of an
average-type criterion to the mean square error of the distribution function
estimation, in order to find the more appropriate selection probabilities of
the clusters.

In a general frame, let us consider a finite population U = {1, 2 . . . N}
and let Y denote the numerical survey variable of interest. Let Yi be the
value of Y for the ith population element, with ordered values 0 ≤ Y(1) ≤
Y(2) ≤ · · · ≤ Y(N). The aim is to estimate the distribution function of the
Y variable,

F (t) =
1
N

∑
i∈U

I[Yi,+∞)(t)

where I[Yi,+∞)(t), i ∈ U are the indicator functions of the [Yi,+∞) inter-
vals.

If we assume that s is a sample obtained from U whit a sampling design
(S, p(·)), and F̂ (t) is an estimator of F (t), the classical way to measure the
precision of this estimator is to study of the mean square error,

MSE[F̂ (t)] =
∑
s∈S

(F̂ (t)− F (t))2 p(s)

Note that the MSE is a real function with different values depending on
t, therefore it is not possible to use this function for a direct comparison.
An alternative way to evaluate the discrepancy between F (t) and F̂ (t) is
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to consider the quantity,

I(s) =
∫ Y(N)

Y(1)

(F̂ (t)− F (t))2dt

assuming that (F̂ (t) − F (t))2 is integrable over [Y(1), Y(N)]. Thus, we can
compute the expected discrepancy,

E[I(s)] =
∑
s∈S

I(s)p(s) =
∑
s∈S

(∫ Y(N)

Y(1)

(F̂ (t)− F (t))2dt

)
p(s)

=
∫ Y(N)

Y(1)

(∑
s∈S

(F̂ (t)− F (t))2 p(s)

)
dt =

∫ Y(N)

Y(1)

MSE[F̂ (t)] dt

4
= ‖MSE[F̂ (t)]‖1

As such, we can search the more appropriate sampling designs minimi-
zing ‖MSE[F̂ (t)]‖1. Next, we particularize this approach for two sampling
strategies under two-stage cluster sampling

2 Cluster sampling strategy based on the Hansen-
Hurwitz estimator

Let us suppose that the population is clustered and let us denote C1, . . . , CM

as the clusters, and Uc = {1, 2, . . . ,M} as the cluster population. Let us
suppose that n clusters are drawn with replacement and selecting proba-
bilities pi, i ∈ Uc, and sc is the clusters sample. Subsampling is done
independently each time a cluster is selected. Then, we can use the follo-
wing estimator for the distribution function,

F̂HHC(t) =
1
n

∑
i∈sc

F̂i(t)
pi

where,

Fi(t) =
1
N

∑
k∈Ci

I[Yk,+∞)(t)

and F̂i(t) denotes an estimation of Fi(t).
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This estimator is an adaptation to the distribution function and to
cluster sampling of the classical Hansen-Hurwitz estimator for population
means and totals, Hansen and Hurwitz (1943). See Särndal et al. (1992,
p.151). If F̂i(t), i ∈ Uc are unbiased estimators then F̂HHC(t) is unbiased,
and its variance is,

V [F̂HHC(t)] =
1
n

∑
i∈Uc

F 2
i (t)
pi

− F 2(t)

+
1
n

∑
i∈Uc

V [F̂i(t)]
pi

=
1
n

∑
i∈Uc

F 2
i (t) + V [F̂i(t)]

pi
− 1

n
F 2(t)

In order to apply the minimizing criterion formulated in the above sec-
tion, we compute,

‖MSE[F̂HHC(t)]‖1 =
∫ Y(N)

Y(1)

V [F̂HHC(t)] dt

=
∫ Y(N)

Y(1)

 1
n

∑
i∈Uc

F 2
i (t) + V [F̂i(t)]

pi
− 1

n
F 2(t)

 dt

=
1
n

∑
i∈Uc

1
pi

∫ Y(N)

Y(1)

[
F 2

i (t) + V [F̂i(t)]
]

dt

− 1
n

∫ Y(N)

Y(1)

F 2(t) dt =
1
n

∑
i∈Uc

Ai

pi
− C(Y )

where,

Ai =
∫ Y(N)

Y(1)

[
F 2

i (t) + V [F̂i(t)]
]

dt ∀i ∈ Uc

and C(Y ) does not depend on the probabilities pi.

The problem is then formulated as the determination of the pi minimi-
zing the above expression. Therefore, the optimization problem is,

min
p1,...,pM

∑
i∈Uc

Ai

pi
subject to

∑
i∈Uc

pi = 1, pi > 0 ∀i ∈ Uc
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To solve this problem, we apply the Cauchy-Schwartz inequality,

∑
i∈Uc

Ai

pi
=

∑
i∈Uc

Ai

pi

∑
i∈Uc

pi



≥

∑
i∈Uc

(
Ai

pi

)1/2

p
1/2
i

2

=

∑
i∈Uc

A
1/2
i

2

and the equality holds if and only if,[
Ai/pi

pi

]1/2

= constant ∀i ∈ Uc

therefore, the optimal cluster selection probabilities are,

pi ∝
√

Ai ∀i ∈ Uc

and it follows that,

pi =
√

Ai∑
i∈Uc

√
Ai

∀i ∈ Uc

Next, we study the Ai quantities. Let us suppose that subsampling is
done in the cluster Ci and a sample si is obtained by means of a sampling
design di, without replacement and with associated inclusion probabilities
πi

kl, k, l ∈ Ci, with i ∈ Uc. To estimate Fi(t), we use the Horvitz-Thompson
estimator,

F̂i(t) =
1
N

∑
k∈si

I[Yk,+∞)(t)
πi

k

This estimator is unbiased, therefore,

Ai =
∫ Y(N)

Y(1)

[
F 2

i (t) + V [F̂i(t)]
]

dt =
∫ Y(N)

Y(1)

E
[
F̂ 2

i (t)
]

dt ∀i ∈ Uc

and using that,

E
[
F̂ 2

i (t)
]

=
1

N2

∑
k,l∈Ci

πi
kl

πi
kπ

i
l

I[Yk,+∞)(t)I[Yl,+∞)(t)
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we get,

Ai =
∫ Y(N)

Y(1)

E
[
F̂ 2

i (t)
]

dt =
1

N2

∫ Y(N)

Y(1)

∑
k,l∈Ci

πi
kl

πi
kπ

i
l

I[Yk,+∞)(t)I[Yl,+∞)(t) dt

=
1

N2

∑
k,l∈Ci

πi
kl

πi
kπ

i
l

(
Y(N) −max{Yk, Yl}

)

In practice the Y variable is not available but a suitable way to compute
the optimal pi is based on the existence of an auxiliary variable, X, entirely
controlled and related to the Y variable by means of the following general
super-population model,

Yi = α + βXi + εi, β > 0, Es[εi] = 0 ∀i ∈ U

Thus, we replace the above minimization problem by,

min
p1,...,pM

Es

∑
i∈Uc

Ai

pi

 subject to
∑
i∈Uc

pi = 1, pi > 0 ∀i ∈ Uc

and using the inequality Es[max{Yk, Yl}] ≥ max{Es[Yk], Es[Yl]}, we have,

Es

∑
i∈Uc

Ai

pi

 =
1

N2

∑
i∈Uc

1
pi

∑
k,l∈Ci

πi
kl

πi
kπ

i
l

Es

[
Y(N) −max{Yk, Yl}

]

≤ β

N2

∑
i∈Uc

1
pi

∑
k,l∈Ci

πi
kl

πi
kπ

i
l

(
X(N) −max{Xk, Xl}

)

=
β

N2

∑
i∈Uc

Bi

pi

where X(N) is the maximum value of the X variable and,

Bi =
∑

k,l∈Ci

πi
kl

πi
kπ

i
l

(
X(N) −max{Xk, Xl}

)
∀i ∈ Uc

therefore we obtain the auxiliary optimization problem,

min
p1,...,pM

∑
i∈Uc

Bi

pi
subject to

∑
i∈Uc

pi = 1, pi > 0 ∀i ∈ Uc
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and it now follows that the optimal probabilities are given by,

pi =
√

Bi∑
i∈Uc

√
Bi

∀i ∈ Uc

The final values of these selection probabilities depend on the πi
kl, that

is to say, on the sampling designs di, i ∈ Uc. Next, we study a particular
and usual case based on the application of simple random sampling in each
cluster.

2.1 Simple random subsampling

Let suppose that in each cluster Ci a sample si is obtained by means of
simple random sampling of ni units, then,

πi
k =

ni

Ni
, ∀k ∈ Ci πi

kl =
ni(ni − 1)
Ni(Ni − 1)

, ∀k, l ∈ Ci, k 6= l

and we obtain,

Bi =
∑

k,l∈Ci

πi
kl

πi
kπ

i
l

(
X(N) −max{Xk, Xl}

)
=
∑
k∈Ci

Ni

ni

(
X(N) −Xk

)

+
∑

k,l∈Ci
k 6=l

Ni(ni − 1)
ni(Ni − 1)

(
X(N) −

1
2
Xk −

1
2
Xl −

1
2
|Xk −Xl|

)

= N2
i

X(N) −Xi −
ni − 1

2niNi(Ni − 1)

∑
k,l∈Ci

|Xk −Xl|


where Xi is the mean of the auxiliary variable X over the cluster Ci. The-
refore, the optimal probabilities are,

pi ∝ Ni

√√√√X(N) −Xi −
ni − 1

2niNi(Ni − 1)

∑
k,l∈Ci

|Xk −Xl|
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Note that the quantity,

1
Ni(Ni − 1)

∑
k,l∈Ci

|Xk −Xl|

is a dispersion measure of the cluster Ci. Therefore we conclude that the
optimal selection probabilities are directly proportional to cluster sizes, Ni,
but if these sizes are similar, the probabilities are bigger for the clusters
with minor total value of the variable, and/or less dispersed.

This result seems to be in contrast to the classical approach to reduce
the sampling error estimating population totals and means, based on taking
selection probabilities proportional to the total of the study variable or to
the auxiliary variable on each cluster, in order to reduce the variance due to
the first stage, but note that these problems have very different objectives.

On the other hand, note also that the estimator F̂HHC(t) in general is not
a distribution function. For example, under the simple random subsampling
hypothesis we have,

F̂i(t) =
1
N

∑
k∈si

I[Yk,+∞)(t)
ni/Ni

therefore,

F̂HHC(+∞) =
1

nN

∑
i∈sc

Ni

pi
6= 1 in general

that is to say, the ultimate value is not necessarily unity, however this
deviation is minimized under our approach, minimizing ‖MSE[F̂HHC(t)]‖1.

It also is possible to avoid this drawback using alternative estimators,
for example ratio type estimators. In general these estimators are biased
and the study of the sampling error is more complex.
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3 Strategy based on the Rao-Hartley-Cochran es-
timator

This strategy, suggested in J.N.K. Rao et al. (1962), is a grouping method
based on to subdivide the Uc population with M clusters, at random into n
sub-population or groups, G1, . . . , Gn, of pre-determined sizes M1, . . . ,Mn,
with

∑
k Mk = M , and to draw one cluster per group using PPS method

of sampling, independently within each group.

Thus, the complete sampling process has two stages. In the first stage
the clusters are drawn in two phases, that is to say, the random grouping
phase and the random selecting phase. The second stage is the subsampling
of the clusters.

According to the PPS method, given the random grouping, the chance
of selecting the ith unit in the sample is,

Pi =
pi∑

j∈Gk

pj

if i ∈ Gk, k = 1, . . . , n, i = 1, . . . ,M

where pi > 0, i ∈ Uc, is a given probability distribution over Uc. Using the
notation as the above section, we have,

F (t) =
1
N

∑
i∈U

I[Yi,+∞)(t) =
∑
i∈Uc

1
N

∑
k∈Ci

I[Yk,+∞)(t) =
∑
i∈Uc

Fi(t)

Then, if F̂i(t), i ∈ Uc, are unbiased estimators, an unbiased estimator of
the distribution function, based on the population total estimator suggested
by Rao, Hartley and Cochran under this sampling scheme, is given by,

F̂RHCC(t) =
∑
i∈sc

F̂i(t)
Pi

where sc is the selected sample of clusters. To compute the variance of
this estimator, we will denote by E1 and V1 the operators of expectation
and variance with respect to the first stage sampling design, that is to say,
the sampling of clusters, and by E2 and V2 the corresponding operators for
the second stage sampling design, that is to say, the subsampling in the
clusters. Thus,

V [F̂RHCC(t)] = V1 E2

[
F̂RHCC(t)

]
+ E1 V2

[
F̂RHCC(t)

]
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and using the well-known expression for the variance of the Rao-Hartley-
Cochran estimator, we obtain for the first term,

V1 E2

[
F̂RHCC(t)

]
= V1

∑
i∈sc

E2

[
F̂i(t)
Pi

]
= V1

∑
i∈sc

E2[F̂i(t)]
Pi

 = V1

∑
i∈sc

Fi(t)]
Pi


=
∑n

k=1 M2
k −M

M2 −M

∑
i∈Uc

F 2
i (t)
pi

− F 2(t)


In order to develop the second term, let us denote by Eg the expectation

with respect to the grouping phase, and for Ec the expectation with respect
to the selection cluster phase.

For every cluster i belonging to the group Gk, let W k
i stand for the

indicator random variable defined as W k
i = 1 if i is selected, W k

i = 0,
otherwise. Note that Ec[W k

i ] = Pi.

And for every pair of clusters i, j ∈ Uc, let δk
ij stand for the indicator

random variable defined as δk
ij = 1 if i, j ∈ Gk, δk

ij = 0, otherwise. Note that
the group Gk is a simple random sample, therefore we have Eg[δk

ij ] = Mk/M

if i = j, and Eg[δk
ij ] = Mk(Mk − 1)/(M(M − 1)) if i 6= j.

Applying the above defined random variables we have,

E1 V2

[
F̂RHCC(t)

]

= E1

∑
i∈sc

V2

[
F̂i(t)
Pi

] = E1

∑
i∈sc

V2[F̂i(t)]
P 2

i

 = Eg Ec

∑
i∈sc

V2[F̂i(t)]
P 2

i


= Eg Ec

 n∑
k=1

∑
i∈Gk

V2[F̂i(t)]
P 2

i

W k
i

 = Eg

 n∑
k=1

∑
i∈Gk

V2[F̂i(t)]
P 2

i

Ec[W k
i ]


= Eg

 n∑
k=1

∑
i∈Gk

V2[F̂i(t)]
Pi

 = Eg

 n∑
k=1

∑
i∈Gk

V2[F̂i(t)]
pi

∑
j∈Gk

pj
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= Eg

 n∑
k=1

∑
i,j∈Gk

V2[F̂i(t)]
pj

pi

 = Eg

 n∑
k=1

∑
i,j∈Uc

V2[F̂i(t)]
pj

pi
δk
ij


=

n∑
k=1

∑
i∈Uc

V2[F̂i(t)]Eg[δk
ii] +

n∑
k=1

∑
i,j∈Uc

i6=j

V2[F̂i(t)]
pj

pi
Eg[δk

ij ]

=
n∑

k=1

∑
i∈Uc

V2[F̂i(t)]
Mk

M
+

n∑
k=1

∑
i,j∈Uc

i6=j

V2[F̂i(t)]
pj

pi

Mk(Mk − 1)
M(M − 1)

=
∑
i∈Uc

V2[F̂i(t)] +
n∑

k=1

Mk(Mk − 1)
M(M − 1)

∑
i∈Uc

V2[F̂i(t)]
1− pi

pi

=
∑n

k=1 M2
k −M

M2 −M

∑
i∈Uc

V2[F̂i(t)]
pi

+

[
1−

∑n
k=1 M2

k −M

M2 −M

] ∑
i∈Uc

V2[F̂i(t)]

and putting together the components of the variance, we obtain,

V [F̂RHCC(t)] =
∑n

k=1 M2
k −M

M2 −M

∑
i∈Uc

F 2
i (t)
pi

− F 2(t)



+
∑n

k=1 M2
k −M

M2 −M

∑
i∈Uc

V2[F̂i(t)]
pi

+

[
1−

∑n
k=1 M2

k −M

M2 −M

] ∑
i∈Uc

V2[F̂i(t)]

If we compare this variance with V [F̂HHC(t)], we see that they are very
similar except for some terms not depending on the pi probabilities. The-
refore the optimal selection probabilities are the same, that is to say, in
general,

pi ∝

√√√√ ∑
k,l∈Ci

πi
kl

πi
kπ

i
l

(
X(N) −max{Xk, Xl}

)
∀i ∈ Uc

or,

pi ∝ Ni

√√√√X(N) −Xi −
ni − 1

2niNi(Ni − 1)

∑
k,l∈Ci

|Xk −Xl| ∀i ∈ Uc
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if we use simple random sampling in each cluster.

Finally, in relation to the Mk values, it is well-know that the choice of
M1, . . . ,Mn which would minimize the variance corresponds to,

M1 = M2 = · · · ,Mn = M/n if M is divisible by n

and,
M1 = M2 = · · · = Mν = m + 1, Mν+1 = · · · = Mn = m

if M = mn + ν, 1 ≤ ν ≤ n− 1

4 A Monte Carlo comparative study. Conclusions

In order to compare the performance of PPS sampling procedures described
in the previous sections in relation to other sampling strategies, we have
carried out a comparative study based on a simulation.

The study is done with the clustered population of Swedish munici-
palities given by Särndal et al. (1992, p. 660). This population, named
Clustered MU284 population consisting of all municipalities and contains
50 cluster and 284 municipalities. The cluster sizes are between five and
eight municipalities.

The study variable, named P85, is the 1985 population for each muni-
cipality, in thousand, and the auxiliary variable, named P75, is the 1975
population, in thousand. For these variables, the parameters of the model
Yi = α + βXi + εi, under the ordinary least square criterion, where R2

denotes the coefficient of determination, are given in Table 1. and they
show the validity of the model. It is interesting to note that the optimal
cluster selection probabilities do not depend on these parameters, but the
validity of the super-population model has influence on the goodness of the
estimation and the variance. This situation is similar to the classical PPS
methods to estimate means and totals.

α β R2 Mean Residual
1.315 0.974 0.997 −2.71E−15

Table 1. Regression parameters of the P75 and P85 variables in the
Clustered MU284 population, taking P85 as the dependent variable.
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In order to compare the efficiency of the different strategies, we will use
the following distance as a discrepancy measure,

d(F̂ , F ) =

[∫ Y(N)

Y(1)

(
F̂ (t)− F (t)

)2
dt

]1/2

Note that this distance is compatible with the criterion used to find the
optimal selection probabilities. We will compute the average of this distance
over 1000 random samples, with sizes n = 4, 7, 10 and 15 clusters, obtained
in the first stage by different methods. These sample sizes represent a wide
choice for a population with 50 clusters.

In spite of we have assumed in our theoretical study that each cluster
selected in the first stage is subsampled in the second stage, for the simula-
tion study we have supposed that each cluster selected in the first stage will
be entirely studied in the second stage, that is to say, a special case of sim-
ple random subsampling with ni = Ni. In this way the subsampling error is
removed and the comparison is concentrated on the cluster sampling error.

Furthermore, in order to apply the random group strategy, the quan-
tities M1, . . . ,Mn, that is to say, the number of clusters in each random
group, are taken according to the optimal choice to minimize the variance,
mentioned in Section 3.

The results of the comparison are given in Table 2. For the studied
sampling strategies, we has used the following abbreviated names,

1. PPS-HHC√ . Cluster selection probabilities proportional to,

Ni

√√√√X(N) −Xi −
ni − 1

2niNi(Ni − 1)

∑
k,l∈Ci

|Xk −Xl|

for each cluster, with replacement in the first stage, and the Hansen-
Hurwitz estimator.

2. PPS-HHC, T (X). Cluster selection probabilities directly proportional
to the totals of the auxiliary variable for each cluster, with replace-
ment in the first stage and the Hansen-Hurwitz estimator.
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3. PPS-RHCC√ . Cluster selection probabilities proportional to,

Ni

√√√√X(N) −Xi −
ni − 1

2niNi(Ni − 1)

∑
k,l∈Ci

|Xk −Xl|

for each cluster, using the random groups sampling procedure and
the Rao-Hartley-Cochran estimator.

4. PPS-RHCC, T (X). Cluster election probabilities proportional to the
totals of the auxiliary variable for each cluster, using the random
groups sampling procedure and the Rao-Hartley-Cochran estimator.

5. SRSWR-HHC. Simple random sampling of clusters, with replacement
and the Hansen-Hurwitz estimator.

6. SRSWOR-HTC. Simple random sampling of clusters, without repla-
cement and the Horvitz-Thompson estimator.

Method n = 4 n = 7 n = 10 n = 15
PPS−HHC√ 0.8046 0.6159 0.5186 0.4252
PPS−HHC, T (X) 7.4283 5.9547 4.9698 4.1770
PPS− RHCC√ 0.7828 0.5754 0.4575 0.3555
PPS− RHCC, T (X) 7.5403 5.1927 4.5543 3.4284
SRSWR−HHC 2.2245 1.7710 1.4486 1.1886
SRSWOR−HTC 2.1364 1.5577 1.2648 0.9908

TABLE 2. Comparative study for different strategies, using the Clustered
MU284 population, P85 as study variable and P75 as auxiliary variable.

We see that the PPS methods, using the optimal selection probabili-
ties, give the best results. As expected, the results are very poor if these
methods are used with selection probabilities proportional to the totals of
the auxiliary variable. Finally, the random sampling, with or without re-
placement, shows an intermediate efficiency, but it proves to be better than
the PPS sampling with selection probabilities directly proportional to the
totals of the auxiliary variable on each cluster.

To sum up, the results given for the empirical Monte Carlo study are in
concordance with the theoretical results above obtained. This results show
that we can consider our approach as a promising alternative.
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