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Abstract. The purpose of this paper is to study the existence of fixed point
for nonexpansive multivalued mappings in a particular class of Banach spaces.
Furthermore, we demonstrate a relationship between the weakly convergent
sequence coefficient WCS(X) and the Jordan-von Neumann constant CNJ(X)
of a Banach space X. Using this fact, we prove that if CNJ(X) is less than an
appropriate positive number, then every multivalued nonexpansive mapping
T : E → KC(E) has a fixed point where E is a nonempty weakly compact
convex subset of a Banach space X, and KC(E) is the class of all nonempty
compact convex subsets of E.
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1. Introduction

In 1969, Nadler [?] established the multivalued version of Banach’s contrac-
tion principle. Since then the metric fixed point theory of multivalued mappings has
been rapidly developed. Some classical fixed point theorems for singlevalued non-
expansive mappings have been extended to multivalued nonexpansive mappings. In
1974, Lim [?], using Edelstein’s method of asymptotic center, proved the existence
of a fixed point for a multivalued nonexpansive self-mapping T : E → K(E) where
E is a nonempty bounded closed convex subset of a uniformly convex Banach space
X. In 1990, Kirk and Massa [?] extended Lim’s theorem. They proved that every
multivalued nonexpansive self-mapping T : E → KC(E) has a fixed point where E
is a nonempty bounded closed convex subset of a Banach space X for which the as-
ymptotic center in E of each bounded sequence of X is nonempty and compact. In
2001, Xu [?] extended Kirk-Massa’s theorem to nonself-mapping T : E → KC(X)
which satisfies the inwardness condition.
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In 2004, Dominguez and Lorenzo [?] proved that every multivalued nonexpan-
sive mapping T : E → KC(E) has a fixed point where E is a nonempty bounded
closed convex subset of a Banach space X with εβ(X) < 1. Consequently, they can
give an affirmative answer of a problem in [?] proving that every nonexpansive self-
mapping T : E → KC(E) has a fixed point where E is a nonempty bounded closed
convex subset of a nearly uniformly convex Banach space. Recently, Dhompongsa
at el. [?], gave an existence of a fixed point for a multivalued nonexpansive and
1− χ−contractive mapping T : E → KC(X) such that T (E) is a bounded set and
which satisfies the inwardness condition, where E is a nonempty bounded closed
convex separable subset of a reflexive Banach space which satisfies the Dominguez-
Lorenzo condition, i.e., an inequality concerning the asymptotic radius and the
Chebyshev radius of the asymptotic center for some types of sequences. Conse-
quently, they could show that if X is a uniformly nonsquare Banach space satisfy-
ing property WORTH and T : E → KC(X) is a nonexpansive mapping such that
T (E) is a bounded set and which satisfies the inwardness condition, where E is a
nonempty bounded closed convex separable subset of X, then T has a fixed point.
Furthermore, they also ask : Does CNJ(X) < 1+

√
3

2 imply the existence of a fixed
point for multivalued nonexpansive mappings ?

In this paper, we organize as follows. We define a property for a Banach
spaces which we call property (D) (see definition in Section 3), which is weaker
than the Dominguez-Lorenzo condition and stronger than weak normal structure
and we prove that if X is a Banach space satisfying property (D) and E is a
nonempty weakly compact convex subset of X, then every nonexpansive mapping
T : E → KC(E) has a fixed point. Then we state a relationship between the weakly
convergent sequence coefficient WCS(X) and the Jordan-von Neumann constant
CNJ(X) of a Banach space X. Finally, using this fact, we prove that if CNJ(X)
is less than an appropriate positive number, then every multivalued nonexpansive
mapping T : E → KC(E) has a fixed point. In particular, we give a partial answer
to the question which has been asked in [?].

2. Preliminaries

Let X be a Banach space and E a nonempty subset of X. We shall denote by
FB(E) the family of nonempty bounded closed subsets of E, by K(E) the family of
nonempty compact subsets of E, and by KC(E) the family of nonempty compact
convex subsets of E. Let H(·, ·) be the Hausdorff distance on FB(X), i.e.,

H(A,B) = max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
}

, A,B ∈ FB(X),

where dist(a,B) = inf{‖a − b‖ : b ∈ B} is the distance from the point a to the
subset B. A multivalued mapping T : E → FB(X) is said to be a contraction if
there exists a constant k ∈ [0, 1) such that

(2.1) H(Tx, Ty) ≤ k‖x− y‖, x, y ∈ E.
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If (??) is valid when k = 1, then T is called nonexpansive. A point x is a fixed
point for a multivalued mapping T if x ∈ Tx.

Throughout the paper we let X∗ stand for the dual space of a Banach space X.
By BX and SX we denote the closed unit ball and the unit sphere of X, respectively.
Let A be a nonempty bounded subset of X. The number r(A) = inf

{
supy∈A ‖x−

y‖ : x ∈ A
}

is called the Chebyshev radius of A. The number diam(A) = sup{‖x−
y‖ : x, y ∈ A} is called the diameter of A. A Banach space X has normal structure
(resp. weak normal structure) if

r(A) < diam(A)

for every bounded closed (resp. weakly compact) convex subset A of X with
diam(A) > 0. X is said to have uniform normal structure (resp. weak uniform
normal structure) if

inf
{

diam A

r(A)

}
> 1,

where the infimum is taken over all bounded closed (resp. weakly compact) con-
vex subsets A of X with diamA > 0. The weakly convergent sequence coefficient
WCS(X) [?] of X is the number

WCS(X) = inf
{

A({xn})
ra({xn})

}
,

where the infimum is taken over all sequences {xn} in X which are weakly (not
strongly) convergent, A({xn}) = lim supn{‖xi − xj‖ : i, j ≥ n} is the asymptotic
diameter of {xn}, and ra({xn}) = inf{lim supn ‖xn − y‖ : y ∈ co({xn})} is the
asymptotic radius of {xn}.

Some equivalent definitions of the weakly convergent sequence coefficient can
be found in [?, p. 120] as follows :

WCS(X) = inf
{ limn,m;n 6=m ‖xn − xm‖

limn→∞ ‖xn‖ : xn
w→ 0, lim

n,m;n6=m
‖xn−xm‖ and lim

n→∞
‖xn‖ exist

}
,

and

WCS(X) = inf
{

lim
n,m;n 6=m

‖xn−xm‖ : xn
w→ 0, ‖xn‖ = 1 and lim

n,m;n6=m
‖xn−xm‖ exists

}
.

It is known that WCS(X) > 1 imply X has weak uniform normal structure [?].
For a Banach space X, the Jordan-von Neumann constant CNJ(X) of X, in-

troduced by Clarkson [?], is defined by

CNJ(X) = sup
{‖x + y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2 : x, y ∈ X not both zero
}

.

The constant R(a,X), which is a generalized Garcia-Falset coefficient [?], is intro-
duced by Dominguez [?] : For a given nonnegative real number a,

R(a,X) := sup{lim inf
n

‖x + xn‖},
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where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and all weakly null
sequence {xn} in the unit ball of X such that limn,m;n6=m ‖xn − xm‖ ≤ 1.

A relationship between the constant R(1, X) and the Jordan-von Neumann
constant CNJ(X) can be found in [?] :

R(1, X) ≤
√

2CNJ(X).

The following method and results deal with the concept of asymptotic centers.
Let E be a nonempty bounded closed subset of X and {xn} a bounded sequence
in X. We use r(E, {xn}) and A(E, {xn}) to denote the asymptotic radius and the
asymptotic center of {xn} in E, respectively, i.e.,

r(E, {xn}) = inf
{

lim sup
n→∞

‖xn − x‖ : x ∈ E
}
,

A(E, {xn}) =
{
x ∈ E : lim sup

n→∞
‖xn − x‖ = r(E, {xn})

}
.

It is known that A(E, {xn}) is a nonempty weakly compact convex set as E is [?].
Let {xn} and E be as above. Then {xn} is called regular relative to E if

r(E, {xn}) = r(E, {xni}) for all subsequences {xni} of {xn} and {xn} is called
asymptotically uniform relative to E if A(E, {xn}) = A(E, {xni

}) for all subse-
quences {xni} of {xn}. Furthermore, {xn} is called regular asymptotically uniform
relative to E if {xn} is regular and asymptotically uniform relative to E.

Lemma 2.1 (Goebel [?], Lim [?]). Let {xn} and E be as above. Then
(i) there always exists a subsequence of {xn} which is regular relative to E;
(ii) if E is separable, then {xn} contains a subsequence which is asymptotically
uniform relative to E.

A last concept which we need to mention is ultrapowers of Banach spaces.
Ultrapowers are proved to be useful in many branches of mathematics. Many results
can be seen more easily when treated in this setting. We recall some basic facts
about ultrapowers. Let F be a filter on an index set I and let {xi}i∈I be a family
of points in a Hausdorff topological space X. {xi}i∈I is said to converge to x with
respect to F , denoted by limF xi = x, if for each neighborhood U of x, {i ∈ I : xi ∈
U} ∈ F . A filter U on I is called an ultrafilter if it is maximal with respect to the
set inclusion. An ultrafilter is called trivial if it is of the form {A : A ⊂ I, i0 ∈ A}
for some fixed i0 ∈ I, otherwise, it is called nontrivial. We will use the following
facts :

(i) U is an ultrafilter if and only if for any subset A ⊂ I, either A ∈ U or
I \A ∈ U , and

(ii) if X is compact, then the limU xi of a family {xi} in X always exists and
is unique.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I, Xi) denote the subspace
of the product space Πi∈IXi equipped with the norm ‖{xi}‖ := supi∈I ‖xi‖ < ∞.



THE JORDAN-VON NEUMANN CONSTANT AND FIXED POINTS... 5

Let U be an ultrafilter on I and let

NU =
{{xi} ∈ l∞(I, Xi) : lim

U
‖xi‖ = 0

}
.

The ultraproduct of {Xi} is the quotient space l∞(I, Xi)/NU equipped with the
quotient norm. Write {xi}U to denote the elements of the ultraproduct. It follows
from (ii) and the definition of the quotient norm that

‖{xi}U‖ = lim
U
‖xi‖.

In the following, we will restrict our index set I to be N, the set of natural numbers,
and let Xi = X, i ∈ N, for some Banach space X. For an ultrafilter U on N, we
write X̃ to denote the ultraproduct which will be called an ultrapower of X. Note
that if U is nontrivial, then X can be embedded into X̃ isometrically (for more
details see Aksoy and Khamsi [?] or Sims [?]).

3. Main results

Definition 3.1. A Banach space X is said to satisfy property (D) if there exists
λ ∈ [0, 1) such that for any nonempty weakly compact convex subset E of X, any
sequence {xn} ⊂ E which is regular asymptotically uniform relative to E, and any
sequence {yn} ⊂ A(E, {xn}) which is regular asymptotically uniform relative to E
we have

(3.1) r(E, {yn}) ≤ λr(E, {xn}).
Theorem 3.2. Let X be a Banach space satisfying property (D). Then X has weak
normal structure.

Proof. Suppose by contradiction, thus there exists a weakly null sequence {xn} ⊂
BX such that lim

n→∞
‖xn − x‖ = 1 for all x ∈ C = co({xn}) (see [?]). By passing

through a subsequence, we may assume that {xn} is regular relative to C. We see
that r(C, {xn}) = 1 and A(C, {xn}) = C. Moreover {xn} is asymptotically uniform
relative to C. Indeed, let {xnk

} be a subsequence of {xn} we have

A(C, {xnk
}) =

{
x ∈ C : lim sup

k→∞
‖xnk

− x‖ = r(C, {xnk
})} = C.

Since {xn} ⊂ C = A(C, {xn}) and X satisfies property (D) with a corresponding
λ ∈ [0, 1),

r(C, {xn}) ≤ λr(C, {xn})
which leads to a contradiction. ¤

The following results will be very useful in order to prove our main theorem.

Theorem 3.3 (Dominguez-Lorenzo [?]). Let E be a nonempty weakly compact
separable subset of a Banach space X, T : E → K(E) a nonexpansive mapping,
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and {xn} a sequence in E such that lim
n→∞

d(xn, Txn) = 0. Then there exists a

subsequence {zn} of {xn} such that

Tx ∩A 6= ∅, ∀x ∈ A := A(E, {zn}).
Theorem 3.4 (Dominguez-Lorenzo [?]). Let E be a nonempty weakly compact
convex separable subset of a Banach space X. Assume that T : E → KC(E) is a
contraction mapping. If A is a closed convex subset of E such that Tx ∩A 6= ∅ for
all x ∈ A, then T has a fixed point in A.

We can now state our main theorem.

Theorem 3.5. Let E be a nonempty weakly compact convex subset of a Banach
space X which satisfies property (D). Assume that T : E → KC(E) is a nonexpan-
sive mapping. Then T has a fixed point.

Proof. The first part of the proof is similar to the proof of Theorem 4.2 in [?].
Therefore, we only sketch this part of the proof. From [?] we can assume that E is
separable. Fix z0 ∈ E and define a contraction Tn : E → KC(E) by

Tn(x) =
1
n

z0 + (1− 1
n

)Tx, x ∈ E.

By Nadler’s theorem [?], for any n ∈ N, Tn has a fixed point, say x1
n. It is

easy to prove that lim
n→∞

dist(x1
n, Tx1

n) = 0. By Lemma ??, we can assume that

sequence {x1
n} ⊂ E is a regular asymptotically uniform relative to E. Denote

A1 = A(E, {x1
n}). By Theorem ?? we can assume that Tx∩A1 6= ∅ for all x ∈ A1.

Fix z1 ∈ A1 and define a contraction Tn : E → KC(E) by

Tn(x) =
1
n

z1 + (1− 1
n

)Tx, x ∈ E.

Convexity of A1 implies Tn(x) ∩ A1 6= ∅ for all x ∈ A1. By Theorem ??, Tn has a
fixed point in A1, say x2

n. Consequently, we can get a sequence {x2
n} ⊂ A1 which is

regular asymptotically uniform relative to E and lim
n→∞

dist(x2
n, Tx2

n) = 0. Since X

satisfies the property (D) with a corresponding λ ∈ [0, 1), we have

r(E, {x2
n}) ≤ λr(E, {x1

n}).
By induction, we can find a sequence {xk

n} ⊂ Ak−1 = A(E, {xk−1
n }) which is regular

asymptotically uniform relative to E,

lim
n→∞

dist(xk
n, Txk

n) = 0,

and
r(E, {xk

n}) ≤ λr(E, {xk−1
n }) for all k ∈ N.

Consequently,

r(E, {xk
n}) ≤ λr(E, {xk−1

n }) ≤ ... ≤ λk−1r(E, {x1
n}).
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In view of [?, p. 48], we may assume that for each k ∈ N,

lim
n,m;n6=m

‖xk
n − xk

m‖ exists,

and in addition ‖xk
n − xk

m‖ < lim
n,m;n6=m

‖xk
n − xk

m‖+ 1
2k for all n,m ∈ N and n 6= m.

Let {yn} be the diagonal sequence {xn
n}. We claim that {yn} is a Cauchy sequence.

For each n ≥ 1, we have for any positive number m,

‖yn − yn−1‖ ≤ ‖yn − xn−1
m ‖+ ‖xn−1

m − yn−1‖
= ‖yn − xn−1

m ‖+ ‖xn−1
m − xn−1

n−1‖

≤ ‖yn − xn−1
m ‖+ lim

i,j;i 6=j
‖xn−1

i − xn−1
j ‖+

1
2n−1

Taking upper limit as m →∞,

‖yn − yn−1‖ ≤ lim sup
m→∞

‖yn − xn−1
m ‖+ lim

i,j;i 6=j
‖xn−1

i − xn−1
j ‖+

1
2n−1

≤ r(E, {xn−1
n }) + lim sup

i
‖xn−1

i − yn‖+ lim sup
j

‖xn−1
j − yn‖+

1
2n−1

≤ 3r(E, {xn−1
n }) +

1
2n−1

≤ 3λn−2r(E, {x1
n}) +

1
2n−1

Since λ < 1, we conclude that there exists y ∈ E such that yn converges to y.
Consequently,

dist(y, Ty) ≤ ‖y − yn‖+ dist(yn, Tyn) + H(Tyn, T y) → 0 as n →∞
Hence y is a fixed point of T. ¤

Theorem 3.6. Let E be a nonempty weakly compact convex subset of a Banach
space X with

CNJ(X) < 1 +
WCS(X)2

4
.

Assume that T : E → KC(E) is a nonexpansive mapping. Then T has a fixed
point.

Proof. We will prove that X satisfies property (D). Since CNJ(X) < 1+ WCS(X)2

4 ,

we choose λ = 2
√

CNJ(X)−1

WCS(X) < 1. Let {xn} ⊂ E and {yn} ⊂ A(E, {xn}) be reg-
ular asymptotically uniform sequences relative to E. We will show that (??) is
satisfied. Let ε > 0. Choosing a subsequence, if necessary, we can assume that
{yn} converges weakly to y ∈ E,

lim
k,j;k 6=j

‖yk − yj‖ = l for some l ∈ R,
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and

(3.2)
∣∣‖yk − yj‖ − l

∣∣ < ε for all k 6= j.

Let r = r(E, {xn}) and fix k 6= j. Since yk, yj ∈ A(E, {xn}) and using the convexity
of A(E, {xn}), we can assume, passing through a subsequence, that

(3.3) ‖xn − yk‖ < r + ε, ‖xn − yj‖ < r + ε,

and

(3.4)
∥∥∥xn − yk + yj

2

∥∥∥ > r − ε for all large n.

From the definition of CNJ(X), by (??), (??), and (??) we have for n large enough

CNJ(X) ≥ ‖2xn − (yk + yj)‖2 + ‖yk − yj‖2
2‖xn − yk‖2 + 2‖xn − yj‖2

≥ 4(r − ε)2 + (l − ε)2

4(r + ε)2

Since ε is arbitrary, it follows that

CNJ(X) ≥ 4r2 + l2

4r2

Since

WCS(X) = inf
{ limj,k;j 6=k ‖uj − uk‖

lim supj ‖uj‖ : uj
w→ 0, lim

j,k;j 6=k
‖uj − uk‖ exists

}
,

we can deduce that

CNJ(X) ≥ 1 +
WCS(X)2(lim supn ‖yn − y‖)2

4r2

≥ 1 +
WCS(X)2r(E, {yn})2

4r2
.

Consequently,

r(E, {yn}) ≤ 2
√

CNJ(X)− 1
WCS(X)

r = λr(E, {xn})

as desired. ¤
In order to prove our next result, we need the following theorem which states a

relationship between the weakly convergent sequence coefficient and the Jordan-von
Neumann constant of a Banach space X.

Theorem 3.7. For a Banach space X,

[WCS(X)]2 ≥ 2CNJ(X) + 1
2[CNJ(X)]2

.
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Proof. Since CNJ(X) ≤ 2 and the result is obvious if CNJ(X) = 2, we can assume
that CNJ(X) < 2. It is known that CNJ(X) < 2, or equivalently X is uniformly
nonsquare, implies X and X∗ are reflexive. Put α =

√
2CNJ(X). Let {xn} be a

normalized weakly null sequence in X. Put d = limn,m;n6=m ‖xn − xm‖. We know
that WCS(X) ≤ d. Consider a sequence {fn} of norm one functionals for which
fn(xn) = 1. Since X∗ is reflexive we can assume that {fn} converges weakly to some
f in X∗. Let ε be an arbitrary positive number and choose K ∈ N large enough so
that |f(xn)| < ε and d − ε ≤ ‖xn − xm‖ ≤ d + ε for any m 6= n; m,n ≥ K. Then
we have

lim
n

(fn − f)(xK) = 0 and lim
n

fK(xn) = 0.

Since lim
n,m;n6=m

‖xn−xm

d+ε ‖ < 1 and ‖ xK

d+ε‖ ≤ 1, we have, by definition of R(1, X),

lim sup
n

‖xn + xK‖ ≤ (d + ε)R(1, X) ≤ (d + ε)
√

2CNJ(X) = (d + ε)α.

We construct elements of X̃ and X̃∗.

x̃ =
{xn − xK

d + ε

}
U

and ỹ =
{xn + xK

(d + ε)α

}
U

,

f̃ = {fn}U and g̃ = ˙fK .

Here ẋ denotes an equivalence class of a sequence{xn} such that xn ≡ x for all
n ∈ N. It is easy to see that x̃, ỹ ∈ B eX and f̃ , g̃ ∈ BfX∗ . Moreover,

f̃({xn}U ) = 1 and |f̃( ˙xK)| = |ḟ( ˙xK)| < ε.

On the other hand,

g̃({xn}U ) = 0 and g̃( ˙xK) = 1.

Let consider

‖f̃ − g̃‖ ≥ (f̃ − g̃)(x̃) = f̃(x̃)− g̃(x̃)

=
1

d + ε

(
f̃({xn}U )− f̃( ˙xK)− [g̃({xn}U )− g̃( ˙xK)]

)

≥ 1
d + ε

(
1− ε− 0 + 1

)
=

2− ε

d + ε
.
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On the other hand,

‖f̃ + g̃‖ ≥ (f̃ + g̃)(ỹ) = f̃(ỹ) + g̃(ỹ)

=
1

(d + ε)α
(
f̃({xn}U ) + f̃( ˙xK) + g̃({xn}U ) + g̃( ˙xK)

)

≥ 1
(d + ε)α

(
1− ε + 0 + 1

)
=

2− ε

(d + ε)α
.

Thus we have

CNJ(X̃∗) ≥ ‖f̃ + g̃‖2 + ‖f̃ − g̃‖2
2‖f̃‖2 + 2‖g̃‖2

≥
( 2−ε

d+ε )2 + ( 2−ε
(d+ε)α )2

4

=
( 1
d + ε

)2( (2− ε)2

4
+

(2− ε)2

4α2

)
.

Since ε is arbitrary, α =
√

2CNJ(X), and the Jordan-von Neumann constants of
X∗, X, X̃ and X̃∗ are all equal, we obtain

CNJ(X) ≥ ( 1
d2

)(
1 +

1
2CNJ(X)

)
.

Thus

[WCS(X)]2 ≥ 2CNJ(X) + 1
2[C NJ(X)]2

.

¤
Using Theorem ??, we obtain the following corollary.

Corollary 3.8. [?, Theorem 3.16] Let X be a Banach space. If CNJ(X) < 1+
√

3
2 ,

then X and X∗ has uniform normal structure.

Proof. Let X̃ be a Banach space ultrapower of X over an ultrafilter. Since
CNJ(X̃) = CNJ(X), Theorem ?? can be applied to X̃. The inequality in Theo-
rem ?? implies WCS(X̃) > 1 if CNJ(X̃) < 1+

√
3

2 . Since WCS(X̃) > 1 implies X̃

has weak normal structure [?] and since X̃ is reflexive, it must be the case that
X̃ has normal structure. By [?, Theorem 5.2], X has uniform normal structure as
desired. ¤

Using the inequality appearing in Theorem ??, and numerical calculus it is not
difficult to check that CNJ(X) < 1 + WCS(X)2

4 if CNJ(X) < c0 = 1.273... Thus we
can state :



THE JORDAN-VON NEUMANN CONSTANT AND FIXED POINTS... 11

Corollary 3.9. Let E be a nonempty bounded closed convex subset of a Banach
space X with

CNJ(X) < c0 = 1.273...

Assume that T : E → KC(E) is a nonexpansive mapping. Then T has a fixed
point.
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