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Abstract
Some relationships between the Kuratowski’s measure of noncompactness, the ball measure of
noncompactness and the §-separation of the points of a set are studied in special classes of Banach
spaces. These relations are applied to compare operators which are contractive for these measures.

Clasificaciéon A.M.S.(1980): 47H09.

1. INTRODUCTION

Let X be a metric space and B the collection of bounded subsets of X. A measure of noncompact-
nesson X is a map p : B — [0,+00) with the properties that (i) u(B) = 0 if and only if Cl(B) is
compact and (ii) p(B) < p(C) if B C C. Associated with the notion of measure of noncompactness
is the concept of k-p-contractive mapping, defined as follows: If k > 0 is a given real number, T a
continuous mapping from X into another metric space Y, then T is said to be k-u-contractive if, for
any bounded subset B of X, u(T(B)) < ku(B). The most usual measures of noncompactness are
the set-measure o defined by Kuratowski [6] and the ball-measure 8 defined by several authors (see
for example [7, 10]). We denote in this case k-set-contraction (resp.: k-ball-contraction) instead
k-a-contraction (resp.:k-#-contraction). The set-measure and ball-measure of noncompactness and
the associated notions of k-set-contractions and k-ball-contractions have proved. useful in several
areas of functional analysis and differential equations (see for example [2, 9]).

Another measure of noncompactness is defined in [11, page 91] by 6(A) = sup{r > 0 : there exists
an r-separated sequence in A} where a sequence {z,} is r-separated if d(z,,zm) > r for every
n,m € N;n # m. These three measures of noncompactness are different. Indeed in [2, example
9.6] the difference between a and g is showed. On the other hand if U is the unit ball of £, it is
well known (see, for instance, [8, page 93] ) that a(U) = A(U) = 2, but the maximal separation for
a sequence in U is 21/? (see [11, page 91 ]). However, in any metric space X the relation between
these three measures of noncompactness is '

6(A) < a(4) < B(A4) < 26(4)

for each bounded subset A of X, and therefore the standard relations between the associated
operators are:

(a) k-ball-contraction imply 2k-set-contraction

(b) k-set-contraction imply 2k-ball-contraction

(c) k-set-contraction imply 2k-6-contraction

(d) k-6-contraction imply 2k-set-contraction

(e) k-ball-contraction imply 2k-6-contraction

(f) k-6-contraction imply 2k-ball-contraction
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In this note we study some stronger relationships between these three measures of noncompactness
and their associated operators in some classes of Banach spaces.

2. RESULTS

2.1 Definition. Let X be a metric space. We define the coefficients § and §’ of X as the supremum
and the infimum (respectively) of the set {S i : A is a bounded, a-minimal and nonprecompact
subset of X}. It is clear that 1 < §' < § < 2.

2.2 Definition. Let X be a metric space. We define the packing rate of X by y(X) = fr.
Obviously 1 < y(X) < 2.

2.3 Remark This real number can be thought as a measure of the relationship between the
maximal separation of the points in any subset A of X and the least radius of a ball containing A.
We say that X is well” packed” when y(X) is near to 1. Actually y(X) = 1 if X has the B-property
(see [4, Definition 2.1]).

Following an argument similar as in theorem 2.5 of [4] and using the proposition 1.4 of [1], the
lemmas 1.1 and 1.2 of [4] and the theorems 2.1 and 3.1 of [5] it is easy to prove the following
result which states a relationship between set-contractions, ball-contractions and §-contractions
according to the packing rate of X.

2.4 Theorem. Let X be a separable normed space with packing rate y = j‘-r. Then:

a)If Disasubsetof X and T : D — X is a k-set-contractive mapping, then % is a k-ball-contractive
mapping.

b) If D is a subset of X and T : D — X is a k-ball-contractive mapping, then %— is a k-set-
contractive mapping.

¢) If D is a subset of X and T : D — X is a k-§-contractive mapping, then % is a k-set-contractive
mapping. )

d) If D is a subset of X and T': D — X is a k-6-contractive mapping, then % is a k-ball-contractive
mapping.

e) If D is asubset of X and T : D — X is a k-ball-contractive mapping, then % is a k-6-contractive
mapping.

f) If D is a subset of X and T : D — X is a k-set-contractive mapping, then T is a k-é-contractive
mapping.

Furthermore these costants ¥ and § are the best possible.

Let us calculate finally v, 6§ and ¢’ in some classes of separable metric spaces.

1) Let X be a separable metric space which has the g-property with constant u. By lemma 1.1 and
lemma 2.3 in [4] we has that f(A) = pa(A) for every bounded, a-minimal and non precompact
subset A of X. Thus § = § = p and y(X) = 1.

Two important examples of separable Banach spaces with the S-property are the followings:

a) Every separable Hilbert space has the S-property with constant g = v/2 by theorem 4.4 in (3]
and theorem 2.5 in [4].

b) Every IP-space, 1 < p < +00, has the #-property with constant u = 25 by theorem 3.4 and
proposition 3.5 in [4]. '

2) In [4, remark 3.8] is proved that L?([0,1]), p # 2, 1 < p < +00, has not the f-property. However,
we prove in [1] that if (2, p)is a o-finite measure space and LP(f2), 1 < p < +oo0 is separable, then
min{2?, 25} < 20 < max?, 25}

for every bounded, a-minimal and non precompact subset A of LP(2). Moreover, these bounds
are the best possible if 2 satisfies the following property:

(R): There exists a subset of Q of positive and finite measure each of whose measurable subsets F}
contains a measurable subset F3 such that 2u(F3) = pu(Fy).

Thus it follows that v(LP(R)) < 21";1 if (2, #) is a o-finite measure space and LP(Q) is separable,
and the equality holds if the property (R) is satisfied.
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