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ABSTRACT. The space lp,q is simply the space lp but renormed by 

1 

Ixlp,q = (11x+llg + IIx-IIg);, ß E 

where II'[Ip is the usual lp norm and x + and x- are the positive and negative. 
parts of x, respectively. Bynum used lp,1 and Smith and Turett used 12,1 
to show that neither normal structure nor uniform normal structure is a 

self dual property for Banach spaces. In this paper we present some more 
qualitative and quantitative properties for Ip,q; in particular, we provide an 
affirmative answer to a question of Khamsi. 

1. Introduction. 

In 1972, in order to show that normal structure is not a self dual 
property for Banach spaces, W. L. Bynum [4] introduced the space Ip,q 
which is simply the space Ip but renormed by 

*The research of these authors is partially supported by DGICYT (research project 
PB93-1177) and the Junta de Andalucia (research project 1241). 

1991 Mathematics Subject Classification. Primary 46B20; Secondary 47H10. 
Key words and phrases. Normal structure, uniform normal structure, uniformly 

rotund, geometrical coefficients, uniform Opial condition, Opial's modulus, orthogonal 
convexity. 

89 



90 DOMINGUEZ BENAVIDES, L(•PEZ ACEDO AND XU 

where ' I p is the usual lp norm and x + and x- are the positive and 
negative parts of x, respectively. He then showed that /p,1, I < p < c•, 
has normal structure, but its dual lp•,m does not. (Here p• - P is the p--1 

conjugate number of p.) (It even lacks asymptotic normal structure [2] [5].) 
In 1990, using the space /2,1, M.A. Smith and B. Turett [21] showed that 
uniform normal structure is not a self dual property for Banach spaces. In 
this paper we shall show some more qualitative and quantitative properties 
for lp,q. More precisely, we show in Section 2 that for every I < p < c•, 
lp,1 is 2-uniformly rotund and hence has uniform normal structure. This 
presents an afirmative answer to a question of Khamsi [12, p. 349]. We 
then in Section 3 calculate Bynum's weakly convergent sequence coefficient 
WCS and another coefficient introduced by Khamsi [12] for lp,q. In Section 
4 we prove that lp,1 (1% p < c•) satisfies the uniform Opial condition, a 
notion introduced very recently by Prus [20]. Moreover, we evaluate Opial's 
modulus for lp,1. Finally in Section 5, we make some concluding remarks 
concerning certain kinds of geometrical properties of Banach spaces and 
raise an open question. 

2. Uniform Normal Structure. 

Let (X, II' ) be a Banach space and A be a bounded closed convex 
subset of X with more than one point. Recall that the (self-Chebyshev) 
radius and the diameter of A are the numbers 

rad(A) '= inf sup Ilx - yl] and diam(A):= sup sup Ilx - y l, 
x•Ay•A x•A y•A 

respectively. We say that X has normal structure if for every such A, 
red(A) < diem(A). The normal structure coefficient N(X) of X is defined 
as the number 

{ diam(A) } inf rad(A) ß A as above . 
If N(X) > 1, then X is said to have uniform normal structure. Both 
notions, normal and uniform normal structure play important roles in fixed 
point theory of nonlinear operators (cf. for example, Kirk [13] and Casini 
and Maluta [6]). 

Recall also that a Banach space X is said to be 2-uniformly rotund 
(2-UR) (Sullivan [22]) if given any e > 0, there exists 5 = 5(e) > 0 such 
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that for all x, y, z E Bx, the closed unit ball of X, with A(x, y, z) >_ e, then 

IIx + y + zll _< 3(1 - 5). 

Here A(x,y,z) is the volume enclosed by {x,y,z}, i.e., the number 

sup{ 
I I 1 

f(x) f(y) f(z) 
g(x) g(y)g(z) 

'f,g•Bx. 

It is clear that uniform convexity implies 2-uniform rotundity. It is 
also known (Amir [1]) that 2-uniform rotundity implies uniform normal 
structure. 

M.A. Smith and B. Turett [21] showed that 12,• is 2-UR and hence has 
uniform normal structure, which indicates that uniform normal structure 
is not a self dual property for Banach spaces. In this section we show that 
for each I < p < o•, lp,• is 2-UR and has uniform normal structure, which 
leads to an affirmative answer to Khamsi's question [12, p. 349]. 

Theorem 1. For each I < p < o•, lp, x is 2-uniformly rotund. 

Proof. We only sketch the proof since it is a slight refinement of the proof 
to Theorem 2 of Smith and Turett [21]. For simplicity we write I' I for 
and I]' [[ for II' lip. What we need to prove is 

(1) lim A(xn,yn,zn) = 0 

for any sequences {x•) , {y•) and {z•) of norm-one elements in lp,• with 
lim,•_• [«(x,• + y,• + z,•)l = 1. 

Noticing that the inequality (a p + fiP)• _> a + p-•P holds for all 
0 < a,• < 1 such that a p + •P < 1, we get sequences {X,•}, {Y,•} and 
{Zn} of norm-one elements in lp,1 such that (see Step 1 of [21, p. 227]) 

lim Ix•-X• I=0, lim lY•-Y•]=O, lim Izn-Z•]=O, 

(and hence lim,•_• [ + Y,• + [ = and for all i, n «(X• Z•) 1) EN, 
# -1, 
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• -- 1, and for all n C N, X• +, X•, Y•+, Y•-, Z•, Z• are all nonzero elements 
in lp,•. Set M,• = (X,• + Y,• + Z,•)/3. From the above properties of {X,), 
{Y, } and { Z, }, we have 

M• + = (X• + Y• + Z•)/3 and M; = (X; + Y• + Z•)/3. 
Denote by 5p the modulus of convexity of lp. Then (cf. [7] for the case 
p < p 5 

(2) 5p(e) • de q, 

where q = max(p, 2) and d = p-•2 -p if p • 2 and d = P• if 1 < p • 2. 
From (2) and Step 2 of [21, p. 229], it follows that 
lim• dist (W,span {M•}) = 0, where {V•} is any one of the 

sequences {X•} , {Y•} and {Z•}. Now by the same argument as in Step 3 
of [21, p. 230], we arrive at the desired conclusion (1). • 

Corollary 1. For each i • p < •, the space lp,1 has uniform normal 
structure. 

Remark 1. Let (P) be a property for a Banach space X. Recall that X is 
said to have the property super-(P) if any Banach space Y that is finitely 
representable in X has the property (P). (Y is finitely representable in 
X if for every finite dimensional subspace Y0 of Y and • > 0 there exist 
a subspace X0 of X and an isomorphism T ß Y0 • X0 such that (1 + 
e) -• y[ • [Ty[ • (1 + e) y for all y • Y0.) Let 1 < p < •. Khamsi [12, 
p. 349] asked if lp,1 has super-normal structure. Amir [1] proved that if 
X has uniform normal structure and is super-reflexive, then X does have 
super-uniform normal structure. Hence Corollary i asserts that lp,1 (as it 
is super-reflexive) has super-uniform normal structure. This presents an 
a•rmative answer to Khamsi's question. 

3. Geometrical Coefficients. 

Suppose (X, ß ) is a Banach space which is not Schur (i.e., weak 
convergence and strong convergence for sequences do not coincide). Then 
Bynum [5] defined the weakly convergent sequence coe•cient of X as the 
number 

diam•{x•} 
WCS(X) :=inf{ r•{x•} ß {x•} a weakly (not strongly) convergent 

sequence in X}, 
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where diama{Xn} and l'a{Xn} are the asymptotic diameter and Chebyshev 
radius of {Xn}, respectively; namely, 

diama{Xn) = nli•mo•(sup{ xi - xj ' i,j _> n)) 
and ra{Xn} ---- inf{limsupn_•o • ]]Xn -- xll- x • •{Xn) }. It is immediately 
clear that I • WCS(X) • 2 and WCS(X) > I implies the weak normal 
structure of X. 

Recall that a Banach space X is said to h•ve a (Schauder) finite 
dimensional decomposition (FDD in short) if there exists • sequence {Xn} 
of finite dimensional subsp•ces of X such that every x E X has a unique 
representation of the form x = •n•l Xn, where Xn • Xn for all n. To a 
Banach space X with an FDD, Khamsi [12] associated •nother coe•cient 
tip(X) of X for p E [1, •) by 

tip(X) := inf{A > 0'( ]x p + Ilyll) &l x + yll for all x,y • x 
with max supp (x)+ 1 < min supp (y)}, 

where supp (x) is the support of x, i.e., the set {i E N: the i-th component 
x• of x is different from zero}. The relation between WCS(X) and tip(X) 
is the following. 

Theorem 2. fix is a Banach space with an F.D.D., and p • [1,•), then 
1 

Proof. Let {•n} be any weakly convergent sequence in X. By a translation if 
necessary, we may assume that the weak limit of {x•} is zero. We may also 
assume that lim II•nll exists (otherwise we pass to a subsequence {x•} of 
{x•} such that limn,• In. II = limsuPn• I•nll)' Then by a •t•a•ra 
method (cf. [•2]), there are a sequence {u•} of successive blocks ana • 
subsequence {xm} of {Xn} such that lim x•-u• = 0. From the definition 
of tip(X) , it follows that for all i • j, 

+ 5 - , 
1 

which immediately implies that 2• 5 &(X)diam•{x•/r•{x,,}. Since {Xn} 
is arbitrary, the proof is complete. • 

The following corollary improves upon the main result, Theorem 3 of 
Khamsi [12]. 
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Corollary 2. If •p(X) < 23 for some p E [1, •), then WCS(X) > I and 
hence X has weak normal structure. 

Remark 2. Strict inequality in (3) may occur even for a reflexive Banach 
space X. For example, let X = 12• •9 12 with norm 

(x, y) l = l( Ix, y )l, 

[. [ being any p-norm in IR 2 with 1 < p < cx:. Choosing u -- (Xl, 0), 
v = (/2,0), where Xl -- (1,0) and X2 -- (0, 1), we see that •2(X) _> V•. 
However WC$(X) = v/• and •2(X)WC$(X) = 2 > v/•. 

Remark 3. (i) The condition •p(X) < 2• for some p E [1, cx:) does not 
imply refiexivity of X. 

(ii) Even for a reflexive Banach space X, •p(X) < 2• does not imply 
uniform normal structure. For example, let X = (}-•-•=1 •9l•)2. Then 
•2(X) = I < v/• and X lacks uniform normal structure (cf. Maluta [18]). 
Theorem 3. Assume l < p < oc and q _> l. Then 

{ 2 •7•, /•q(lp,q) = 1, 
if q •_ p; 

ifq•p. 

Proof. First consider the case q <_ p. Given any u, v • lp,q with max 
supp(u) + I < min supp(v), we have max supp(u+) + I < min supp(v +) 
and max supp(u-) + 1 < min supp(v-). For simplicity, we write I' I for 
I']p,q and ß for ß p. Then we have 

(4) 

litlq + Iv q = (lit + I • + it- •) + (11v + • + v- •) 
= ( it+ q+ v+11 •) +(lu- • + IIv- •) 

•__ 2•__l[(llit+[lp '-[-ilV+ p)pi '-[- (I it-- I p '-[-IlV-- p)pi] 
= 2•-•-l(]]it -]- .-[- V-[-[]q .-• ([[it-- --[- V--[[ q) 
= 2 •-• [u + v] q, that is, 

)i •-• (ul q + v q <_ 2 - , 
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which shows that /•q(lp,q) _< 2 pz=•. Since for u = e• and v = ea, equality in 
p-q 

(4) does hold, we therefore must have •3q(Ip,q)- 2 pq 
Next consider the case q > p. We only need to show /•q(Ip,q) _< 1. 

This is equivalent to 

(•) [U] q q-IV[ q _• [?L q- V] q, 

for all u, v E lp,q such that max supp(u) q- 1 < rain supp(v). However given 
any such a pair (u, v), noting that the inequality 

(E•g) • + (E•) • < (E•(• + •)•)• 

holds true for all finite sequences {aN} and {b•} of nonnegative numbers, 
we deduce that 

l u+ll q q- v+l q 5 u + q- v+ll q, 
IIU- q q- V-- q __• 

and 

Summing these last two inequalities yields (5). [] 

Corollary 3. (i) (Khamsi [12]) •3p(Ip) = 1 and •3• (lp,•) = 2r; • 
(ii) WC$(Ip,q)= rain {2•,2{ }. 

Proof. (i) is a direct consequence of Theorem 3. Combining Theorems 2 and 
3, we get WC$(Ip,q) _> min{2•,2{}. Moreover, considering the sequence 
{e•., -e•.,+•} in the case q _< p and the sequence {e,} in the case q > p, 
we see that WCS(Ip,q) _< rain {2},2•;). Hence (ii) is proven. [] 
4. The Uniform Opial Condition. 

Recall that a Banach space (X, II. ) is said to satisfy Opial's condition 
([19]) if for any sequence {xn} converging weakly to x , we have for all 
y E X, y • x, limsuPn__.oo Xn -- xll < limsuPn-• x,- y . 

It is known that a Hilbert space and all the lp spaces for I _< p < c• 
enjoy this property. Opial's condition plays an important role in fixed point 
theory of nonexpansive mappings (cf. Opial [19] and Dulst [8]). By a gauge 
we mean a continuous strictly increasing function • ß [0, c•) -' IR + -+ IR + 
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such that q•(0) - 0 and limr_• q•(r) - 03. With a gauge q•, we associate 
a (possibly multivalued) duality map J•: X -• X*, the dual space of X, 
defined by 

J•(x) ={x* EX*: Ix, x*)= ]]x]]•(]]x]]) and I]x*]]--q•(]]x]])), xEX. 
A space X is said to have a weakly continuous duality map if there exists 
a gauge q• such that the duality map J• is single-valued and (sequentially) 
continuous from X, with the weak topology, to X*, with the weak* topol- 
ogy. Every lp space (1 < p < 03) has a weakly continuous duality map with 
the gauge q•(t) = t p-1. Browder [3] initiated the study of nonlinear oper- 
ators via duality maps and proved that a space with a weakly continuous 
duality map satisfies Opial's condition. 

In 1992, Prus [20] introduced the notion of the uniform Opial condi- 
tion. A Banach space (X, ]]-]l) is said to satisfy the uniform Opial condition 
if for every c > 0, there exists an r - r(c) • 0 such that 

lq-r_<liminf xq-xn 

for all x G X with x > c and sequences {•,• ) in X such that {z• } weakly 
converges to 0 and liminf•_•o½ II•l[ >_ 1. In [17], Lin, Tan and Xu defined 
Opial's modulus of X, denoted rx, by 

rx(c) :: inf {li•m_•i•nf [[x + x•[[- 1}, c >_ 0, 
where the infimum is taken over all x • X with x >_ c and all weakly null 
sequences {Xn} in X with liminfn_• I]Xn] > 1. It is easily seen that the 
uniform Opial condition implies Opial's condition and that X satisfies the 
uniform Opial condition if and only if rx (c) > 0 for all c > 0. Lin, Tan and 
Xu [17] proved that a space X with a weakly continuous duality map must 
satisfy the uniform Opial condition and calculated that Opial's modulus of 

1 

lp is rlp(c) = (1 + cP); -- 1. In this section we show that lp,1 does satisfy the 
uniform Opial condition. This presents an example of a Banach space that 
satisfies the uniform Opial condition but fails to have a weakly continuous 
duality map. 

Theorem 4. For each i < p < 03, lp,1 satisfies the uniform Opial condi- 
1 

tion on, with Opial's modulus rzp,•(c) = (1 + cP); - 1, c k 0. 
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Proof. Write I' If or I' p,1, ß II for ß p and f(tl,t2,t3,t4) for the function 
1 1 

(t•+t•)[ + (t•+t•) •. Then it is easily seen that for any c > 0, the 
infimum of f over the region Dc := {(tl,t2,t3,t4) ß 0 _• tl,t2,t3,ta, tl +t2 >_ 

i i c c 

I and t3 + t4 _> c} is achieved at the point (2, 2, 5,5) with the value 
1 

(1 + cp)7. Now suppose {x•} is a sequence in Ip,1 such that {x•} weakly 
converges to 0 and lim inf•-•oo Ix• I -> I and x is an element of X with norm 
at least c. Choose a subsequence {z•} of {x•} such that limk zk + x I = 
liminf•_•oo Ix• + x I and that lim• Iz•l, B := lim• z•+l and C := lim• Iz•l 
exist. Since limk Iz•l = lim•( z•+l + z•l ) >_ liminf•_•oo Ix•l _> 1, we have 
B + C > 1. By Bynum's proof of his Theorem 4 [5], we obtain ': 

li•rn_•i•nf Ix• + x I = lip Iz• + x I 
= li•n(ll(z• + )+ll + II(zk + •)-II) 
: (Bp + x+l p)3 + + x- 
= f(B,c,I x+ I, Ix- ) 

1 

> inf f(tl,t2,tg, t4) -- (1 + cP)•. 
-- Dc 

It follows that rtp,• (c) > (1 + c p) • - 1. Finally, by considering the sequence 
1 

{e•}, we conclude that r¾.x(c)=(1 +cP); - 1. [] 
Remark 6. Considering the elements x = e• - e2 and y = el - e3, we see 
that the dual space Ip,,• of Ip,1 is not strictly convex and hence Ip,1 is not 
smooth. Therefore, Ip,1 demonstrates a class of Banach spaces which satisfy 
the uniform Opial condition but fail to have a weakly continuous duality 
map. 

5. Concluding Remarks and an Open Question. 
A Banach space (X, I1' II) is said to satisfy the weak (or non-strict) 

Opial condition ([19] and [8]) if for any sequence {x•} converging weakly 
to x, we have for all y E X, 

liminf Ix•-x[<liminf x•-y . 

Lemma 2.2 of Prus [20] shows that for each 1 < p < oo, lp,oo satisfies the 
weak Opial condition; however, it fails to satisfy Opial's condition for it 
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lacks normal structure [4]. This presents a class of Banach spaces that 
satisfy the weak Opial condition but fail to satisfy Opial's condition. We 
are indebted to the anonymous referee for letting us know that the family 
of spaces Xa :- (/2,max{all ß ]2, ]]' ]]•)) [0 • a • 1] has the non-strict 
Opial condition, but fails Opial's conditoin for all a. 

Recall that a Banach space (X, ß ) is nearly uniformly convex (NUC) 
[10] if it is reflexive and its norm is uniformly Kadec-Klee, i.e., for each e • 0 
there exists 5 such that for any sequence {x•) C Bx, the closed unit ball 
of X, the conditions that {x•) weakly converges to x and inf{]]x• - Xml ' 
n•m)_•eimply x] _•1--5. 

It is known that any k-UR Banach space must be NUC (cf. for exam- 
ple, Kirk [14]). The dual notion of NUC is nearly uniformly smooth (NUS); 
namely a Banach space is NUS if and only if X* is NUC. Thus, from Theo- 
rem 1, lp,• is NUS for 1 • p • •, which together with Bynum [4] [5] shows 
that NUS Banach spaces need not have normal (even asymptotic normal) 
structure although NUC spaces do have normal stucture [9]. 

Recently, A. Jimenez-Melado and E. Llorens-Fuster [10] introduced 
the notion of orthogonal convexity that implies the fixed point property for 
nonexpasive mappings (FPP). Let (X, ß I) be a Banach space, for x,y ß X 
and A • 0, we set 

1 

M•(x,y) = {z ß X ' max{llz- xll, llz- yll) -• •(1 -• A)llx - y 
If A is a nonempty bounded subset and {x•) is a bounded sequence of X 
then we write A I = sup{ z l ' z ß A), D[{x•)] = limsup•_• 
(limsupm_• x• - Xmll), and = limsup•_• 
(limsUPm_• M•(x•,Xm)l). The Banach space X is called orthogonally 
convex if for each sequence {x•) in X weakly convergent to zero, with 
D[{x•)] • 0, there exists A • 0 such that A•[{x•)] • D[{x•)]. 

By Corollary 5 and Theorem 1 of [15], we see that for each 1 • p • •, 
lp,cc is orthogonally convex (and hence has the FPP ). 

Bynum [4] observed that for every 1 • p,q • c•, the space Ip,q is 
uniformly convex. This together with Corollary 1 shows that for every 
p • 1 and q •_ 1, lp,q has uniform normal structure. However the following 
question remains open. 

Question. What is the exact value of the normal structure coefficient 
N(lp,q) of lp,q .for p • i and q _• 1 ? 
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We only have a lower bound for N(lp,q) in some cases. 

Proposition. For p > q > 1, N(lp,q) > 2•-e• min(2•, 21-5}. 
Proof. By the H61der inequality, it is easily deduced that x p • X p,q • 
2•q x Ip for p _• q and x E lp,q. Hence the Banach-Mazur distance 
d(lp,lp,q) between lp and lp,q is at most 2 p•-•q. From Theorem 5 of [5] 
and Corollary 2.10 (e) of [1], it follows that 

N(lp) - i 1 
N(lp,q) > d(Ip,lp,q) -> 2-fq min(2;,2x-;}. [] 

Acknowledgement. This work was done while the third author was 
visiting Universidad de Sevilla. He would like to thank Universidad de 
Sevilla for financial support and Departamento de Analisis Matem•tico for 
hospitality. All the authors thank the referee for valuble comments and 
suggestions on the manuscript. 

REFERENCES 

1. D. Amir, On Jung's constant and related constants in norreed linear spaces, Pacific 
J. Math. 118 (1985), 1-15. 

2. J. B. Baillon and R. Schhneberg, Asymptotic normal structure and fixed points of 
nonexpansive mappings, Proc. Amer. Math. Soc. 81 (1981), 257-264. 

3. F. E. Browder, Convergence theorems for sequences of nonlinear operators in Ba- 
nach spaces, Math. Z. 100 (1967), 201-225. 

4. W.L. Bynum, A class of spaces lacking normal structure, Compositio Math. 25 
(1972), 233-236. 

5. W.L. Bynum, Normal structure coeJficients for Banach spaces, Pacific J. Math. 86 
(1980), 427-435. 

6. E. Casini and E. Maluta, Fixed points of uniformly Lipschitzian mappings in spaces 
with uniformly normal structure, Nonlinear Analysis 9 (1985), 103-108. 

7. J. A. Clarkson, Uniformly convex spaces, Tran. Amer. Math. Soc. 40 (1936), 396- 
414. 

8. D. van Dulst, Equivalent norms and fixed point property for nonexpansive mappings, 
J. London Math. Soc. 25 (1982), 139-144. 

9. D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev 
centers in Banach spaces with norms of type (KK), Lecture Notes in Math., vol. 991, 
Springer-Verlag, Berlin/Heidelberg, 1983, pp. 35-43. 



lOO DOMINGUEZ BENAVIDES, L6PEZ ACEDO AND XU 

10. R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 
10 (1980), 743-749. 

11. A. Jimenez-Melado and E. Llorens-Fuster, A geometric property of Banach spaces 
which implies the fixed point property for nonexpansive mappings, preprint. 

12. M.A. Khamsi, Normal structure for Banach spaces with Schauder descomposition, 
Canad. Math. Bull. 32 (1989), 344-357. 

13. W.A. Kirk, A fixed point theorem for mappings which do not increase distances, 
Amer. Math. Monthly 72 (1965), 1004-1006. 

14. W.A. Kirk, The modulus of k-rotundity, Bollettino U.M.I. 2-A (1988), 195-201. 
15. D. Kutzarova, S. Prus and B. Sims, Remarks on orthogonal convexity of Banach 

spaces, Houston J. Math. 19 (1993), 603-614. 
16. T.C. Lim, H.K. Xu and Z.B. Xu, Some L p inequalities and their applications to 

fixed point theory and approximation theory, "Progress in Approximation Theory" 
(P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp. 609-624,. 

17. P.K. Lin, K.K. Tan and H.K. Xu, Demiclosedness principle and asymptotic behavior 
for asymptotically nonexpansive mappings, Nonlinear Analysis 24 (1995), 929-946. 

18. E. Maluta, Uniformly normal structure coeJ•ficient and related coeJ•ficients, Pacific 
J. Math. 111 (1984), 357-369. 

19. Z. Opial, Weak convergence of the sequence of successive approximations for non- 
expansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. 

20. S. Prus, Banach spaces with the uniform Opial property, Nonlinear Analysis 18 
(1992), 697-704. 

21. M.A. Smith and B. Turett, Some examples concerning normal and uniform normal 
structure in Banach spaces, J. Austral. Math. Soc. (Ser. A) 48 (1990), 223-234. 

22. F. Sullivan, A generalization of uniformly rotund Banach spaces, Can. J. Math. 31 
(1979), 628-636. 

Received October 24, 1994 

DEPARTAMENTO DE ANaLISIS MATEM•TICO, FACULTAD DE MATEM•TICAS, UNI- 
VERSIDAD DE SEVILLA, APDO. 1160, 41080~SEVILLA, SPAIN 

E-mail address: ayerbe@cica.es 

INSTITUTE OF APPLIED MATHEMATICS, EAST CHINA UNIVERSITY OF SCIENCE 
AND TECHNOLOGY, SHANGHAI 200237, CHINA 

Current address: Department of Mathematics, University of Durban-Westville, 
Private Bag X54001, Durban 4000, South Africa 

E-mail address: hkxu@pixie.udw.ac.za 


