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ABSTRACT

i

Highly-configurable software systems (HCSs) provide a common core functionality
and a set of optional features, where a feature represents an increment in system func-
tionality. Development tools as Eclipse (with more than 3,000 plug-ins) or operating
systems as Debian Wheezy (with more than 37,000 packages) have been reported as ex-
amples of HCSs. The large number of features that can be combined leading to thou-
sands or even millions of individual software systems (a.k.a. configurations) makes
the testing of HCSs a challenge. That is, testing every single configuration is too ex-
pensive in general. To overcome this problem, researchers have proposed numerous
techniques mainly focused on reducing the space of testing to a manageable but repre-
sentative subset of configurations to be tested. Nevertheless, even after reduce the test
space, the number of configurations under test may still be large and expensive to run.

In this dissertation, we address the testing of HCSs using test case prioritization,
which schedules test cases for execution in an order that attempts to increase their
effectiveness at meeting some performance goal, typically detect faults as quickly as
possible. Test case prioritization approaches help to improve the effectiveness of test-
ing allowing faster feedback to software testers and ensuring that test cases with the
highest fault detection ability will have been executed if testing is stopped by any cir-
cumstance. Test case prioritization in HCSs can be driven by different functional and
non–functional objectives, being an objective the order criterion used to accelerate the
detection of faults. Functional prioritization objectives are based on the functional fea-
tures of the system and their interactions. Non–functional prioritization objectives con-
sider extra–functional information such as user preferences or cost. In this thesis we
present thirteen objectives, techniques and tools for test case prioritization in HCSs.
In particular, we define six objectives based on functional properties and seven ob-
jectives based on non–functional properties of the HCS under test. These objectives
are evaluated using real data extracted from HCS Git repositories and bug tracking
systems, which reinforces the validity of our conclusions. Regarding test case priori-
tization techniques, we present single–objective and multi-objective approaches based
on evolutionary algorithms. Additionally, we report a comparison of 63 different com-



binations of up to three objectives to determine which combinations perform better in
accelerating the detection of faults in an HCS. Furthermore, we propose an industry-
strength HCS case study with more than 2 billions of configurations to be used as a re-
alistic subject for further and reproducible validation of variability testing techniques.
These contributions have been evaluated using extensive and rigorous experiments
that reveal the efficacy and efficiency of our approach. Part of our contributions have
been integrated into a tool called SmarTest for testing Drupal, a well-known web con-
tent management framework. SmarTest is a testing module that supports the analysis
of the Drupal system to provide useful information to guide the testing. Also, it allows
applying different prioritization testing techniques to reveals bugs faster in Drupal.
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RESUMEN

iii

Los sistemas software altamente configurables proporcionan una funcionalidad básica
común y un conjunto de caracterı́sticas opcionales para adaptar todas las variantes de
un sistema de acuerdo a un conjunto determinado de requisitos. Sistemas operativos
como Linux (con más de 37,000 paquetes) o herramientas de desarrollo como Eclipse
(con más de 3,000 plugins) han sido presentados como ejemplos de sistemas altamente
configurables. Las pruebas en sistemas software altamente configurables suponen un
gran reto debido al elevado número de configuraciones que deben probarse. Por ejem-
plo, linux con más de 37,000 paquetes puede dar lugar a miles de millones de config-
uraciones diferentes. Esto hace que probar cada configuración individual de un sis-
tema altamente configurable sea demasiado costoso. Para paliar este problema, se han
propuesto numerosos trabajos de investigación para reducir el espacio de pruebas a un
subconjunto razonable y representativo de configuraciones a probar. Sin embargo, in-
cluso reduciendo el espacio de pruebas, el número de configurationes resultante puede
seguir siendo demasiado grande y costoso para llevar a cabo las pruebas.

En esta tesis, se aborda el problema anteriormente mencionado utilizando prior-
ización de casos de prueba para sistemas altamente configurables. Las técnicas de pri-
orización de casos de prueba ordenan las pruebas de manera que se ejecuten primero
aquellas que permitan maximizar un determinado objetivo de rendimiento, normal-
mente, detectar errores lo antes posible. La priorización de casos de prueba ayuda a
mejorar la efectividad del proceso de pruebas permitiendo un feedback más rápido
a los ingenieros del software y asegurando que las pruebas con mayor capacidad de
detectar errores habrán sido ejecutadas si el proceso se parase por alguna circunstan-
cia. La priorización de pruebas en sistemas software altamente configurables puede
guiarse por diferentes objetivos funcionales y no funcionales, entendiéndose un obje-
tivo como el criterio de ordenación elegido para acelerar la detectión de errores. Los ob-
jetivos de priorización funcionales son aquellos basados en caracterı́sticas funcionales
del sistema y sus interacciones. Los objetivos no funcionales consideran información
extra-funcional tales como las preferencias de usuario. En esta tesis se presentan un
conjunto de objetivos, técnicas y herramientas para la priorización de casos de prueba



en sistemas altamente configurables. En concreto, se definen 6 objetivos basados en
propiedades funcionales y 7 objetivos basados en propiedades no funcionales del sis-
tema para guiar el proceso de pruebas. Estos objetivos se evalúan utilizando datos
reales extraı́dos de los repositiorios Git y sistemas de gestión de errores de sistemas
altamente configurables, reforzándo ası́ la validez de nuestras conclusiones. Con re-
specto a las técnicas de priorización de pruebas, se presentan propuestas basadas en
un sólo objetivo y basadas en múltiples objetivos utilizando algoritmos evolutivos.
Adicionalmente, se presenta una comparación de 63 combinaciones diferentes de 1, 2
y 3 objetivos con la intención de encontrar las mejores combinaciones para accelerar
la detección de errores en un sistema altamente configurable. Además, proponemos
un caso de estudio basado en un sistema real altamente configurable con más de 2,000
millones de configuraciones para evaluar y validar las técnicas de pruebas. Estas con-
tribuciones han sido evaluadas realizando rigurosos experimentos que han revalado
la eficacia y efficiancia de nuestra propuesta. Parte de nuestras contribuciones se han
integrado en una herramienta denominada SmarTest para llevar acabo las pruebas en
Drupal. Drupal es un sistema de gestión de contenidos web y framework ampliamente
conocido. SmarTest es un módulo de pruebas para Drupal que permite analizar el sis-
tema y proporcionar al ingeniero de calidad información relevante de Drupal que le
permita guiar mejor el proceso de pruebas. Además, SmarTest también permite aplicar
diferentes técnicas de priorización para detectar antes los errores en Drupal.
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INTRODUCTION

3

"Which road do I take?" Alicia asked.
"Where do you want to go?" responded the Cheshire Cat.

Alice in Wonderland (1865), Lewis Caroll,

In this dissertation, we report on our work to develop a set of techniques, algo-
rithms and tools to support test case prioritization in HCSs. In this chapter, we first
introduce the topics that constitute the context of our research work in Section §1.1.
Section §1.2 motivates this dissertation. The goals of this thesis are described in Section
§1.3. We summarize our main contributions and publications in Section §1.4. Finally,
in Section §1.5, we describe the structure of the dissertation.

1.1 RESEARCH CONTEXT

In the next sections, we briefly present the main concepts that we will use through-
out this dissertation. In Section §1.1.1, we present HCSs. Section §1.1.2 describes the
testing of HCSs. Test case prioritization is introduced in Section §1.1.3.

1.1.1 Highly-configurable systems

Software development is progressively transitioning from the development of in-
dividual programs to the development of families of related programs. This leads to
the design and implementation of software systems that share a common core set of
capabilities, but have key differences, such as the hardware platform they require, the
interfaces they expose, or the optional capabilities they provide to users. Frequently,
significant reuse can be achieved by implementing a set of these systems as one in-
tegrated highly-configurable software system [22]. Highly-configurable software systems
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(HCSs) provide a common core functionality and a set of optional features to tailor
variants of the system (a.k.a. configurations) according to a given set of requirements
[144]. An example of HCS is seen in software product lines. Software product line
engineering is about producing a set of related products that share commonalities and
are differentiated by variabilities. Some cases of success of systems adapted to HCSs
are those coming from Boeing, Philips and Nokia companies that were reported in
[40]. Another examples reported as HCSs are operating systems as Linux [84, 127],
development tools as Eclipse [68] or even cloud applications as the Amazon elastic
compute service [50]. Figure §1.1 illustrates the module manager for the open source
e-commerce platform Prestashop, a tool for the development of online shopping sys-
tems. This is another example of HCS, with more than 3,500 modules and visual tem-
plates powering more than 150,000 online stores worldwide.

HCSs are usually represented in terms of features. A feature depicts a choice to
include a certain functionality in a system configuration [144]. It is common that not
all combinations of features are allowed or meaningful. In this case, additional con-
straints are defined between them, normally using a variability model, such as a fea-
ture model. A feature model represents all the possible configurations of the HCSs in
terms of features and constraints among them (see Chapter §2 for a more detailed in-
formation) [14]. A configuration of an HCS is a valid composition of features satisfying
all the constraints of the model. Figure §1.2 depicts a simplified example feature model
inspired by the e-commerce industry. The model illustrates how features and relation-
ships among them are used to specify the commonalities and variabilities of the on-line
shopping system.

The development of HCSs provides clear benefits for IT industries facilitating the
design and implementation of multiple software systems that share a common core set
of capabilities reducing costs and time-to-market to companies. Nevertheless, these
systems also present significant challenges such as their validation. The problem of
validating a single configuration has been replaced with the much harder problem of
validating the whole set of configurations that can be produced by all of the different
possible combinations of features in HCSs.

1.1.2 Testing of highly-configurable software systems

Software testing is a process, or a series of processes, designed to make sure com-
puter code does what it was designed to do and, conversely, that it does not do any-
thing unintended [53]. In an ideal world, we would want to test every possible con-

4
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Figure 1.1: Example illustrating some available modules for Prestashop e-commerce
manager
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Figure 1.2: E-shop feature model

figuration of a program. In most cases, however, this simply is not possible. Even a
seemingly simple application can have hundreds or thousands of possible input and
output combinations. Creating test cases for all of these possibilities is impractical.
Complete testing of a complex application such as an HCS would take too long and
require too many resources to be economically feasible [53].

In this context, researchers have proposed different techniques to reduce the cost
of testing in the presence of high configurability, including test case selection and test
case prioritization techniques. Test case selection selects an appropriate subset of an ex-
isting test suite according to some coverage criteria [30, 58, 74, 88]. Test case prioritization
schedules test cases for execution in an order that attempts to increase their effective-
ness at meeting some performance goal, typically detecting faults as soon as possible
[5, 82, 146]. Both test selection and test prioritization strategies are complementary
and are often combined. Most of the approaches for HCSs testing use a model-based
approach, that is, they take an input model (usually a feature model) representing the
HCS and return a (ordered) subset of feature configurations to be tested, i.e. a test
suite.

1.1.3 Test case prioritization

Testing each and every test case of a complex software application may require
hours, days or even weeks [38, 59, 111]. This can be due to different reasons. For in-
stance, in modern ecosystems the number of test cases can reach the figure of millions
of tests, which requires a large amount of execution time. As an example, Eclipse has
more than 40,000 test cases [66]. Moreover, the execution of tests is not always auto-
mated and sometimes the tests are computationally very expensive [94]. These aspects
may be especially critical during regression testing when tests must be repeatedly ex-

6
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ecuted after any relevant change is made to the software. In this context, time and
budget constraints may hinder the complete execution of a test suite [102, 111, 150].
Also, even reducing the number of test cases, the resulting test suite may still be too
large and expensive to run. As and example, the authors in [147] reported that after
applying test selection to Cisco case study, the number of test cases was still large, more
that 2000 test cases requiring 3-4 days to execute per configuration.

Test case prioritization techniques aim to identify the optimal ordering of test cases
to maximize certain performance goals, such as accelerating the detection of faults.
This idea can be applied to any type of tests, i.e. unit, integration and system testing.
For example, we could accelerate the detection of faults testing first the most complex
components, assuming that these are the most error-prone components. Also, we could
test earlier those tests that revealed more faults in previous execution of the test suite
or test first those ones covering more code faster.

Test case prioritization techniques help to improve the cost-effectiveness of testing
in general and regression testing in particular. Also, they provide several benefits, such
as earlier detection of faults and faster feedback to testers and developers enabling
the early fix of faults, earlier evidence that quality goals were not met and value of
ensuring that test cases that offer the greatest fault detection ability will have been
executed if testing is halted.

1.2 MOTIVATION

Although testing is a hard and time-consuming task in the software development
process, in the case of HCSs it becomes more challenging due to the potentially huge
number of configurations under test. This makes exhaustive testing of an HCS infeasi-
ble, that is, testing every single configuration is too expensive in general. For instance,
Debian Wheezy, a well-known Linux distribution, provides more than 37,000 packages
that can be combined with restrictions leading to billions of potential configurations,
more than stars in the Milky Way galaxy.

In order to alleviate this problem, numerous contributions have been proposed to
reduce the number of configurations to be tested while still having a good coverage.
Most coverage approaches proposed are based on combinatorial interaction testing
(CIT), where test cases are selected in a way that ensure that all combinations (t-way)
of t features are tested. However, not much attention has been paid to the order in

7
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which the configurations are tested in HCSs.

Current literature for prioritization in HCS testing are scarce and most of them are
based on weighted CIT, i.e., they generate combinatorial configurations using weights
to prioritize them [59, 68, 82]. These approaches combine selection and prioritization
during the test case generation. To the best of our knowledge, test case prioritization
proposals for HCSs follow a single–objective perspective [5, 29, 42, 59, 82], that is, they
either aim to maximize or minimize a single objective (e.g. feature coverage or suite
size), except for the work proposed by Wang et al. [146] that employs the concept of
multi-objective prioritization to combine different objectives into a single function by
assigning weights to them proportional to their relative importance. While this may
be acceptable in certain scenarios, it may be unrealistic in others where users may
wish to study the trade-offs among several objectives [81]. Thus, the potential benefits
of optimizing multiple prioritization objectives simultaneously is a topic that remains
unexplored.

Test case prioritization in HCSs can be driven by functional and non–functional ob-
jectives. The former are those based on the functional features of the system and their
interactions, such as those prioritization objectives based on CIT [146] or test similar-
ity [5, 59]. The latter consider extra-functional information such as user preferences
[42, 68] or cost [146] to find the best ordering for test cases. Generally, current test-
ing techniques for HCSs are based on functional properties extracted from the feature
model representing the software system.

Another challenge is related to the lack of HCSs with available code, variability
models and fault reports that can be used to assess the effectiveness of testing ap-
proaches. As a result, authors typically evaluate their contributions in terms of perfor-
mance (e.g. execution time) using synthetic feature models and data [5, 58, 105, 149].
This introduces significant threats to validity, limit the scope of their conclusions and,
more importantly, it raises questions regarding the fault detection effectiveness of the
different algorithms and prioritization objectives.

1.3 THESIS GOALS

We have analyzed the state of the art with regard to the issues described in Section
§1.1, and we have identified a set of problems and challenges that constitute the goals
of this dissertation described below and summarized in the following global goal:

8



1.4. CONTRIBUTIONS

Dissertation goal

Development of objectives, techniques and tools for test case
prioritization in highly-configurable software systems.

This goal can be divided into several sub-objectives, namely:

1. Propose, evaluate and compare different prioritization objectives driven by func-
tional and non–functional properties.

2. Develop single–objective and multi–objective test case prioritization algorithms.

3. Propose HCS realistic case studies to evaluate variability testing techniques.

4. Integrate the contributions of this dissertation into a real testing tool to be useful
for the academic community as well as for the industrial community.

1.4 CONTRIBUTIONS

In this section, we summarize the main contributions of our research work to ad-
dress the aforementioned goal. These contributions have been published in journals,
conferences and workshops.

1.4.1 Summary of contributions

This thesis delves into the study of testing of HCSs, and in particular, into the pri-
oritization of test cases. The main goal of this work is to provide a set of objectives,
techniques and tools to support and improve the effectiveness of testing HCSs. In the
pursuit of this goal, we have made the following main contributions:

Functional prioritization objectives for HCSs

Problem statement: To date, test cases have been prioritized using weights such as
user preferences or cost. To the best of our knowledge, there are no works analyzing
how to exploit the variability information from feature models to guide the prioritiza-
tion of test cases.

9
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Contribution: We have proposed six different prioritization objectives based on com-
mon metrics of feature models. Three of these prioritization objectives are based on the
complexity of the configurations, i.e. more complex configurations are given higher
priority over less complex ones, i.e. they are tested first. Another prioritization objec-
tive is based on the degree of reusability of configurations features, i.e. configurations
including the more reused features are given priority during tests. We also propose an-
other objective based on the pairwise coverage, giving priority to those configurations
that cover a higher number of pairs of features. Finally, we propose another prioritiza-
tion objective based on the so-called dissimilarity among configurations, i.e. the more
different configurations are tested first. The results showed that different orderings of
the same HCS test suite may lead to significant differences in the acceleration of fault
detection. The main results of this contribution have been presented in the Seventh
IEEE International Conference on Software Testing, Verification, and Validation [114]
and part of them was submitted to the Journal on Systems and Software [? ].

Non–functional prioritization objectives for HCSs

Problem statement: Most of the prioritization papers in HCS are based on typical
non–functional objectives such as user preferences. In our opinion, these pieces or
work do not take advantage of all available HCS information that can help to define
other kind of prioritization objectives to guide the testing.

Contribution: We reported on extensive non–functional data extracted from the Dru-
pal Git repository and the Drupal issue tracking system. With this information we
propose seven new prioritization objectives based on non-functional properties such
as code size, cyclomatic complexity, number of tests, number of reported installations,
number of developers, number of changes and number of faults found on each feature
of the system. Also, we have performed a correlation study to explore the correlations
between these seven non–functional properties and the fault propensity of software
features. Among other results, we found positive correlations relating the number of
bugs in Drupal features to their size, cyclomatic complexity, number of changes and
fault history. The main results of this contribution have been presented in the Eighth
International Workshop on Variability Modelling of Software-Intensive Systems [115]
and in the Software and Systems Modeling journal [118].

Multi-objective test case prioritization

Problem statement: To the best of our knowledge, there are few studies in the liter-
ature about multi-objective test case prioritization in HCSs. In addition, current ap-
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proaches are driven mostly by a single objective or by a combination of several ob-
jectives into a single function by assigning them weights proportional to their relative
importance. While this may be acceptable in certain scenarios, it may be unrealistic in
others where users may wish to study the trade-offs among several objectives. Thus,
the potential benefits of optimizing multiple prioritization objectives simultaneously,
both functional and non–functional, is a topic that remains unexplored.

Contribution: We have developed a multi-objective test case prioritization proposal
based on the NSGA-II evolutionary algorithm. Additionally, we present seven novel
objective functions based on both functional and non–functional properties of the HCS
under test. Furthermore, we have conducted a comparison of the effectiveness of 63
different combinations of these seven objectives in accelerating the detection of faults.
Results suggested that the combination of multiple prioritization objectives, where at
least one is non–functional, typically results in faster fault detection. The main results
of this contribution was submitted to the Journal on Systems and Software and a pre-
liminary work was presented in the National Workshop Jornadas de Ingenierı́a del
Software y de Bases de Datos [116].

Industry-strength case studies to evaluate variability testing techniques

Problem statement: The lack of realistic HCSs with available code and fault reports to
evaluate testing techniques weakens the conclusions of papers in the literature. Most
of works use artificial variability models and simulated faults to evaluate their tech-
niques.

Contribution: We have proposed an industry-strength case study to evaluate vari-
ability testing techniques based on Drupal, a highly modular web content manage-
ment framework. Drupal provides detailed fault reports and its modules includes au-
tomated test cases. The high number of the Drupal community members together
with its extensive documentation have also been strengths to choose this framework.
We have modeled the Drupal variability and extracted useful information such as the
number of bugs and changes in modules to carry out the evaluation. In addition to
the Drupal case study, we have also presented another HCS case study based on the
e-commerce platform Prestashop, a tool for the development of online shopping sys-
tems. The main results of these contributions have been published in the Eighth In-
ternational Workshop on Variability Modelling of Software-Intensive Systems [115], in
the Software and Systems Modeling journal [118] and in the 29th ACM/IEEE Interna-
tional Conference on Automated Software Engineering [125].

11
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Integrate the results of this dissertation into an industry-strength tool

Problem statement: The majority of the research breakthroughs have been exploited
within the limits of the academic realm instead of being used as a technological path
towards industry.

Contribution: We have integrated part of our testing techniques developed in this
dissertation on a tool, called SmarTest, for the well-known open-source Drupal web
content management framework [18]. SmarTest is a testing module that supports the
analysis of the Drupal system to provide useful information to guide the testing. Also,
it allows applying different single-objective prioritization testing techniques to reveals
bugs faster in Drupal, such as prioritization objectives based on the number of changes
made in the code or based on the tests that failed in last executions. The main results
of these contributions have been presented in the National Conference DrupalCamp-
Spain 2015 [119] and in the International Conference DrupalConEurope 2015 [117].

1.4.2 Publications in chronological order

In this section, we present a list of the publications derived from our research work
chronological ordered.

• [2012]. During our first year of work, we focused on the introduction and study
of the state of the art of automated testing on variability-intensive systems. In
particular, we continued working on the metamorphic testing approach carried
out by ISA research group. We published our first paper on an automated test
data generator for SAT solvers [112].

– JISBD’12. Ana B. Sánchez and Sergio Segura. Automated testing on the analy-
sis of variability-intensive artifacts: An exploratory study with SAT Solvers. XVII
Jornadas de Ingenierı́a del Software y de Bases de Datos. Almerı́a, Spain.
2012.

• [2013]. We started to study the state of the art of testing techniques with emphasis
on the prioritization of test cases. As a result, we presented a paper about the test
case prioritization approaches proposed in the literature as well as the trends and
challenges identified [113]. Furthermore, we started to work in two papers on test
case prioritization techniques for HCSs.

– Novática’13. Ana B. Sánchez and Sergio Segura and Antonio Ruiz-Cortés.
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Priorización de casos de prueba. Avances y retos. Novática: Revista de la Aso-
ciación de Técnicos de Informática, pág. 27-32. 2013.

• [2014]. We presented our first contributions in the context of test case prioritiza-
tion for HCSs. We define new test case prioritization objectives based on func-
tional properties of HCSs [114]. We introduced an industry-strength case study
to evaluate variability testing techniques with actual non-functional data such as
fault history and change history of previous versions of the system under test
[115]. This work was selected among the best papers at the VaMoS Workshop,
and we were invited to extend it in an Special Issue for the Software and System
Modeling Journal. We also took a step further in this field proposing a prelimi-
nary work towards multi-objective test case generation for HCSs [116]. Finally,
we also proposed an experience report on automated variability analysis and
testing of an e-commerce site [125].

– ICST’14. Ana B. Sánchez and Sergio Segura and Antonio Ruiz-Cortés. A
Comparison of Test Case Prioritization Criteria for Software Product Lines. Sev-
enth IEEE International Conference on Software Testing, Verification, and
Validation, pages 41-50, Cleveland, Ohio, USA. 2014.

– VAMOS’14. Ana B. Sánchez and Sergio Segura and Antonio Ruiz-Cortés.
The Drupal Framework: A Case Study to Evaluate Variability Testing Techniques.
Eighth International Workshop on Variability Modelling of Software-Intensive
Systems. Nice, France. 2014.

– JISBD’14. Ana B. Sánchez and Sergio Segura and Antonio Ruiz-Cortés. To-
wards Multi-Objective Test Case generation for Variability-Intensive Systems. XIX
Jornadas de Ingenierı́a del Software y de Bases de Datos. Cádiz, Spain. 2014.

– ASE’14. Sergio Segura and Ana B. Sánchez and Antonio Ruiz-Cortés. Au-
tomated Variability Analysis and Testing of an E-commerce Site: An Experience
Report. 29th ACM/IEEE International Conference on Automated Software
Engineering. Sweden. 2014. CORE: A.

• [2015]. We extended the Drupal case study by extracting more information about
the components of the system and performed a correlation study to investigate
how non-functional properties could be used to predict defects. This work counted
on the collaboration of the professor Jose A. Parejo from the ISA group and was
published in the journal of Software Systems and Modeling [118]. We also pre-
sented an article about automated metamorphic testing of variability analysis
tools. This work is a continuation of a research started by our research group in
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recent years and it includes part of the study presented in JISBD’12. This was a
join work with the professor Amador Durán from the ISA group, the professor
Daniel Le Berre from the Université d’Artois and the researcher Emmanuel Lonca
from the Centre de Recherche en Informatique de Lens, France. The article was
published in the journal of Software Testing, Verification and Reliability [126]. In
addition to the previous articles, we integrated part of our results into the Drupal
web content management [18]. This work resulted in a new module (SmarTest)
for testing Drupal that was positively received by the Community. Evidence of
this was the presentation of our project in the National Conference DrupalCamp-
Spain [119], and the later invitation to present our project in the International
Conference DrupalConEurope [117].

– SoSyM’15. Ana B. Sánchez and Sergio Segura and Jose A. Parejo and Anto-
nio Ruiz-Cortés. Variability Testing in the Wild: The Drupal Case Study. Soft-
ware and Systems Modeling Journal. 2015. Q2.

– STVR’15. Sergio Segura and Amador Durán and Ana B. Sánchez and Daniel
Le Berre and Emmanuel Lonca and Antonio Ruiz-Cortés. Automated meta-
morphic testing of variability analysis tools. Software Testing, Verification and
Reliability Journal. 2015. Q1.

– DrupalCampSpain’15. Ana B. Sánchez and Sergio Segura and Antonio Ruiz-
Cortés. SmarTest: Proposal for accelerating the detection of faults in Drupal. Dru-
palCampSpain. Cádiz, Spain. 2015.

– DrupalConEurope’15. Ana B. Sánchez and Sergio Segura and Antonio Ruiz-
Cortés. SmarTest: Accelerating the detection of faults in Drupal. DrupalConEu-
rope. Barcelona, Spain. 2015.

• [2016]. At the beginning of this year, a new survey on metamorphic testing has
been accepted in the IEEE Transactions on Software Engineering Journal (TSE) in
collaboration with the professor Gordon Fraser from the University of Sheffield,
United Kingdom. We have also submitted to the Journal of Systems and Soft-
ware an article that proposes a multi-objective test case prioritization in HCSs
and evaluates the approach using the Drupal case study. This is a join work with
the professor Jose A. Parejo and the professors Roberto E. Lopez-Herrejon and
Alexander Egyed from the Johannes Kepler University, Austria. This article has
been submitted in December 2015 and it is in second round of revision.

– TSE’16. Sergio Segura and Gordon Fraser and Ana B. Sánchez and Antonio
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Ruiz-Cortés. A survey on Metamorphic Testing. IEEE Transactions on Software
Engineering Journal. Q1.

– JSS’16. Ana B. Sánchez and Jose A. Parejo and Sergio Segura and Antonio
Ruiz-Cortés and Roberto E. Lopez-Herrejon and Alexander Egyed. Multi-
Objective Test Case Prioritization in Highly-Configurable Systems: A Case Study.
Journal of Systems and Software. Submitted (second round of revision). Q1.

1.4.3 Developed tool

Part of the results of this thesis have been integrated into a module for the open-
source Drupal web content management framework [18], that we have coined as Smar-
Test. SmarTest [117, 119] is an open-source module for improving the process of testing
in Drupal [18]. Drupal is a highly modular open source web content management
framework implemented in PHP [18, 140]. It can be used to build a variety of web sites
including internet portals or e-commerce applications. SmarTest extends the function-
ality of SimpleTest, the default testing module of Drupal, by integrating our single-
objective test case prioritization techniques, e.g. prioritization based on the changes
(Git commits) found in the modules. SmarTest also provides the Drupal developer
with a dashboard with statistics about the Drupal system in real time (tests that failed
in last executions, percentage of code covered by tests, cyclomatic complexity per mod-
ule, and so on), providing faster feedback to the testers and reducing debugging efforts.
Images in Figure §1.3 show some screenshots of SmarTest. Figure 1.3(a) illustrates part
of the dashboard developed in SmarTest to provide information to testers about the
status of the system. Figure 1.3(b) displays the prioritized testing in progress for Smar-
Test. A more detailed description of the tool is presented in Appendix §A and in the
SmarTest’s web page1.

1.4.4 Thesis context

This thesis has been developed in the context of the Applied Software Engineering
(Ingenierı́a del Software Aplicada - ISA) research group of the University of Seville,
and more specifically on the context of Automated Testing and Software Product Lines
areas, as a holder of a pre-doctoral research scholarship from the THEOS (Tecnologı́as
Habilitadoras para EcOsistemas Software) Andalusian R&D&I project. Besides THEOS
project, there is a number of research projects that have made this dissertation possible:

1http://www.isa.us.es/smartest/index.html
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(a) SmarTest’s dashboard view

(b) SmarTest’s prioritization testing view

Figure 1.3: SmarTest tool for Drupal
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COPAS (eCosystems for Optimized Process As a Service) project, TAPAS (Tecnologı́as
Avanzadas para Procesos como Servicios) project and SETI (reSearching on intElligent
Tools for Internet of services) project.

Additionally, the PhD candidate has completed one research stay, has attended a re-
search summer school and has shared a fruitful collaboration with some international
researchers:

• 8th International Summer School on Training And Research On Testing (TAROT’12).
Métabief, France. July 2 - 6, 2012.

• A three-month research stay in the University of Nebraska-Lincoln, United States,
under the supervision of the professor Myra B. Cohen. October 2014 - January
2015.

• International collaborations with the distinguished researchers Gordon Fraser,
Roberto López Herrejón and Daniel Le Berre, with whom we have some articles.

1.5 STRUCTURE OF THIS DISSERTATION

This document is structured as follows:

Part I. Preface. It comprises this introduction chapter.

Part II. Background information. In this part, we provide the reader with a deep
understanding of the research context in which our work has been developed.

Part III. Contributions. This part is the core of our dissertation since we present the
contributions performed throughout this thesis.

Part IV. Final remarks. In this part, we report our main conclusions and our plans
for future research.

Part V. Appendices. In appendix §A, we present the SmarTest tool which includes
part of our research contributions in the field of testing HCSs.
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2

FEATURE MODELS

21

Nature is an endless combination and repetition of very few laws.
She hums the old well-known air through innumerable variations.

Sir Ralph Waldo Emerson. Essays, Lectures and Orations (1851),

Feature models are recognized in the literature to be one of the most important
contributions to software product line engineering. They were introduced 26 years
ago as a way to model variability in software product lines and later applied to other
highly-configurable systems. In this chapter, we survey the most common notations
for feature modeling providing some examples. In Section §2.1, we describe feature
models. Section §2.2 presents the classical notation of feature models also referred to
as basic feature models. Cardinality-based feature models are presented in Section
§2.3. Extended feature models with attributes are introduced in Section §2.4. Finally,
we summarize the main points of the chapter in Section §2.5.

2.1 INTRODUCTION

Software development is progressively transitioning from the production of indi-
vidual programs to the production of families of related programs. This introduces a
new dimension in the development process referred to as configuration. Configura-
tion is the process of binding the optional features of a system to realizations in order
to produce a specific software system, i.e., a member of the family [22]. This provides
the production of multiple software systems that share a common set of mandatory
requirements, but also have optional capabilities. Frequently, significant reuse can be
achieved by implementing a set of these systems as one integrated highly-configurable
software system. Configuration must be correctly managed at all levels. For instance,
requirement engineers must be aware of which requirements are mandatory and which
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ones are optional. Similarly, design engineers must know what features are incompat-
ible and which ones depend on each other. Also, testers must know which are the
configurations that can be derived from the highly-configurable system in order to de-
sign their testing plans. In this context, feature models are one of the most common
artifacts for variability management in highly-configurable systems [69]. A feature
model provides a compact representation of all the configurations of an HCS in terms
of features where a feature is any domain abstraction relevant for the stakeholder [138].
More specifically, a feature model is a tree-like structure and consists of:

• Nodes representing features.

• Relationships between a parent feature and its child features.

• Cross-tree constraints that are typically inclusion or exclusion statements of the
form: ”If feature A is included, then feature B must also be included (or ex-
cluded)”.

Feature models were first introduced as a part of the Feature-Oriented Domain
Analysis method (FODA) by Kang et al. in 1990 [69]. Since then, many extensions
to the original proposal have been presented and a consensus about a feature model
notation has not been reached yet. The goal of this chapter is to provide an overview
of the feature modeling notations that we will refer to throughout the rest of this dis-
sertation.

2.2 BASIC FEATURE MODELS

We classify as basic feature models those using simple relationships between fea-
tures. There are two notations that we have classified as basic feature models: FODA
feature models and feature-RSEB feature models. Next, we detail them.

In 1990, [69] Kang et al. proposed the feature model notation called Feature-Oriented
Domain Analysis method (FODA). In this approach, three different kind of relation-
ships between features were defined:

• Mandatory. A child feature has a mandatory relationship with its parent when
the child is included in all configurations in which its parent feature appears.
Mandatory relationships are generally modeled using a filled circle as shown in
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Figure 2.1(a). For instance, according to the feature model of Figure §2.3, it is
mandatory to include support for Payment in an online electronic shop.

• Optional. A child feature has an optional relationship with its parent when the
child can be optionally included in all configurations in which its parent feature
appears. Optional relationships are generally represented using a empty circle as
shown in Figure 2.1(b). For instance, support for Search feature is optional in the
feature model of Figure §2.3.

• Alternative. A set of child features have an alternative relationship with their
parent when only one feature of the children can be selected when its parent
feature is part of the configuration. Figure 2.1(c) depicts the usual visual repre-
sentation for this relationship. As an example, according to the feature model of
Figure §2.3, an online shop may use a High or an Standard security policy but not
both in the same configuration.

(a) (b) (c)

Figure 2.1: Feature relationships: a) Mandatory; b) Optional; c) Alternative

Notice that a child feature can only appear in a configuration if its parent feature
does. The root feature is a part of all the configurations within the highly-configurable
system.

Additionally, in 1998, Criss et al. [55] presented an extension of FODA feature
models that is usually referred as Feature-RSEB. RSEB is an use-case driven systematic
reuse process in which variability is explicitly modeled by means of variation points
and variants. The authors of this approach proposed extending the FODA feature
models with a new relationship between features. This is:

• Or. A set of child features are said to have an or relation with their parent when
one or more of them can be included in the configurations in which its parent
feature appears. Figure §2.2 depicts the usual visual representation used for this
type of relationship. As an example, according to the feature model of Figure

23



CHAPTER 2. FEATURE MODELS

§2.5, an online shop can provide payment support for Bank Transfer, Credit Card
or the combination of both at the same time.

Figure 2.2: Or relationship

In order to clarify the concepts above explained about basic feature models we
show some examples. Figure §2.3 presents a simplified feature model representing the
variability of a highly-configurable system of online shopping systems. Their config-
urations must include mandatory features such as Catalogue management or Payment
support and may include optional features such as Search. Furthermore, shopping sys-
tem must include and specific security policy (High or Standard) and may include one
or two different payment modules. Finally, cross-tree constraints indicate that pay-
ment with Credit Card requires a High security policy and Public Report search cannot
be included in shopping systems with High security policy.

Figure 2.3: E-shop feature model (without cross-tree constraints)

In addition to the parental relationships between features, two kinds of cross-tree
constraints between features are allowed in FODA. These are:

• Requires. If a feature A requires a feature B, the inclusion of A in a configura-
tion implies the inclusion of B in such configuration. Requires constraints are
commonly modeled using unidirectional arrows as shown in Figure 2.4(a). For
instance, according to the feature model of Figure §2.5, online shops including
Credit Card payment require support for High security policy.
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• Excludes. If a feature A excludes a feature B, both features cannot be part of
the same configuration. These constraints are visually represented using bidi-
rectional arrows as shown in Figure 2.4(b). As an example, the feature model of
Figure §2.5 rules out the possibility of offering support for High security policy
and Public Report in a search in the same configuration.

(a) (b)

Figure 2.4: Cross-tree constraints: a) Requires; b) Excludes

An extended version of the previous example is shown in Figure §2.5. It includes
cross-tree constraints. The requires cross-tree constraint implies that any shopping
system including Credit Card payment must also include High security support. In
a similar way, the excludes cross-tree constraint removes the possibility of providing
support for High security and Public Report search in the same configuration.

Figure 2.5: E-shop feature model

Figure §2.6 depicts a feature model inspired by the smart home industry. The model
illustrates how features are used to specify and build software for smart homes. The
software loaded in the smart home is determined by the features that it supports. Ac-
cording to the model, all smart homes must include support for lighting and one or
more control systems (i.e. cell phone or control panel or both of them). Furthermore,
the smart homes may optionally include support for anti-theft alarm, movie players,
contents and Internet among other optional features. Also, some features like Internet
provide different kind of support (e.g. 3G, Ethernet, Wifi-n or Wifi-b internet connec-
tions or more than one at the same time). According to the Figure §2.6, the smart home
systems including Anti-theft Alarm must also include Control Panel system, and those
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smart homes supporting Video on Demand contents must support Internet connection
too.

Figure 2.6: Smart Home feature model

2.3 CARDINALITY-BASED FEATURE MODELS

Some authors proposed extending FODA feature models with cardinalities (also
known as multiplicities) [23, 24, 107, 108]. The main motivation to extend feature mod-
els with cardinalities was that some cases could not be modeled using alternative and
or relationships.

Riebisch et al. [107, 108] proposed using mandatory and optional relationships as in
the original FODA proposal and replacing alternative and or relationships with a new
relationship:

• Set. A set of child features are said to have a set relationship if a number of fea-
tures can be included in a configuration when their parent feature is included.
This number depends on the cardinality. The cardinality is an interval, < n..n′ >,
with n as lower bound and n′ as upper bound limiting the number of child fea-
tures that can be part of a configuration. For instance, in the set relationship of
Figure §2.7, the number of child features that can be included in a configuration
is limited to 1. Thus, an alternative relationship in the original FODA proposal is
equivalent to a set relationship with cardinalities < 1..1 >. Likewise, an or rela-
tionship is equivalent to a multiplicity relationship with cardinalities < 1..N >

being N the number of features in the relationship.
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Figure 2.7: Set relationship with cardinality

Later, Czarnecki et al. [23, 24] proposed using the mandatory, optional and set rela-
tionships previously detailed. Additionally, they also introduced a new relationship:

• Feature cardinality. A feature cardinality is a sequence of intervals of the form
[n..n′] with n as lower bound and n′ as upper bound. These intervals restrict
the number of instances of the feature that can be part of a configuration. For
instance, according to the feature cardinality showed in Figure §2.8, the number
of instances of the feature B that can be included in a configuration is restricted
to 1. Notice that this relationship may be used as a generalization of the origi-
nal mandatory and optional relationships defined in FODA. A feature cardinality of
[0..1] would be equivalent to an optional relationship meanwhile a feature cardinal-
ity of [1..1] would be equivalent to a mandatory relationship.

Figure 2.8: Feature cardinality

As an example, Figure §2.9 depicts a cardinality-based version of the basic feature
model presented in Figure §2.6. The model was built by replacing the alternative and
or relationships of the original model with set relationships. Cardinalities were adjusted
conveniently to make the model represents the same configurations than the original
model. In particular, set relationships with cardinality < 1..N > (being N the number
of children) were used instead of or relationships.
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Figure 2.9: Cardinality-based Smart Home feature model

2.4 ATTRIBUTED FEATURE MODELS

Basic feature models are mainly used to manage functional commonality and vari-
ability in highly-configurable software systems. However, sometimes it is necessary to
extend feature models to add more information to them. To this aim, several works
propose adding attributes to the features of feature models [12, 13, 24, 45]. These types
of feature models in which extra information is included by means of attributes are
usually referred in the literature as attributed, extended or advanced feature models
[10, 11, 13].

For instance, Figure §2.10 depicts a partial attributed feature model using the nota-
tion proposed in [13]. As illustrated in the figure, an attribute mainly consists of:

• Attribute name. Name or id of an attribute. For instance, the cost attribute of the
feature 3G in Figure §2.10.

• Attribute domain. It specifies the space of possible values for an attribute. Every
attribute has an associated domain. It is possible to have discrete domains (e.g.
integers, booleans, enumerated values) or continuous domains (e.g. real). For
instance, the domain of Cost attribute is Real values in Figure §2.10.

• Attribute value. The value of an attribute. This could be an specific value within
the domain or an expression depending on the value of other attributes of the
same or other features. A default value for the cases in which the feature is not
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selected could also be included. For instance, the cost of selecting the feature 3G
in Figure §2.10 is a basic attribute defined by cost = 50.8.

Figure 2.10: Attributed features in a feature model

2.5 SUMMARY

In this chapter, we have summarized the most common feature modeling notations
found in the literature. Two main groups of feature model notations are used: ba-
sic feature models and cardinality-based feature models. The main difference is that
cardinality-based feature models provide support for more complex relationships that
the former one. In particular, we have presented the concepts of basic feature mod-
els and attributed feature models. As a possible complement to both of them, a third
notation, attributed feature models, proposes adding extra functional information to
the models by means of feature attributes. Some examples have been also described to
guide the comprehension of the different notations. For a more extensive and rigorous
survey of feature modeling languages we refer the reader to [121].
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Action expresses priorities.

Mahatma Gandhi,

The concept of test case prioritization was introduced by Rothermel et al. in 1999.
Test case prioritization techniques schedule test cases in an execution order according
to some criterion. In this chapter, we describe and classify the main test case prioriti-
zation objectives and approaches identified in this research area. In Section §3.1, we
introduce the test case prioritization concept. Section §3.2 presents a classification and
description of test case prioritization objectives and approaches found in the literature.
Part of the most frequently cited prioritization proposals is described in Section §3.3.
In Section §3.4, we introduce the concept and some works of multi-objective test case
prioritization. The most relevant metrics to evaluate test case prioritization techniques
have been summarized in Section §3.5. Finally, we describe the main points of the
chapter in Section §3.6.

3.1 INTRODUCTION

Test case prioritization schedules test cases for execution in an order that attempts
to increase their effectiveness at meeting some performance goal, typically detecting
faults as soon as possible [5, 37, 78, 110, 111, 150]. The approach was introduced by
Rothermel et al. in 1999 [110]. Since then, many authors have explored the prioriti-
zation of test cases as an alternative to improve the performance of testing. Different
goals can be identified in the literature for prioritizing test cases, although, in practice,
only one prioritization goal is applied, the acceleration of detection of faults. We will
focus exclusively on that goal. For its application, test cases are ordered according to
their ability to detect faults. However, that information is typically not known until all
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test cases are executed. In order to overcome the difficulty of knowing which tests re-
veal faults, prioritization approaches depend on representative objectives related with
the propensity to faults. For example, we could accelerate the detection of faults based
on the complexity of the components under test, testing first the most complex ones
assuming that these are the most error-prone. If faults are detected, these could be
fixed as soon as possible reducing the total time needed for testing and debugging.
Furthermore, if the execution of tests is prematurely halted at some arbitrary point we
would know that the most critical components have already been tested.

The goal of this chapter is to review the state of the art in the context of the test case
prioritization approaches. In particular, we study and classify the test case prioritiza-
tion objectives and approaches found in the literature. We also introduce the test case
prioritization approaches based on multiple objectives and the techniques used for that
optimization. Then, we describe metrics used to evaluate the prioritization techniques
in this research area.

3.2 CLASSIFICATION OF TEST CASE PRIORITIZATION AP-
PROACHES

We propose to classify the proposals in the test case prioritization field based on the
following points:

• Objective. This is the order criterion used to accelerate the detection of faults.
Different objectives may be proposed. For instance, in order to accelerate the
detection of faults, testers could order the execution of test cases according to the
number of faults detected by the test cases in previous executions of the suite, or
according to the complexity of the components under test.

• Approach. This is the method used to implement the prioritization objective.
Given a prioritization objective, we can found different approaches to implement
it. For instance, to order the test cases based on the software complexity, we could
take as a reference the developer’s knowledge or the use of metrics measuring the
complexity (e.g. cyclomatic complexity).

Table §3.1 shows a summary of prioritization objectives and approaches identified
in the literature. In the following, these prioritization objectives and approaches are
described in detail.
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Objective Approaches

Based on code coverage [17, 20, 31, 44, 64, 71, 76, 82, 105, 111, 146]
Based on cost [44, 48, 62, 86, 134, 146]
Based on fault history [44, 62, 71, 129, 134]
Based on similarity of tests [5, 59, 76, 82, 129]
Based on customer’s requirements or goals [42, 72, 133, 135]
Based on capability to detect faults [48, 105, 146]
Based on software complexity [72, 133, 135]
Based on component usage [29, 48]
Based on requirement volatility [133, 135]
Based on fault severity [148]
Based on change history [128]
Based on execution history [97]
Based on number of tests [146]
Based on fault proneness [135]
Based on component coupling [136]
Based on memory consumption [82]
Based on footprint [82]
Based on downloads statistics [68]

Table 3.1: Classification of prioritization objectives and approaches
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3.3 PRIORITIZATION OBJECTIVES

In this section, we present some of the prioritization objectives and approaches
most frequently cited in the literature. In order to facilitate their understanding, we
will refer to the example shown in Table §3.2, which presents actual information on
four modules obtained from the open source e-commerce solution Prestashop 1.5 [46].
For each module, we collected the number of bugs found in Prestashop 1.5 obtained
from the issue tracking system of Prestashop1 and the number of changes made from
its github project2. This information was collected from the period of 1 May 2013 to 30
June 2013.

PayPal BlockCart ProductsCategory FavoriteProducts

Number of faults 27 37 15 3
Number of changes 13 16 1 3

Table 3.2: Number of faults and changes of some Prestashop 1.5 modules

3.3.1 Fault history

This objective is used to accelerate the detection of faults in general or critical faults
in particular. The test cases are ordered according to the fault history of previous ver-
sions of the system, executing first those test cases that validate the components that
have been more error-proneness in previous versions [19, 109, 150].

As an example, consider that we want to test a new version of Prestashop system
following the fault history objective. Based on Table §3.2, we would run first the test
cases of Blockcart since this has been the most error proneness module in previous
versions (37 faults), following by the module Paypal (27 faults), ProductsCategory (15
faults) and FavoriteProducts (3 faults).

In [71], the authors assign binary priorities to test cases based on whether they
revealed faults (1) or not (0) in earlier versions of the software. In [134], the tests are
reordered considering their capacity to detect failures (using failure history of previous
versions) and also, considering the cost of test setup required each time a configura-
tion is modified. Simons et al. [129] cluster and prioritize the test cases by using test
information available from previous versions. Epitropakis et al. [44] study multiple

1http://forge.prestashop.com/secure/ Dashboard.jspa
2https://github.com/PrestaShop
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prioritization objectives such as the average percentage of past fault coverage based
on previous works showing that tests that detected faults in the past may tend to be
more effective than those that did not.

In [62], the authors propose to accelerate the detection of critical faults from the
information about the test costs and the number and severity of faults detected in the
latest regression testing. Then, a genetic algorithm is used to find an order with the
greatest rate of critical fault detected per the test cost.

3.3.2 Change history

In this objective, test cases are executed according to the number of changes made
in the components involved in them in previous versions.

The objective is based on the fact that changes made in components of a system,
often may add a new fault in the code [19, 109, 150]. For instance, given the changes
made in the modules of Table §3.2, we would execute before the test cases associated
to the module BlockCart (16 changes), following by the tests of Paypal (13 changes),
FavoriteProducts (3 changes) and ProductsCategory (1 change).

Sherriff et al. [128] propose a methodology for prioritizing regression test cases by
gathering software change records. Furthermore, this approach identifies clusters of
files that historically tend to change together.

3.3.3 Execution history

Test cases are ordered using test execution history collected from previous versions.
The data collected can include the number of test cases in prior execution or the num-
ber of detected faults in similar prior execution (objective based on fault history).

Based on that objective, the test cases of a configuration would be executed accord-
ing to the execution data of a similar prior configuration. Thus, the test cases associated
to a configuration whose similar prior configuration had more number of test cases in-
volved and more number of detected faults would be executed first.

In [97] a framework is proposed to prioritize test cases for black box testing on new
configurations using the test execution history collected (number of tests and faults
detected) from similar prior configurations and the Ant Colony Optimization.
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3.3.4 Number of tests

This objective tries to maximize the number of prioritized test cases of a system.

In practice, considering limited budget (i.e., available time and resources), it is usu-
ally not feasible to execute all the possible test cases for testing the configurations, thus
it requires an strategy to prioritize the given test cases. This objective measures the pri-
oritization for the given test cases achieved within the given available test resources.
As an example, if we have two possible test case ordering, we would choose for test-
ing that ordering involving the highest number of test cases. This objective is often
combined with other prioritization objectives.

In [146], the authors propose a search-based multi-objective test prioritization tech-
nique including the maximization of number of prioritized test cases with limited exe-
cution cost.

3.3.5 Capability to detect faults

This objective is similar to the objective based on fault history. It measures the fault
detection capability achieved by a test suite.

Usually, fault detection capability refers to the probability of a test case to detect
faults. More specifically, the execution of a test case can be defined as a success if it can
detect faults given test resources (e.g. time) and as a fail if it does not detect any fault.
For instance, if a test case is normally executed 1000 times per week and if it executes
successfully for 800 times, its capacity to detect faults can be calculated as 800/1000 =
0.8, i.e. 80%.

In [146], it is maximized the fault detection capability using the successful rate of
execution of test cases, understanding the success of a test case as the detection of faults
in a given time. Ferrer et al. [48] proposed a prioritization based on an error model
that reflects distribution of error probabilities of software components. Components
with a high probability of revealing an error have higher priority to be tested than
components with a low probability. Qu et al. [105] applied a prioritization method
that measures the percentage of faults found by a given test suite to guide the testing.
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3.3.6 Fault severity

This objective tries to accelerate the detection of critical faults. Test cases are or-
dered based on the severity of the faults found by them in previous executions.

As an example, consider the data in Table §3.2. Suppose that while the module
Paypal detects 27 faults, all of them have a severity level of minor and that the module
ProductCategory detecting just 15 faults, all of them are critical faults. We would execute
before the test cases associated to ProductCategory although it detects a lower number
of faults.

In [148], a method is proposed to prioritize the test cases based on the fault sever-
ity. In order to weigh the degree of importance of each test case, they enumerate all
faults which can be found by a test case, accumulate fault severities of those faults and
reorder test cases according to that information.

3.3.7 Customer’s requirements or goals

In this objective, the customer’s requirements are used to assign priorities to the
system components [19, 109, 150].

As an example, suppose that the customer of an online shopping system consid-
ers as relevant parts of the system (specified in the requirements) those ones related
with the module BlockCart. Thus, this module receives a customer’s priority of 10 out
of 10, followed by the module ProductsCategory with a priority of 8, the module Fa-
voriteProducts with priority of 4 and Paypal with priority of 3. These priorities will set
the execution order of the test cases.

In [72], [133] and [135] the authors propose to accelerate the detection of faults by
prioritizing the test cases taking into account the requirements priority assigned by the
customer. The higher the value, the higher the priority of the test case related to this
requirement to be executed.

Ensan et al. [42] suggest a prioritization method for product line test cases which is
based on the preferences of the domain stakeholders’ goals and objectives. Code met-
rics could also be used (e.g. cyclomatic complexity) to obtain quantitative complexity
measures.
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3.3.8 Software complexity

This objective orders the execution of test cases according to the complexity of soft-
ware development. This information will be provided by the developers of the pro-
gram based on their experience during the implementation phase.

The objective is based on the assumption that the most difficult components to
develop will be more error-prone. Thus, the test cases with a higher complexity are
executed earlier [19, 109, 150].

In [133], [72] and [135] the authors propose to prioritize the test cases by assigning
weights ([1-10]) to measure the complexity of the software (or requirement) that the
test cases validate. The higher the weight, the higher the execution priority of the
associated test case.

3.3.9 Similarity of tests

Some studies show that similar test cases (those running parts of common code)
are redundant from the point of view of the discovery of new bugs. However, the
test cases that differ more between them are more likely to detect unexpected behavior
[19, 59, 109, 150]. Hence, the most dissimilar test cases will be executed first.

In [76], a proposal for test case prioritization is presented. This approach is based
on the similarity of test cases according to the code they cover. In [129], the authors
prioritize test cases taking into account their similarities to cluster them according to
their ability to detect faults in previous versions. Henard et al. [59] also propose the
prioritization based on similarities to generate software product line test cases. In [5], it
presents a similarity-based prioritization to be applied on these products of a software
product line before they are generated. The proposed approach does not guarantee
to find more errors than sampling approaches, but it aims at increasing interaction
coverage of an product line under test as fast as possible over time. Also, authors in
[82] select the products of an SPL to prioritize based on how dissimilar they are when
compared to all other products, and assigned them priority weights based on their
rank values.
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3.3.10 Component coupling

This objective is based on the system components dependencies to prioritize the
test cases.

This kind of objective is often reflected in proposals based on models (UML models,
graphs, state models, etc.), that take advance of their structure for representing system
components and dependencies between them [19, 136]. Thus, we will execute earlier
those test cases with higher coupling among their components, since this may be a sign
of occurrence of faults.

Tahat et al. [136] presents a prioritization approach using models describing system
behaviors through a set of states and transitions between states. In order to prioritize
the test cases, the authors assign a high priority to those ones that execute the transi-
tions modified (added or deleted) in the model and a low priority to the test cases that
are not running any modified transition.

3.3.11 Component usage

This objective prioritizes the test cases of a system based on the use of its compo-
nents.

For instance, we can find works that base their test case prioritization on an us-
age model that represents the distribution of components in terms of usage scenarios.
Thus, those components with a high occurrence have higher priority to be tested than
those with a low occurrence.

Ferrer et al. [48] proposed to prioritize test cases according to the importance of
the components related with the test cases. This importance is defined according to
an usage model that reflects the usage distribution of all components. In [29], the
authors presented an approach to prioritize the products of a software product line to
test according to the probability of their execution traces representing their usages.

3.3.12 Code coverage

This objective pursues to execute as much code as possible sooner. Thus, test cases
are ordered according to the code coverage achieved in previous executions, running
first the test cases with higher coverage.
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As an example, assuming fictitious coverage percentages for modules in Table §3.2,
we could define the following execution order: test cases of Paypal (45% of code cov-
erage), BlockCart (25%), ProductsCategory (20%) and FavoriteProducts (10%). Often, dif-
ferent test cases exercise common parts of the code. In theses cases, we can assign
priorities taking into account not only the total code coverage percentage but also the
percentage of new code not covered by previous test cases.

In [76], the authors describe a test case prioritization approach based on additional
coverage. Thus, they first select the test case covering the largest percentage of code,
then, they select the test case covering the largest percentage of code not covered by
the first one, and so on.

Rothermel et al. [111] performed several proposals for prioritization grouped into
the following categories: a) proposals ordering tests based on total code coverage, b)
proposals ordering tests based on code coverage of components that have not been
covered previously, c) proposals ordering tests based on the estimation of the ability to
reveal bugs in the code that cover. Furthermore, in [71] it is presented a prioritization
technique that gives a higher priority to those test cases that cover functions that were
rarely covered in previous test sessions.

Bryce et al. [17] developed prioritization criteria for event-driven software based
on parameter-value interaction coverage, count–based coverage and frequency–based
coverage. The first group gives priority to test cases with a large number of parameter
values interactions, the second one prioritizes the test cases based on counts of the
number of windows, actions or parameter values that they cover, and the last one gives
higher priority to test cases that cover windows that are perceived to be important to
the event-driven software from a testing perspective.

Do et al. [31] prioritize test cases according to four techniques: block-total, block-
addtl, method-total and method-addtl. Thus, they first prioritize test cases by the total
number of code blocks they cover by sorting them in terms of that number. Then,
they prioritize test cases in terms of those numbers of additional blocks they cover by
greedily selecting the test case that covers the most as–yet–uncovered blocks until all
blocks are covered. The third and fourth techniques, method-total and method-addtl,
are the same as corresponding block level techniques except that they rely on coverage
measured in terms of methods.

In [44], the authors present a test case prioritization criterion based on statement
coverage, i.e., one has to at least execute the faulty statement in order to detect it. Here,
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statement coverage is used as the surrogate for fault detection capability. Also, they
propose use the information about the difference of the statement coverage between
two consecutive versions. In a regression testing scenario, one may conjecture that
new regression faults are likely to originate from the changed parts of the source code
in the version under test. Therefore, the coverage of the changed parts, obtained with
diff, is a rational candidate for prioritization.

In [64], the authors propose a family of coverage–based adaptive random test case
prioritization techniques using different level of coverage information such as the to-
tal number of statements covered and its additional alternative one, total number of
functions covered and its additional alternative one and finally, the total number of
branches covered and its additional alternative one.

Wang et al. [146] introduced a test prioritization technique considering feature pair-
wise coverage, i. e., try to cover as much pairs of features as possible. They chose this
technique based on domain knowledge and history data about faults since a higher
percentage of detected faults are mainly due to the interactions between test function-
alities that can be represented as features in a feature model. Similarly, Chen et al. [20]
used a hybrid approach to build prioritized pairwise interaction test suites.

Herrejon et al. [82] presented a genetic algorithm for the generation of prioritized
pairwise testing suites for software product lines. This approach adds priority weights
to the products that cover each pair of features and then uses these weights to compute
the total weight of all the pairs of features. Thus, it selects first the test cases that covers
weighted pairwise configurations with higher weights. In [105], the author use combi-
natorial interaction testing techniques to model and generate prioritized configuration
samples for use in regression testing. The technique uses the interaction importance of
individual factors and values to determine the final configuration order.

3.3.13 Requirement volatility

In this objective, test cases are executed in an order that take into account the
changeability of the requirements associated to them. This is based on the idea that
changes in a requirement can be considered as a risk to introduce faults in the code.

For instance, those test cases involved in requirements that have changed will be
given a higher priority to be tested than those with a low volatility.

Srikanth et al. [133, 135], proposed a test case prioritization approach that involves
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analyzing and assigning values to each requirement using factors such as the require-
ments volatility. Requirements volatility is equal to the number of times a requirement
has been changed in the development cycle normalized to a range of 0 to 10.

3.3.14 Fault proneness

In this objective, test cases are ordered for execution according to the fault prone-
ness of the requirements associated to them.

This objective uses the requirements of the development team to identify the re-
quirements that have had customer-reported failures in the previous software release.
As the system evolves into several versions, the developers can use the data collected
from prior versions to identify requirements that are likely to be error prone.

In [135], the authors present an approach that uses the information about fault
proneness of the system requirements to prioritize its test cases.

3.3.15 Memory consumption or footprint or download statistics

Test cases will be executed according to a non-functional property such as the mem-
ory consumption, the footprint or the number of downloads of a system.

This objective applies reliable estimates of measurable non-functional properties to
be used as weights to the configurations to be tested. These weights indicate the order
of execution.

Herrejon et al. [82] propose a priority assignment scheme based on criteria as main
memory consumption or footprint of a system. The measured values are used to or-
der the products to be tested in a software product line. Similarly, Johansen et al. [68]
propose combinatorial testing with weights as a way to select important feature in-
teractions to cover them first. In particular, they use a real software project with its
download statistics as weights.

3.3.16 Cost

This objective aims minimizing the cost associated to the tests. When cost is a rele-
vant factor, this type of objective and the approaches implementing it are an effective
solution. The cost of testing is related to the resources required to configure, execute
and validate the test cases: time, human effort, cost of hardware, equipment, etc. Thus,
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test cases involving lower cost are running first.

In [86], the authors present a prioritization proposal based on the cost of testing.
They define the cost of a test case as the total time required to run the test case and val-
idate its output by comparison with the expected output. In [62], the authors propose
to order test cases according to the cost of testing in terms of the run-time obtained
from the latest regressing testing performed. Similarity, Epitropakis et al. [44] propose
a test case prioritization technique using the execution cost criterion. They measure the
execution cost with a tool that provides a precise measurement of the computational
effort required to execute each test case.

Ferrer et al. [48] present a prioritization based on risk models that take into account
error costs. Components with a high risk have higher weights than components with
a low risk to be tested. Hema et al [134] also proposed a prioritization problem aiming
to maximize fault detection while minimizing the install and build cost within a given
time budget.

In [146], the authors consider multiple cost measures to prioritize the test cases. In
particular, their work try to minimize the execution cost defined as execution time of
test cases and cost of setting up correct resources for executing an specific test case.

3.4 MULTI-OBJECTIVE TEST CASE PRIORITIZATION

Most of the existing research works on test case prioritization methods are based on
single prioritization objective. This neglects the potential benefits of combining multi-
ple objectives to guide the detection of faults. Test case prioritization approaches that
use several objectives simultaneously for ordering test cases are called multi-objective
test case prioritization. Thus, the multi-objective perspective enables software devel-
opers to analyze the trade-offs between their objectives (sometimes conflicting) such as
the case that, for instance, test cases are prioritized reducing the cost of testing while
trying to accelerate the detection of faults.

Within the multi-objective test case prioritization techniques, we can found two
types of approaches: those that combine several objectives into a single function by
assigning them weights proportional to their relevance (e.g. fitness function), and oth-
ers that use separate objective functions (equally relevance) with pure multi-objective
optimization algorithms that results in many different solutions. We present some in-
stances of these works in Table §3.3 as we will explain later.

43



CHAPTER 3. TEST CASE PRIORITIZATION

Since the automation of test case prioritization process is limited by constrained
such as the size and complexity of software, and the basic fact that in general, test data
optimization is an undecidable problem, the use of search based optimization tech-
niques has been grown in recent years [2, 90]. The term of search based software en-
gineering involves the application of search techniques to software engineering prob-
lems. Optimizing test case prioritization seeks to order test cases so that test goals are
achieved earlier in the sequence of test case application. Software engineering prob-
lems are typically multi-objective problems. The objectives that have to be met are
often competing and somewhat contradictory. For example, in project planning, seek-
ing earliest completion time at the cheapest overall cost will lead to some conflict of
objectives. However, there does not necessarily exist a simple tradeoff between the
two, making it desirable to find solutions that optimize both [2, 78, 90].

Most common examples of search based algorithms are the well-known hill climb-
ing algorithm (an iterative algorithm that starts with an arbitrary solution to a problem,
then attempts to find a better solution by incrementally changing a single element of
the solution) and the genetic algorithms (algorithms that represent a class of adaptive
search techniques based on the processes of natural genetic selection according to Dar-
winian theory of biological evolution) [78].

Table §3.3 shows some examples of test case multi-objective prioritization approaches,
the combined prioritization objectives and the testing techniques used. We also extend
the description of these proposals below.

Objectives Techniques Approach

Code coverage + Cost Genetic algorithm [145]

Code coverage + Cost + Capability to de-
tect faults + Number of tests

Search algorithms [146]

Code coverage metrics Genetic algorithm [4]

Code coverage metrics + Fault history Evolutionary algorithms [44]

Code coverage + Customer’s require-
ments + Cost

Genetic algorithm [63]

Table 3.3: Examples of multi-objective test case prioritization approaches

Walcoot et al. [145] presented a prioritization technique that uses a genetic algo-
rithm to prioritize a regression test suite considering both testing time and the percent-
age of code coverage. In [146], it is proposed a multi-objective test case prioritization
including minimization of execution cost, maximization of number of prioritized test
cases, feature pairwise coverage and fault detection capability. They use three search
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algorithms (i.e. (1+1) evolutionary algorithm, alternating variable method and random
search). In [4], the authors proposed a test case prioritization strategy using a genetic
algorithm with multi-criteria fitness function. The fitness function is a weighted sum
of the maximum coverage of the test case for conditions, multiple condition and state-
ments in each test case.

The authors in [44] study a three-objective formulation of test case prioritization
considering statement coverage, the difference of the statement coverage between two
consecutive versions and fault history coverage. Also, they take into account the ex-
ecution cost of each test case. Their study includes new implementations of different
multi-objective evolutionary algorithms, the non-dominated sorting genetic algorithm
II (NSGA-II) and the two archive evolutionary algorithm (TAEA). The work in [63]
proposes a multi-objective technique to prioritize test cases using 3 objectives: code
coverage, requirement relevance and execution cost. They applied the NSGA-II ge-
netic algorithm.

3.5 EVALUATION METRICS

Various metrics have been proposed to evaluate the effectiveness of the test case
prioritization approaches. The most commonly used metric is the well-known Average
Percentage of Faults Detected (APFD) [19].

The metric APFD evaluates how quick faults are detected by a test suite [39, 111,
134]. APFD measures the weighted average of the percentage of faults detected during
the execution of the test suite. To formally define APFD, let T be a test suite which
contains n test cases, and let F be a set of m faults revealed by T. Let TFi be the position
of the first test case in ordering T’ of T which reveals the fault i. The APFD metric for
the test suite T’ is given by the following equation:

APFD = 1− TF1+TF2+...+TFn
n×m + 1

2n

APFD value ranges from 0 to 1. The closer the value is to 1, the better is the fault
detection rate, i.e., the faster is the suite at detecting faults. The closest the value is to
1, the fastest is the suite at detecting faults. For example, consider a test suite of 4 test
cases (TC1-TC4) and 5 faults (F1-F5) detected by those test cases, as shown in Table
§3.4. Consider two orderings of these test cases, ordering O1: TC1, TC2, TC3, TC4 and
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ordering O2: TC3, TC2, TC4, TC1. According to the previous APFD equation, ordering
O1 produces an APFD of 58%: 1− 1+1+2+3+4

4×5 + 1
2×4 = 0.58 and ordering O2 an APFD

of 78%: 1− 1+1+1+1+3
4×5 + 1

2×4 = 0.78, being O2 much faster detecting faults than O1.

Tests/Faults F1 F2 F3 F4 F5

TC1 X X
TC2 X X
TC3 X X X X
TC4 X

Table 3.4: Test suite and faults exposed

The limitation of using APFD metric is that this metric assumes that all faults have
equal severity and test cases have equal costs which does not meet the practice. There-
fore, an improved metric called APFDc [36] was proposed for taking into account the
fault severity and test cost. The value of APFDc can be computed according to the
following Equation:

APFDC =
∑m

i=1( fi×(∑n
j=TFi

tj− 1
2 tTFi ))

∑n
i=1 ti×∑m

i=1 fi

where n is the number of test cases and ti represents the cost of test case i, m is the
number of revealed faults and fi represents the severity of fault i. TFi is the position
of the first test case which reveals the fault i in the ordered test cases sequence. This
formula can also be used to compute the APFD value if both fault severity and test
case costs are identical.

There are other metrics in the literature to evaluate the prioritization such as ASFD
(Average Severity of Faults Detected) [132], TPFD (Total Percentage of Faults Detected)
[72], NAPFD (Normalized APFD) [104] y CE (Coverage Effectiveness) [70].

3.6 SUMMARY

In this chapter we have presented and classified the objectives and main proposals
for test case prioritization. Furthermore, we have shown some of the works proposed
in the field of multi-objective test case prioritization as well as the most used tech-
niques in this field. The order in which test cases are executed is more relevant as the
complexity and the size of software applications increase. Choosing the right order
allows us to achieve our goals before, minimizing the effort of testing and debugging.

46



4

TESTING HIGHLY-CONFIGURABLE

SYSTEMS

47

Program testing can be used to show the presence of bugs,
but never to show their absence!

Edsger Wybe Dijkstra, computer scientist, 1972 Turing Award,

Testing highly-configurable software systems is a difficult task due to the high num-
ber of possible combinations of features which often lead to a combinatorial explosion
of possible configurations that need to be tested. This makes exhaustive testing of
HCSs unfeasible. However, different testing approaches have been proposed to lead
with this problem. In this chapter, we introduce the testing on HCSs and present the
body of literature on this research area. Section §4.1 describes the general idea of test-
ing HCSs. The most applied techniques to test HCSs are presented in Section §4.2 and
Section §4.3. Finally, we summarize the chapter in Section §4.4.

4.1 INTRODUCTION

As the development of highly-configurable software systems is becoming a very
common practice, there is an increasing need of efficient HCSs testing techniques.
Companies such as Toshiba, Nokia and Boeing have been reporting success cases for
the adoption of HCSs, in the form of SPLs, into their respective practice [40]. Thus, in
recent years, there has been a growing interest by the academic and industrial commu-
nities to propose and evaluate new methods and tools to test the HCSs [41, 83, 146].
However, the testing of these systems is a complex and costly task since the variety
of configurations derived from a highly-configurable software system is huge. As an
example, Debian Wheezy, a well-known Linux distribution, has more than 37,000 pack-
ages that can be combined (with restrictions) to form millions of different configura-
tions [1]. This makes exhaustive testing of HCSs unfeasible, that is, testing every single
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configuration is too expensive in general. Also, even when a manageable set of con-
figurations is available, testing is irremediably limited by time and budget constraints
which requires making tough decisions with the goal of finding as many faults as pos-
sible.

In this context, there have been many attempts to reduce the space of testing through
test selection techniques. Test case selection approaches choose a subset of test cases
according to some coverage criteria [30, 58, 88]. These techniques have taken a step for-
ward to make HCS testing affordable. However, the number of test cases derived from
selection could still be high and expensive to run. This may be especially costly during
regression testing when tests must be repeatedly executed after any relevant change
is made to the HCS. In this context, the order in which configurations are tested is
commonly assumed to be irrelevant. As a result, it could be the case that the most
promising test cases (e.g. those detecting more faults) are run in last place forcing the
tester to wait for hours or even days before starting the correction of faults. In a worse
scenario, testing resources could be exhausted before running the whole test suite re-
maining faults undetected.

To take advance of the order in which test cases are executed arise the test case
prioritization techniques. Test case prioritization schedules test cases for execution
in an order that attempts to increase their effectiveness at meeting some performance
goal, typically detecting faults as soon as possible [5, 82, 146]. Both, test selection and
test prioritization strategies are complementary and are often combined.

In this chapter, we introduce the challenges found on the area of HCS testing and
the solutions proposed reviewing the most salient works in this research area.

4.2 TEST CASE SELECTION APPROACHES FOR HCSS

As mentioned previously, test case selection is one of the main strategies adopted
for testing highly-configurable software systems. Test case selection reduces the test
space by selecting an effective and manageable subset of configurations to be tested
[30, 58, 74, 85, 88]. The goal is to achieve a high coverage of feature interactions with
as small a number of configurations as possible. Figure §4.1 graphically depicts the
test case selection process for HCSs. The process starts with all the test cases of an
HCS. Then, the test cases are selected based on a given coverage criterion, resulting in
a smaller but representative subset of test cases to be tested.
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Figure 4.1: Test case selection

Within this context, there has been a stark and recent interest in the area of software
product lines testing as evidenced by several systematic studies [26, 32, 41, 74, 75].
Among the finding of these studies, Combinatorial Interaction Testing (CIT) was iden-
tified as the leading selection approach for testing. Other authors have proposed using
grammar-based and search-based techniques to reduce the number of test cases while
maintaining a high fault detection capability. We introduce these works in the follow-
ing subsections.

4.2.1 Combinatorial interaction testing

Combinatorial interaction testing (CIT) is a recognized software testing technique
introduced by Cohen [21]. The effectiveness of CIT is based on the observation that
most of the defects are expected to be caused by an interaction of few features. In these
approaches test cases are selected in a way that guarantee that all combinations of t
features are tested (i.e. t-wise). Roberto et al. conducted a systematic mapping study to
delve into more detail about this subject [80]. This study identified over forty different
approaches that rely on diverse techniques, such as genetic and greedy domains of
different characteristics. This study also revealed that the large majority of approaches
focus only on computing the samples of configurations based purely on variability
models (e.g. feature models).

Additionally, most of the approaches found focus on pairwise testing (i.e. 2-wise),
this is, test cases must cover all possible combinations of pairs of features based on the
observation that most faults originate from a single feature or by the interaction of two
features [101]. For instance, Table §4.1 shows the set of configurations obtained when
applying pairwise testing to the model in Figure §2.3. The test suite is reduced from 18
(total number of configurations of the feature model) to 7 in the pairwise suite. Pérez et
al. [73] define a strategy for testing SPL products using pairwise as coverage criteria,
in the sense that all the pairs of features must be included and tested in at least one
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product.

ID Test case

TC1 E-Shop,Catalogue,Payment,Security,Bank Transfer,High
TC2 E-Shop,Catalogue,Payment,Security,Credit Card,Standard,Search,Public Report
TC3 E-Shop,Catalogue,Payment,Security,Bank Transfer,Standard
TC4 E-Shop,Catalogue,Payment,Security,Credit Card,High,Search
TC5 E-Shop,Catalogue,Payment,Security,Bank Transfer,High,Search,Public Report
TC6 E-Shop,Catalogue,Payment,Security,Bank Transfer,Credit Card,Standard
TC7 E-Shop,Catalogue,Payment,Security,Credit Card,Standard

Table 4.1: E-Shop pairwise test suite

Moreover, only few combinatorial techniques take into account higher coverage
strengths (i.e. t>3). A recent example is the work of Henard et al. who compute cov-
ering arrays of up to 6 features (i.e. t=6) for some of the largest variability models
available [59]. They used an evolutionary algorithm with a similarity based objective
function (see Section §3.3.9) to generate samples of test cases. Marijan et al. [88] pre-
sented a framework for automated pairwise testing of SPL, with an objective to gener-
ate the minimal set of test configurations that are valid and cover all pairwise feature
interactions. Perrouin proposes transforming the feature models into Alloy declara-
tive programs, in order to select valid configurations, with respect to the initial model
[100]. Johansen generates test configurations with 1-3-way coverage from large feature
models using greedy algorithm to enforce all pairs in a set of configurations [65].

4.2.2 Other techniques

Other authors have proposed using grammar-based and search-based techniques
to reduce the number of test cases while maintaining a high fault detection capability
[9, 35, 43]. Bagheri et al. attempted to reduce the number of required tests for testing a
software product line using eight coverage criteria based on the transformation of fea-
ture models into formal context-free grammars. Closest to the previous work, Cohen
et al. [35] proposed to map OVM product line representation models onto a relational
model for defining the cumulative coverage criteria based on whose combination with
combinatorial interaction testing methods suitable tests are generated. In [43], the au-
thors presented a search-based testing approach based on the evolutionary Genetic
Algorithms to automatically generate test suites for software product lines. They ex-
ploited the exploration capabilities of Genetic Algorithms to search the configuration
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space of a feature model and to find the subset that provides suitable error and feature
coverage.

Later, Henard et al. [58] presented a genetic algorithm to handle multiple conflict-
ing objectives in test optimization for SPLs. They define three optimization objectives:
maximizing the pairwise coverage, minimizing the number of products selected and
minimizing the overall test suite cost. However they assign weights to these objectives
and this may make impossible reaching some parts of the Pareto front when dealing
with convex fronts. Sayyad et al. [120] demonstrated that search-based optimization
can be used to find products that optimize multiple objectives simultaneously, in par-
ticular, five objectives in their experiments. Roberto et al. proposed an approach for
computing the exact Pareto front for pairwise coverage of two objective functions, max-
imization of coverage and minimization of test suite size [79]. Another really recent
work is the proposed by Henard et al. [60] combining a multi-objective search-based
SPL feature selection algorithm and constraint solving.

4.3 TEST CASE PRIORITIZATION APPROACHES FOR HCSS

Test case prioritization identifies the efficient ordering of test cases to accelerate the
detection of faults as we explained in Chapter §3. There are very few works about
prioritization in HCS testing. Most of them are based on weighted combinatorial in-
teraction testing, that is, generating combinatorial configurations using weights to pri-
oritize them. For instance, Johansen et al. attached arbitrary weights to configurations
to reflect market relevance and compute the covering arrays using a greedy approach
[68]. This approach was formalized by Herrejon et al. who also proposed a parallel
genetic algorithm that achieves better performance in a larger number of case studies
[82]. Hernard et at. [59] presented a prioritization approach based on similarities to
generate software product line test cases while maximizing the t-wise coverage. All
these approaches combine sampling and prioritization during the test case generation.

Some other works do not use combinatorial interaction testing for sampling their
test cases. Devroey et al. proposed a model-based testing approach to prioritize SPL
testing [29]. Their approach relies on a feature model, a feature transition system
and a usage model with the probabilities of executing relevant transitions. This ap-
proach combines concepts stemming from statistical testing with SPL sampling to
extract products of interest according to the probability of their execution traces. In
[42], the authors proposed a prioritization method for product line test cases based
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on the preferences of the domain stakeholders’ goals. Al-Hajjaji et al. [5] proposed
a similarity-based prioritization to be applied on the products of an SPL before they
are generated. All these test case prioritization approaches do not depend on specific
sampling strategies but they are independent and can be combined with any sampling
algorithm.

All the previous approaches employ single objective algorithms to prioritize the
test cases of their HCSs. To the best of our knowledge, only one study have been con-
ducted on employing multi-objective prioritization of HCS testing. Wang et al. [146],
propose a search-based multi-objective test prioritization technique including the min-
imization of execution cost (i.e. cost of allocate test resources), and the maximization
of number of prioritized test cases, feature pairwise coverage and fault detection capa-
bility. However, they combine the objectives into a single function by assigning them
weights proportional to their relative importance. Among the shortcomings is the fact
that weights may show a preference of one objective over the other and, most impor-
tantly, the impossibility of reaching some parts of the Pareto front when dealing with
convex fronts.

4.4 SUMMARY

In this chapter, we have discussed the challenges and the main approaches for test-
ing highly-configurable software systems. Two main strategies have been studied in
this research area: test case selection and test case prioritization. However, very few
works have been proposed on test case prioritization of HCSs to date.

52



CONTRIBUTIONS

PART III





5

FUNCTIONAL TEST CASE

PRIORITIZATION CRITERIA FOR

HCSS

55

If debugging is the process of removing bugs,
then programming must be the process of putting them in.

Edsger Dijkstra, computer scientist,

As mentioned in previous chapters, HCS testing is a challenging task. In that sense,
numerous contributions have been proposed to reduce the number of configurations to
be tested, however, not much attention has been paid to the order of execution of tests.
In this chapter, we explore the applicability of test case prioritization techniques to
HCS testing. We propose five different prioritization criteria based on common metrics
of feature models and we compare their effectiveness in increasing the rate of early
fault detection, i.e. a measure of how quickly faults are detected. The results show
that different orderings of the same HCS suite may lead to significant differences in
the rate of early fault detection. They also show that our approach may contribute to
accelerate the detection of faults of HCS test suites based on combinatorial testing. In
Section §5.1, we describe the context of testing of this proposal. Section §5.2 presents
some background about the analysis of feature models. In Section §5.3 we propose five
functional prioritization criteria for HCSs. The evaluation of our approach is described
in Section §5.4. Section §5.5 presents the threats to validity of our work. Finally, we
summarize our approach and conclusions in Section §5.6.

5.1 INTRODUCTION

HCSs are often represented through feature models (see Chapter §2). The auto-
mated analysis of feature models deals with the computer-aided extraction of infor-
mation from feature models. These analyses allow studying properties of the HCS
such as consistency, variability degree, complexity, etc. In the last two decades, many
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operations, techniques and tools for the analysis of feature models have been presented
[14].

In this chapter, HCS testing consists in deriving a set of configurations from an HCS
and testing each configuration. An HCS test case can be defined as a configuration of
the HCS to be tested, i.e. a set of features. The high number of feature combinations
in HCSs may lead to thousands or even millions of different configurations, e.g. the
e-shop model available in the SPLOT repository has 290 features and represents more
than 1 billion of configurations [92]. This makes exhaustive testing of an HCS infea-
sible. In this context, there have been many attempts to reduce the space of testing
through feature-based test selection [73, 85, 98, 100] as we described in Chapter §4.
Test selection techniques have taken a step forward to make HCS testing affordable.
However, the number of test cases derived from selection could still be high and ex-
pensive to run. Test case prioritization techniques schedule test cases for execution in an
order that attempts to increase their effectiveness at meeting some performance goal
[19, 78, 110, 111]. Test case prioritization techniques have been extensively studied as a
complement for test case selection techniques in demanding testing scenarios [42, 104].

In this chapter, we present a test case prioritization approach for HCSs. In partic-
ular, we explore the applicability of scheduling the execution order of HCS test cases
as a way to reduce the effort of testing and to improve their effectiveness. To show the
feasibility of our approach, we propose five different prioritization criteria intended
to maximize the rate of early fault detection of the HCS suite, i.e. detect faults as fast
as possible. Three of these criteria are based on the complexity of the configurations.
Hence, more complex configurations are assumed to be more error-prone and there-
fore are given higher priority over less complex ones, i.e. they are tested first. Another
prioritization criterion is based on the degree of reusability of configurations features.
In this case, configurations including the more reused features are given priority dur-
ing tests. This enables the early detection of high-risk faults that affect to a high portion
of the configurations. Finally, we propose another criterion based on the so-called dis-
similarity among configurations, i.e. a measure of how different two configurations
are. This criterion is based on the assumption that the more different two configu-
rations have higher feature coverage and fault detection rate. The proposed prioriti-
zation criteria are based on common metrics of feature models extensively studied in
the literature. This allowed us to leverage the knowledge and tools for the analysis of
feature models making our approach fully automated. Also, this makes our prioriti-
zation criteria complementary to the numerous approaches for feature-based test case
selection.
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For the evaluation of our approach, we developed a prototype implementation of
the five prioritization criteria using the SPLAR tool [91]. We selected a number of realis-
tic and randomly generated feature models and generated both random and pairwise-
based test suites. Then, we used our fault generator based on the work of Bagheri et
al. [9, 43] to seed the features with faults. Finally, we reordered the suite according to
the five criteria and we measured how fast the faults were detected by each ordering.
The results show that different orderings of the same HCS suite may lead to signifi-
cant differences in the rate of fault detection. More importantly, the proposed criteria
accelerated the detection of faults of both random and pairwise-based HCS test suites
in all cases. These results support the applicability and potential benefits of test case
prioritization techniques in the context of HCS. We trust that our work will be the first
of a number of contributions studying new prioritization goals and criteria as well as
new comparisons and evaluations.

5.2 PRELIMINARIES

5.2.1 Automated analysis of feature models

Highly-Configurable Software Systems are often graphically represented using fea-
ture models (see Chapter §2). The analysis of feature models consists on examining
their properties. This is performed in terms of analysis operations. Among others,
these operations allow finding out whether a feature model is void (i.e. it represents
no configurations) whether it contains errors (e.g. dead features) or what is the number
of possible feature combinations in an HCS. Catalogues with up to 30 different analy-
sis operations on feature models have been reported in the literature [14]. Some tools
supporting the analysis of feature models are AHEAD Tool Suite [3], FaMa Frame-
work [141] and SPLAR [91]. Next, we introduce some of the operations that will be
mentioned throughout this chapter:

All configurations: This operation takes a feature model as input and returns all the
configurations represented by the model. For the model in Figure §2.5 of Chapter §2,
this operation returns the list of configurations shown in Table §5.1.

Commonality: This operation takes a feature model and a feature as inputs and returns
the commonality of the feature in the HCS represented by the model. Commonality is
a metric that indicates the reuse ratio of a feature in an HCS, this is, the percentage of
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ID Configurations

C1 E-Shop,Catalogue,Payment,Bank Transfer,Security,High
C2 E-Shop,Catalogue,Payment,Bank Transfer,Security,Standard
C3 E-Shop,Catalogue,Payment,Credit Card,Security,High
C4 E-Shop,Catalogue,Payment,Bank Transfer,Credit Card,Security,High
C5 E-Shop,Catalogue,Payment,Bank Transfer,Security,High,Search
C6 E-Shop,Catalogue,Payment,Bank Transfer,Security,Standard,Search
C7 E-Shop,Catalogue,Payment,Bank Transfer,Security,Standard,Search,Public Report
C8 E-Shop,Catalogue,Payment,Credit Card,Security,High,Search
C9 E-Shop,Catalogue,Payment,Credit Card,Bank Transfer,Security,High,Search

Table 5.1: E-Shop configurations

configurations that include the feature. This operation is calculated as follows:

Comm( f , f m) =
f ilter( f m, f )

#con f igurations( f m)
(5.1)

#con f igurations( f m) returns the number of configurations of an input feature model,
fm, and f ilter( f m, f ) returns the number of configurations in fm that contain the fea-
ture f . The result of this operation is in the domain [0,1]. As an example, consider the
model in Figure §2.5 and the feature Credit Card. The commonality of this feature is
calculated as follows:

Comm( f , f m) = f ilter( f m,Credit Card)
#con f igurations( f m)

= 4
9 = 0.45

The feature Credit Card is therefore included in 45% of the configurations. A more
generic definition of this operation for software product lines is presented in [14].

Cross-Tree-Constraints Ratio (CTCR): This operation takes a feature model as input
and returns the ratio of the number of features in the cross-tree constraints (repeated
features counted once) to the total number of features in the model [8, 14, 93]. This
metric is usually expressed as a percentage value. This operation is calculated as fol-
lows:

CTCR( f m) =
#constraints f eatures( f m)

# f eatures( f m)
(5.2)

#constraints f eatures( f m) is the number of features involved in the cross-tree constraints
and # f eatures( f m) is the total number of features of the model f m. The result of this
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operation is in the domain [0,1]. For instance, the CTCR of the model in Figure §2.5 is
3/10 = 0.3 (30%).

Coefficient of Connectivity-Density (CoC): In graph theory, this metric represents
how well the graph elements are connected. Bagheri et al. [8] defined the CoC of a
feature model as the ratio of the number of edges (any connection between two fea-
tures, including constraints) over the number of features in a feature model. This is
calculated as follows:

CoC( f m) =
#edges( f m)

# f eatures( f m)
(5.3)

#edges( f m) denotes the number of parent-child connections plus the number of
cross-tree constraints of an input model fm and # f eatures( f m) is the number of total
features in the model f m. For instance, the model in Figure §2.5 has 11 edges (9 parent-
child connections plus 2 constraints) and 10 features, i.e. CoC( f m) = 11/10 = 1.1.

Cyclomatic Complexity (CC): The cyclomatic complexity of a feature model can be
described as the number of distinct cycles that can be found in the model [8]. Since
a feature model is a tree, cycles can only be created by cross-tree constraints. Hence,
the cyclomatic complexity of a feature model is equal to the number of cross-tree con-
straints of the model. In Figure §2.5, cc( f m) = 2.

Variability Coverage (VC): The variability coverage of a feature model is the number
of variation points of the model [43]. A variation point is any feature that provides dif-
ferent variants to create a configuration. Thus, the variation points of a feature model
are the optional features plus all non-leaf features with one or more non-mandatory
subfeatures. In Figure §2.5, vc( f m) = 5 because features E-Shop, Payment, Security,
Search and Public Report are variation points.

5.3 TEST CASE PRIORITIZATION CRITERIA FOR HIGHLY-
CONFIGURABLE SOFTWARE SYSTEMS

In this section, we propose the application of test case prioritization techniques in
the context of Highly-Configurable Software System. As a part of the proposal, we
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define and compare five test case prioritization criteria to maximize the rate of early
fault detection of a test suite. This goal aims to achieve a sequence of test cases to be
run in a way that faults are detected as soon as possible. This enables faster feedback
about the system under test and lets developers begin correcting faults earlier. Hence,
it could provide faster evidence that quality objectives were not met and the assurance
that those tests with greatest fault detection ability will have been executed if testing is
halted [37].

Figure §5.1 depicts a rough overview of the general HCSs testing process and how
our prioritization approach fits on it. First, the variability model (usually a feature
model) is inspected and the set of configurations to be tested is selected. The selection
could be done either manually (e.g. selecting the configuration portfolio of the com-
pany) or automatically (e.g. using t-wise). Once the suite is selected, specific test cases
should be designed for each configuration under test. Then, the set of configurations to
be tested could be prioritized according to multiple criteria determining the execution
order of the test cases. Some of the criteria may need analyzing the feature model or
using feedback from previous test executions during regression testing. A point to re-
mark is that prioritization does not require creating new test cases, just reordering the
existing ones. As a result, prioritization could be re-executed as many times as needed
with different criteria. For instance, during the initial stages of development configu-
rations could be reordered to maximize feature coverage and during regression testing
they could be reordered to detect critical faults as soon as possible, e.g. those causing
failures in a higher number of configurations. The prioritization criteria proposed are
presented in the next sections.

Test%case%priori,za,on%for%SPLs%
Our%vision%

Test%case%
selec,on%

Test%case%
priori,za,on%

SPL%Test%
%Suite%

Priori,zed%
SPL%Test%Suite%

Selec,on%criteria% Priori,za,on%criteria%

Feature%
model%

Figure 5.1: Overview of the highly-configurable software system testing process

5.3.1 CTCR prioritization criterion

This criterion is based on the Cross-Tree-Constraints Ratio (CTCR) defined in Sec-
tion §5.2.1. The CTCR metric has been used to calculate the complexity of feature
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models and it is correlated with the possibility and ease of change in a model when
modifications are necessary [8]. This metric inspired us to define the CTCR prioriti-
zation criterion as a way to identify the more complex configurations in terms of the
degree of involvement in the constraints of their features. We hypothesize that this
criterion can reduce testing effort while retaining a good fault detection rate by testing
earlier the more complex configurations in terms of constraints.

Given a configuration c and a feature model f m, we define the CTCR criterion as
follows:

CTCR(c, f m) =
#constraints f eatures(c, f m)

# f eatures(c)
(5.4)

#constraints f eatures(c, f m) denotes the number of distinct features in c involved
in constraints and # f eatures(c) is the number of total features in configuration c. This
formula returns a value that indicates the complexity of configuration c in terms of
features involved in constraints.

As an example, the CTCR prioritization value of the configurations C4 and C6 pre-
sented in Section §5.2.1 is calculated as follows:

CTCR(C4, f m) = 2/7 = 0.29

CTCR(C6, f m) = 0

In C4, the Credit Card and High Security features share an include constraint and
also High Security feature has an exclude constraint with Public Report. However, the
features in C6 do not involve any constraints. Thus, configuration C4 will be tested
earlier than configuration C6 according to the CTCR values i.e., CTCR(C4, f m) >

CTCR(C6, f m).

5.3.2 CoC prioritization criterion

The Coefficient of Connectivity-Density (CoC) metric, presented in Section §5.2.1,
was proposed to calculate the complexity of a feature model in terms of the number
of edges and constraints of the model [8]. We propose to adapt this metric for HCS
configurations and use it as a test case prioritization criterion. The goal is to measure
the complexity of configurations according to their CoC and give higher priority to
those ones with higher complexity.
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Given a configuration c and a feature model f m, we define the CoC of a configura-
tion as shown below:

CoC(c, f m) =
#edges(c, f m)

# f eatures(c)
(5.5)

#edges(c, f m) denotes the number of edges (parent-child connections plus cross-
tree constraints) among the features in configuration c. This formula returns a value
that indicates the complexity of c based on the CoC metric.

As an example, the CoC value of the configurations C7 and C9 presented in Section
§5.2.1 is calculated as follows:

CoC(C7, f m) = 8/8 = 1

CoC(C9, f m) = 9/8 = 1.13

In C7, the E-Shop feature is connected with edges to four features (Catalogue, Pay-
ment, Security and Search). Also, Payment is connected to the Bank Transfer feature,
Security to the Standard Security feature, Search to Public Report and Public Report has an
exclude constraint with High Security. Note that the exclude constraint is considered
because it is being fulfilled by this configuration since it includes Public Report feature
and not High Security feature. Thus, C9 has higher priority than C7 and therefore it
would be tested first.

5.3.3 VC&CC prioritization criterion

In [43], the authors presented a genetic algorithm for the generation of SPL products
with an acceptable tradeoff between fault coverage and feature coverage. As part of
their algorithm, they proposed a fitness function to measure the ability of a product to
exercise features and reveal faults, i.e. the higher the value of the function, the better
the product. This function is presented below:

VC&CC(p, f m) =
√

vc(p, f m)2 + cc(p, f m)2 (5.6)

vc(p, f m) calculates the variability coverage of a product p of the model f m and
cc(p, f m) represents the cyclomatic complexity of p (c.f. Section §5.2.1).

Since this function has been successfully applied to SPL test case selection, we pro-
pose to explore its applicability for test case prioritization in a more general perspec-
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tive, HCSs. According to this criterion, those configurations in a HCS with higher
values for the function are assumed to be more effective in revealing faults and will be
tested first.

As an example, the VC&CC value of the configurations C3 and C6 presented in
Section §5.2.1 is calculated as follows:

VC&CC(C3, f m) =
√

32 + 22 =
√

9 + 4 = 3.6

VC&CC(C6, f m) =
√

42 + 02 =
√

16 + 0 = 4

In configuration C3, E-Shop, Payment and Security features are variation points.
Also, C3 presents a require constraint with Credit Card and High Security features and
an exclude constraint between High Security and Public Report. According to this crite-
rion, configuration C6 would be tested earlier than configuration C3, VC&CC(C6) >
VC&CC(C3).

5.3.4 Commonality prioritization criterion

We define a commonality-based prioritization criterion that calculates the degree
of reusability of configurations features. That is, the features that have higher com-
monality and the configurations that contain them will be given priority to be tested.
This enables the early detection of faults in highly reused features that affect to a high
portion of the configurations providing faster feedback and letting software engineers
begin correcting critical faults earlier.

Given a configuration c and a feature model f m, we define the Commonality crite-
rion as follow:

Comm(c, f m) =
# f eatures(c)

∑
i=1

(Comm( f i))/# f eatures(c) (5.7)

f i denotes a feature of configuration c. The range of this measure is [0,1]. Roughly
speaking, the priority of a configuration is calculated by summing up the commonality
of its features. The sum is then normalized according to the number of configuration
features.

As an example, the Commonality values of the configuration C1 and C2 presented
in Section §5.2.1 are calculated as follows:
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Comm(C1, f m) = (Comm(EShop) + Comm(Catalogue) + Comm(Payment)
+Comm(Bank Trans f er) + Comm(High) + Comm(Security))/6 =

((9 + 9 + 9 + 7 + 9 + 6)/9)/6 = 0.91

Comm(C2, f m) = ((9 + 9 + 9 + 7 + 9 + 3)/9)/6 = 0.85

Based on these results, C1 would appear before than C2 in the prioritized list of
configurations and would be tested first.

5.3.5 Dissimilarity prioritization criterion

A (dis)similarity measure is used for comparing similarity (diversity) between a
pair of test cases. Hemmati et al. [57] and Henard et al. [59] investigated ways to
select an affordable subset with maximum fault detection rate by maximizing diversity
among test cases using the dissimilarity measure. The results obtained in those papers
suggested that two dissimilar test cases have a higher fault detection rate than similar
ones since the former ones are more likely to cover more components than the latter.

In this context, we propose to prioritize the test cases based on this dissimilarity
metric, testing the most different configurations first, assuring a higher feature cov-
erage and a higher fault detection rate. In order to measure the diversity between
two configurations, we use the Jaccard distance that compare similarity of sample sets
[137]. Jaccard distance is defined as the size of the intersection divided by the size of the
union of the sample sets. In our context, each set represents a configuration contain-
ing a set of features. Thus, we choose first the two more dissimilar configurations (i.e.
the configurations with the highest distance between them) and we add them to a list.
Then, we continue adding the configurations with the highest distance between them
until all configurations have been added to the list. The resulting list of configurations
represents the order of configurations to be tested.

Given two configurations ca and cb, we define the Dissimilarity formula as follows:

Dissimilarity(ca, cb) = 1− |ca
⋂

cb|
|ca

⋃
cb|

(5.8)

ca and cb represent different set of features (i.e. configurations). The resulting dis-
tance varies between 0 and 1, where 0 denotes that the configurations ca and cb are the
same and 1 indicates that ca and cb share no features.

The dissimilarity values of the configurations C1, C7 and C8 presented in Section
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§5.2.1 are calculated as follows:

Dissimilarity(C1,C7) = 1− 5/9 = 0.44

Dissimilarity(C7,C8) = 1− 5/10 = 0.5

For example, regarding to the distance between C1 and C7, they have 5 features in
common (E-Shop, Catalogue, Payment, Bank Transfer and Security) out of 9 total features
(the previous five plus High, Standard, Search, Public Report). C7 and C8 present greater
distance between them than C7 and C1. Thus, C7 and C8 would be tested earlier than
C1.

5.4 EVALUATION

In this section, we present two experiments to answer the following research ques-
tions:

RQ1: Is the order in which HCS configurations are tested relevant?
RQ2: Are the prioritization criteria presented in Section §5.3 effective at improving the
rate of early fault detection of HCS test suites?
RQ3: Can our prioritization approach improve the rate of early fault detection of cur-
rent test selection techniques based on combinatorial testing?

We begin by describing our experimental settings and then we explain the experi-
mental results.

5.4.1 Experimental settings

In order to assess our approach, we developed a prototype implementation for each
prioritization criterion. Our prototype takes an HCS test suite and a feature model as
inputs and generates an ordered set of test cases according to the prioritization crite-
rion selected. We used the SPLAR tool [91] for the analysis of feature models. All the
performed experiments were implemented using Java 1.6. We ran our tests on a Linux
CentOS release 6.3 machine equipped with an Intel Xeon X5560@2.8Ghz microproces-
sor and 4 GB of RAM memory.
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Models

For our experiments we selected 7 feature models of various sizes from the SPLOT
repository [92]. Also, we generated 8 random models with up to 500 features using the
BeTTy online feature model generator [124]. Table §5.2 lists the characteristics of the
models. For each model, the name, the number of features and configurations and the
CTCR are presented.

Name Features Configurations CTCR Faults

Web portal 43 2120800 25% 4

Video player 71 4,5 · 1013 0% 4

Car selection 72 3 · 108 31% 4

Model transf. 88 1 · 1012 0% 8

Fm test 168 1,9 · 1024 28% 16

Printers 172 1,14 · 1027 0% 16

Electronic shop 290 4,52 · 1049 11% 28

Random1 300 7,65 · 1039 8% 28

Random2 300 1,65 · 1032 5% 28

Random3 350 7,41 · 1037 10% 32

Random4 400 3,06 · 1044 10% 40

Random5 450 3,80 · 1054 0% 44

Random6 450 1,03 · 1048 5% 44

Random7 500 4,97 · 1036 5% 48

Random8 500 2,21 · 1058 5% 48

Table 5.2: Feature models used in our experiments

Fault generator

To measure the effectiveness of our proposal, we evaluated the ability of our test
case prioritization criteria to detect faults in the HCS under test. For this purpose,
we implemented a fault generator for feature models. This generator is based on the
fault simulator presented by Bagueri et al. which has been used in several works to
evaluate the fault detection rate of HCS test suites [9, 43]. Our fault generator simulates
faults in n-tuples of features with n ∈ [1,4] (where n is a natural integer giving the
number of features present in the n-tuple). Faults in n-tuples simulate interaction faults
which require the presence of a set of features to be revealed. Studies show that faults

66



5.4. EVALUATION

caused by the interaction of between 2 and 4 features are frequent in practice [25]. The
number of faults seeded on each model is equal to m/10 being m the number of model
features. This information is detailed in the last column of Table §5.2. Each type of
fault was introduced in the same proportion, i.e. 25% in single features, 25% in 2-
tuples of features, 25% in 3-tuples of features and 25% in 4-tuples of features. Hence,
our generator receives a feature model as input and returns a random list of faulty
feature sets as output. For instance, for the model in Figure §2.5 the faults seeded
could be given as follows: {{High}{Credit Card,Search}} representing a fault in the
feature High Security and another fault caused by the interaction between the Credit
Card and Search features.

5.4.2 Experiment 1. Prioritizing HCS test suites

In order to answer RQ1 and RQ2, we checked the impact on the rate of early fault
detection of the prioritization criteria defined in Section §5.3. The experimental setup
and the results are next reported.

Experimental setup. For each model presented in Table §5.2, we performed several
steps. First, we used our fault generator to simulate faults in the HCSs obtaining as
a result a list of faulty features sets. Then, we randomly generated a test suite using
SPLAR. The suite was composed of between 100 and 500 configurations depending
on the size of the model. This step simulates the manual tests selection of an HCS
engineer who could choose the configurations to be tested following multiple criteria:
cost, release plan, users requests, marketing strategy, etc. For each fault in the model,
we made sure that there was at least one configuration in the suite detecting it, i.e. the
suite detected 100% of the faults. Once generated, the suite was ordered according to
the prioritization criteria defined in Section §5.3 resulting in six total test suites, one
random suite and five prioritized suites. Finally, we measured how fast the faults were
detected by each suite calculating their APFD values (see Section §3.5 of Chapter §3).
For the random suite the APFD was calculated as the average of 10 random orderings
to avoid the effects of chance.

Experimental results. Table §5.3 depicts the size of the test suites and the APFD val-
ues obtained by the random and the five prioritized suites for each model. The best
value on each row is highlighted in boldface. Also, main values are shown in the fi-
nal row. As illustrated, there are significant differences on the APFD average values
ranging from the 74.9% of the Commonality-ordered suite to the 96.5% reached by
the VC&CC-ordered suite. These differences are even more noticeable in individual
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cases. For the model “Random3”, for instance, the difference between the random and
VC&CC-ordered suite is 33.3 points, i.e. from 63.9% to 97.2%. The best average results
were obtained by the VC&CC criterion with 96.5%, followed by CoC (90.6%), Dis-
similarity (87.4%), CTC (84.5%), random criterion (77.4%) and Commonality (74.9%).
Interestingly, the APFD values obtained by the random suites in the models of lower
size were remarkably high, e.g. APFD(Videoplayer) = 92.0%. We found that this was
due to the low number of faults seeded and to the size of the models that made the
faults easily detectable using just a few tests. In the eight largest models, however, the
difference between the random suite APFDs (63.9%-77.5%) and the ones of the priori-
tized suites (91.5%-98.2%) was noticeable. This suggests that our approach is especially
helpful in large test spaces. Finally, we may remark that all the proposed prioritization
criteria except Commonality improved the main value obtained by the random order-
ing. In fact, for all models at least several of the prioritized suites improved the random
APFD values.

Figure §5.2 shows the percentage of detected faults versus the fraction of the test
suite used for the model “Random3”. Roughly speaking, the graphs show how the
APFD value evolves as the test suite is exercised. It is noteworthy that the VC&CC-
ordered suite, for instance, detected all the faults (32) by using just 15% of the suite, i.e.
75 test cases out of 500 with the highest priority. Another example is the Dissimilarity-
ordered suite that detected all the faults by using only the 45% of the suite. The random
suite, however, required using 95% of the test cases to detect exactly the same faults.
This behaviour was also observed in the rest of the models under study. In real scenar-
ios, with a higher number of faults and time-consuming executions, this acceleration
in the detection of faults could imply important saving in terms of debugging efforts.

The results obtained answer positively to RQ1 and RQ2. Regarding RQ1, the results
show that the order in which tests are run is definitely relevant and can have a clear
impact on the early fault detection rate of an HCS suite. Regarding RQ2, the results
suggest that the presented ordering criteria, especially VC&CC, CoC and Dissimilarity
could be effective at improving the rate of early fault detection of HCS test suites.

5.4.3 Experiment 2. Prioritization + combinatorial testing

In order to answer RQ3, we checked whether our prioritization criteria could be
used to increase the rate of early fault detection of test suites based on combinatorial
selection. The experimental setup and results are next reported.
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FM Suite size
APFD

Random CoC CTC Comm VC&CC Diss

Web p. 100 81.5 95.8 94.3 60.0 99.0 92.3

Car s. 100 83.6 96.5 94.8 92.5 97.8 90.5

Video p. 100 92.0 98.8 93.0 76.0 98.8 97.3

Model t. 100 83.3 94.8 75.5 79.9 95.4 91.5

Fm test 300 85.2 87.3 83.4 84.3 94.3 93.6

Printers 300 92.9 94.1 98.4 93.9 96.3 96.5

E. shop 300 90.2 93.4 92.1 87.6 96.3 97.0

Random1 300 64.7 92.6 84.2 60.1 97.9 89.1

Random2 300 73.1 87.9 78.6 77.5 98.2 80.4

Random3 500 63.9 79.6 70.7 80.7 97.2 85.2

Random4 500 69.7 93.9 92.2 53.8 97.8 65.8

Random5 500 77.5 91.6 78.4 73.7 91.5 89.1

Random6 500 69.5 83.5 73.6 43.8 95.1 88.8

Random7 500 66.3 90.4 81.6 72.6 95.7 87.0

Random8 500 67.3 79.3 76.3 86.3 95.9 67.0

Average 77.4 90.6 84.5 74.9 96.5 87.4

Table 5.3: APFD for random and prioritized suites
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(a) Random APFD (b) CoC APFD (c) CTC APFD

(d) Commonality APFD (e) VC&CC APFD (f) Dissimilarity APFD

Figure 5.2: APFD metrics for Random3 model

Experimental setup. The experimental procedure was similar to the one used in Ex-
periment 1. Feature models were seeded with the same faults used in our previous
experiment. Then, for each model, we generated a 2-wise test suite using the SPLCAT
tool presented by Johansen et al. [67]. As a result, we obtained a list of configurations
covering all the possible pairs of features on each model. Then, we prioritized the
list of configurations according to our five prioritization criteria and we calculated the
APFD (see Section §3.5) of the resulting six suites, 2-wise and five prioritized suites. It
is noteworthy that SPLCAT uses an implicit prioritization criterion placing first in the
list those configurations that covers the most uncovered pairs of features. This tends to
place those configurations with more features at the top of the list getting fast feature
coverage. This approach therefore is likely to increase the fault detection rate and thus
it is considered as an extra prioritization approach in our comparison.

Experimental results. The results of this experiment are presented in Table §5.4. For
each model, the size of the pairwise test suite, the number of faults detected out of
the total number of seeded faults and the APFD values of each ordering are presented.
Note that the generated pairwise suites did not detect all the faults seeded on each
model. As illustrated, the APFD average values ranged from 55.0% to 90.7%. As ex-
pected, the APFD average value of the pairwise suite (85.0%) was higher than the one
of the random suite (77.4%) in Experiment 1. This was due to implicit prioritization
criterion used by the SPLCAT tool that places at the top of the list those configura-
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tions containing a higher number of uncovered pairs of features, usually the largest
configurations. As in the previous experiment, the best APFD average results were
obtained by the VC&CC criterion with 90.7%, followed by CoC (88.0%) and Dissimi-
larity (86.9%). The pairwise suite got the fourth best APFD average value (85.0%). The
CTC and Commonality prioritization criteria did not get to improve the results of the
original suite. In terms of individual values, CoC got to improve the pairwise APFD
values in 13 out of 15 models, VC&CC in 12 out of 15 models and Dissimilarity in 11
out of 15. As in our previous experiment, there was not a single model in which the
pairwise suite obtained a higher APFD value than all the rest prioritized suites.

Figure §5.3 shows the percentage of detected faults versus the fraction of suite used
for the feature model “Random3”. In this example, it is remarkable that VC&CC-
ordered suite detected all the faults with just 20% of the suite (i.e. 27 tests out of 135).
Also, the CoC-ordered and the pairwise suites detected the same faults with only 50%
of the suite. However, the CoC-ordered suite detected more faults earlier, i.e. the curve
of CoC is slightly steeper than the 2-wise curve. A similar behaviour was observed in
the rest of the models under study.

In response to RQ3, our results show that our prioritization criteria can be helpful to
increase the rate of early fault detection of the current combinatorial testing techniques.

(a) 2-wise APFD (b) CoC APFD (c) CTC APFD

(d) Commonality APFD (e) VC&CC APFD (f) Dissimilarity APFD

Figure 5.3: APFD metrics for Random3 model
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FM Suite size Detected faults
APFD

2wise CoC CTC Comm VC&CC Diss

Web p. 19 3/4 90.3 93.9 90.4 46.5 97.4 97.4

Car s. 24 4/4 81.2 90.6 90.6 51.0 80.2 71.9

Video p. 18 4/4 76.4 93.1 76.4 22.2 83.3 83.3

Model t. 28 7/8 78.8 88.0 78.8 49.2 85.5 80.9

FM test 43 15/16 85.0 68.8 55.3 53.6 93.9 75.4

Printers 129 13/16 96.2 97.1 96.2 58.0 89.5 96.8

E shop 24 24/28 81.7 82.6 79.7 55.6 78.8 85.2

Random1 124 23/28 81.1 83.4 83.6 61.7 96.6 92.2

Random2 105 25/28 86.2 91.6 90.1 52.3 94.8 90.0

Random3 135 28/32 84.7 87.4 84.7 68.8 97.1 89.9

Random4 178 34/40 86.9 88.8 87.8 62.9 95.7 90.7

Random5 126 38/44 86.9 94.9 86.9 61.3 94.6 80.6

Random6 157 39/44 85.1 86.1 82.0 48.7 92.4 88.3

Random7 253 37/48 84.9 84.2 79.2 63.1 85.8 91.8

Random8 216 40/48 89.2 90.4 86.1 70.8 95.1 88.3

Average 85.0 88.0 83.2 55.0 90.7 86.9

Table 5.4: APDF for 2-wise and prioritized suites

5.5 THREATS TO VALIDITY

In this section we discuss some of the potential threats to the validity of our stud-
ies. In order to avoid any bias in the implementation and make our work reproducible,
we used a number of validated and publicly available tools. In particular, we used
SPLAR [91] for the analysis of feature models, BeTTy [124] for the generation of ran-
dom feature models, SPLCAT [67] for pairwise test selection and also we implemented
a fault generator based on the work of Bagheri et al. [43]. Due to the lack of real HCSs
with available test cases, we evaluated our approach by simulating faults in a number
of HCSs represented by published and randomly generated models of different sizes.
This may be a threat to our conclusions. However, we may remark that the evalua-
tion of testing approaches using feature models is extensively used in the literature
[59, 65, 67]. The use of a fault generator also implies several threats. The type, number
and distribution of generated faults could not be the one found in real code. We may
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emphasize, however, that our generator is based on the fault simulator presented by
Bagheri et al. [43] which has been validated in the evaluation of several SPL test case
selection approaches [9, 43]. Furthermore, we remark that the characteristics and dis-
tribution of faults have a limited impact in our work since we are not interested in how
many faults are detected but how fast they are revealed by different orderings of the
same test suite.

5.6 SUMMARY

In this chapter, we have presented a test case prioritization approach for HCSs. In
particular, we have proposed five prioritization criteria to schedule test execution in
an order that attempt to accelerate the detection of faults providing faster feedback
and reducing debugging efforts. These prioritization criteria are based on standard
techniques and metrics for the analysis of feature models and therefore are fully auto-
mated. The evaluation results showed that there are significant differences in the rate
of early fault detection provided by different prioritization criteria. Also, the results
showed that some of the criteria proposed may contribute to accelerate the detection
of faults of both random and pairwise-based HCS test suites. This suggests that our
work could be a nice complement for current techniques for test case selection. To the
best of our knowledge, this approach has been the first considering not only which HCS
configurations should be tested but how they should be tested. The main conclusion of
this work is that the order in which HCS test cases are run does matter.

The main results described in this chapter were presented in the Seventh IEEE In-
ternational Conference on Software Testing, Verification, and Validation [114]. Our test
case prioritization tool together with the feature models and the seeded faults used
in our evaluation are available at www.isa.us.es/˜isaweb/anabsanchez/material.
zip.
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Testing is questioning a system in order to evaluate it.

James M. Bach, software tester, author, trainer and consultant,

Variability testing techniques search for effective and manageable test suites that
lead to the rapid detection of faults in systems with high configurability. Evaluating
the effectiveness of these techniques in realistic settings is a must, but challenging due
to the lack of HCSs with available code, automated tests and fault reports. In this
chapter, we propose using the Drupal framework as a case study to evaluate variabil-
ity testing techniques. First, we represent the framework variability using a feature
model. Then, we report on extensive non–functional data extracted from the Drupal
Git repository and the Drupal issue tracking system. Among other results, we iden-
tified 3,392 faults in single features and 160 faults triggered by the interaction of up
to 4 features in Drupal v7.23. We also found positive correlations relating the num-
ber of bugs in Drupal features to their size, cyclomatic complexity, number of changes
and fault history. To show the feasibility of our work, we evaluated the effectiveness
of non–functional data for test case prioritization in Drupal. Results show that non–
functional attributes are effective at accelerating the detection of faults, outperforming
related prioritization criteria as test case similarity. Section §6.1 introduces the research
problem. The Drupal framework is described in Section §6.2. Section §6.3 presents the
Drupal feature model. A complete catalogue of non–functional feature attributes is
depicted in Section §6.4. The number and types of faults detected in Drupal are pre-
sented in Section §6.5. Section §6.6 presents a correlation study exploring the relation
among the reported non–functional attributes and the fault propensity of features. The
results of using non–functional attributes to accelerate the detection of faults in Drupal
are described in Section §6.7. We identify a number of basic requirements to apply our
approach to other HCSs in Section §6.8. Section §6.9 presents the threats to validity of
our work. Finally, we summarize the conclusions of this chapter in Section §6.10.
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6.1 INTRODUCTION

As we explained in previous chapters, the testing of highly-configurable software
systems is extremely challenging due to the potentially huge number of configurations
under test. To address this problem, researchers have proposed various techniques to
reduce the cost of testing in the presence of variability, including test case selection and
test case prioritization techniques. Test case selection approaches select an appropriate
subset of the existing test suite according to some coverage criteria (see Section §4.2).
Test case prioritization approaches schedule test cases for execution in an order that at-
tempts to increase their effectiveness at meeting some performance goal, e.g. accelerate
the detection of faults (see Section §4.3).

The number of works on highly-configurable testing is growing rapidly and thus
the number of experimental evaluations. However, it is hard to find real HCSs with
available code, test cases, detailed fault reports and good documentation that enable
reproducible experiments [123, 127]. As a result, authors often evaluate their testing
approaches using synthetic feature models, faults and non–functional attributes, which
introduces threats to validity and weaken their conclusions. A related problem is the
lack of information about the distribution of faults in HCSs, e.g. number and types of
faults, fault severity, etc. This may be an obstacle for the design of new testing tech-
niques since researchers are not fully aware of the type of faults that they are looking
for.

In the search for real HCSs some authors have explored the domain of open source
operating systems [15, 49]. However, these works mainly focus on the variability mod-
elling perspective and thus ignore relevant data for testers such as the number of test
cases or the distribution of faults. Also, repositories such as SPLOT [92, 131] and
SPL2GO [130] provide catalogues of variability models and source code. However,
they do not include information about the faults found in the programs and it is up to
the user to inspect the code searching for test cases.

In order to find a real HCS with available code, we followed the steps of previ-
ous authors and looked into the open source community. In particular, we found the
open source Drupal framework [18] to be a motivating HCS. Drupal is a modular web
content management framework written in PHP [18, 140]. Drupal provides detailed
fault reports including fault description, fault severity, type, status and so on. Also,
most of the modules of the framework include a number of automated test cases. The
high number of the Drupal community members together with its extensive documen-
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tation have also been strengths to choose this framework. Drupal is maintained and
developed by a community of more than 630,000 users and developers.

In this chapter, we propose using the Drupal framework as a motivating case study
to evaluate variability testing techniques. In particular, the following contributions are
presented.

1. We map some of the main Drupal modules to features and represent the frame-
work variability using a feature model. The resulting model has 48 features, 21
cross–tree constraints and represents more than 2,000 millions of different Drupal
configurations.

2. We report on extensive non–functional data extracted from the Drupal Git repos-
itory. For each feature under study, we report its size, number of changes (during
two years), cyclomatic complexity, number of test cases, number of test asser-
tions, number of developers and number of reported installations. To the best
of our knowledge, the Drupal feature model together with these non–functional
attributes represents the largest attributed feature model published so far.

3. We present the number of faults reported on the Drupal features under study dur-
ing a period of two years, extracted from the Drupal issue tracking system. Faults
are classified according to their severity and the feature(s) that trigger it. Among
other results, we identified 3,392 faults in Drupal v7.23, 160 of them caused by
the interaction of up to 4 different features.

4. We replicated the study of faults in two consecutive Drupal versions, v7.22 and
v7.23, to enable fault–history test validations, i.e. evaluate how the bugs detected
in Drupal v7.22 could drive the search for faults in Drupal v7.23.

5. We present a correlation study exploring the relation among the non–functional
attributes of Drupal features and their fault propensity. The results revealed sta-
tistically significant correlations relating the number of bugs in features to the
size and cyclomatic complexity of its code, number of changes and number of
faults in previous versions of the framework.

6. We present an experimental evaluation on the use of non–functional data for test
case prioritization. The results show that non–functional attributes effectively
accelerate the detection of faults of combinatorial test suites, outperforming re-
lated functional prioritization criteria such as variability coverage [43, 114] and
similarity [5, 59, 114].
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These contributions provide a new insight into the functional and non–functional
aspects of a real open–source HCS. This case study is intended to be used as a re-
alistic subject for further and reproducible validation of highly-configurable testing
techniques. It may also be helpful for those works on the analysis of attributed feature
models. Last, but not least, this work supports the use of non–functional attributes as
effective drivers for test case prioritization in the presence of variability.

6.2 THE DRUPAL FRAMEWORK

Drupal is a highly modular open source web content management framework im-
plemented in PHP [18, 140]. It can be used to build a variety of web sites includ-
ing internet portals, e-commerce applications and online newspapers [140]. Drupal is
composed of a set of modules. A module is a collection of functions that provide certain
functionality to the system. Installed modules in Drupal can be enabled or disabled.
An enabled module is activated to be used by the Drupal system. A disabled module
is deactivated and adds no functionality to the framework.

The modules can be classified into core modules and additional modules [18, 140].
Core modules are approved by the core developers of the Drupal community and are in-
cluded by default in the basic installation of Drupal framework. They are responsible
for providing the basic functionality that is used to support other parts of the system.
The Drupal core includes code that allows the system to bootstrap when it receives
a request, a library of common functions frequently used with Drupal, and modules
that provide basic functionality like user management and templating. In turn, core
modules can be divided into core compulsory and core optional modules. Core com-
pulsory modules are those that must be always enabled while core optional modules are
those that can be either enabled or disabled. Additional modules can be classified
into contributed modules and custom modules and can be optionally installed and en-
abled. Contributed modules are developed by the Drupal community and shared under
the same GNU Public License (GPL) as Drupal. Custom modules are those created by
external contributors. Figure §6.1 depicts some popular core and additional Drupal
modules.
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Figure 6.1: Several Drupal core and additional modules. Taken from [140]

6.2.1 Module structure

At the code level, every Drupal module is mapped to a directory including the
source files of the module. These files may include PHP files, CSS stylesheets, JavaScript
code, test cases and help documents. Also, every Drupal module must include a .mod-
ule file and a .info file with meta information about the module. Besides this, a module
can optionally include the directories and files of other modules, i.e. submodules. A
submodule extends the functionality of the module containing it.

A Drupal .info file is a plain text file that describes the basic information required
for Drupal to recognize the module. The name of this file must match the name of
the module. This file contains a set of so-called directives. A directive is a property
name = value. Some directives can use an array–like syntax to declare multiple values
properties, name[] = value. Any line that begins with a semicolon (‘;’) is treated as a
comment. For instance, Listing 6.1 describes a fragment of the views.info file included
in the Views module of Drupal v7.23:

Listing 6.1: Fragment of the file views.info

name = Views

description = Create customized lists and queries from your database.

package = Views

core = 7.x

php = 5.2
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stylesheets[all][] = css/views.css

dependencies[] = ctools

; Handlers

files[] = handlers/views_handler_area.inc

files[] = handlers/views_handler_area_result.inc

files[] = handlers/views_handler_area_text.inc

... more

; Information added by drupal.org on 2014-05-20

version = "7.x-3.8"

core = "7.x"

project = "views"

The structure of .info files is standard across all Drupal 7 modules. The name and de-
scription directives specify the name and description of the module that will be dis-
played in the Drupal configuration page. The package directive defines which package
or group of packages the module is associated with. On the modules configuration
page, modules are grouped and displayed by package. The core directive defines the
version of Drupal for which the module was written. The php property defines the
version of PHP required by the module. The files directive is an array with the names
of the files to be loaded by Drupal. Furthermore, the .info file can optionally include
the dependencies that the module has with other modules, i.e. modules that must be
installed and enabled for this module to work properly. In the example, the module
Views depends on the module Ctools. The directive required = TRUE is included in the
core compulsory modules that must be always enabled.

6.2.2 Module tests

Drupal modules can optionally include a test directory with the test cases associ-
ated to the module. Drupal defines a test case as a class composed of functions (i.e.
tests). These tests are performed through assertions, a group of methods that check for
a condition and return a Boolean. If it is TRUE, the test passes, if FALSE, the test fails.
There exist three types of tests in Drupal, unit, integration and upgrade tests. Unit tests
are methods that test an isolated piece of functionality of a module, such as functions
or methods. Integration tests test how different components (i.e. functionality) work
together. These tests may involve any module of the Drupal framework. Integration
tests usually simulate user interactions with the graphical user interface through HTTP

80



6.3. THE DRUPAL FEATURE MODEL

messages. According to the Drupal documentation1, these are the most common tests
in Drupal. Upgrade tests are used to detect faults caused by the upgrade to a newer
version of the framework, e.g. from Drupal v6.1 to v7.1. In order to work with tests
in Drupal, it is necessary to enable the SimpleTest module. This module is a testing
framework moved into core in Drupal v7. SimpleTest automatically runs the test cases
of all the installed modules. Figure §6.2 shows a snapshot of SimpleTest while running
the tests of Drupal v7.23 modules.

Figure 6.2: Running Drupal tests

6.3 THE DRUPAL FEATURE MODEL

In this section, we describe the process followed to model Drupal v7.23 variability
using a feature model, depicted in Figure §6.3. Feature models are the de–facto standard
for software variability modelling [14, 69]. We selected this notation for its simplicity
and its broad adoption in the field of variability testing.

1https://drupal.org/simpletest
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Figure 6.3: Drupal feature model
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6.3.1 Feature tree

According to the Drupal documentation, each module that is installed and enabled
adds a new feature to the framework [140] (chapter 1, page 3). Thus, we propose mod-
elling Drupal modules as features of the feature model. Figure §6.3 shows the Drupal
features that were considered in our study, 48 in total including the root feature. In
particular, among the 44 core modules of Drupal, we first selected the Drupal core
modules that must be always enabled (i.e. core compulsory modules), 7 in total, e.g.
Node. In Figure §6.3, these features appear with a mandatory relation with the features
root and Field. These features are included in all Drupal configurations. A Drupal con-
figuration is a valid combination of features installed and enabled. Then, we selected
40 modules within the most installed Drupal core optional modules (e.g. Path) and
additional modules (e.g. Google Analytics) ensuring that all dependencies were self-
contained, i.e. all dependencies points at modules also included in our study. Most
of these modules can be optionally installed and enabled and thus were modelled as
optional features in the feature model. Exceptionally, the additional module Date API
has a mandatory relation with its parent feature Date.

Submodules were mapped to subfeatures. Drupal submodules are those included
in the directory of other modules. They provide extra functionality to its parent mod-
ule and they have no meaning without it. As an example, the feature Date presents
several subfeatures such as Date API, Date popup and Date views. Exceptionally, the
submodules of Node, Blog and Forum, appear in separate module folders, however, the
description of the modules in the Drupal documentation indicates that these modules
are specializations of Node [140]. With respect to the set relationships or and alternative,
typically found in feature models, none of them were identified among the features
considered in Figure §6.3.

The selected modules are depicted in Table §B.1 in Appendix §B. In total, we con-
sidered 16 Drupal core modules and 31 additional modules obtaining a feature model
with 48 features, i.e. root feature + 8 mandatory features + 39 optional features.

6.3.2 Cross–tree constraints

We define the dependencies among modules as cross–tree constraints in the feature
model. Constraints in feature models are typically of the form requires or excludes. If a
feature A requires a feature B, the inclusion of A in a configuration implies the inclusion
of B in such configuration. On the other hand, if a feature A excludes a feature B, both
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features cannot be part of the same configuration.

Cross–tree constraints were identified by manually inspecting the dependencies
directive in the .info file of each module. For each dependency, we created a requires
constraint in the feature model, 42 in total. For instance, consider the views.info file
depicted in Listing 6.1. The file indicates that Views depends on the Ctools module, i.e.
dependencies[] = ctools. Thus, we established a requires constraint between modules
Views and Ctools. We may remark that 21 out of the 42 cross–tree constraints identi-
fied were redundant when considered together with the feature relationships in the
tree. For instance, the constraint Forum requires Field is unnecessary since Field is a
core feature included in all the Drupal configurations. Similarly, the constraint Date
popup requires Date API can be omitted since Date API has a mandatory relationship
with their parent feature Date. We manually identified and removed all redundant
cross–tree constraints. This makes a total of 21 requires cross–tree constraints shown
in Figure §6.3. No excludes constraints were identified among the modules. Interest-
ingly, we found that all modules in the same version of Drupal are expected to work
fine together. If a Drupal module has incompatibilities with others, it is reported as a
bug that must be fixed. As an example, consider the bug for Drupal 6 titled “Incom-
patible modules”2.

As a sanity check, we confirmed the constraints identified using the Javascript Info-
Vis Toolkit (JIT) Drupal module, which shows a graphical representation of the mod-
ules and their relationships [33]. Figure §6.4 depicts a fragment of the dependency
graph provided by the JIT module showing a dependency (i.e. directed edge) between
Views (source node) and Ctools (target node). Therefore, we confirm the requires cross–
tree constraint found in the views.info file presented in Listing 6.1.

The ratio of features involved in cross–tree constraints to the total number of fea-
tures in the model (CTCR) is 45.8%. This metric provides a rough idea of the com-
plexity of the model and enables comparisons. Hence, for instance, Drupal is more
complex (in terms of CTCR) than the models in the SPLOT repository (Avg. CTCR =
16.1%) [92, 131] and the models investigated by Bagheri et al [8] in their work about
feature model complexity metrics (Avg. CTCR = 19.5%). Conversely, Drupal CTCR is
less complex than the models reported by Berger et al. [15] in the context of operating
systems (Avg. CTCR = 72.9%). This was expected since system software interacts with
hardware in multiple ways and it is certainly more complex than Web applications.
The Drupal feature model represents 2,090,833,920 configurations. In Section §6.10, we

2https://drupal.org/node/1312808
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Figure 6.4: Dependency graph generated by the JIT module

provide the Drupal feature model in two different formats (SXFM and FaMa).

6.4 NON–FUNCTIONAL ATTRIBUTES

In this section, we report a number of non–functional attributes of the features pre-
sented in Figure §6.3 extracted from the Drupal web site and the Drupal Git repository.
These data are often used as good indicators of the fault propensity of a software ap-
plication. Additionally, this may provide researchers and practitioners with helpful
information about the characteristics of features in a real HCS. By default, the infor-
mation was extracted from the features in Drupal v7.23. For the sake of readability,
we used a tabular representation for feature attributes instead of including them in the
feature model of Figure §6.3. Table §6.1 depicts the non–functional attributes collected
for each Drupal feature, namely:

Feature size. This provides a rough idea of the complexity of each feature and its fault
propensity [77, 89]. The size of a feature was calculated in terms of the number of
Lines of Code (LoC). LoC were counted using the egrep and wc Linux commands on
each one of the source files included in the module directory associated to each feature.
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The command used is shown below. Blank lines and test files were excluded from the
counting. The sizes range between 284 LoC (feature Ctools custom content) and 54,270
LoC (feature Views). It is noteworthy that subfeatures are significantly smaller than
their respective parent features. The total size of the selected Drupal features is 336,025
LoC.

egrep -Rv ’#|ˆ$’ name_module* other_file* | wc -l

Cyclomatic Complexity (CC). This metric reflects the total number of independent
logic paths used in a program and provides a quantitative measure of its complexity
[103, 139]. We used the open source tool phploc [16] to compute the CC of the source
code associated to each Drupal feature. Roughly speaking, the tool calculates the num-
ber of control flow statements (e.g. “if”, “while”) per lines of code [16]. The values for
this metric ranged from 0.14 (feature Path) to 1.09 (feature Entity token). It is notewor-
thy that Entity tokens, the feature with highest CC, is one of the smallest features in
terms of LoC (327).

Number of tests. Table §6.1 shows the total number of test cases and test assertions
of each feature, obtained from the output of the SimpleTest module. In total, Drupal
features include 352 test cases and 24,152 assertions. In features as Ctools, the number
of test cases (7) and test assertions (121) is low considering that the size of the feature
is over 17,000 LoC. It is also noteworthy that features such as JQuery update, with more
than 50,000 LoC, have no test cases.

Number of reported installations. This depicts the number of times that a Drupal fea-
ture has been installed as reported by Drupal users. This data was extracted from the
Drupal web site [18] and could be used as an indicator of the popularity or impact of
a feature. Notice that the number of reported installations of parent features and their
respective subfeatures is equal since they are always installed together, although they
may be optionally enabled or disabled. Not surprisingly, the features with the highest
number of reported installations are those included in the Drupal core (5,259,525 times)
followed by Views (802,467 times) and Ctools (747,248 times), two of the most popular
features in Drupal.

Number of developers. We collected the number of developers involved in the de-
velopment of each Drupal feature. This could give us information about the scale and

86



6.5. FAULTS IN DRUPAL

relevance of the feature as well as its propensity to faults related to the number of peo-
ple working on it [89]. This information was obtained from the web site of each Drupal
module as the number of committers involved [18]. The feature with the highest num-
ber of contributors is Views (178), followed by those included in the Drupal core (94)
and Ctools (75).

Number of changes. Changes in the code are likely to introduce faults [54, 150]. Thus,
the number of changes in a feature may be a good indicator of its error proneness and
could help us to predict faults in the future. To obtain the number of changes made
in each feature, we tracked the commits to the Drupal Git repository3. The search was
narrowed by focusing on the changes performed during a period of two years, from
May 1st 2012 to April 31st 2014. First, we cloned the entire Drupal v7.x repository.
Then, we applied the console command showed below to get the number of commits
by module, version and date. We collected the number of changes in Drupal v7.22 to
check the correlation with the number of faults in Drupal v7.23 (see Section §6.6). As
illustrated in Table §6.1, the number of changes ranged between 0 (feature Blog) and 90
(feature Backup and migrate). Interestingly, the eight features with the highest number
of changes are optional. In total, we counted 557 changes in Drupal v7.22 during a
two–years period.

git log --pretty=oneline --after={2012-05-01} --before={2014-04-31}

7.21..7.22 name_module | wc -l

6.5 FAULTS IN DRUPAL

In this section, we present the number of faults reported in the Drupal features (i.e.
modules) shown in Figure §6.3. The information was obtained from the issue tracking
systems of Drupal4 and related modules. In particular, we used the web–based search
tool of the issue systems to filter the bug reports by severity, status, date, feature name
and Drupal version. The search was narrowed by collecting the bugs reported in a
period of two years, from May 1st 2012 to April 31st 2014. We collected the faults of
two consecutive Drupal versions, v7.22 and v7.23, to achieve a better understanding
of the evolution of a real system and to enable test validations based on fault–history
(see Section §6.7).

3http://drupalcode.org/project/drupal.git
4https://drupal.org/project/issues
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Feature Size CC Test cases Test assertions Installations Developers Changes v7.22

Backup and migrate 11,639 0.37 0 0 281,797 7 90

Blog 551 0.16 1 244 5,259,525 94 0

Captcha 3,115 0.19 4 731 226,295 43 15

CKEditor 13,483 0.59 0 0 280,919 29 40

Comment 5,627 0.23 14 3,287 5,259,525 94 2

Ctools 17,572 0.52 7 121 747,248 75 32

Ctools access ruleset 317 0.19 0 0 747,248 75 0

Ctools custom content 284 0.3 0 0 747,248 75 1

Date 2,696 0.44 4 1,724 412,324 42 9

Date API 6,312 0.6 1 106 412,324 42 11

Date popup 792 0.36 0 0 412,324 42 4

Date views 2,383 0.44 0 0 412,324 42 6

Entity API 13,088 0.41 11 851 407,569 45 14

Entity tokens 327 1.09 1 6 407,569 45 1

Features 8,483 0.56 3 16 209,653 36 72

Field 8,618 0.41 9 870 5,259,525 94 6

Field SQL storage 1,292 0.3 1 94 5,259,525 94 1

Field UI 2,996 0.28 3 287 5,259,525 94 4

File 1,894 0.67 39 2,293 5,259,525 94 1

Filter 4,497 0.17 9 958 5,259,525 94 1

Forum 2,849 0.24 2 677 5,259,525 94 3

Google analytics 2,274 0.29 4 200 348,278 21 14

Image 5,027 0.29 2 677 5,259,525 94 9

Image captcha 998 0.28 0 0 226,295 43 0

IMCE 3,940 0.47 0 0 392,705 13 9

Jquery update 50,762 0.26 0 0 286,556 17 1

Libraries API 1,627 0.55 2 135 516,333 7 7

Link 1,934 0.63 8 1,275 286,892 31 11

Node 9,945 0.27 32 1,391 5,259,525 94 9

Options 898 0.17 2 227 5,259,525 94 0

Panel nodes 480 0.35 0 0 206,805 43 2

Panels 13,390 0.35 0 0 206,805 43 34

Panels In-Place Editor 1,462 0.23 0 0 206,805 43 20

Path 1,026 0.14 5 330 5,259,525 94 0

PathAuto 3,429 0.23 5 316 622,478 33 2

Rules 13,830 0.49 5 285 238,388 52 5

Rules scheduler 1,271 0.15 1 7 238,388 52 4

Rules UI 3,306 0.39 0 0 238,388 52 1

System 20,827 0.31 58 2,138 5,259,525 94 19

Taxonomy 5,757 0.23 14 677 5,259,525 94 2

Text 1,097 0.29 3 444 5,259,525 94 0

Token 4,580 0.51 15 347 715,563 31 10

User 8,419 0.26 23 1,355 5,259,525 94 7

Views 54,270 0.41 51 1,089 802,467 178 27

Views content 2,683 0.46 0 0 747,248 75 5

Views UI 782 0.37 9 538 802,467 178 0

WebForm 13,196 0.51 4 456 402,163 46 46

Total 336,025 17.41 352 24,152 97,342,266 3,060 557

Table 6.1: Non–functional feature attributes in Drupal
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6.5. FAULTS IN DRUPAL

First, we filtered the faults by feature name (using the field “component”), frame-
work version and the dates previously mentioned. Then, the search was refined to
eliminate the faults not accepted by the Drupal community, those classified as dupli-
cated bugs, non reproducible bugs and bugs working as designed. The latter are issues that
have been considered not to be a bug because the reported behaviour was either an
intentional part of the project, or the issue was caused by customizations manually ap-
plied by the user. A total of 3,401 faults matched the initial search for Drupal v7.22 and
3,392 faults for Drupal v7.23.

Second, we tried to identify those faults that were caused by the interaction of sev-
eral features, i.e. integration faults. Our first approach was to follow the strategy
presented by Artho et al. [7] in the context of operating systems. That is, for each fea-
ture, we searched for faults descriptions containing the keywords “break”, “conflict”
or “overwrite”. However, the search did not return any result related to the interaction
among features. We hypothesize that keywords related to potential bugs caused by the
interaction among features may be domain–dependent. Thus, we followed a different
approach. For each feature, we searched for bug reports that included the name (not
case–sensitive) of some of the other features under study in its description or tags. As
an example, consider the bug report depicted in Listing 6.2 extracted from the Drupal
issue tracking system. The bug is associated to the module Rules and its description
contains the name of the feature Comment. Thus, we considered it as a candidate in-
tegration fault between both features, Rules and Comment. In total, we detected 444
candidate integration faults in Drupal v7.22 and 434 in Drupal v7.23 following this
approach. Interestingly, we found candidate faults containing the name of up to 9
different features.

Listing 6.2: Drupal bug report (http://www.drupal.org/node/1673836)

Adding rule for comments causes:Fatal error: Call to undefined

function comment_node_url() in...bartik/template.php on line 164

I added rule that would react on an event ‘A comment is viewedÂ´

by showing up a message for every new comment added... and it

broke every page on which I added new comment (It was all

working fine before this rule was introduced, commenting also).

For all other pages where there are old comments everything is

quite fine. Tried to deleted rule, to disable rules module,

cleared cache, run cron... nothing changed. The only thing that

gets back my pages without this fatal error is if I disable

comments module, but I need comments.
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Next, we manually checked the bug reports of each candidate integration fault and
discarded those that i) included the name of a feature but it actually made no reference
to the feature (e.g. image), ii) included the name of Drupal features not considered in
our study, and iii) included users and developers’ comments suggesting that the fault
was not caused by the interaction among features. We may remark that in many cases
the description of the fault clearly suggested an integration bug, see as an example
the last sentence in Listing 6.2: “The only thing that gets back my pages without this fatal
error is if I disable comments module”. The final counting revealed 160 integration faults
in Drupal v7.23 and 170 in Drupal v7.22. In Drupal v7.23, we found that 3 out of 160
faults were caused by the interaction of 4 features, 25 were caused by the interaction
of 3 features and 132 faults were triggered by the interaction between 2 features. It is
noteworthy that 51 out of the 160 integration faults were caused by the interaction of
Views with other features. Views enables the configuration of all the views of Drupal
sites. Also, 31 integration faults were triggered by the interaction of Ctools with other
features. Ctools provides a set of APIs and tools for modules to improve the developer
experience. A complete list of the integration faults detected and the features involved
on them is presented in Table §B.2 in Appendix §B. It is noteworthy that we did not
find any specific keywords in the bugs’ descriptions suggesting that they were caused
by the interaction among features.

Table §6.2 summarizes the faults found in both versions of Drupal. For each fea-
ture, the total number of individual and integration faults in which it is involved are
presented classifying them according to the reported severity level. We found that the
bugs reported in additional Drupal modules (e.g. Ctools) do not discriminate among
subversions of Drupal 7, i.e. they specify that the fault affects to Drupal v7.x. In those
cases, we assumed that the bug equally affected to the two versions of Drupal under
study, v7.22 and v7.23. This explains why the number of faults in most of the additional
features is the same for both versions of the framework in Table §6.2. Notice, however,
that in some cases the number of integration faults differs, e.g. feature CKEditor.

6.6 CORRELATION STUDY

The information extracted from software repositories can be used, among other
purposes, to drive the search for faults. In fact, multiple works in the field of soft-
ware repository mining have explored the correlations between certain non–functional
properties and metrics and the fault propensity of software components [7, 56, 61, 95,
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Feature
Faults in Drupal v7.22 Faults in Drupal v7.23

Severity
Total Total

Severity
Total Total

Minor Normal Major Critical Single Integ Minor Normal Major Critical Single Integ

Backup migrate 8 58 9 9 80 4 8 58 9 9 80 4

Blog 0 2 2 0 1 3 0 1 2 0 0 3

Captcha 1 14 3 0 17 1 1 14 3 0 17 1

CKEditor 6 165 29 8 197 11 6 163 29 8 197 9

Comment 2 20 5 2 10 19 3 16 5 4 13 15

Ctools 17 146 39 10 181 31 17 146 39 10 181 31

Ctools access r. 0 0 0 0 0 0 0 0 0 0 0 0

Ctools custom c. 2 7 2 0 10 1 2 7 2 0 10 1

Date 4 30 12 1 44 3 4 30 12 1 44 3

Date API 3 29 9 1 41 1 3 29 9 1 41 1

Date popup 2 28 1 0 30 1 2 28 1 0 30 1

Date views 1 18 7 0 25 1 1 18 7 0 25 1

Entity API 9 128 43 13 175 18 9 128 43 13 175 18

Entity Tokens 0 19 8 1 22 6 0 19 8 1 22 6

Features 3 81 17 5 97 9 3 81 17 5 97 9

Field 6 43 12 2 45 18 7 45 11 2 48 17

Field SQL s. 0 5 0 0 3 2 0 5 0 0 3 2

Field UI 6 9 0 0 13 2 6 6 0 0 11 1

File 1 8 5 1 10 5 1 9 5 1 11 5

Filter 3 19 0 2 19 5 3 19 0 2 19 5

Forum 0 6 4 0 6 4 0 6 3 0 5 4

Google anal. 0 8 2 2 11 1 0 8 2 2 11 1

Image 1 10 6 1 10 8 1 9 4 1 9 6

Image captcha 0 3 0 0 3 0 0 3 0 0 3 0

IMCE 0 12 1 1 9 5 0 12 1 1 9 5

Jquery update 4 48 14 10 64 12 4 48 14 10 64 12

Libraries API 1 6 3 1 11 0 1 6 3 1 11 0

Link 6 68 9 3 82 4 6 68 9 3 82 4

Node 8 33 7 7 26 29 10 26 5 6 24 23

Options 0 0 0 0 0 0 0 0 0 0 0 0

Panel Nodes 1 13 2 1 16 1 1 13 2 1 16 1

Panels 5 92 9 5 87 24 5 92 9 5 87 24

Panels IPE 1 18 1 1 19 2 1 18 1 1 19 2

Path 0 3 0 1 3 1 0 2 0 1 2 1

PathAuto 4 33 18 8 54 9 4 33 18 8 54 9

Rules 5 180 54 16 240 15 5 180 54 16 240 15

Rules sched. 0 11 2 0 13 0 0 11 2 0 13 0

Rules UI 0 20 3 3 26 0 0 20 3 3 26 0

System 7 28 4 1 35 5 7 27 4 1 35 4

Taxonomy 0 27 6 4 15 22 0 31 6 4 19 22

Text 0 9 0 0 6 3 0 8 0 0 5 3

Token 6 20 15 3 37 7 6 20 15 3 37 7

User 3 36 6 0 20 25 3 32 6 0 19 22

Views 70 807 205 60 1,091 51 70 807 205 60 1,091 51

Views content 1 23 0 1 23 2 1 23 0 1 23 2

Views UI 1 15 0 0 12 4 1 15 0 0 12 4

WebForm 47 231 10 4 292 0 47 231 10 4 292 0

Total 3,231 3,232

Table 6.2: Faults in Drupal v7.22 and v7.23
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Id
Variables

Correlation (ρ) p–value
Variable 1 Variable 2

C1 LoC v7.23 Faults v7.23 0.78 4.16× 10−11

C2 Changes v7.22 Faults v7.23 0.68 8.36× 10−8

C3 Faults v7.22 Faults v7.23 0.98 3.26× 10−13

C4 CC v7.23 Faults v7.23 0.51 2.32× 10−4

C5 Developers v7.23 Faults v7.23 -0.27 0.066
C6 Assertions v7.23 Faults v7.23 0.16 0.268
C7 CTC v7.23 Faults v7.23 0.11 0.449
C8 CTC v7.23 Int. Faults v7.23 0.21 0.150
C9 CoC v7.23 Faults v7.23 0.28 0.051

Table 6.3: Spearman correlation results

99]. In this section, we investigate whether the non–functional attributes presented in
Section §6.4 could be used to estimate the fault propensity of Drupal features.

The correlation study was performed using the R statistical environment [106] in
two steps. First, we checked the normality of the data using the Shapiro-Wilk test
concluding that the data do not follow a normal distribution. Second, we used the
Spearman’s rank order coefficient to assess the relationship between the variables. We
selected Spearman’s correlation because it does not assume normality, it is not very
sensitive to outliers, and it measures the strength of association between two variables
under a monotonic relationship5, which fits well with the purpose of this study.

The results of the correlation study are presented in Table §6.3. For each correlation
under study the following data are shown: identifier, measured variables, Spearman’s
correlation coefficient (ρ) and p-value. The Spearman’s correlation coefficient takes a
value in the range [-1,1]. A value of zero indicates that no association exists between
the measured variables. Positive values of the coefficient reflect a positive relationship
between the variables, i.e. as one variable decreases, the other variable also decreases
and vice versa. Conversely, negatives values of the coefficient provide evidence of a
negative correlation between the variables, i.e. the value of one variable increases as
the value of the other decreases. Roughly speaking, the p–value represents the prob-
ability that the coefficient obtained could be the result of mere chance, assuming that
the correlation does not exist. It is commonly assumed that p–values under 0.05 are
enough evidence to conclude that the variables are actually correlated and that the

5A monotonic relationship implies that as the value of one variable increases, so does the value of
the other variable; or as the value of one variable increases, the other variable value decreases.
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estimated ρ is a good indicator of the strength of such relationship, i.e. the result is sta-
tistically significant. The correlations that revealed statistically significant results are
highlighted in grey in Table §6.3. By default, all correlations were investigated in Dru-
pal v7.23 except several exceptions explicitly mentioned. The results of the correlation
study are next discussed.

C1. Correlation between feature size and faults. The Spearman coefficient reveals a
strong positive correlation (ρ = 0.78) between the LoC and the number of faults in Dru-
pal features. This means that the number of LoC could be used as a good estimation of
their fault propensity. In our study, we found that 7 out of the 10 largest features were
also among the 10 features with a higher number of faults. Conversely, 5 out of the 10
smallest features were among the 6 features with a lower number of bugs.

C2. Correlation between changes and faults. We studied the correlation between the
number of changes in Drupal v7.22 and the number of faults in Drupal v7.23, obtain-
ing a Spearman coefficient of 0.68. This means that the features with a higher number
of changes are likely to have a higher number of bugs in the subsequent release of
the framework. In our study, we found that 7 out of the 10 features with the highest
number of changes in Drupal v7.22 were also among the 10 features with the highest
number of faults in Drupal v7.23.

C3. Correlation between faults in consecutive versions of the framework. We inves-
tigated the correlation between the number of reported faults in Drupal features in two
consecutive versions of the framework, v7.22 and v7.23. As mentioned in Section §6.5,
the bugs reported in Drupal additional modules are not related to a specific subver-
sion of the framework (they just indicate 7.x). Thus, in order to avoid biased results,
we studied this correlation on the features of the Drupal core (16 out of 47) where the
specific version of Drupal affected by the bugs is provided. We obtained a Spearman’s
correlation coefficient of 0.98 reflecting a very strong correlation between the number
of faults in consecutive versions of Drupal features. This provides helpful information
about the across–release fault propensity of features and it could certainly be useful to
drive testing decisions when moving into a new version of the framework, e.g. test
case prioritization.

C4. Correlation between code complexity and faults. We studied the correlation be-
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tween the cyclomatic complexity of Drupal features and the number of faults detected
on them. As a result, we obtained a correlation coefficient of 0.51, which reflect a fair
correlation between both parameters, i.e. features with a high cyclomatic complexity
tend to have a high number of faults. It is noteworthy, however, that this correlation
is weaker than the correlation observed between the number of LoC and the number
of faults (C1) with a coefficient of 0.78. Despite this, we believe that the cyclomatic
complexity could still be a helpful indicator to estimate the fault propensity of features
with similar size.

C5. Correlation between faults and number of developers. We investigated the cor-
relation between the number of developers contributing to a Drupal feature and the
number of bugs reported in that feature. We hypothesized that a large number of
developers could result in coordination problems and a higher number of faults. Sur-
prisingly, we obtained a negative correlation value (-0.27), which not only rejects our
hypothesis but it suggests the opposite, those features with a higher number of devel-
opers, usually the Drupal core features, have less faults. We presume that this is due to
the fact that core features are included in all Drupal configurations and thus they are
better supported and more stable. Nevertheless, we obtained a p–value over 0.05 and
therefore this relationship is not statistically significant.

C6. Correlation between tests and faults. It could be expected that those features with
a high number of test assertions contain a low number of faults since they are tested
more exhaustively. We investigated this correlation obtaining a Spearman’s coefficient
of 0.16 and a p–value of 0.268. Thus, we cannot conclude that those features with a
higher number of test assertions are less error–prone.

C7-8. Correlation between faults and Cross–Tree Constraints (CTCs). In [43], Bagheri
et al. studied several feature model metrics and suggested that those features involved
in a higher number of CTCs are more error–prone. To explore this fact, we analyzed
the features involved in CTCs in order to study the relation between them and their
fault propensity. We obtained a correlation coefficient of 0.11 between the number of
CTCs in which a feature is involved and the number of faults in that feature (C7).
The correlation coefficient rose to 0.21 when considering integration faults only (C8).
Therefore, we conclude that the correlation between feature involvement in CTCs and
fault propensity is not confirmed in our study.
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C9. Correlation between faults and Coefficient of Connectivity–Density (CoC). The
CoC is a feature model complexity metric proposed by Bagheri et al. [8] and adapted
by the authors for its use at the feature level [114]. The CoC measures the complexity
of a feature as the number of tree edges and cross–tree constraints connected to it. We
studied the correlation between the complexity of features in terms of CoC and the
number of faults detected on them. The correlation study revealed a Spearman’s co-
efficient of 0.28. Therefore, we cannot conclude that those features with a higher CoC
are more error–prone. Nevertheless, we obtained a p–value very close to the threshold
of statistical significance (0.051), therefore this relationship is a good candidate to be
further investigated in future studies of different HCSs.

Regarding feature types, we identified 326 faults in the mandatory features of the
Drupal feature model and 3,540 faults in the optional features. Mandatory features
have a lower ratio of faults per feature (326/8 = 40.7) than optional ones (3,540/39 =

90.7). We presume that this is due to the fact that 7 out of the 8 mandatory features rep-
resent core compulsory modules included in all Drupal configurations and thus they
are better supported and more stable. Regarding fault severity, around 71.6% of the
faults were classified as normal, 16.1% as major, 6.9% as minor and 5.2% as critical. We
observed no apparent correlation between fault severity and the types of features and
thus we did not investigate it further.

6.7 EVALUATION

In this section, we evaluate the feasibility of the Drupal case study as a motivat-
ing experimental subject to evaluate variability testing techniques. In particular, we
present an experiment to answer the following research questions:

RQ1: Are non–functional attributes helpful to accelerate the detection of faults of combinatorial
test suites? The correlations found between the non–functional attributes of Drupal
features and their fault propensity suggest that non–functional information could be
helpful to drive the search for faults. In this experiment, we measure the gains in the
rate of fault detection when using non–functional attributes to prioritize combinatorial
test suites.
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RQ2: Are non–functional attributes more, less or equally effective than functional data at ac-
celerating the detection of faults? Some related works have proposed using functional
information from the feature model to drive test case prioritization such as configura-
tion similarity, commonality or variability coverage [43, 59, 114]. In this experiment,
we measure whether non–functional attributes are more, less or equally effective than
functional data at accelerating the detection of faults.

We next describe the experimental setup, the prioritization criteria compared, the
evaluation metric used and the results of the experiment.

6.7.1 Experimental setup

The goal of this experiment is to use a combinatorial algorithm (e.g. ICPL) to gen-
erate a pair–wise suite for the Drupal feature model, and then, use different criteria
based on functional and non–functional information to derive an ordering of test cases
that allows detecting faults as soon as possible. The evaluation was performed in sev-
eral steps. First, we seeded the feature model with the faults detected in Drupal v7.23,
3,392 in total. For this purpose, we created a list of faulty feature sets. Each set repre-
sents faults triggered by n features (n ∈ [1,4]). For instance, the list {{Node}{Ctools,
User}} represents a fault in the feature Node and another fault caused by the interac-
tion between the features Ctools and User. Second, we used the ICPL algorithm [65]
to generate a pairwise suite for the Drupal feature model. We define a test case in this
domain as a valid Drupal configuration, i.e. valid set of features. Among the whole
testing space of Drupal (more than 2,000 millions of test cases), the ICPL algorithm
returned 13 test cases that covered all the possible pairs of feature combinations. Then,
we checked whether the pairwise suite detected the seeded faults. We considered that
a test case detects a fault if the test case includes the feature(s) that trigger the bug. The
pairwise test suite detected all the faults.

Next, we reordered the test cases in the pairwise suite according to different pri-
oritization criteria. In order to answer RQ1, we prioritized the suite using the non–
functional attributes that correlated well with the fault propensity, namely, the feature
size, number of changes and number of faults in the previous version of the frame-
work, i.e. Drupal v7.22. To answer RQ2, we reordered the test cases using two of
the functional prioritization criteria that have provided better results in related eval-
uations, the similarity and VC&CC metrics. These prioritization criteria are fully de-
scribed in Section §6.7.1. For each prioritized test suite, we measured how fast the
faults of Drupal 7.23 were detected by each ordering calculating their Average Per-
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centage of Faults Detected (APFD) values (see Section §3.5).

Finally, we repeated the whole process using the CASA algorithm [52] for the gen-
eration of the pairwise test suite for more heterogeneous results. Since CASA is not
deterministic, we ran the algorithm 10 times for each prioritization criterion and calcu-
lated averages. The suites generated detected all the faults.

Prioritization criteria

Given a test case t composed of a set of features, t = { f1, f2, f3... fn}, we propose the
following criteria to measure its priority:

Size–driven. This criterion measures the priority of a test case as the sum of the LoC
of its features. Let loc( f ) be a function returning the number of LoC of feature f . The
Priority Value (PV) of t is calculated as follows:

PVSize(t) =
|t|

∑
i=1

loc( f i) (6.1)

Fault–driven. This criterion measures the priority value of the test case as the sum of
the number of bugs detected on its features. Inspired by the correlations described in
Section §6.6, we propose counting the number of faults in Drupal v7.22 to effectively
search for faults in Drupal v7.23. Let f aults( f ,v) be the function returning the number
of bugs in version v of feature f . The priority of t is calculated as follows:

PVFaults(t) =
|t|

∑
i=1

f aults( f i,“7.22”) (6.2)

Change–driven. This criterion calculates the priority of a test case by summing up the
number of changes found on its features. As with the number of faults, we propose a
history–based approach and use the number of changes in Drupal v7.22. Consider the
function changes( f ,v) returning the number of changes in version v of feature f . The
priority of t is calculated as follows:

PVChanges(t) =
|t|

∑
i=1

changes( f i,“7.22”) (6.3)
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Variability Coverage and Cyclomatic complexity (VC&CC). This criterion aims to get
an acceptable trade off between fault coverage and feature coverage. It was presented
by Bagheri et al. in the context of SPL test case selection [43] and later adapted by
the authors for SPL test case prioritization [114]. In the previous Chapter §5, the work
presented in [114], the authors compared several prioritization criteria for HCSs and
found that VC&CC ranked first at accelerating the detection of faults. This motivated
the selection of this prioritization criterion as the best of its breed. Given a feature
model fm and a test case t, the VC&CC metric is calculated as follows:

PVVC&CC(t, fm) =
√

vc(t, fm)2 + cc(t, fm)2 (6.4)

where vc(t, fm) calculates the variability coverage of a test case t for the feature
model fm. The variability coverage of a test case is the number of variation points
involved in it. A variation point is any feature that provides different variants to create
a configuration. cc(t, fm) represents the cyclomatic complexity of t. The cyclomatic
complexity of a test case is calculated as the number of cross–tree constraints involved
in it. We refer the reader to the previous Chapter §5 also presented in [114] for more
details about this prioritization criterion.

Dissimilarity. The (dis)similarity metric has been proposed by several authors as
an effective prioritization criterion to maximize the diversity of a test suite [59, 114].
Roughly speaking, this criterion gives a higher priority to those test cases with fewer
features in common since they are likely to get a higher feature coverage than similar
test cases. In Chapter §5, also presented in [114], the authors proposed to prioritize
the test cases based on the dissimilarity metric using the Jaccard distance to measure
the similarity among test cases. The Jaccard distance [137] is defined as the size of the
intersection divided by the size of the union of the sample sets. In our context, each set
represents a test case containing a set of features. The prioritized test suite is created
by progressively adding the pairs of test cases with the highest Jaccard distance be-
tween them until all test cases are included. Given two test cases ta and tb, the distance
between them is calculated as follows:

Dissimilarity(ta, tb) = 1− |ta
⋂

tb|
|ta

⋃
tb|

(6.5)

The resulting distance varies between 0 and 1, where 0 denotes that the test cases
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ta and tb are the same and 1 indicates that ta and tb share no features.

6.7.2 Experimental results

Table §6.4 depicts the results of the experiment. For each combinatorial testing al-
gorithm, ICPL and CASA, the table shows the APFD values of the pairwise test suites
prioritized according to the criteria presented in previous section. The first row shows
the APFD of the suites when no prioritization is applied. The top three highest APFD
values of each column are highlighted in bold. For ICPL, the prioritized suites based
on non–functional attributes revealed the best results with fault–driven prioritization
ahead (95.5%), followed by the size–driven (95.4%) and change–driven (95%) prioriti-
zation criteria. For CASA, the best APFD value was again obtained by the fault–driven
prioritization criterion (93.4%), followed by the VC&CC (92.8%), size–driven (92.7%)
and change–driven (91.8%) criteria. Overall, prioritization driven by non–functional
attributes revealed the best rates of early fault detection followed by the functional
prioritization criteria VC&CC and dissimilarity. Not surprisingly, all prioritization cri-
teria accelerated the detection of faults of the unprioritized suites. It is noteworthy that
the APFD values of the suites generated with CASA were lower than those of ICPL in
all cases. We presume this is due to the internal ordering implemented as a part of the
ICPL algorithm [65].

Prioritization criterion ICPL CASA

None 87.7 87.4

Size–driven 95.4 92.7

Fault–driven 95.5 93.4

Change–driven 95.0 91.8

VC&CC 93.5 92.8

Dissimilarity 92.7 87.9

Table 6.4: APFD values of the prioritized test suites

Figure §6.5 shows the percentage of detected faults versus the fraction of the ICPL
prioritized test suites. Roughly speaking, the graphs show how the APFD value evolves
as the test suite is exercised. Interestingly, all three non–functional prioritization cri-
teria revealed 92% of the faults (3,120 out of 3,392) by exercising just 8% of their re-
spective suites, i.e. 1 test case out of 13. In contrast, the original suite (unprioritized)
detected just 5% of the faults (169 out of 3,392) with the same number of test cases. The

99



CHAPTER 6. NON–FUNCTIONAL TEST CASE PRIORITIZATION CRITERIA FOR HCSS

fault-driven prioritized suite was the fastest suite in detecting all the faults (3,392) by
using just 24% of the test cases (3 out of 13). All other orderings required 31% of the
suite (4 out 13) to detect all the faults with the exception of the dissimilarity criterion,
which required exercising 47% of the test cases (6 out of 13).

(a) No prioritization (b) Size–driven prioritization

(c) Fault–driven prioritization (d) Change–driven prioritization

(e) VC&CC (f) Dissimilarity

Figure 6.5: Percentage of detected faults versus the fraction of the exercise suites

Based on the result obtained, we can answer to the research questions as follows:
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Response to RQ1. The results show that non–functional attributes are effective drivers
to accelerate the detection of faults and thus the response is “Yes, non–functional at-
tributes are helpful to accelerate the detection of faults in HCSs”.

Response to RQ2. The prioritization driven by non–functional attributes led to faster
fault detection than functional criteria in all cases with the only exception of the crite-
rion VC&CC, which ranked second for the CASA test suite. Therefore, the response
derived from our study is “Non–functional attributes are more effective than functional data
at accelerating the detection of faults in most of the cases”.

6.8 APPLICABILITY TO OTHER HCSS

Based on our experience, we believe that the approach proposed throughout this
chapter could be applicable to model the variability of other open-source HCSs. For
that purpose, we have identified a number of basic requirements that the HCS under
study should fulfill and that could be helpful for researchers interested in following
our steps, namely:

Identification of features. The system should be composed of units such as modules
or plug-ins that can be easily related to features of the HCS.

Explicit variability constraints. The system should provide information about the
constraints among the features of the HCS, either explicitly in configuration files or as
a part of the documentation of the system.

Feature information. The system under study should provide extensive and updated
information about its features. This may include data as the number of downloads,
reported installations, test cases, number of developers, etc.

Bug tracking system. The HCS should have a bug tracking system highly used by its
community of users and frequently updated. It is desirable that the developers follow
a rigorous bug review process updating the fields related to version, bug status and
severity. Also, it is crucial that bugs are related to the features in which they were
found using a standardized procedure, e.g. using labels.

Version Control System (VCS). The system should use a VCS that can be easily queried
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to get information about the number of commits by feature, date and version.

6.9 THREATS TO VALIDITY

The factors that could have influenced our case study are summarized in the fol-
lowing internal and external validity threats.

Internal validity. This refers to whether there is sufficient evidence to support the
conclusions and the sources of bias that could compromise those conclusions. The re-
engineering process could have influenced the final feature model of Drupal and there-
fore the evaluation results. To alleviate this threat, we followed a systematic approach
and mapped Drupal modules to features. This is in line with the Drupal documenta-
tion, which defines an enabled module as a feature providing certain functionality to
the system [140]. This also fits in the definition of feature given by Batory, who de-
fines a feature as an increment in product functionality [10]. In turn, submodules were
mapped to subfeatures since they provide extra functionality to its parent module and
they have no meaning without it. Finally, we used the dependencies defined in the
information file of each Drupal module to model CTCs.

Other risk for the internal validity of our work is the approach followed to collect
the data about integration faults in Drupal, which mainly relies on the bug report de-
scription. It is possible that we missed some integration faults and, conversely, we
could have misclassified some individual faults as integration faults. To mitigate this
threat as much as possible we manually checked each candidate integration fault trying
to discard those that were clearly not caused by the interaction among features. This
was an extremely time–consuming and challenging task that required a good knowl-
edge of the framework. We may emphasize that the main author of the article has
more than one year of experience in industry as a Drupal developer. Also, as a further
validation, the work was discussed with two members of the Drupal core team who
approved the followed approach and gave us helpful feedback.

As previously mentioned, the faults in additional modules are not related to a spe-
cific Drupal subversion, i.e. they are reported as faults in Drupal v7.x. Therefore, we
assumed that the faults in those modules equally affected the versions 7.22 and 7.23 of
Drupal. This is a realistic approach since it is common in open source projects that un-
fixed faults affect to several versions of the system. However, this may introduce a bias
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in the fault–driven prioritization since several of the faults in Drupal v7.22 remained in
Drupal v7.23. To minimize this threat, we excluded Drupal additional modules from
the correlation study between the number of faults in Drupal v7.22 and Drupal v7.23,
where a very strong correlation was revealed (0.98). It is also worth mentioning that
the size–driven and change–driven prioritization criteria ranked 2nd and 3rd for ICPL
and 3rd and 4rd for CASA, which still shows the efficacy of non–functional attributes
at driving the search for faults.

External validity. This can be mainly divided into limitations of the approach and
generalizability of the conclusions. Regarding the limitations, we may mention that
Drupal modules have their own versioning system, i.e. there may exists different ver-
sions of the same feature (e.g. Views 7.x-3.8). We found, however, that bug reports in
Drupal rarely include information about the version of the faulty modules and thus
we did not keep track of modules’ versions in our work. Although this may slightly
affect the realism of the case study, it still provides a fair vision of the number and
distribution of faults in a real feature–based HCS.

The correlations and prioritization results reported are based on a single case study
and thus cannot be generalized to other HCS. However, based on our experience, we
believe that the described re–engineering process could be applicable to other open–
source plug–in and module–based systems such as Wordpress or Prestashop, recently
used in variability-related papers [96, 125]. We admit, however, that the described
process could not be applicable to other domains with poorly documented variability.
Despite this, our work does confirm the results of related works in software repository
mining showing that can be found correlation between non–functional data and the
fault propensity of software components. Similarly, our results show the efficacy of
using non–functional attributes as driver for test case prioritization in HCSs.

6.10 SUMMARY

In this chapter, we presented the Drupal framework as a motivating real HCS in the
context of variability testing. We modelled the framework variability using a feature
model and reported on a number of non–functional feature attributes including the
number, types and severity of faults. Among other results, we found integration faults
caused by the interaction of up to 4 different Drupal features. Also, we found that fea-
tures providing key functionality of the framework are involved in a high percentage
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of integration faults, e.g. feature Views is present in 30% of the interaction faults found
in Drupal v7.23. Another interesting finding is the absence of no excludes constraints
in Drupal. This suggests that variability constraints may differ in different domains.
Additionally, we performed a rigorous statistical correlation study to investigate how
non–functional properties may be used to predict the presence of faults in Drupal. As a
result, we provide helpful insights about the attributes that could (and could not) be ef-
fective bug predictors in an HCS. Finally, we presented an experimental evaluation on
the use of non–functional data for test case prioritization. The results show that non–
functional attributes effectively accelerate the detection of faults of combinatorial test
suites, outperforming related functional prioritization criteria as test case similarity.

This case study provides variability researchers and practitioners with helpful in-
formation about the distribution of faults and test cases in a real HCS. Also, it is a
valuable asset to evaluate variability testing techniques in realistic settings rather than
using random variability models and simulated faults. Finally, we trust that this work
encourages others to keep exploring on the use of non–functional attributes in the con-
text of variability testing, e.g. from a multi–objective perspective.

Part of the results described in this chapter were presented in the 8th International
Workshop on Variability Modelling of Software-intensive Systems (VAMOS’14) [115].
An extension of that paper was published in the Special Issue of Software and System
Modeling journal [118]. The Drupal feature model, non–functional attributes, source
code of the evaluation and R scripts to reproduce the statistical analysis of the correla-
tions are available at http://www.isa.us.es/anabsanchez-sosym14.
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MULTI–OBJECTIVE TEST CASE

PRIORITIZATION FOR HCSS

105

Quality is not an act, it is a habit.

Aristotle, philosopher and scientist (347 BC),

Test case prioritization schedules test cases for execution in an order that attempts
to accelerate the detection of faults. The order of test cases is determined by prior-
itization objectives such as covering code or critical components as rapidly as possi-
ble. The importance of this technique has been recognized in the context of Highly-
Configurable Systems (HCSs), where the potentially huge number of configurations
makes testing extremely challenging. However, current approaches for test case prior-
itization in HCSs suffer from two main limitations. First, the prioritization is driven
by a single objective which neglects the potential benefits of combining multiple crite-
ria to guide the detection of faults. Second, evaluations are conducted using synthetic
data rather than industry-strength case studies, which provides no information about
the effectiveness of different prioritization objectives. In this chapter, we address both
limitations by studying 63 combinations of up to three prioritization objectives in ac-
celerating the detection of faults in the Drupal framework. Results show that non–
functional properties such as the number of changes in the features are more effective
than functional metrics extracted from the configuration model. Results also suggest
that the combination of prioritization objectives, where at least one is non–functional,
typically results in faster fault detection. In Section §7.1, we introduce the research
problem. Section §7.2 defines the concepts of feature models and multi-objective evo-
lutionary algorithms. Section §7.3 presents the Drupal case study used to perform
this work. In Section §7.4 and Section §7.5 we respectively describe the overview and
definition of our approach and the multi-objective optimization algorithm proposed.
Section §7.6 defines seven objective functions for HCSs based on functional and non-
functional goals. The evaluation of our approach is described in Section §7.7. Section
§7.8 presents the threats to validity of our work. Finally, we summarize our conclu-
sions in Section §7.9.
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7.1 INTRODUCTION

Highly-Configurable Systems (HCSs) provide a common core functionality and a set
of optional features to tailor variants of the system according to a given set of require-
ments [22, 144]. Testing HCSs is extremely challenging due to the potentially huge
number of configurations under test. This makes exhaustive testing of HCSs infeasi-
ble, that is, testing every single configuration is too expensive in general. Also, even
when a manageable set of configurations is available, testing is irremediably limited
by time and budget constraints which requires making tough decisions with the goal
of finding as many faults as possible.

Typical approaches for HCS testing use a model-based approach, that is, they take
an input feature model representing the HCS and return a valid set of feature con-
figurations to be tested, i.e. a test suite. In particular, two main strategies have been
adopted: test case selection and test case prioritization. Test case selection reduces the
test space by selecting an effective and manageable subset of configurations to be tested
[30, 58, 88]. Test case prioritization schedules test cases for execution in an order that
attempts to increase their effectiveness at meeting some performance goal, typically
detecting faults as soon as possible [5, 82, 146]. Both strategies are complementary and
are often combined.

Test case prioritization in HCSs can be driven by different functional and non–
functional objectives. Functional prioritization objectives are those based on the func-
tional features of the system and their interactions. Some examples are those based on
combinatorial interaction testing [146], configuration dissimilarity [5, 59, 114] or fea-
ture model complexity metrics [114, 118]. Non–functional prioritization objectives con-
sider extra–functional information such as user preferences [42, 68], cost [146], memory
consumption [82] or execution probability [29] to find the best ordering for test cases.
In the previous chapter, work published in [118], we performed a preliminary evalu-
ation comparing the effectiveness of several functional and non–functional prioritiza-
tion objectives in accelerating the detection of faults in an HCS. Results suggested that
non–functional properties such as the number of changes or the number of defects in
a previous version of the system were among the most effective prioritization criteria.

Challenges. Current approaches for test case prioritization in HCSs follow a single
objective approach [5, 29, 42, 59, 68, 82, 118], that is, they either aim to maximize or
minimize an objective (e.g. feature coverage) or another (e.g. suite size) but not both
at the same time. Other works [146] combine several objectives into a single function
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by assigning them weights proportional to their relative importance. While this may
be acceptable in certain scenarios, it may be unrealistic in others where users may
wish to study the trade-offs among several objectives [81]. Thus, the potential benefits
of optimizing multiple prioritization objectives simultaneously, both functional and
non–functional, is a topic that remains unexplored.

A further challenge is related to the lack of HCSs with available code, variability
models and fault reports that can be used to assess the effectiveness of testing ap-
proaches. As a result, authors typically evaluate their contributions in terms of perfor-
mance (e.g. execution time) using synthetic feature models and data [5, 58, 105, 149].
This introduces significant threats to validity, limit the scope of their conclusions and,
more importantly, it raises questions regarding the fault–detection effectiveness of the
different algorithms and prioritization objectives.

Contributions. In this chapter, we present a case study on multi–objective test case pri-
oritization in HCSs. In particular, we model test case prioritization in HCSs as a multi–
objective optimization problem, and we present a search–based algorithm to solve it
based on the classical NSGA-II evolutionary algorithm. Additionally, we present seven
objective functions based on both functional and non–functional properties of the HCS
under test. Then, we report a comparison of 63 different combinations of up to three
objectives in accelerating the detection of faults in the Drupal framework. Drupal is
a highly modular open source web content management system for which we have
mined a feature model and extracted real data from its issue tracking system and Git
repository (see Chapter §6 or cite [118] for more information). Results reveal that non–
functional properties such as the number of changes in the code accelerate the detection
of faults more effectively than functional properties extracted from the feature model.
Results also suggest that the combination of prioritization objectives, where at least
one is non–functional, usually results in faults being detected faster. In summary, we
present the following contributions.

1. Seven novel prioritization objective functions for HCSs: four functions based
on functional information extracted from the feature model, and three functions
based on non–functional data typically available in source version control and
issue tracking repositories.

2. A novel multi–objective evolutionary algorithm for the generation of prioritized
test suites for HCSs.

3. A comparison of the effectiveness of 63 different combinations of up to three
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objective functions in accelerating the detection of faults in Drupal. To the best of
our knowledge, this is the first work on multi-objective test case prioritization in
HCSs using industry-strength data.

7.2 BACKGROUND

7.2.1 Feature Models

As we described in Chapter §2, a feature model defines all the possible configura-
tions of a system or family of related systems [14, 69]. A feature model is visually rep-
resented as a tree–like structure in which nodes represent features, and edges denote
the relationships among them. Recall that a feature can be defined as any increment in
the functionality of the system [142]. A configuration of the system is composed of a
set of features satisfying all the constraints of the model. Figure §7.1 shows a feature
model describing a simplified family of mobile phones.

Figure 7.1: Mobile phone feature model

Feature models can be extended with additional information by means of feature
attributes, these are called attributed or extended feature models [14]. Feature attributes
are often defined as tuples < name,value > specifying non–functional information of
features such as cost or memory consumption. As an example, Table §7.1 depicts three
different feature attributes (number of changes, number of faults and lines of code) and
their values on the features of the model in Figure §7.1.
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Feature Changes Faults Size

Basic 1 0 270
Calls 6 10 1,000
Camera 11 8 680
GPS 8 6 460
HD 3 3 510
Media 9 5 1,100
MP3 11 8 390
Screen 2 4 930

Table 7.1: Mobile phone feature attributes

7.2.2 Multi–objective evolutionary algorithms

Evolutionary algorithms are a widely used strategy to solve multi–objective opti-
mization problems. These algorithms manage a set of candidate solutions to an op-
timization problem that are combined and modified iteratively to obtain better solu-
tions. This process simulates the natural selection of the better adapted individuals
that survive and generate offspring improving species. In evolutionary algorithms
each solution is referred to as individual or chromosome, and objectives are referred to
as fitness functions.

The working scheme of an evolutionary algorithm is depicted in Figure §7.2. Ini-
tialization generates the set of individuals that the algorithm will use as starting point.
Such initial population is usually generated randomly. Next, the fitness functions are
used to assess the individuals. In order to create offspring, individuals need to be en-
coded, expressing its characteristics in a form that facilitates its manipulation during
the rest of the algorithm. Then, the main loop of the evolutionary algorithm is exe-
cuted until meeting a termination criterion as follows. First, individuals are selected
from current population in order to create new offspring. In this process, better indi-
viduals usually have higher probability of being selected resembling the natural evo-
lution where stronger individuals have more chances of reproduction. Next, crossover
is performed to combine the characteristics of a pair of the chosen individuals to pro-
duce new ones in an analogous way to biological reproduction. Crossover mecha-
nisms depend strongly on the scheme used for the encoding. Mutation generates ran-
dom changes on the new individuals. Changes are performed with certain probability
where small modifications are more likely than larger ones. In order to evaluate the
fitness of new and modified individuals, decoding is performed and fitness functions
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Figure 7.2: Working scheme of evolutionary algorithm

are evaluated. Finally, the next population is conformed in such a way that individuals
with better fitness values are more likely to remain in the next population.

Multi–Objective Evolutionary Algorithms (MOEAs) are a specific type of evolu-
tionary algorithm where more than one objective are optimized simultaneously. How-
ever, except in trivial systems, there rarely exist a single solution that simultaneously
optimizes all the objectives. In that case, the objectives are said to be conflicting, and
there exists a (possibly infinite) number of so-called Pareto optimal solutions. A so-
lution is said to be a Pareto optimal (a.k.a. non-dominated) if none of the objectives can
be improved without degrading some of the others objectives. Analogously, the so-
lutions where all the objectives can be improved are referred to as dominated solutions.
The surface obtained from connecting all the Pareto optimal solutions is the so-called
Pareto Front. Among the many MOEAs proposed in the literature, the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [28] has become very popular due to its effec-
tiveness in many of the benchmarks in multi–objective optimization [27, 151].
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7.3 THE DRUPAL CASE STUDY

In this section, we briefly explain the Drupal case study that we fully reported in
Section §6 and in the work [118]. Drupal is a highly modular open source web content
management framework written in PHP [18, 140]. This tool can be used to build a va-
riety of websites including internet portals, e-commerce applications and online news-
papers [140]. More importantly, the Drupal Git repository and the Drupal issue track-
ing systems are publicly available sources of valuable functional and non-functional
information about the framework and its modules.

Figure §7.3 depicts the feature model of Drupal v7.23. Nodes in the tree represent
features where a feature corresponds to a Drupal module. A module is a collection of
functions that provides certain functionality to the system. Some modules extend the
functionality of other modules and are modelled as subfeatures, e.g. Views UI extends
the functionality of Views. The feature model includes the core modules of Drupal,
modelled as mandatory features, plus some optional modules, modelled as optional
features. In addition, the cross-tree constraints of the features in the model are de-
picted in Figure §7.3. These are of the form X requires Y, which means that configura-
tions including the feature X must also include the feature Y. A Drupal configuration is
a combination of features consistent with the hierarchical and cross-tree constraints of
the model. The Drupal feature model represents 2.09E9 different configurations [118].

In this work, we model the non-functional data from Drupal as feature attributes,
depicted in Table §7.2. These data were obtained from the Drupal website, the Drupal
Git repository and the Drupal issue tracking system (see Chapter §6 or work [118]). In
particular, we use the following attributes:

• Feature size. Number of Lines of Code (LoC) of the source code associated to the
feature (blank lines and test files were excluded from the counting). The sizes
range from 284 LoC (feature Ctools custom content) to 54,270 LoC (feature
Views).

• Number of changes. Number of commits made by the contributors to the feature
in the Drupal Git repository1 during a period of two years, from 1 May 2012 to
31 April 2014. As illustrated, the number of changes ranges from 0 (feature Blog)
to 90 (feature Backup migrate).

1http://drupalcode.org/project/drupal.git
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Figure 7.3: Drupal feature model
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• Single faults. Number of faults reported in the Drupal issue tracking system2.
Faults were collected for two consecutive versions of the framework v7.22 and
v7.23 in a period of two years, from 1 May 2012 to 31 April 2014. The number of
faults ranges from 0 in features as Options to 1,091 in the feature Views.

• Integration faults. List of features for which integration faults have been reported
in the Drupal issue tracking system. In total, we identified three faults triggered
by the interaction of four features, 25 caused by the interaction of three features
and 132 faults triggered by the interaction between two features. These faults
have been computed on the features that triggered them in Table §7.2.

7.4 APPROACH OVERVIEW

In this section, we define the problem addressed and our approach illustrating it
with an example.

7.4.1 Problem

The classical problem of test case prioritization consist in scheduling test cases for
execution in an order that attempts to increase their effectiveness at meeting some per-
formance goal [111]. A typical goal is to increase the so-called rate of fault detection,
a measure of how quickly faults are detected during testing. In order to meet a goal,
prioritization can be driven by one or more objectives. For instance, in order to acceler-
ate the detection of faults, a sample objective could be to increase the code coverage in
the system under test at a faster rate, under the assumption that faster code coverage
implies faster fault detection.

Inspired by the previous definition, we next define the multi-objective test case
prioritization problem in HCSs. Given the set of configurations of an HCS represented
by a feature model f m, we present the following definitions.

Test case. A test case is a set of features of f m, i.e., a configuration. A test case is valid
if its features satisfy the constraints represented by the feature model. As an example
the following set of features represent a valid test case of the model presented in Figure
§7.1: {Mobile Phone, Calls, Screen, Basic, Media, MP3}.

2https://drupal.org/project/issues
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Feature Size Changes
Faults (v7.22) Faults (v7.23)

Single Integration Single Integration

Backup migrate 11,639 90 80 4 80 4

Blog 551 0 1 3 0 3

Captcha 3,115 15 17 1 17 1

CKEditor 13,483 40 197 11 197 9

Comment 5,627 1 10 19 13 15

Ctools 17,572 32 181 31 181 31

Ctools acc. rul. 317 0 0 0 0 0

Ctools cus. con. 284 1 10 1 10 1

Date 2,696 9 44 3 44 3

Date API 6,312 11 41 1 41 1

Date popup 792 4 30 1 30 1

Date views 2,383 6 25 1 25 1

Entity API 13,088 14 175 18 175 18

Entity tokens 327 1 22 6 22 6

Features 8,483 72 97 9 97 9

Field 8,618 7 45 18 48 17

Field SQL sto. 1,292 2 3 2 3 2

Field UI 2,996 3 13 2 11 1

File 1,894 1 10 5 11 5

Filter 4,497 3 19 5 19 5

Forum 2,849 2 6 4 5 4

Google ana. 2,274 14 11 1 11 1

Image 5,027 3 10 8 9 6

Image captcha 998 0 3 0 3 0

IMCE 3,940 9 9 5 9 5

Jquery update 50,762 1 64 12 64 12

Libraries API 1,627 7 11 0 11 0

Link 1,934 11 82 4 82 4

Node 9,945 4 26 29 24 23

Options 898 1 0 0 0 0

Panel nodes 480 2 16 1 16 1

Panels 13,390 34 87 24 87 24

Panels IPE 1,462 20 19 2 19 2

Path 1,026 20 3 1 2 1

Pathauto 3,429 2 54 9 54 9

Rules 13,830 5 240 15 240 15

Rules sch. 1,271 4 13 0 13 0

Rules UI 3,306 1 26 0 26 0

System 20,827 16 35 5 35 4

Taxonomy 5,757 4 15 22 19 22

Text 1,097 1 6 3 5 3

Token 4,580 10 37 7 37 7

User 8,419 12 20 25 19 22

Views 54,270 27 1,091 51 1,091 51

Views content 2,683 5 23 2 23 2

Views UI 782 0 12 4 12 4

WebForm 13,196 46 292 0 292 0

Total 336,025 573 3,231 3,232

Table 7.2: Non–functional feature attributes in Drupal
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Test suite. A test suite is an ordered set of test cases. Table §7.3 depicts a sample test
suite of the model presented in Figure §7.1.

Objective function. An objective function represents a goal to optimize. In this work,
objective functions receive an attributed feature model ( f m) and a test suite as inputs
and return a numerical value measuring the quality of the suite with respect to the
optimization goal.

ID Test Case

TC1 Mobile Phone,Calls,Screen,Basic,Media,MP3
TC2 Mobile Phone,Calls,Screen,HD,GPS,Media,Camera,MP3
TC3 Mobile Phone,Calls,Screen,HD,Media,Camera
TC4 Mobile Phone,Calls,Screen,HD
TC5 Mobile Phone,Calls,Screen,Basic,GPS

Table 7.3: Mobile phone test suite

Given a feature model representing the HCS under test and an objective function,
the problem of test case prioritization in HCSs consist in generating a test suite that
optimize the target objective. This problem can be generalized to a multi–objective
problem by considering more than one objective. In this case, the problem may have
more than one solution (i.e., optimal test suites) if there not exist a single solution that
simultaneously optimizes all the objectives.

7.4.2 Our approach

In this work, we propose to model the multi–objective test case prioritization prob-
lem in HCSs as a multi–objective optimization problem. Figure §7.4 illustrates our
approach. Given an attributed feature model and a set of objectives used as fitness
functions, the problem consists in finding a set of optimal solutions (i.e., test suites)
that optimize the target objectives. Once these optimal solutions are obtained, the user
may identify the preferred suite and select it as the solution to the test case prioriti-
zation problem. This can be done either manually or automatically using other met-
rics. In this work we propose using the Average Percentage of Faults Detected (APFD)
[39, 111, 134] metric (see Section §3.5) to check which one of the Pareto optimal so-
lutions obtained accelerates the detection of faults more effectively. This enables the
selection of a global solution and makes it possible to identify the objectives that lead
to better test suites.
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Figure 7.4: Our multi–objective test case prioritization approach for HCSs

7.4.3 Illustrative example

Table §7.4 shows the information of four test suites, using the test cases of Table
§7.3. Note that the order of test cases matters. Along with the test cases that compose
each suite, the table also shows the value of the objective functions Changes and Faults
defined in Section §7.6. Roughly speaking, these functions measures the ability of the
suite to test those features with a greater number of code changes or reported bugs as
quickly as possible.

ID Test cases Changes Faults

TS1 TC4, TC1, TC5, TC3 109 49
TS2 TC1, TC2, TC3, TC4, TC5 80 52
TS3 TC3, TC4, TC5, TC2, TC1 77 57
TS4 TC5, TC4, TC2, TC3, TC1 59 53

Table 7.4: A set of test suites for the mobile phone

Figure §7.5 depicts the Pareto front obtained when trying to find a test suite that
maximizes both objectives. As denoted in the call-out of Figure §7.5, TS4 is dominated
by TS3, since TS3 detects more faults and covers more changes faster; i.e. TS3 is better
than TS4 according to both objectives. Once the optimal test suites are generated, we
calculate their APFD to evaluate how quickly they detect faults. Consider the faults
detected by each test case shown in Table §7.5. According to the previous APFD equa-
tion, test suite TS1 produces an APFD of 46%:

1− 2+2+4+4+1+3
4×6 + 1

2×4 = 0.46,

TS2 an APFD of 57%:
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1− 1+1+2+3+4+5
5×6 + 1

2×5 = 0.57

TS3 an APFD of 80%:

1− 1+1+1+1+2+3
5×6 + 1

2×5 = 0.8

and TS4 an APFD of 53%:

1− 3+4+3+4+2+1
5×6 + 1

2×5 = 0.53

Based on the previous results, TS3 is faster than TS1 and TS2 and therefore it would
be the solution selected from the Pareto front.

Figure 7.5: Test suites of table §7.4 as a pareto front for objectives Changes and Faults
(both to be maximized)

Tests/Faults F1 F2 F3 F4 F5 F6

TC1 X X
TC2 X X
TC3 X X X X
TC4 X
TC5 X

Table 7.5: Test suite and faults exposed
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7.5 MULTI-OBJECTIVE OPTIMIZATION ALGORITHM

We used a MOEA to solve the multi–objective test case prioritization problem in
HCSs. In particular, we adapted NSGA-II due to its popularity and good performance
for many multi-objective optimization problems. In short, the algorithm receives an
attributed feature model and a set of objective functions as input and returns a set
of prioritized test suites, i.e. Pareto optimal solutions. In the following, we describe
the specific adaptations performed to NSGA-II to solve the multi–objective test case
prioritization problem for HCSs.

7.5.1 Solution encoding

In order to create offspring, individuals need to be encoded expressing their charac-
teristics in a form that facilitates their manipulation during the optimization process.
To represent test suites as individuals (chromosomes) we used a binary vector. The
vector stores the information of the different test cases sequentially, where each test
case is represented by N bits, being N the number of features in the feature model.
Thus, the total length of a test suite with k test cases is k ∗ N bits, where the first test
case is represented by the bits between position 0 and N − 1, the second test case is
represented by the bits between position N and 2 ∗ N − 1, and so on. The order of
each feature in each test case corresponds to the depth-first traversal order of the tree.
A value of 0 in the vector means that the corresponding feature is not included in the
test case while a value of 1 means that such feature is included. For efficiency reasons,
mandatory features are safely removed from input feature models using atomic sets
[122]. Figure §7.6 illustrates a test suite with its corresponding encoding based on the
feature model showed in Figure §7.1 (including mandatory features). Note that the
length of the vector that encodes the solutions may differ depending on the number of
test cases contained in the test suite.

7.5.2 Initial population

The generation of an appropriate set of initial solutions to the problem (a.k.a. seed-
ing) may have a strong impact to the final performance of the algorithm. In [81], Lopez-
Herrejon et al. compared several seeding strategies for MOEAs in the context of test
case selection in software product lines and concluded that those test suites includ-
ing all the possible pairs of features (i.e. pairwise coverage) led to better results than
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Figure 7.6: Test suite encoding as a binary vector

random suites. Based on their finding, our initial population is composed of different
orderings of a pairwise test suite generated by the CASA tool [51, 52] from the input
feature model.

7.5.3 Crossover operator

The algorithm uses a customized one–point crossover operator. First, two parent
chromosomes (i.e. test suites) are selected to be combined. Then, a random point
is chosen in the vector (so-called crossover point) and a new offspring is created by
copying the contents of the vectors from the beginning to the crossover point from one
parent and the rest from the other one. To avoid creating test suites with non-valid
test cases, the crossover point is rounded to the nearest multiple of N in the range
[1,SP], being N the number of features in the model and SP the size of the smallest
parent. Figure §7.7 illustrates a sample crossover operation between two chromosomes
of different sizes.

7.5.4 Mutation operators

We implemented three different mutation operators detailed below.

• Test case swap. This mutation operation exchanges the ordering of two randomly
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Figure 7.7: Crossover operator

chosen test cases.

• Test case addition/removal. This mutation operation adds (or removes) a random
test case at a randomly chosen index multiple of N in the suite, being N the
number of features in the model.

• Test case substitution. This mutation operation substitutes a randomly chosen test
case from the test suite by another valid test case randomly generated.

Note that all three operators generate feasible solutions, that is, vectors that encode
test cases fulfilling all the constraints of the input feature model. Test suites including
duplicated test cases as a result of crossover and mutation are discarded.

7.6 OBJECTIVE FUNCTIONS

In this section, we propose and formalize different objective functions for test case
prioritization in HCSs. All the functions receive an attributed feature model represent-
ing the HCS under test ( f m) and a test suite (ts) as inputs and return an integer value
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measuring the quality of the suite with respect to the optimization goal. Note that the
following functions will be later combined to form multi-objective goals (see Section
§7.7). To illustrate each function, we use the feature model in Figure §7.1 as f m and
the test suite ts = [TC1, TC2] with two of the test cases shown in Table §7.3, which we
reproduce next:

TC1 = {Mobile Phone,Calls,Screen,Basic,Media,MP3}

TC2 = {Mobile Phone,Calls,Screen,HD,GPS,Media,Camera,MP3}

7.6.1 Functional objective functions

We propose the following functional objective functions based on the information
extracted from the feature model.

Coefficient of Connectivity-Density (CoC). This metric calculates the complexity of
a feature model in terms of the number of edges and constraints of the model [8].
In Chapter §5, published in [114], we adapted CoC to HCS configurations achieving
good results in accelerating the detection of faults. Now we propose to measure the
complexity of features in terms of the number of edges and constraints in which they
are involved. This function calculates and accelerates the CoC of a test suite, giving
priority to those test cases covering features with higher CoC more quickly. Formally,
let the function coc( f m, ts.tci) return a value indicating the complexity of the features
included in the test case tci at position i in test suite ts, considering only those features
not included in preceding test cases tc0..tci−1 of test suite ts. This objective function is
defined as follows:

Connectivity( f m, ts) =
|ts|−1

∑
i=0

(|ts| − i) ∗ coc( f m, ts.tci) (7.1)

As example, test case TC1 has a CoC of 13 computed as follows: 4 edges in Mobile

Phone, 1 edge in Calls, 3 edges in Screen, 1 edge in Basic, 3 edges in Media and 1
edge in MP3. Let us now consider TC2. Notice that the selected features in TC2 that
have not already been considered by TC1 are HD, GPS, and Camera. Hence TC2 has a
value of 5 computed as follows: 2 edges in HD, 1 edge in GPS, and 2 edges in Camera.
Now considering that TC1 is placed in the position 0 and TC2 in position 1, we calculate
the function Connectivity as follows:

Connectivity( f m, ts) = (2− 0) ∗ 13 + (2− 1) ∗ 5 = 2 ∗ 13 + 1 ∗ 5 = 31
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Dissimilarity. Some pieces of work have shown that two dissimilar test cases have a
higher fault detection rate than similar ones since the former ones are more likely to
cover more components than the latter [59, 114]. This function favors a test suite with
the most different test cases in order to cover more features and improve the rate and
acceleration of fault detection. Formally, let the function d f ( f m, tci) return the number
of different features found in the test case tci that were not considered in preceding test
cases tc0..tci−1. This objective function is defined as follows:

Dissimilarity( f m, ts) =
|ts|−1

∑
i=0

(|ts| − i) ∗ d f ( f m, ts.tci) (7.2)

Test case TC1 has a Dissimilarity value of 6 because it considers the following fea-
tures: Mobile Phone, Calls, Screen, Basic, Media and MP3. Test case TC2 has Dissim-
ilarity value of 3 because it considers the following features that were not part of TC1:
HD, GPS and Camera. Now considering that TC1 is placed in the position 0 and TC2 in
position 1, we calculate the function Dissimilarity as follows:

Dissimilarity( f m, ts) = (2− 0) ∗ 6 + (2− 1) ∗ 3 = 2 ∗ 6 + 1 ∗ 3 = 15

Pairwise Coverage. Many pieces of work have used pairwise coverage based on the
evidence that a high percentage of detected faults are mainly due to the interactions
between two features (e.g. [47, 59, 114]). This objective function measures and acceler-
ates the pairwise coverage of a test suite, giving priority to those test cases that cover a
higher number of pairs of features more quickly. Formally, let the function pc( f m, tci)

return the number of pairs of features covered by the test case tci that were not covered
by preceding test cases tc0..tci−1. This objective function is defined as follows:

Pairwise( f m, ts) =
|ts|−1

∑
i=0

(|ts| − i) ∗ pc( f m, ts.tci) (7.3)

Test case TC1, covers 36 different pairs of features such as the pair [Calls,¬GPS] that
indicates the feature Calls is selected in TC1 and the feature GPS is not selected. Test
case TC2 covers 27 different pairs of features such as the pair [HD,GPS] which indicates
that both features HD and GPS are selected. Now considering that TC1 is placed in the
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position 0 and TC2 in position 1, we calculate the function Pairwise as follows:

Pairwise( f m, ts) = (2− 0) ∗ 36 + (2− 1) ∗ 27 = 2 ∗ 36 + 1 ∗ 27 = 99

Variability Coverage and Cyclomatic Complexity. From a feature model, Cyclomatic
Complexity measures the number of cross-tree constraints [8], while Variability Coverage
measures the number of variation points [43]. A variation point is any feature that pro-
vides different variants to create a product, i.e. optional features and non-leaf features
with one or more non-mandatory subfeatures. These metrics have been jointly used in
previous works as a way to identify the most effective test cases in exposing faults, i.e.
the higher the sum of both metrics, the better the test case [43, 114]. Now, we propose
a function that calculates these metrics and gives priority to those test cases obtain-
ing higher values more quickly. Formally, let function vc( f m, tci) return the number
of different cross-tree constraints and the number of variation points involved on the
features included in the test case tci that were not included in preceding test cases
tc0..tci−1. This objective function is defined as follows:

VCoverage( f m, ts) =
|ts|−1

∑
i=0

(|ts| − i) ∗ vc( f m, ts.tci) (7.4)

The features in test case TC1 have 3 variation points in Mobile Phone, Screen and
Media features. The features in test case TC2 that were not included in test case TC1 are
GPS, HD and Camera. From these three features: GPS has one variation point (adds 1),
and HD and Camera are involved in a cross-tree constraint (add 2). Now considering
that TC1 is placed in the position 0 and TC2 in position 1, we calculate the function
VCoverage as follows:

VCoverage( f m, ts) = (2− 0) ∗ 3 + (2− 1) ∗ 3 = 2 ∗ 3 + 1 ∗ 3 = 9

7.6.2 Non-functional objectives functions

We propose the following non–functional objective functions based on extra–functional
information of the features of an HCS.

Number of Changes. The number of changes has been shown to be a good indica-
tor of error proneness and can be helpful to predict faults in later versions of systems
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(e.g. [54, 150]). Our work adapts this metric for features in HCSs. This objective func-
tion measures the number of changes covered by a test suite and the speed covering
those changes, giving a higher value to those test cases that exercise the features with
greater number of changes earlier. Formally, let the function nc( f m, tci) return the
number of code changes covered by features of the test case tci at position i that were
not covered by preceding test cases tc0..tci−1. Note that we consider a test case to cover
a change if it includes the features where the change was made. This objective function
is defined as follows:

Changes( f m, ts) =
|ts|−1

∑
i=0

(|ts| − i) ∗ nc( f m, ts.tci) (7.5)

Please refer to Table §7.1. Test case TC1 covers the following number of changes:
6 changes in the feature Calls, 2 changes in Screen, 1 change in Basic, 9 changes in
Media and 11 in the feature MP3. In total TC1 covers 29 changes. Test case TC2 considers
three new features HD, GPS and Camera which respectively cover 3, 8, and 11 changes.
In total TC2 covers 22 changes. Now considering that TC1 is placed in the position 0
and TC2 in position 1, we calculate the function Changes as follows:

Changes( f m, ts) = (2− 0) ∗ 29 + (2− 1) ∗ 22 = 2 ∗ 29 + 1 ∗ 22 = 80

Number of Faults. Earlier studies have shown that the detection of faults in an ap-
plication can be accelerated by testing first those components that showed to be more
error-prone in previous versions of the software. This is referred to as history-based
test case prioritization [62, 129]. Our work adapts this metric for features in HCSs.
This objective function calculates the number of faults detected by a test suite and its
speed revealing those faults, giving a higher value to those test cases that detect more
faults faster. Formally, let function n f ( f m, tci) return the number of faults detected by
the test case tci that were not detected by preceding test cases tc0..tci−1. Note that we
consider a test case to detect a fault if it includes the feature(s) that triggered the fault.
This objective function is defined as follows:

Faults( f m, ts) =
|ts|−1

∑
i=0

(|ts| − i) ∗ n f ( f m, ts.tci) (7.6)

Please refer to Table §7.1. Test case TC1 detects: 10 faults in the feature Calls, 4
faults in feature Screen, 0 faults in feature Basic, 5 faults in feature Media and 8 faults
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in feature MP3. The total number of faults detected by TC1 is 27. Test case TC2 considers
three new features HD, GPS and Camera which respectively detect 3, 6 and 8 faults. In
total TC2 detects 17 faults. Now considering that TC1 is placed in the position 0 and
TC2 in position 1, we calculate the function Faults as follows:

Faults( f m, ts) = (2− 0) ∗ 27 + (2− 1) ∗ 17 = 2 ∗ 27 + 1 ∗ 17 = 71

Feature Size. The size of a feature, in terms of its number of Lines of Code (LoC),
has been shown to provide a rough idea of the complexity of the feature and its er-
ror proneness [77, 89, 118]. This objective function measures the size of the features
involved in a test suite, giving priority to those test cases covering higher portions of
code faster. Formally, let function f s( f m, tci) return the size of the features included in
the test case tci that were not included in preceding test cases tc0..tci−1. This objective
function is defined as follows:

Size( f m, ts) =
|ts|−1

∑
i=0

(|ts| − i) ∗ f s( f m, ts.tci) (7.7)

Please refer to Table §7.1. The size contributed by test case TC1 is 3,690 LoC com-
puted by adding: 1000 for feature Calls, 930 for feature Screen, 270 for feature Basic,
1100 for feature Media and 390 for feature MP3. The new features that test case TC2 con-
siders are: feature HD with size 510, feature GPS with size 460 and feature Camera with
size 680. Hence, the total for test case TC2 is 1,650 LoC. Now considering that TC1 is
placed in the position 0 and TC2 in position 1, we calculate the function Size as follows:

Size( f m, ts) = (2− 0) ∗ 3690 + (2− 1) ∗ 1650 = 2 ∗ 3690 + 1 ∗ 1650 = 9030

7.7 EVALUATION

This section explains the experiments conducted to explore the effectiveness of
multi–objective test case prioritization in Drupal. First, we introduce the target re-
search questions and the general experimental setup. Second, the results of the differ-
ent experiments and the statistical results are reported.
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7.7.1 Research questions

In previous chapters, we investigated the effectiveness of functional (Chapter §5)
and non–functional (Chanper §6) test case prioritization criteria for HCSs from a single–
objective perspective. In this chapter, we go a step further in order to answer the fol-
lowing Research Questions (RQs):

RQ1: Can multi-objective prioritization with functional objective functions accelerate the de-
tection of faults in HCSs?

RQ2: Can multi-objective prioritization with non-functional objective functions accelerate the
detection of faults in HCSs?

RQ3: Can multi-objective prioritization with combinations of functional and non-functional
objective functions accelerate the detection of faults in HCSs?

RQ4: Are non-functional prioritization objectives (either in a single or multi-objective perspec-
tive) more, less or equally effective than functional prioritization objectives in accelerating the
detection of faults in HCSs?

7.7.2 Experimental setup

To answer our research questions, we implemented the algorithm and the objec-
tive functions described in Sections §7.5 and §7.6 respectively. To put it simply, our
algorithm takes the Drupal attributed feature model as input and generates a set of
prioritized test suites according to the target objective functions. In particular, the al-
gorithm was executed with all the possible combinations of 1, 2 and 3 of the objectives
functions described in Section §7.6, yielding 63 combinations in total. In all cases, the
goal was to generate prioritized test suites that maximize each objective function, e.g.
max(Changes) and max(VCoverage). For each combination of objectives, the algo-
rithm was executed 30 times to perform statistical analysis of the data. The configura-
tion parameters of the algorithm are depicted in Table §7.6. These were selected based
on the recommended parameters for NSGA-II [28] and the results of some prelimi-
nary tuning experiments. Note that the recommended default mutation probability
for NSGA-II is 1/N, where N is the number of variables of the problem, i.e. number of
test cases in the suite.

The algorithm was implemented using jMetal [34], a Java framework to solve multi–
objective optimization problems. The non-functional objective functions were calcu-
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Parameter Value

Population size 100
Number of generations 50
Crossover probability 0.9
Test case swap mutation probability 0.4 ∗ (1/N)

Test case addition/removal mutation probability 0.3 ∗ (1/N)

Test case substitution mutation probability 0.3 ∗ (1/N)

Table 7.6: Parameter settings for the evolutionary algorithm

lated using the Drupal feature attributes reported in Table §6.1. In particular, the objec-
tive function Faults was calculated on the basis of the faults detected in Drupal v7.22.
The function Pairwise was implemented using the tool SPLCAT [67] which generates
all the possible pairs of features of an input feature model.

The prioritized test suites generated by the algorithm were evaluated according to
their ability to accelerate the detection of faults in Drupal. To that purpose, we used
the information about the faults reported in Drupal v7.23 (3,392 in total, including
single and integration faults) to measure how quickly they would be detected by the
generated suites. More specifically, we created a list of faulty feature sets simulating
the faults reported in the bug tracking system of Drupal v7.23. Each set represents
faults caused by n features (n ∈ [1,4]). For instance, the list {{Node}{Views, Ctools}}
represents a fault in the feature Node and another fault triggered by the interaction
between the features Views and Ctools. We considered that a test case detects a fault
if the test case includes the feature(s) that trigger the fault.

In order to evaluate how quickly faults are detected during testing (i.e., rate of
fault detection) we used the Average Percentage of Faults Detected (APFD) metric de-
scribed in Section §3.5. Given a prioritized test suite, this metric was used to measure
how quickly it would detect the faults in Drupal v7.23. For comparative reasons, we
measured the APFD values of both, the prioritized suites generated by NSGA-II and
the initial pairwise suite generated by the CASA algorithm [51, 52] on each execution.

We ran our tests on an Ubuntu 14.04 machine equipped with INTEL i7 with 8 cores
running at 3.4 Ghz and 16 GB of RAM.

7.7.3 Experiment 1. Functional objectives

In this experiment, we evaluated the rate of fault detection achieved by each group
of 1, 2 and 3 functional objectives, 14 combinations in total. The results of the exper-

127



CHAPTER 7. MULTI–OBJECTIVE TEST CASE PRIORITIZATION FOR HCSS

iment are shown in Table §7.7. For each set of objectives, the table shows the results
of 30 different executions of NSGA-II and CASA respectively. For NSGA-II, the table
depicts the average APFD value of all the test suites generated (i.e., Pareto optimal so-
lutions), average of the maximum APFD value achieved on each execution and max-
imum APFD value obtained in all the executions respectively. For CASA, the table
shows the average and maximum APFD values achieved in all the executions. The top
three best average and maximum APFD values of the table are highlighted in boldface.
We must remark that all the test suites generated detected at least 99% of the emulated
faults. Thus, we omit the results related to the number of faults detected and focus on
how quickly they were detected.

The results in Table §7.7 show that all the functional prioritization objectives, single
or combined, outperformed CASA on both the average and maximum APFD values
obtained. In total, NSGA-II achieved an average APFD value of 0.934 while CASA
achieved 0.872. This was expected since CASA was not conceived as a test case pri-
oritization algorithm. It is also noteworthy that the differences between mono and
multi–objective prioritization are small except for the Pairwise objective, which pro-
duced the worst results. This finding is also observed in the box plot of Figure §7.8
which illustrates the distributions of the maximum APFD values found on each ex-
ecution of NSGA-II (30 in total). The Pairwise objective function obtained the lowest
minimum, maximum and median values. This is lined with the results of CASA and it
suggests that pairwise coverage is not an effective prioritization criterion.

In order to accurately answer the research questions we performed several hypoth-
esis statistical tests. Specifically, for each single functional objective (e.g., Connectivity)
and combination of two or three functional objectives (e.g., Pairwise + Dissimilarity) we
stated a null and alternative hypothesis. The null hypothesis (H0) states that there is
not a statistically significant difference between the results obtained by both sets of ob-
jectives while the alternative hypothesis (H1) states that such difference is statistically
significant. Statistical tests provide a probability (named p-value) ranging in [0, 1].
Researchers have established by convention that p-values under 0.05 are so-called sta-
tistically significant and are sufficient to reject the null hypothesis. Since the results do
not follow a normal distribution, we used the Mann-Whitney U Tests for the analysis
[87].

As a further analysis, we used Vargha and Delaney’s Â12 statistic [6] to evaluate
the effect size, i.e., determine which mono or multi–objective combinations perform
better and to what extent. Table §7.8 shows the effect size statistic and the conclusions
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Objectives
NSGA-II CASA

Avg Avg Max Max Avg Max

Connectivity 0.942 0.943 0.958 0.882 0.954
Dissimilarity 0.944 0.945 0.954 0.885 0.940
Pairwise 0.894 0.895 0.952 0.882 0.934
VCoverage 0.938 0.943 0.957 0.866 0.935

Connectivity + Dissimilarity 0.944 0.946 0.956 0.866 0.924
Connectivity + Pairwise 0.935 0.945 0.960 0.876 0.942
Connectivity + VCoverage 0.944 0.945 0.959 0.866 0.943
Dissimilarity + Pairwise 0.934 0.946 0.957 0.867 0.940
Dissimilarity + VCoverage 0.943 0.945 0.958 0.864 0.933
Pairwise + VCoverage 0.926 0.943 0.954 0.883 0.940

Connectivity + Dissimilarity+ Pairwise 0.934 0.945 0.955 0.864 0.938
Connectivity + Dissimilarity + VCoverage 0.942 0.944 0.959 0.866 0.938
Connectivity + Pairwise + VCoverage 0.931 0.947 0.958 0.868 0.928
Dissimilarity+ Pairwise + VCoverage 0.929 0.943 0.954 0.876 0.944

Average 0.934 0.941 0.960 0.872 0.954

Table 7.7: APFD values achieved by functional prioritization objectives

Figure 7.8: Box plot of the maximum APFD achieved on each execution (30 in total)
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of hypothesis Tests. Each cell shows the Â12 value obtained when comparing the sin-
gle objectives in the columns against the combination of objectives in the rows. Note
that CASA was considered as another prioritization objective in our analysis. Vargha
and Delaney [143] suggested thresholds for interpreting the effect size: 0.5 means no
difference at all; values over 0.5 indicates a small (0.5-0.56), medium (0.57-0.64), large
(0.65-0.71) or very large (0.72-1) difference in favour of the multiple objective in the
row; values below 0.5 indicates a small (0.5-0.44), medium (0.43-0.36), large (0.36-0.29)
or very large (0.29-0.0) difference in favour of the single objective in the column. Cells
revealing very large differences are highlighted in light grey (in favour of the row) and
dark grey (in favour of the column). Values in boldface are those where hypothesis
test revealed statistical differences (p-value <0.05). Statistical results confirm the bad
performance of CASA and the Pairwise objective function compared to the rest of objec-
tives. It is also observed a noticeably superiority of the multi–objective Connectivity +
Pairwise + VCoverage when compared to Connectivity as a mono–objective (Â12 = 0.66).
General results, however, suggest that there is no difference in the rate of fault detec-
tion achieved by mono–objective (except for Pairwise) against multi–objective prioriti-
zation using functional objectives.

Functional Multi-Objective
Functional Mono-Objective

CASA
Connectivity Dissimilarity Pairwise VCoverage

Connectivity + Dissimilarity 0.620 0.491 0.952 0.577 0.999
Connectivity + Pairwise 0.555 0.419 0.947 0.506 0.99
Connectivity + VCoverage 0.569 0.470 0.947 0.536 0.974
Dissimilarity + Pairwise 0.636 0.508 0.957 0.581 0.990
Dissimilarity + VCoverage 0.582 0.446 0.947 0.533 0.998
Pairwise + VCoverage 0.500 0.377 0.943 0.464 0.985

Connectivity + Dissimilarity + Pairwise 0.560 0.462 0.950 0.529 0.992
Connectivity + Dissimilarity + VCoverage 0.562 0.426 0.943 0.513 0.993
Connectivity + Pairwise + VCoverage 0.664 0.524 0.956 0.607 0.996
Dissimilarity + Pairwise + VCoverage 0.516 0.360 0.940 0.466 0.977

CASA 0.048 0.012 0.374 0.021 -

Table 7.8: Â12 values for mono vs. multi–objective prioritization using functional ob-
jectives. Cells revealing very large statistical differences are highlighted in light grey
(in favour of the row) and dark grey (in favour of the column). Values in boldface
reveal statistically significant differences (p-value < 0.05)

130



7.7. EVALUATION

7.7.4 Experiment 2. Non–functional objectives

In this experiment, we evaluated the rate of fault detection achieved by each group
of 1, 2 and 3 non–functional prioritization objectives, 7 combinations in total. Table §7.9
presents the APFD values achieved by NSGA-II and CASA with each set of objectives.
As in the previous experiment, the average and maximum APFD values achieved by
NSGA-II (with any objective) were higher than those achieved by CASA. This confirms
the poor performance of pairwise coverage as a prioritization criterion. Interestingly,
the Faults objective function is involved in the top three best average and maximum
APFD values (in boldface). This suggests that the number of faults in previous versions
of the system is a key factor to accelerate the detection of faults. It is noteworthy that
all the test suites generated detected at least 99% of the emulated faults.

Objectives
NSGA-II CASA

Avg Avg Max Max Avg Max

Changes 0.944 0.944 0.956 0.874 0.935
Faults 0.952 0.952 0.957 0.857 0.921
Size 0.948 0.948 0.956 0.870 0.937

Changes + Faults 0.950 0.952 0.960 0.869 0.941
Changes + Size 0.946 0.950 0.956 0.877 0.930
Faults + Size 0.950 0.950 0.956 0.878 0.936

Changes + Faults + Size 0.948 0.951 0.958 0.864 0.928

Average 0.948 0.950 0.960 0.870 0.941

Table 7.9: APFD values achieved by non-functional prioritization objectives

Figure §7.9 depicts a box plot of the distributions of the maximum APFD value
achieved on each execution of NSGA-II. The best median APFD value was achieved
by the Faults objective function, and the lowest median value was obtained by the
objective Changes. Interestingly, however, the maximum APFD value was obtained
by the combination of both of them, Changes + Faults. This is a good example of the
potential benefits of combining multiple objectives.

Table §7.10 shows the values of the Â12 effect size and the conclusions of hypothesis
tests. CASA is excluded from the table since it was clearly outperformed by all other
objectives. As observed in Table §7.10, the results point at Faults as the best objective
with all the values of the column under 0.5. It is noteworthy, however, that all the
multi–objective combinations improve the results obtained by Changes and Size. That
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Figure 7.9: Box plot of the maximum APFD achieved on each execution (30 in total)

is, the rate of fault detection achieved by Changes and Size is always improved when
combined with another non–functional objective. Overall, the best multi–objective
combination was that formed by Changes + Faults with Â12 values over 0.72 in 2 out
of 3 comparisons. No clear differences were found between the use of multi–objective
prioritization with two or three objectives.

Non-Functional
Mono-Objective

Multi-Objective Changes Faults Size

Changes + Faults 0.779 0.451 0.721
Changes + Size 0.724 0.337 0.649
Faults + Size 0.741 0.350 0.666

Changes + Faults + Size 0.759 0.406 0.681

Table 7.10: Â12 values for mono vs. multi-objective prioritization using non–functional
objectives. Cells revealing very large statistical differences are highlighted in light grey
(in favour of the row). Values in boldface reveal statistically significant differences (p-
value < 0.05)
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7.7.5 Experiment 3. Functional and non–functional objectives

In this experiment, we evaluated the rate of fault detection achieved by each mixed
combination of 2 and 3 functional and non–functional prioritization objectives, 48 com-
binations in total. The results of the experiment are presented in Table §7.11. The top
three best average and maximum APFD values of the table are highlighted in boldface.
The results show that all the multi–objective combinations greatly improved CASA on
both the average and maximum APFD values obtained. As in the previous experi-
ment, 5 out of the 6 top best average APFD values were achieved by multi–objective
combinations including the objective Faults, which confirms the effectiveness of fault
history in accelerating the detection of faults. Analogously, 4 out of the 6 top best av-
erage APFD values include the objective Dissimilarity which confirms the findings of
previous studies on the effectiveness of promoting the differences among test cases to
detect faults more quickly. As in the previous experiments, all the test suites generated
detected at least the 99% of the seeded faults.

Table §7.12 shows the values of the Â12 effect size and statistical tests results on the
comparison between mono and multi–objective combinations of functional and non–
functional objectives. Values indicate a better performance of multi–objective prioriti-
zation compared to mono–objective prioritization with the exception of Faults where
most cells were under 0.5. The overall preeminence, however, was observed in the
combination of objectives Changes + Dissimilarity + VCoverage followed by Changes +
Connectivity + Faults, with values over 0.5 in all cells and over 0.75 in 6 out of 7 columns.

Analogously, Table §7.13 depicts the effect size on the comparison between multi–
objective prioritization using non–functional objectives and multi–objective prioritiza-
tion using both functional and non–functional objectives. Note that the combinations
of functional objectives are not considered since we found no differences with the use
of single functional objectives in Experiment 1. In contrast to the results shown in
Table §7.12, Â12 values reveal no significant differences between multi–objective prior-
itization using non–functional objectives and multi–objective prioritization using both
functional and non–functional objectives. More specifically, only five large differences
were observed in favour of the multi–objective combinations of non–functional ob-
jectives. The preeminent combinations were again Changes + Dissimilarity + VCover-
age and Changes + Connectivity + Faults, outperforming all other functional and non–
functional objectives, either single or combined.
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Objectives
NSGA-II CASA

Avg Avg Max Max Avg Max

Changes + Connectivity 0.944 0.948 0.954 0.871 0.942
Changes + Dissimilarity 0.944 0.948 0.956 0.875 0.938
Changes + Pairwise 0.935 0.946 0.957 0.867 0.935
Changes + VCoverage 0.947 0.951 0.960 0.878 0.946
Connectivity + Faults 0.948 0.951 0.958 0.873 0.940
Connectivity + Size 0.944 0.947 0.959 0.877 0.942
Dissimilarity + Faults 0.948 0.951 0.958 0.867 0.940
Dissimilarity + Size 0.947 0.950 0.956 0.881 0.943
Faults + VCoverage 0.947 0.951 0.957 0.880 0.945
Faults + Pairwise 0.941 0.949 0.959 0.883 0.953
Pairwise + Size 0.937 0.949 0.954 0.877 0.937
Size + VCoverage 0.944 0.949 0.955 0.868 0.929

Changes + Connectivity + Dissimilarity 0.943 0.949 0.954 0.868 0.951
Changes + Connectivity + Faults 0.948 0.952 0.957 0.871 0.943
Changes + Connectivity + Pairwise 0.936 0.949 0.957 0.864 0.946
Changes + Connectivity + Size 0.945 0.951 0.959 0.863 0.944
Changes + Connectivity + VCoverage 0.942 0.948 0.958 0.869 0.924
Changes + Dissimilarity + Faults 0.947 0.951 0.957 0.866 0.936
Changes + Dissimilarity + Pairwise 0.938 0.951 0.957 0.874 0.942
Changes + Dissimilarity +Size 0.944 0.949 0.956 0.867 0.939
Changes + Dissimilarity + VCoverage 0.946 0.952 0.959 0.873 0.943
Changes + Faults + Pairwise 0.938 0.950 0.956 0.877 0.947
Changes + Faults + VCoverage 0.945 0.951 0.960 0.868 0.935
Changes + Pairwise + Size 0.934 0.949 0.957 0.879 0.947
Changes + Pairwise + VCoverage 0.938 0.949 0.956 0.873 0.936
Changes + Size + VCoverage 0.944 0.951 0.958 0.872 0.948
Connectivity + Dissimilarity + Faults 0.948 0.950 0.956 0.867 0.943
Connectivity + Dissimilarity + Size 0.947 0.950 0.960 0.876 0.939
Connectivity + Faults + Pairwise 0.941 0.951 0.957 0.870 0.931
Connectivity + Faults + Size 0.947 0.951 0.959 0.872 0.945
Connectivity + Faults + VCoverage 0.947 0.951 0.958 0.862 0.933
Connectivity + Pairwise + Size 0.942 0.951 0.958 0.882 0.946
Connectivity + Size + VCoverage 0.947 0.951 0.958 0.873 0.937
Dissimilarity + Faults + Pairwise 0.943 0.952 0.957 0.869 0.940
Dissimilarity + Faults + Size 0.949 0.951 0.958 0.868 0.940
Dissimilarity + Faults + VCoverage 0.945 0.950 0.955 0.873 0.938
Dissimilarity + Pairwise + Size 0.936 0.949 0.959 0.863 0.951
Dissimilarity + Size + VCoverage 0.950 0.957 0.957 0.872 0.949
Faults + Pairwise + Size 0.941 0.950 0.957 0.862 0.922
Faults + Pairwise + VCoverage 0.942 0.951 0.960 0.866 0.927
Faults + Size + VCoverage 0.945 0.950 0.957 0.879 0.934
Pairwise + Size + VCoverage 0.935 0.949 0.959 0.865 0.941

Average 0.950 0.960 0.960 0.871 0.953

Table 7.11: APFD values achieved by functional and non-functional prioritization ob-
jectives

134



7.7. EVALUATION

Mixed Multi-Objective
Functional Objectives Non-Functional Objectives

Connectivity Dissimilarity Pairwise VCoverage Changes Faults Size

Changes + Connectivity 0.727 0.560 0.964 0.645 0.624 0.229 0.499
Changes + Dissimilarity 0.729 0.610 0.967 0.668 0.652 0.316 0.547
Changes + Pairwise 0.644 0.516 0.956 0.596 0.573 0.234 0.440
Changes + VCoverage 0.824 0.740 0.979 0.779 0.777 0.470 0.707
Connectivity + Faults 0.822 0.710 0.977 0.754 0.759 0.413 0.678
Connectivity + Size 0.664 0.546 0.958 0.616 0.572 0.256 0.464
Dissimilarity + Faults 0.821 0.719 0.977 0.759 0.766 0.428 0.691
Dissimilarity + Size 0.788 0.702 0.974 0.734 0.737 0.419 0.671
Faults + Pairwise 0.768 0.623 0.970 0.698 0.697 0.296 0.564
Faults + VCoverage 0.817 0.729 0.982 0.768 0.770 0.426 0.682
Pairwise + Size 0.746 0.594 0.964 0.670 0.654 0.278 0.565
Size + VCoverage 0.739 0.642 0.971 0.689 0.679 0.365 0.592

Changes + Connectivity + Dissimilar-
ity

0.741 0.612 0.964 0.678 0.671 0.317 0.581

Changes + Connectivity + Faults 0.858 0.781 0.982 0.806 0.809 0.504 0.763
Changes + Connectivity + Pairwise 0.761 0.624 0.970 0.698 0.682 0.327 0.577
Changes + Connectivity +Size 0.808 0.691 0.974 0.748 0.739 0.387 0.650
Changes + Connectivity + VCoverage 0.723 0.574 0.968 0.665 0.653 0.239 0.517
Changes + Dissimilarity + Faults 0.806 0.697 0.973 0.746 0.751 0.414 0.672
Changes + Dissimilarity + Pairwise 0.809 0.727 0.978 0.756 0.764 0.432 0.693
Changes + Dissimilarity + Size 0.764 0.635 0.972 0.701 0.696 0.316 0.564
Changes + Dissimilarity + VCoverage 0.855 0.804 0.983 0.814 0.823 0.518 0.774
Changes + Faults + Pairwise 0.794 0.682 0.975 0.733 0.735 0.358 0.652
Changes + Faults + VCoverage 0.828 0.696 0.977 0.757 0.749 0.388 0.677
Changes + Pairwise + Size 0.751 0.624 0.968 0.693 0.677 0.316 0.562
Changes + Pairwise + VCoverage 0.759 0.613 0.968 0.693 0.683 0.274 0.559
Changes + Size + VCoverage 0.824 0.722 0.977 0.767 0.757 0.406 0.683
Connectivity + +Dissimilarity + Faults 0.801 0.676 0.977 0.730 0.738 0.355 0.652
Connectivity + Dissimilarity + Size 0.786 0.678 0.973 0.730 0.714 0.380 0.617
Connectivity + Faults + Pairwise 0.827 0.722 0.976 0.764 0.764 0.403 0.701
Connectivity + Faults + Size 0.842 0.733 0.981 0.777 0.777 0.431 0.701
Connectivity + Faults + VCoverage 0.830 0.718 0.978 0.769 0.772 0.422 0.709
Connectivity + Pairwise + Size 0.806 0.766 0.983 0.777 0.786 0.498 0.717
Connectivity + Size + VCoverage 0.816 0.728 0.979 0.767 0.753 0.428 0.688
Dissimilarity + Faults + Pairwise 0.850 0.759 0.984 0.786 0.803 0.478 0.757
Dissimilarity + Faults + Size 0.843 0.723 0.978 0.773 0.774 0.436 0.723
Dissimilarity + Faults + VCoverage 0.810 0.674 0.973 0.738 0.732 0.349 0.656
Dissimilarity + Pairwise + Size 0.727 0.607 0.966 0.673 0.651 0.294 0.545
Dissimilarity + Size + VCoverage 0.789 0.676 0.973 0.736 0.732 0.397 0.627
Faults + Pairwise + Size 0.784 0.648 0.972 0.724 0.721 0.338 0.602
Faults + Pairwise + VCoverage 0.826 0.714 0.977 0.766 0.757 0.426 0.704
Faults + Size + VCoverage 0.797 0.665 0.972 0.726 0.721 0.329 0.622
Pairwise + Size + VCoverage 0.751 0.608 0.970 0.683 0.669 0.263 0.525

Table 7.12: Â12 values for mono vs. multi–objective combinations of functional and
non–functional objectives. Cells revealing very large statistical differences are high-
lighted in light grey (in favour of the row) and dark grey (in favour of the column).
Values in boldface reveal statistically significant differences (p-value < 0.05)
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Mixed Multi-Objective
Non-Functional Multi-Objective

Changes+Faults Changes+Faults+Size Changes+Size Faults+Size

Changes + Connectivity 0.262 0.324 0.354 0.334
Changes + Dissimilarity 0.351 0.389 0.443 0.417
Changes + Pairwise 0.256 0.287 0.318 0.299
Changes + VCoverage 0.494 0.534 0.599 0.587
Connectivity + Faults 0.438 0.498 0.552 0.528
Connectivity + Size 0.281 0.342 0.362 0.351
Dissimilarity + Faults 0.459 0.487 0.558 0.542
Dissimilarity + Size 0.468 0.483 0.563 0.552
Pairwise + Faults 0.328 0.379 0.418 0.402
Faults + VCoverage 0.471 0.498 0.579 0.540
Pairwise + Size 0.317 0.385 0.414 0.417
Size + VCoverage 0.413 0.423 0.500 0.482

Changes + Connectivity + Dissimilarity 0.361 0.394 0.446 0.436
Changes + Connectivity + Faults 0.538 0.619 0.671 0.649
Changes + Connectivity + Pairwise 0.362 0.406 0.453 0.442
Changes + Connectivity + Size 0.418 0.466 0.520 0.501
Changes + Connectivity + VCoverage 0.272 0.296 0.337 0.329
Changes + Dissimilarity + Faults 0.452 0.502 0.562 0.547
Changes + Dissimilarity + Pairwise 0.484 0.518 0.588 0.565
Changes + Dissimilarity + Size 0.341 0.371 0.422 0.397
Changes + +Dissimilarity + VCoverage 0.554 0.604 0.668 0.657
Changes + Faults + Pairwise 0.398 0.418 0.492 0.483
Changes + Faults + VCoverage 0.422 0.489 0.533 0.522
Changes + Pairwise + Size 0.344 0.377 0.426 0.412
Changes + Pairwise + VCoverage 0.309 0.351 0.396 0.379
Changes + Size + VCoverage 0.451 0.532 0.576 0.559
Connectivity + Dissimilarity + Faults 0.414 0.436 0.511 0.487
Connectivity + Dissimilarity + Size 0.408 0.454 0.506 0.484
Connectivity + Faults + Pairwise 0.462 0.524 0.582 0.561
Connectivity + Faults + Size 0.470 0.539 0.601 0.573
Connectivity + Faults + VCoverage 0.462 0.516 0.570 0.554
Connectivity + Pairwise + Size 0.552 0.566 0.652 0.622
Connectivity + Size + VCoverage 0.477 0.531 0.589 0.563
Dissimilarity + Faults + Pairwise 0.534 0.570 0.662 0.634
Dissimilarity + Faults + Size 0.473 0.561 0.601 0.583
Dissimilarity + Faults + VCoverage 0.399 0.449 0.507 0.486
Dissimilarity + Pairwise + Size 0.333 0.368 0.414 0.404
Dissimilarity + Size + VCoverage 0.417 0.482 0.521 0.504
Faults + Pairwise + Size 0.359 0.386 0.441 0.422
Faults + Pairwise + VCoverage 0.463 0.535 0.579 0.562
Faults + Size + VCoverage 0.379 0.437 0.477 0.454
Pairwise + Size + VCoverage 0.291 0.332 0.362 0.348

Table 7.13: Â12 values for combinations of non–functional objectives vs. mixed combi-
nations of functional and non–functional prioritization objectives. Cells revealing very
large statistical differences are highlighted dark grey (in favour of the column). Values
in boldface reveal statistically significant differences (p-value < 0.05)
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7.7.6 Experiment 4. Functional vs non–functional objectives

In this experiment, we performed a further statistical analysis of the data obtained
in previous experiments to measure the effect size on the comparison of functional
objectives against non–functional objectives, both single and combined. Table §7.14
shows the values of the Â12 effect size. Again, note that the functional multi–objectives
were not considered since we found no differences with the use of single functional
objectives in Experiment 1. The values indicate a clear preeminence of non–functional
objectives, both single and combined, over functional objectives, being the objective
Changes the only exception. As observed in Experiment 2 and 3, the objective Faults
consistently show the largest differences followed by the combination of Changes +
Faults and Changes + Faults + Size.

Functional Objectives
Non-Functional Objectives

Changes Faults Size Changes+Faults Changes+Faults+Size Changes+Size Faults+Size

Connectivity 0.420 0.152 0.271 0.153 0.162 0.183 0.182
Dissimilarity 0.543 0.222 0.429 0.266 0.282 0.341 0.318
Pairwise 0.059 0.019 0.036 0.021 0.020 0.027 0.025
VCoverage 0.469 0.199 0.344 0.214 0.222 0.264 0.250

Connectivity + Dissimilarity 0.542 0.196 0.396 0.213 0.233 0.263 0.253
Connectivity + Pairwise 0.451 0.150 0.299 0.166 0.193 0.212 0.202
Connectivity + VCoverage 0.502 0.203 0.374 0.223 0.243 0.270 0.261
Dissimilarity + Pairwise 0.550 0.206 0.433 0.232 0.258 0.295 0.288
Dissimilarity + VCoverage 0.486 0.167 0.350 0.179 0.196 0.224 0.210
Pairwise + VCoverage 0.418 0.094 0.247 0.110 0.122 0.142 0.129

Connectivity + Dissimilarity + Pairwise 0.494 0.197 0.367 0.230 0.233 0.273 0.258
Connectivity + Dissimilarity + VCover-
age

0.457 0.166 0.331 0.179 0.214 0.224 0.226

Connectivity + Pairwise + VCoverage 0.572 0.227 0.425 0.251 0.261 0.302 0.278
Dissimilarity + Pairwise + VCoverage 0.396 0.072 0.237 0.083 0.112 0.118 0.109

Table 7.14: Â12 values for functional vs. non–functional prioritization objectives. Cells
revealing very large statistical differences are highlighted in dark grey (in favour of the
column). Values in boldface reveal statistically significant differences (p-value < 0.05)

7.7.7 Discussion

We now summarize the results and what they tell us about the research questions.

RQ1: Mono vs. multi–objective prioritization using functional objectives. The re-
sults of experiment 1 revealed no significant differences between mono and multi–
objective prioritization using functional objectives. The only exception was found in
the Pairwise objective function which consistently achieved the worse rate of fault de-
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tection, which suggest that pairwise coverage is not an effective prioritization criterion.
In the light of these results, RQ1 is answered as follows:

Mono and multi–objective prioritization driven by functional objectives have similar ef-
fectiveness in accelerating the detection of faults in HCSs.

RQ2: Mono vs. multi–objective prioritization using non–functional objectives. The
results of experiment 2 showed significant differences in favour of multi–objective pri-
oritization over mono–objective prioritization using non–functional objectives. A clear
exception was found in the objective function Faults which outperformed all other
combinations. We conjecture that this result could be caused by the nature of the case
study. In particular, we used the bugs detected in Drupal v7.22 to accelerate the detec-
tion of faults in Drupal v7.23. Being two consecutive versions of the framework, we
found that some of the faults in Drupal v7.22 remained in Drupal v7.23, which means
that the prioritization could be overfitted. While this is a realistic scenario, we think
the results could not be generalizable to non–consecutive versions of the framework
and thus the results must be taken with caution. Based on the global results, however,
RQ2 is answered as follows:

Multi–objective prioritization using non–functional objectives is, in general, more effec-
tive than mono–objective prioritization with non–functional objectives in accelerating
the detection of faults in HCSs.

RQ3: Combination of functional and non–functional objectives. Experiment 3 re-
vealed two main conclusions on the multi–objective combination of functional and
non–functional objectives. First, the results showed that the multi–objective prioritiza-
tion using functional and non–functional objectives is consistently better than mono–
objective prioritization. Again, the only exception was found in the function Faults.
This could be explained, as detailed above, by the use of two consecutive versions of
the framework and thus this result is not fully conclusive. Second, results revealed
no significant differences between multi–objective prioritization driven by functional
and non–functional objectives and multi–objective prioritization using non–functional
objectives only. Interestingly, however, the best results were obtained by mixed com-
binations of three functional and non–functional objectives, i.e. Changes + Dissimilarity
+ VCoverage and Changes + Connectivity + Faults. In the light of these results, RQ3 is
answered as follows:
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Multi–objective prioritization driven by functional and non–functional objectives per-
form better than mono–objective prioritization, but equally well as multi–objective prior-
itization using non–functional objectives in accelerating the detection of faults in HCSs.

RQ4: Functional vs non–functional objectives. The results of experiment 4 show a
superiority of non–functional objectives over functional objectives, especially notice-
able when these are combined in a multi-objective perspective. This is consistent with
our previous results on mono–objective comparison of functional and non–functional
objectives [118]. Based on these results, RQ4 is answered as follows:

Non–functional prioritization objectives are more effective in accelerating the detection
of faults in HCSs than functional objectives, especially when they are combined in a
multi-objective perspective.

7.8 THREATS TO VALIDITY

The factors that could have influenced our case study are summarized in the fol-
lowing internal and external validity threats.

Internal validity. This refers to whether there is sufficient evidence to support the con-
clusions and the sources of bias that could compromise those conclusions. Inadequate
parameter setting is a common internal validity threat. In this work, we used standard
parameter values for the NSGA-II algorithm [28]. Furthermore, to consider the effect
of stochasticity, the algorithm was executed multiple times with each combination of
objective functions and their results analysed using statistical tests.

External validity. This can be mainly divided into limitations of the approach and gen-
eralizability of the conclusions. Regarding the limitations, the Drupal feature model
and their attributes were manually mined from different sources and therefore they
could slightly differ from their real shape [118]. Other risk for the validity of our work
is that a number of the faults in Drupal v7.22 remained in Drupal v7.23, which may
introduce a bias in the fault–driven prioritization. Note, however, that this is a realistic
scenario since it is common in open-source projects that unfixed faults affect several
versions of the system.

The statistical and prioritization results reported are based on a single case study
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and thus cannot be generalized to other HCSs. Nevertheless, our results show the effi-
cacy of using combinations of functional and non-functional goals in a multi-objective
problem as good drivers for test case prioritization in open–source HCSs as the Drupal
framework.

7.9 SUMMARY

This chapter presented a real–world case study on multi–objective test case prior-
itization in Drupal, a highly configurable web framework. In particular, we adapted
the NSGA-II evolutionary algorithm to solve the multi-objective prioritization prob-
lem in HCSs. Our algorithm uses seven novel objective functions based on functional
and non-functional properties of the HCS under test. We performed several experi-
ments comparing the effectiveness of 63 different combinations of up to three of these
objectives in accelerating the detection of faults in Drupal. Results revealed that prior-
itization driven by non-functional objectives, such as the number of faults found in a
previous version of the system, accelerate the detection of bugs more effectively than
functional prioritization objectives. Results also showed that multi–objective prioriti-
zation using non–functional objectives performs better than mono–objective prioriti-
zation. Furthermore, we found that multi–objective prioritization, where at least one
of the objectives is non–functional, usually results in faults being detected faster. To the
best of our knowledge, this is the first work on multi–objective test case prioritization
in HCS using industry–strength data.

Several challenges remain for future work. First, the development of similar case
studies in other HCSs would be a nice complement to study the generalizability of our
conclusions. Also, the result of combining more than three objectives is a topic that
remains unexplored and for which other algorithms (so-called many–objectives algo-
rithms) are probably more suited. Finally, we may remark that part of the results of
this approach have been integrated into smarTest (see Section §A), a Drupal test prior-
itization module developed by the authors and recently presented at the International
Drupal Conference [117] with very positive feedback from the community.

Part of the results described in this chapter was submitted to the Journal of System
and Software. For the sake of replicability, the source code of our algorithm, the Drupal
attributed feature model, experimental results and statistical analysis scripts in R are
publicly available at http:\exemplar.us.es/demo/SanchezJSS2016 (100Mb).
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There will come a time when you believe everything is finished.
That will be the beginning.

Louis Dearborn, 1908-1988, American writer,

8.1 CONCLUSIONS

The development of HCSs provides clear benefits for the production process but
significant challenges for the validation. The high number of configurations that can
be potentially derived from an HCS may lead to thousand or even millions, e.g. the
Drupal HCS has more than 2 billions of configurations. This makes that testing every
single HCS configuration is unfeasible. As a result, a number of testing techniques to
reduce the space of testing in HCSs are rapidly proliferating. However, even after re-
ducing the test space, the number of configurations under test may still be large and
expensive to run. Thus, test case prioritization techniques appeared to identify the ef-
ficient ordering of execution of tests to maximize certain performance goals, such as
accelerating the detection of faults. Nevertheless, current approaches for test case pri-
oritization in HCSs are scarce and suffer from some limitations. First, most of them
are a combination of sampling (usually using CIT) and prioritization (using weights)
to generate the test cases, which is not a pure prioritization. Second, the prioritiza-
tion is mainly driven by a single objective or a combination of several objectives into
a single function by assigning them weights proportional to their relative importance,
which neglects the potential benefits of combining multiple equally important criteria
to guide the detection of faults. Third, generally, prioritization testing techniques in
HCS were driven by functional objectives without taking advantage of all available in-
formation about the system under test to guide the testing. And fourth, the evaluation
of HCS testing approaches are basically conducted using synthetic data rather than
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industry-strength case studies, which weakens the value of research proposals.

In this dissertation, we have addressed aforementioned limitations by proposing
new prioritization objectives based on functional and non-functional properties, new
testing techniques focused on single-objective and multi–objective prioritization, new
industry-strength case studies to evaluate the testing approaches and a test case pri-
oritization tool, SmarTest, integrated into a real open-source HCS. Also, we analyzed
63 combinations of up to three prioritization objectives to find the best combinations
for accelerating the detection of faults in an industry HCS tool. Among other results,
we found that prioritization driven by non–functional objectives, such as the number
of faults found in a previous version of the system, accelerates the detection of bugs
more effectively than functional prioritization objectives. Results also showed that, in
general, multi–objective prioritization using non–functional objectives performs better
than mono–objective prioritization. Furthermore, we found that multi–objective prior-
itization, where at least one of the objectives is non–functional, usually results in faults
being detected faster for our case study. The results also showed that non–functional
objectives effectively accelerate the detection of faults of both random and pairwise-
based HCS test suites. This suggests that our approach could be a nice complement
for current techniques for test case selection. To the best of our knowledge, we are pio-
neers in the support of multi–objective test case prioritization in HCSs using industry-
strength data and comparing the effectiveness of functional and non-functional prior-
itization objectives to accelerate the detection of bugs.

8.2 DISCUSSION AND LIMITATIONS

We next discuss some of the decisions that we have made in this dissertation high-
lighting its main limitations.

Parameter settings. We adapted the NSGA-II algorithm to solve the multi-objective
test case prioritization problem in HCSs. Inadequate parameter setting is a common
internal validity threat. However, we used standard parameter values for the NSGA-
II algorithm. Furthermore, to consider the effect of stochasticity, the algorithm was
executed multiple times with each combination of objective functions and their results
analyzed using statistical tests.

Drupal Case study. The reengineering process could have influenced the final fea-
ture model of Drupal and therefore the evaluation results. To alleviate this threat, we
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followed a systematic approach and mapped Drupal modules to features. This is in
line with the Drupal documentation, which defines an enabled module as a feature
providing certain functionality to the system. This also fits in the definition of feature
given by Batory, who defines a feature as an increment in product functionality. In turn,
submodules were mapped to subfeatures since they provide extra functionality to its
parent module and they have no meaning without it. Finally, we used the dependen-
cies defined in the information file of each Drupal module to model CTCs. Regarding
the data collected about integration faults in Drupal, it is possible that we missed some
integration faults, and conversely, we could have misclassified some individual faults
as integration faults. To mitigate this threat as much as possible, we manually checked
each candidate integration fault trying to discard those that were clearly not caused
by the interaction among features. This was an extremely time-consuming and chal-
lenging task that required a good knowledge of the framework. We may emphasize
that the candidate author has more than one year of experience in industry as a Drupal
developer. Also, as a further validation, the work was discussed with two members
of the Drupal core team who approved the followed approach and gave us helpful
feedback. Besides, the faults in additional modules are not related to a specific Drupal
subversion, i.e. they are reported as faults in Drupal v7.x. Therefore, we assumed that
the faults in those modules equally affected the versions 7.22 and 7.23 of Drupal. This
is a realistic approach since it is common in open-source projects that unfixed faults
affect several versions of the system.

Correlation study of prioritization objectives. As the correlation study of priori-
tization objectives is based on the Drupal framework, there are some limitations since
the Drupal feature model and their attributes were manually mined from different
sources and therefore they could slightly differ from their real shape. Also, the num-
ber of faults in Drupal v7.22 remained in Drupal v7.23, which may introduce a bias
in the prioritization based on historical of faults. Note, however, that this is a realistic
scenario since it is common in open–source projects that unfixed faults affect several
versions of the system.

Generalizability of results. Finally, the statistical and prioritization results re-
ported in part of this dissertation are based on a single case study and thus cannot be
generalized to other HCSs. Nevertheless, our results show the efficacy of using com-
binations of functional and non–functional objectives in a multi–objective problem as
good drivers for test case prioritization in open–source HCSs as the Drupal framework.
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8.3 FUTURE WORK

We identify a number of motivating topics to be explored in our future research,
namely:

Many-objective test case prioritization. Due to restrictions on the type of the al-
gorithm chosen, we have explored the combination of up to three objectives, therefore,
the result of combining more than three objectives is a topic that remains unexplored
and for which other algorithms (so-called many-objectives algorithms) are probably
more suited.

Development of other case studies. The Drupal case study presented in this dis-
sertation provides researchers and practitioners with helpful information about the
distribution of faults and test cases in a real HCS and it is a valuable assets to evalu-
ate variability testing techniques in realistic settings. This work encourages us to keep
exploring on the use of industry-strength non–functional attributes in the context of
HCS testing and to develop similar case studies that allow us and another researchers
to study the generalizability of the research conclusions.

Tool support. Part of the results of this dissertation have been integrated into Smar-
Test (see Section §A) with very positive feedback from the Durpal Community. We
have included our test case prioritization techniques driven by a mono-objective per-
spective obtaining efficient results in revealing bugs earlier in Drupal. We plan to inte-
grate the multi-objective prioritization techniques proposed by developing our genetic
algorithm in SmarTest. We are confident that our test case multi-objective approach
could further improve the testing in Drupal.
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A picture is worth a thousand words.
An interface is worth a thousand pictures.

Ben Shneiderman, 1947, Usamerican computer scientist,

In this dissertation, we have motivated the need for automated support for im-
proving the process of testing in HCSs. In particular, we have showed how the prior-
itization of the test cases execution can reduce the effort of testing by revealing faults
faster and enabling software engineers to begin debugging and correcting faults ear-
lier. However, most of tools resulting from research are exploited in the academic
community rather than in industry. In order to go a step further to get a tool useful for
industry realm, we have integrated our testing techniques presented in this disserta-
tion in Drupal, a well-known web content management framework as a testing module
called SmarTest. This appendix describes the SmarTest tool. In Section §A.1, we de-
scribe the development context of SmarTest. Section §A.2 provides a general overview
of the SmarTest. Finally, a summary of the appendix is presented in Section §A.3.

A.1 SMARTEST CONTEXT

throughout this document, we focused on defining testing solutions for families
of configurations. Now, we asked us why not finish the complete process of testing
of families of configurations, i.e., why not continue testing the individual configura-
tions derived from a family of configurations and apply our prioritization techniques
to them? And, why not to do it in a real environment?

In order to carry out this idea, we decided to work with a real configuration of the
Drupal web content management framework [18, 140]. Drupal can be used to build
a variety of web sites including internet portals, e-commerce applications and online
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Figure A.1: Several Drupal core and additional modules. Taken from [140]

newspapers. It is composed of modules. A module is a collection of functions that
provide certain functionality to the system. As we described in Section §6.2, the mod-
ules in Drupal can be classified into core modules and additional modules. The core
modules are approved by the core developers of the Drupal community and they are
included by default in the basic installation of Drupal framework. They include code
that allows the system to bootstrap when it receives a request, a library of common
functions frequently used with Drupal, and modules that provide basic functional-
ity like user management and templating. Additional modules can be divided into
contributed modules and custom modules. Contributed modules are written by the
Drupal community and shared under the same GNU Public License (GPL) as Drupal.
Custom modules are those created by external contributors. Figure §A.1 illustrates
some popular core and additional Drupal modules.

In this context, we analyzed the Drupal testing system. Drupal has a core mod-
ule called SimpleTest that allows defining and executing automated tests. SimpleTest
reads the drupal tests defined in the system and shows the list of tests grouped by cat-
egories such as tests for views or tests for users. Then, the module enables the selection
or deselection of tests to be executed. Although SimpleTest has a powerful and easy to
use functionality for testing, we think that this module could be improved by applying
our testing solutions proposed in this dissertation as an extension of this core module.
Thus, SmarTest arises.
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A.2 SMARTEST OVERVIEW

SmarTest is a testing module for Drupal that includes part of the results obtained in
this dissertation. It is written in PHP and it is integrated in the Drupal sandbox project1

distributed as GNU General Public License, version 2. SmarTest supports the analysis
of the system providing useful information to guide the testers and it allows applying
different prioritization testing techniques to reveals bugs faster. Current version of
SmarTest provides the following features:

• Customizable dashboard with information at run-time. The main view of Smar-
Test is a dashboard that allows showing actual information about the Drupal sys-
tem such as the size of the modules (in terms of lines of code), the number of tests
per module that passed and failed in last tests executions or the complexity of the
modules. All these data have been showed to be closely related with the propen-
sity to faults of Drupal modules. For example, in Section §6.6, we performed a
correlation study that revealed a strong positive correlation between the size of
the Drupal modules and the number of faults in the modules. This means that
the number of lines of code could be used as a good estimation of their fault
propensity. In addition to this information, the dashboard may display the per-
centage of code coverage that cover the tests, the modules with less test coverage,
the modules with more failures detected in last executions, the percentage of test
passed and failed in last test executions or even the time taken by the last execu-
tion. In addition to this useful functionality for testers, the dashboard is totally
customizable and configurable. This means that we can include new widgets of
information (e.g. chart showing the relation of lines of code in the modules and
their ciclomatic complexity) and in the format that we need (e.g. tag clouds, col-
umn graphs or row graphs). Figure §A.2 illustrates the screenshot of a dashboard
created in SmarTest.

• Prioritization of tests. SmarTest allows selecting different types of test priori-
tization criteria based on real data of the Drupal system. Thus, we can order
the execution of tests based on the complexity of the tests, based on the size of
the modules, based on the number of commits (taken from the Drupal project
Github), based on the code coverage, based on the number of tests that failed
in last executions, etc. We include these prioritization criteria according to our
statistic correlation study presented in Section §6.6 that showed the correlation

1https://www.drupal.org/sandbox/annasan/2503695
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of these properties of the code with its error-prone. Also, we can indicate the
time that we want tests are running (given in minutes or hours). Once we have
chosen the prioritization criteria and the execution time, SmarTest displays all of
the tests of the system ordered by that criterion, showing the value for that cri-
terion of each group of tests and the time taken in the last execution. Then, the
system allows us to select all the tests or some of them to be run in the established
order. As an example, consider the view in Figure §A.3, the tester have chosen
the prioritization criterion driven by Git changes to guide the testing. Thus, the
modules in Drupal with higher number of Git changes will have higher priority
to be tested as illustrates the ordering of tests in the figure. It is remarkable that
when a test finishes, SmarTest returns a detailed report of the results immediately
(see Figure §A.4). This enables a continuous feedback of the progress of testing
in real time that reduces time to the software engineers to start fixing the bugs.
This is relevant since running all the tests in Drupal can take many hours or days
and the current system of testing of Drupal (SimpleTest module) does not return
the results of the tests after all the them have finished.

The SmarTest module has been presented in two Drupal conferences, the National
Conference DrupalCampSpain [119] and the Europe Conference DrupalConEurope
[117] where professionals of Drupal meet annually, achieving a positive acceptance.
The module is freely distributed under GNU GPL v2 license and can be downloaded
from the Drupal sandbox project2, where it is waiting to be accepted as a contributed
Drupal module. Also, SmarTest has a web site (see Figure §A.5)

A.3 SUMMARY

In this appendix, we have presented SmarTest, a testing module for Drupal that
integrates some of the contributions implemented in this dissertation. Its main goal
is to make our work accessible and useful to both the academic and the industrial
community. Furthermore, we have distributed SmarTest under the GNU GPL v2 li-
cense recommended by Drupal to allow to other Drupal developers take part in the
development and improvement of the tool. In fact, some Drupal software engineers
are currently working on SmarTest as can be seen in the SmarTest sandbox project in
Drupal: https://www.drupal.org/sandbox/annasan/2503695.

2https://www.drupal.org/sandbox/annasan/2503695
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Figure A.2: SmarTest’s dashboard view
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Figure A.3: SmarTest’s test case prioritization view
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Figure A.4: SmarTest’s test case execution view

Figure A.5: SmarTest web site (http://www.isa.us.es/smartest/index.html)
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ID Module Type

1 Backup and migrate Additional
2 Blog Core optional
3 Captcha Additional
4 CKEditor Additional
5 Comment Core optional
6 Ctools Additional
7 Ctools access ruleset Additional
8 Ctools custom content Additional
9 Date Additional

10 Date API Additional
11 Date popup Additional
12 Date views Additional
13 Entity API Additional
14 Entity tokens Additional
15 Features Additional
16 Field Core compulsory
17 Field SQL storage Core compulsory
18 Field UI Core optional
19 File Core optional
20 Filter Core compulsory
21 Forum Core optional
22 Google analytics Additional
23 Image Core optional
24 Image captcha Additional
25 IMCE Additional
26 Jquery update Additional
27 Libraries API Additional
28 Link Additional
29 Node Core compulsory
30 Options Core optional
31 Panel nodes Additional
32 Panels Additional
33 Panels In-Place Editor Additional
34 Path Core optional
35 Pathauto Additional
36 Rules Additional
37 Rules scheduler Additional
38 Rules UI Additional
39 System Core compulsory
40 Taxonomy Core optional
41 Text Core compulsory
42 Token Additional
43 User Core compulsory
44 Views Additional
45 Views content Additional
46 Views UI Additional
47 WebForm Additional

Table B.1: Drupal modules included in the case study



Fault
Feature (ID from Table §B.1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

F1 X X
F2 X X
F3 X X
F4 X X
F5 X X
F6 X X
F7 X X
F8 X X
F9 X X
F10 X X
F11 X X
F12 X X X
F13 X X
F14 X X
F15 X X
F16 X X X
F17 X X
F18 X X
F19 X X X
F20 X X X
F21 X X
F22 X X X
F23 X X
F24 X X X X
F25 X X
F26 X X
F27 X X
F28 X X
F29 X X
F30 X X
F31 X X X
F32 X X
F33 X X X
F34 X X
F35 X X
F36 X X
F37 X X
F38 X X X
F39 X X X
F40 X X
F41 X X
F42 X X
F43 X X
F44 X X
F45 X X
F46 X X
F47 X X
F48 X X
F49 X X
F50 X X X
F51 X X
F52 X X
F53 X X
F54 X X X
F55 X X
F56 X X
F57 X X
F58 X X
F59 X X
F60 X X
F61 X X
F62 X X
F63 X X X
F64 X X
F65 X X
F66 X X
F67 X X X X
F68 X X
F69 X X
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Fault
Feature (ID from Table §B.1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
F70 X X
F71 X X X
F72 X X
F73 X X
F74 X X
F75 X X X
F76 X X X
F77 X X
F78 X X
F79 X X
F80 X X
F81 X X
F82 X X X
F83 X X X X
F84 X X
F85 X X
F86 X X X
F86 X X
F88 X X
F89 X X
F90 X X
F91 X X
F92 X X
F93 X X
F94 X X
F95 X X
F96 X X
F97 X X X
F98 X X
F99 X X

F100 X X
F101 X X
F102 X X
F103 X X X
F104 X X
F105 X X
F106 X X
F107 X X
F108 X X
F109 X X X
F110 X X
F111 X X
F112 X X
F113 X X X
F114 X X
F115 X X
F116 X X
F117 X X
F118 X X
F119 X X
F120 X X
F121 X X
F122 X X
F123 X X X
F124 X X
F125 X X
F126 X X
F127 X X
F128 X X
F129 X X
F130 X X X
F131 X X
F132 X X X
F133 X X X
F134 X X
F135 X X
F136 X X
F137 X X
F138 X X
F139 X X X
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Fault
Feature (ID from Table §B.1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
F140 X X
F141 X X
F142 X X
F143 X X X
F144 X X
F145 X X X
F146 X X
F147 X X
F148 X X
F149 X X X
F150 X X
F151 X X
F152 X X
F153 X X
F154 X X
F155 X X
F156 X X
F157 X X
F158 X X
F159 X X
F160 X X

Table B.2: Integration faults in Drupal v7.23
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HCS. Highly-Configurable Software System.
SPL. Software Product Line.
FM. Feature Model.
AFM. Attributed Feature Model.
CIT. Combinatorial Interaction Testing.
APFD. Average Percentage of Faults Detected.
SPLOT. Software Product Lines Online Tools.
SXFM. Simple XML Feature Model format.
XML. eXtensible Mark-up Language.
IT. Information Technology.
NSGA-II. Non-dominated Sorting Genetic Algorithm-II.
CTC. Cross-Tree Constraint.
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