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Abstract

In this paper we study the Burgers equation with a nonlocal term of the form Hu
where H is the Hilbert transform. This system has been considered as a quadratic
approximation for the dynamics of a free boundary of a vortex patch (see [6] and [2]). We
prove blow up in finite time for a large class of initial data with finite energy. Considering
a more general nonlocal term, of the form ΛαHu for 0 < α < 1, finite time singularity
formation is also shown.

1 Introduction.

We shall study the formation of singularities for the equation

ut + uux = ΛαHu, (1)

u(x, 0) = u0(x),

with 0 ≤ α < 1, where H is the Hilbert transform [9] defined by

Hf(x) =
1

π
P.V.

∫

R

f(y)

x− y
dy

and Λα ≡ (−∆)α/2 is given by the following expression

Λαf(x) = kα

∫

R

f(x)− f(y)

|x− y|1+α
dy, kα =

Γ(1 + α) cos((1− α)π/2)

π
.

The case α = 0
ut + uux = Hu (2)

was introduced by J. Marsden and A. Weinstein [6] as a second order approximation for
the dynamics of a free boundary of a vortex patch (see [3] and [1]). Recently J. Biello and
J.K. Hunter [2] proposed it as a model for waves with constant nonzero linearized frequency.
They gave a dimensional argument to show that it models nonlinear Hamiltonian waves with
constant frequency. In addition, an asymptotic equation from (2) is derived, describing surface
waves on a planar discontinuity in vorticity for a two-dimensional inviscid incompressible fluid.
They also carried out numerical analysis showing evidence of singularity formation in finite
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time. Let us point out that the Hamiltonian structure of the equation (1) (in particular for
α = 0) comes from the representation

ut + ∂x

[

δH

δu

]

= 0, where H(u) =

∫

R

(1

2
uΛα−1u+

1

6
u3
)

dx. (3)

In section 2 we show that the linear term in the equation (2) is too weak to prevent the
singularity formation of the Burgers equation. In fact, we show that, if the L∞ norm of the
initial data is large enough compare with the L2 norm, the maximum of the solution has a
singular behavior during the time of existence. One of the ingredients in the proof is to use
the following pointwise inequality

u(x)4 ≤ 16||u||2L2(R)

∫

R

(u(x) − u(y))2

(x− y)2
dy, (4)

(see lemma 2.2 below) which can be understood as the local version of the well-known bound

||u||4L4 ≤ C||u||2L2 ||Λ
1/2u||2L2 =

C

2π
||u||2L2

∫

R

∫

R

(u(x) − u(y))2

(x− y)2
dydx.

In the appendix we provide a generalized pointwise inequality (n−dimensional) in terms of
fractional derivatives.

In section 3 we consider the more general family of equations, with a higher order term
in derivatives, given by (1). By a different method, we prove that the blow up phenomena
still arises. Let us note that, since ΛHu = −ux, the case α = 1 trivializes. Using the same
approach as in section 2, it is possible to obtain blow up for 0 < α < 1/3. Inspired by the
method used in [5], we check the evolution of the following quantity

Jp
q u(x) =

∫

R

wp
q(x− y)u(y)dy, where wp

q (x) =

{

|x|−qsign (x) if |x| < 1
|x|−psign (x) if |x| > 1

,

with 0 < q < 1 and p > 2 to find a singular behavior. Let us note that a similar approach
was used by H. Dong, D. Lu and D. Li (see [7]) to show blow up for the Burgers equation
with fractional dissipation in the supercritical case (0 < α < 1):

ut + uux = −Λαu. (5)

A different method to show singularities can be found in [8].
It is well known that the Lp norms of the solutions of equation (5) are bounded for all

1 ≤ p ≤ ∞. However, to the best to the authors knowledge, two quantities are conserved by
equation (1). The orthogonality property of the Hilbert transform provides the conservation
of the L2 norm, i.e.

||u(·, t)||L2(R) = ||u0||L2(R).

Since the equation is given by (3), we have that
∫

R

(1

3
u3(x, t) +

(

Λ
α−1

2 u(x, t)
)2)

dx =

∫

R

(1

3
u30(x) +

(

Λ
α−1

2 u0(x)
)2)

dx.
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2 Blow up for the Burgers-Hilbert equation.

The purpose of this section is to show finite time singularity formation in solutions of the
equation (2). The result we shall prove is the following:

Theorem 2.1 Let u0 ∈ L2(R)∩C1+δ(R), with 0 < δ < 1, satisfying the following condition:
There exists a point β0 ∈ R with

Hu0(β0) > 0, (6)

such that

u0(β0) ≥
(

32π||u0||
2
L2(R)

)1/3
. (7)

Then there is a finite time T such that

lim
t→T

||u(·, t)||C1+δ(R) = ∞,

where u(x, t) is the solution to the equation (2).

Proof: Let us assume that there exist a solution of the equation (2)

u(x, t) ∈ C([0, T ), C1+δ(R)),

for all time T < ∞ and with u0 satisfying the hypotheses.
Now, we shall define the trajectories x(β, t) by the equation

dx(β, t)

dt
= u(x(β, t), t),

x(β, 0) = β.

Considering the evolution of the solution along trajectories, it is easy to get the identity

du(x(β, t), t)

dt
= ut(x(β, t), t) +

dx(β, t)

dt
ux(x(β, t), t) = Hu(x(β, t), t),

and taking a derivative in time we obtain

d2u(x(β, t), t)

dt2
= Hut(x(β, t), t) + u(x(β, t), t)Hux(x(β, t), t)

= −H(uux)(x(β, t), t) − u(x(β, t), t) + u(x(β, t), t)Hux(x(β, t), t).

Since

H(uux)(x) =
1

2
H((u2)x) =

1

2
Λ(u2)(x),

we can write

1

2
Λ(u2)(x) =

1

2π
P.V

∫

R

u(x)2 − u(y)2

(x− y)2
dy = u(x)Λu(x) −

1

2π

∫

R

(u(x) − u(y))2

(x− y)2
dy,
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and therefore it follows that

d2u(x(β, t), t)

dt2
=

1

2π

∫

R

(u(x(β, t), t)) − u(y, t)))2

(x(β, t) − y)2
dy − u(x(β, t), t). (8)

In order to continue with the proof we will prove the lemma below (for similar approach
see [4]):

Lemma 2.2 Let u ∈ L2(R) ∩ C1+δ(R), for 0 < δ < 1. Then

1

2π

∫

R

(u(x)− u(y))2

(x− y)2
dy ≥ Cu(x)4,

where

C =
1

32πE

and
E = ||u||2L2(R).

Proof of lemma 2.2: Let us assume that u(x) > 0 (a similar proof holds for u(x) < 0).
Let Ω be the set

Ω = {y ∈ R : |x− y| < ∆},

where ∆ will be given below. And let Ω1 and Ω2 be the subsets

Ω1 = {y ∈ Ω : u(x)− u(y) ≥
u(x)

2
},

Ω2 = {y ∈ Ω : u(x)− u(y) <
u(x)

2
} = {y ∈ Ω : u(y) >

u(x)

2
}.

Then
1

2π

∫

R

(u(x)− u(y))2

(x− y)2
dy ≥

u(x)2

8π∆2
|Ω1|.

On the other hand

E =

∫

R

u(y)2dy ≥

∫

Ω2

u(y)2dy ≥
u(x)2

4
|Ω2|,

and therefore

|Ω2| ≤
4E

u(x)2
.

Since |Ω1| = |Ω| − |Ω2| and |Ω| = 2∆, we have that

1

2π

∫

R

(u(x)− u(y))2

(x− y)2
dy ≥

u(x)2

8π∆2
(2∆−

4E

u(x)2
).

We achieve the conclusion of lemma 2.2 by taking ∆ =
4E

u(x)2
.
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Next, let us define J(t) = u(x(β0, t), t). Thus, applying lemma 2.2 to the expression (8),
we obtain the inequality

Jtt(t) ≥ CJ(t)4 − J(t). (9)

Since Hu0(β0) > 0 and Jt(t) = Hu(x(β0, t), t), we obtain that Jt(t) > 0 and J(t) > J(0)
for t ∈ (0, t∗) and t∗ small enough. Therefore, multiplying (9) by Jt(t) we have that

1

2
(Jt(t)

2)t ≥
C

5
(J(t)5)t −

1

2
(J(t)2)t, ∀t ∈ [0, t∗).

Integrating this inequality in time from 0 to t we get

Jt(t) ≥
(

Jt(0)
2 +

2C

5
(J(t)5 − J(0)5)− (J(t)2 − J(0)2)

)
1

2

, ∀t ∈ [0, t∗). (10)

Now, since CJ(0)4 − J(0) ≥ 0, by the statements of the theorem we obtain that Jtt(t) >
Jtt(0) ≥ 0 for t ∈ (0, t∗). Therefore, Jt(t) is an increasing function [0, t∗). Thus, the inequality
(10) holds for all time t and we have a contradiction.

Remark 2.3 It is easy to check that there exists a large class of functions satisfying the
requirement of the theorem (2.1). For example, we can consider the function

u0(x) =
−ax

1 + (bx)2
,

Hu0(x) =
a

1 + (bx)2
,

where a, b > 0. Choosing a and b in a suitable way we can have the norm ||u0||L2(R) as small
as we want and the norm ||u0||L∞(R) as large as we want.

Remark 2.4 We note that the requirements (6) and (7) in theorem 2.1 can be replaced by

Hu0(β0) ≥ 0,

u0(β0) >
(

32π||u0||
2
L2(R)

)1/3
,

attaining the same conclusion.

3 Blow up for the whole range 0 < α < 1.

In this section we shall show formation of singularities for the equation (1), with 0 < α < 1.
The aim is to prove the following result:

Theorem 3.1 There exist initial data u0 ∈ L2(R) ∩ C1+δ(R), with 0 < δ < 1, and a finite
time T, depending on u0, such that

lim
t→T

||u(·, t)||C1+δ(R) = ∞

where u(x, t) is the solution to the equation (1).
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Proof: Let us assume that there exists a solution of the equation (1), u(x, t) ∈ C([0, T ), C1+δ(R)),
for all time T < ∞. Let Jp

q u be the convolution

Jp
q u(x) =

∫

R

wp
q(x− y)u(y)dy

where

wp
q(x) =

{

1
|x|q sign (x) if |x| < 1
1

|x|p sign (x) if |x| > 1
,

with 0 < q < 1 and p > 2. In order to prove theorem 3.1 we shall need the following two
lemmas.

Lemma 3.2 Let f in C1+δ(R) ∩ L2(R) and 0 < α < 1. Then

ΛαHf(x) = kα

∫

R

f(x)− f(y)

|x− y|1+α
sign (x− y)dy

where

kα = −
Γ(1 + α) sin((1 + α)π/2)

π
.

Proof: Let f be a function on the Schwartz class. The inverse Fourier transform formula
yields

ΛαHf(x) =
1

2π

∫

R

−isign (k)|k|αf̂(k) exp(ikx)dk.

We will understand the above identity as the following limit

ΛαHf(x) = lim
ε→0+

1

2π

∫

R

−isign (k)|k|α exp(−ε|k|) exp(ikx)
(

∫

R

f(y) exp(−iky)dy
)

dk

= lim
ε→0+

1

π

∫

R

f(y)
(

∫ ∞

0
kα exp(−εk) sin(k(x− y))dk

)

dy.

Next, we can compute that

ΛαHf(x) = lim
ε→0+

Γ(1 + α)

π

∫

R

f(y)

(ε2 + (x− y)2)(1+α)/2
sin
(

(1 + α) arctan
(x− y

ε

))

dy

= − lim
ε→0+

Γ(1 + α)

π

∫

R

f(x)− f(y)

(ε2 + (x− y)2)(1+α)/2
sin
(

(1 + α) arctan
(x− y

ε

))

dy

= −
Γ(1 + α) sin((1 + α)π/2)

π

∫

R

f(x)− f(y)

|x− y|1+α
sign (x− y)dy.

We achieve the conclusion of lemma 3.2 by the classical density argument.

Lemma 3.3 Let Ipq (x) be the integral

Ipq (x) =

∫

R

wp
q(x)− wp

q(y)

|x− y|1+α
sign (x− y)dy

6



where 0 < q < 1 and p > 2. Then

|Ipq (x)| ≤











K1

|x|q+α if 0 < |x| < 1
2

K2

|x|2+α if 2 < |x| < ∞

K3 if 1
2 ≤ |x| ≤ 2

where K1, K2 and K3 are universal constants depending on q and p.

Proof: Since the function Ipq (x) is even, we can assume that x > 0. The constant values
of K1 and K2 can be different along the estimates below.

First, let us consider the case 0 < x < 1/2. We split as follows

Ipq (x) =

∫

|y|<1
dy +

∫

|y|>1
dy = I1(x) + I2(x).

It yields

I1(x) =

∫

|y|<1

1
xq − sign (y) 1

|y|q

|x− y|1+α
sign (x− y)dy

=

∫ 1

0

(

1
xq − 1

yq

|x− y|1+α
sign (x− y) +

1
xq + 1

yq

|x+ y|1+α

)

dy,

and a change of variables allow us to split further

I1(x) =
1

xq+α

∫ 1

x

0

( 1− 1
ηq

|1− η|1+α
sign (1− η) +

1 + 1
ηq

|1 + η|1+α

)

dη

=
1

xq+α

(

∫ 1

0
+

∫ 1

x

1

)

=
1

xq+α
(F1(x) + F2(x)).

For F1(x) we find the bound

|F1(x)| ≤

∫ 1

0

∣

∣

∣

1− 1
ηq

|1− η|1+α

∣

∣

∣
dη +

∫ 1

0

∣

∣

∣

1 + 1
ηq

|1 + η|1+α

∣

∣

∣
dη ≤ K1.

On the other hand

F2(x) =

∫ 1

x

1

(

1
ηq − 1

|1− η|1+α
+

1
ηq + 1

|1 + η|1+α

)

dη =

∫ 3

2

1
+

∫ 1

x

3

2

= j1(x) + j2(x).

For j1(x) it is easy to obtain

|j1(x)| ≤

∫ 3

2

1

∣

∣

∣

1
ηq − 1

|1− η|1+α

∣

∣

∣
dη +

∫ 3

2

1

∣

∣

∣

1
ηq + 1

|1 + η|1+α

∣

∣

∣
dη ≤ K1.

For j2(x) we decompose as follows

j2(x) =

∫ 1

x

3

2

1

ηq

( 1

|1− η|1+α
+

1

|1 + η|1+α

)

dη +

∫ 1

x

3

2

( 1

|1− η|1+α
−

1

|1 + η|1+α

)

dη.
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Thus, since 0 < q < 1 and

∣

∣

∣

1

|1− η|1+α
+

1

|1 + η|1+α

∣

∣

∣
≤

K1

|η|1+α
, for η ∈ [3/2,∞)

we have that

|j2(x)| ≤ K1

∫ ∞

3

2

1

ηq+1
dη +

∫ ∞

3

2

∣

∣

∣

1

|1− η|1+α
−

1

|1 + η|1+α

∣

∣

∣
dη ≤ K1.

Let us continue with I2 which can be written in the form

I2(x) =

∫

|y|>1

1
xq − sign (y) 1

|y|p

|x− y|1+α
sign (x− y)dy =

∫ ∞

1

(

−

1
xq − 1

|y|p

|x− y|1+α
+

1
xq + 1

|y|p

|x+ y|1+α

)

dy

=
1

xq+α

∫ ∞

1

x

(

xq−p

ηp − 1

|1− η|1+α
+

1 + xq−p

ηp

|1− η|1+α

)

dη.

The following decomposition

I2(x) =
1

xq+α

∫ ∞

1

x

( 1

|1 + η|1+α
−

1

|1− η|1+α

)

dη

+
1

xp+α

∫ ∞

1

x

1

ηp

( 1

|1− η|1+α
+

1

|1 + η|1+α

)

dη

yields

|I2(x)| ≤
K1

xq+α
+

1

xp+α

∫ ∞

1

x

1

ηp

∣

∣

∣

1

|1− η|1+α
+

1

|1 + η|1+α

∣

∣

∣
dη

≤
K1

xq+α
+

K1

xp+α

∫ ∞

1

x

1

ηp+1
dη ≤ K1

( 1

|x|α+q
+

1

|x|α

)

≤
K1

xq+α
.

Next, we consider the case 2 < x < ∞ taking

Ipq (x) =

∫

R

1
xp − w(y)

|x− y|1+α
sign (x− y)dy =

∫

|y|<1
dy +

∫

|y|>1
dy = J1(x) + J2(x).

For J2(x) we have that

J2(x) =

∫

|y|>1

1
xp − sign (y) 1

|y|p

|x− y|1+α
sign (x− y)dy

=

∫ ∞

1

(

1
xp − 1

|y|p

|x− y|1+α
sign (x− y) +

1
xp + 1

|y|p

|x+ y|1+α

)

dy
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and a change of variables provides

J2(x) =
1

xp+α

∫ ∞

1

x

( 1− 1
ηp

|1− η|1+α
sign (1− η) +

1 + 1
ηp

|1 + η|1+α

)

dη

=
1

xα+p

(

∫ 1

1

x

+

∫ ∞

1

)

=
1

xα+p
(H1(x) +H2(x)).

For H2(x) one could bound as follow

|H2(x)| ≤

∫ ∞

1

∣

∣

∣

1− 1
ηp

|1− η|1+α

∣

∣

∣
dη +

∫ ∞

1

∣

∣

∣

1 + 1
ηp

|1 + η|1+α

∣

∣

∣
dη ≤ K2.

On the other hand, in H1(x) we split further

H1(x) =

∫ 1

1

x

( 1− 1
ηp

|1− η|1+α
+

1 + 1
ηp

|1 + η|1+α

)

dη =

∫ 2

3

1

x

dη +

∫ 1

2

3

dη = h1(x) + h2(x).

The term h2(x) is bounded by

|h2(x)| ≤

∫ 1

2

3

∣

∣

∣

1− 1
ηp

|1− η|1+α

∣

∣

∣
dη +

∫ 1

2

3

∣

∣

∣

1 + 1
ηp

|1 + η|1+α

∣

∣

∣
dη ≤ K2.

We reorganize h1(x) so that

h1(x) =

∫ 2

3

1

x

( 1

|1− η|1+α
+

1

|1 + η|1+α

)

dη +

∫ 2

3

1

x

1

ηp

( 1

|1− η|1+α
−

1

|1 + η|1+α

)

dη.

Since p > 2 and
∣

∣

∣

∣

1

|1− η|1+α
−

1

|1 + η|1+α

∣

∣

∣

∣

≤ K2η for η ∈ [0, 2/3],

we obtain that

|h1(x)| ≤

∫ 2

3

0

∣

∣

∣

1

|1− η|1+α
+

1

|1 + η|1+α

∣

∣

∣
dη +K2

∫ 2

3

1

x

1

ηp−1
dη ≤ K2(1 + xp−2).

Therefore

|J2(x)| ≤ K2
( 1

xp+α
+

1

x2+α

)

≤
K2

x2+α
.

Next, we deal with J1 given by

J1(x) =

∫

|y|<1

1
xp − sign (y) 1

|y|q

|x− y|1+α
dy =

∫ 1

0

(

1
xp − 1

|y|q

|x− y|1+α
+

1
xp + 1

|y|q

|x+ y|1+α

)

dy

=
1

xp+α

∫ 1

x

0

(

1− xp−q

ηq

|1− η|1+α
+

1 + xp−q

ηq

|1 + η|1+α

)

dη.
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Hence

J1(x) =
1

xp+α

∫ 1

x

0

( 1

|1− η|1+α
+

1

|1 + η|1+α

)

dη +
1

xq+α

∫ 1

x

0

1

ηq

( 1

|1 + η|1+α
−

1

|1− η|1+α

)

dη.

Since p > 2 and

∣

∣

∣

1

|1 + η|1+α
−

1

|1− η|1+α

∣

∣

∣
≤ K2η, for η ∈ [0, 1/2],

we obtain that

|J1(x)| ≤
K2

xp+α
+

K2

xq+α

∫ 1

x

0
η1−qdη ≤ K2

( 1

xp+α
+

1

x2+α

)

≤
K2

x2+α
.

The bound for 1/2 < x < 2 is obvious, which allow us to conclude the proof.

In order to prove theorem 3.1, we shall study the evolution of J(t) = Jp
q u(xb(t), t), where

xb is the trajectory xb(t) = x(0, t). Hence

dJ(t)

dt
= −

1

2
Jp
q ((u

2)x)(xb(t), t) + Jp
qΛ

αHu(xb(t), t) + u(xb(t), t)(∂xJ
p
q u)(xb(t), t).

We can write

Jp
q ((u

2)x) =

∫

R

(u(x)2 − u(y)2)W p
q (x− y)dy

and

∂x(J
p
q u)(x) =

∫

R

(u(x)− u(y))W p
q (x− y)dy

where

W p
q =

{

q
|x|q+1 if |x| < 1

p
|x|p+1 if |x| > 1

.

Then, it is easy to check that

−
1

2
Jp
q ((u

2)x)(x) + u(x)(∂xJ
p
q u)(x) =

1

2

∫

R

(u(x)− u(y))2W p
q (x− y)dy,

and therefore

dJ(t)

dt
=

1

2

∫

R

(u(xb(t))− u(y))2W p
q (xb(t)− y)dy + Jp

qΛ
αHu(xb(t), t). (11)

Using lemma (3.2), the linear term becomes

Jp
qΛ

αHu(x) = kα

∫

R

wp
q(x− y)

∫

R

u(y)− u(s)

|y − s|1+α
sign (y − s)dsdy,
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and a wise use of the principal value provides

Jp
qΛ

αHu(x) = kα

∫

R

wp
q(x− y)P.V.

∫

R

−u(s)

|y − s|1+α
sign (y − s)dsdy

= kα

∫

R

wp
q(x− y)P.V.

∫

R

u(x)− u(s)

|y − s|1+α
sign (y − s)dsdy

= kα

∫

R

(u(x) − u(s))P.V.

∫

R

wp
q(x− y)

|y − s|1+α
sign (y − s)dyds

= kα

∫

R

(u(x) − u(s))

∫

R

wp
q(x− s)− wp

q(x− y)

|y − s|1+α
sign (s− y)dyds

to find finally

Jp
qΛ

αHu(x) = kα

∫

R

(u(x)− u(s))Ipq (x− s)ds.

Therefore

|Jp
qΛ

αHu(x)| ≤ |kα|

∫

R

|u(x)− u(y)||Ipq (x− y)|dy

≤ |kα|

(
∫

R

(u(x)− u(y))2W p
q (x− y)dy

)
1

2
(
∫

R

Ipq (x)2

W p
q (x)

dx

)

1

2

.

Since
Ipq (x)2

W p
q (x)

≤

{

C
|x|2α+q−1 when |x| → 0

C
|x|3+2α−p when |x| → ∞

,

by taking 2 < p < 2 + 2α and q < 2(1− α), we obtain that

|Jp
qΛ

αHu(x)| ≤ C(p, q)

(
∫

R

(u(x)− u(y))2W p
q (y)dy

)
1

2

≤
1

4

∫

R

(u(x)− u(y))2W p
q (x− y)dy + C.

This inequality in the equation (11) yields

dJ(t)

dt
≥

1

4

∫

R

(u(xb(t))− u(y))2W p
q (xb(t)− y)dy − C(p, q)

On the other hand

J(t) =

∫

R

u(y)wp
q (xb(t)− y)dy =

∫

R

(u(y) − u(xb(t)))w
p
q (xb(t)− y)dy

≤

(
∫

R

(u(xb(t))− u(y))2W p
q (xb(t)− y)dy

)
1

2
(
∫

R

wp
q(x)2

W p
q (x)

dx

)

1

2

.

The following bound

wp
q(x)2

W p
q (x)

≤

{

C
|x|q−1 when |x| → 0

C
|x|p−1 when |x| → ∞

11



allows us to obtain, for 2 < p < 2 + 2α and 0 < q < 1,
∫

R

(u(xb(t))− u(y))2W p
q (xb(t)− y)dy ≥ c(q, p)J(t)2.

Therefore we obtain a quadratic evolution equation

dJ(t)

dt
≥ c(q, p)J(t)2 − C(q, p)

and by taking c(q, p)J(0)2 − C(q, p) > 0, we find a contradiction for the mere fact that

J(t) ≤ C(q, p)||u||L∞ .

4 Appendix

In this section we generalize the pointwise inequality (4) evolving the nonlocal operator
2fΛαf − Λα(f2). Some simple applications to Gagliardo-Nirenberg-Sobolev inequalities are
also shown.

Lemma 4.1 Consider a function f : Rn → R in the Schwartz class, 0 < α < 2 and 0 < p <
∞. Then

|f(x)|2+
αp

n ≤ C(α, p, n)||f ||
αp

n

Lp(Rn)
(2f(x)Λαf(x)− Λα(f2)(x)) (12)

for any x ∈ R
n.

Proof: The formula for the operator Λα in R
n

Λαf(x) = kα,n

∫

Rn

f(x)− f(y)

|x− y|n+α
dy

and 0 < α < 2, allows us to find

2f(x)Λαf(x)− Λα(f2)(x) = kα,n

∫

Rn

(f(y)− f(x))2

|x− y|n+α
dy.

We consider f(x) > 0, being the case f(x) < 0 analogous. Let Ω, Ω1 and Ω2 be the sets

Ω = {y ∈ R : |x− y| < ∆},

Ω1 = {y ∈ Ω : f(x)− f(y) ≥ f(x)/2},

Ω2 = {y ∈ Ω : f(x)− f(y) < f(x)/2} = {y ∈ Ω : f(y) > f(x)/2}.

Then

2f(x)Λαf(x)− Λα(f2)(x) ≥ kα,n

∫

Ω

(f(y)− f(x))2

|x− y|n+α
dy ≥ kα,n

f(x)2

4∆n+α
|Ω1|.

On the other hand

||f ||pLp(Rn) =

∫

Rn

|f(y)|pdy ≥
f(x)p

2p
|Ω2|,

12



therefore

2f(x)Λαf(x)− Λα(f2)(x) ≥ kα,n
f(x)2

4∆n+α
(|Ω| − |Ω2|) ≥ kα,n

f(x)2

4∆n+α
(cn∆

n −
2p||f ||pLp(Rn)

f(x)p
),

where cn = 2πn/2/(nΓ(n/2)). By choosing

∆n =
(n+ α)2p||f ||pLp(Rn)

αcnf(x)p

we obtain the desired estimate.

Remark 4.2 Inequality (12) allows us to get easily the following Gagliardo-Nirenberg-Sobolev
estimate:

||f ||
2+αp

n

L2+
αp
n

≤ 2C(α, p, n)||f ||
αp

n

Lp(Rn)||Λ
α
2 f ||2L2(Rn),

for 0 < α < 2 and 0 < p < ∞.
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