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Abstract

In this paper we study the Burgers equation with a nonlocal term of the form Hu
where H is the Hilbert transform. This system has been considered as a quadratic
approximation for the dynamics of a free boundary of a vortex patch (see [6] and [2]). We
prove blow up in finite time for a large class of initial data with finite energy. Considering
a more general nonlocal term, of the form A“Hu for 0 < o < 1, finite time singularity
formation is also shown.

1 Introduction.
We shall study the formation of singularities for the equation

us +uuy, = A“Hu, (1)
u(z,0) = wo(x),

with 0 < a < 1, where H is the Hilbert transform [9] defined by

f

Hf(z) = %P.V./R (y)ydy

and A® = (—A)O‘/ 2 is given by the following expression

A f(x) = kg /R %d% ko = I'(1+ «)cos((1 — oz)7r/2).

™

The case a =0
up + uu, = Hu (2)

was introduced by J. Marsden and A. Weinstein [6] as a second order approximation for
the dynamics of a free boundary of a vortex patch (see [3] and [1]). Recently J. Biello and
J.K. Hunter [2] proposed it as a model for waves with constant nonzero linearized frequency.
They gave a dimensional argument to show that it models nonlinear Hamiltonian waves with
constant frequency. In addition, an asymptotic equation from () is derived, describing surface
waves on a planar discontinuity in vorticity for a two-dimensional inviscid incompressible fluid.
They also carried out numerical analysis showing evidence of singularity formation in finite
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time. Let us point out that the Hamiltonian structure of the equation () (in particular for
a = 0) comes from the representation

oH o o a—1
Ut + Oy [&J =0, where H(u)—/ﬂ@(z uA* "y + u)dm (3)

6
In section 2] we show that the linear term in the equation (2) is too weak to prevent the
singularity formation of the Burgers equation. In fact, we show that, if the L* norm of the
initial data is large enough compare with the L? norm, the maximum of the solution has a
singular behavior during the time of existence. One of the ingredients in the proof is to use
the following pointwise inequality

2
1 < 16/lull2 (u(z) —u(y)) d 4
U(ﬂj‘) = ||U||L2(R)/]R (x_y)g Y, ( )
(see lemma [22] below) which can be understood as the local version of the well-known bound
lulfhe < CllulBalIAY2ul = ol | [ 40 () —wl)” 4 g,

In the appendix we provide a generalized pointwise inequality (n—dimensional) in terms of
fractional derivatives.

In section 3 we consider the more general family of equations, with a higher order term
in derivatives, given by (Il). By a different method, we prove that the blow up phenomena
still arises. Let us note that, since AHu = —u,, the case = 1 trivializes. Using the same
approach as in section 2, it is possible to obtain blow up for 0 < o < 1/3. Inspired by the
method used in [5], we check the evolution of the following quantity

) _ o proy ) |z Tisign (@) iffzf <1
JPu(x) /qu(ﬂ? y)uly)dy, where wg(z) {\x]—psign(a:) if|z] >1 °

with 0 < ¢ < 1 and p > 2 to find a singular behavior. Let us note that a similar approach
was used by H. Dong, D. Lu and D. Li (see [7]) to show blow up for the Burgers equation
with fractional dissipation in the supercritical case (0 < o < 1):

up + uuy = —A%u. (5)

A different method to show singularities can be found in [§].
It is well known that the LP norms of the solutions of equation (f) are bounded for all
1 < p < oo. However, to the best to the authors knowledge, two quantities are conserved by
equation (). The orthogonality property of the Hilbert transform provides the conservation
of the L? norm, i.e.
u(- D)l z2®) = lluollz2r)

Since the equation is given by (Bl), we have that

/R<%u3(a;,t) + (AaTﬂu(m,t))2>dm = /R <:13 ud () + (Aanluo(x)y)da;.



2 Blow up for the Burgers-Hilbert equation.

The purpose of this section is to show finite time singularity formation in solutions of the
equation (2)). The result we shall prove is the following:

Theorem 2.1 Let ug € L*(R)NC™(R), with 0 < 6 < 1, satisfying the following condition:
There exists a point By € R with

H’Lbo(ﬁo) > 0, (6)

such that s
uo(Bo) = (32nlfuolFa)) - ™)

Then there is a finite time T such that

tim [[u(-.8)orvs ) = o0,
where u(x,t) is the solution to the equation (2).

Proof: Let us assume that there exist a solution of the equation (2I)
u(z,t) € C([0,T), C1H5(R)),

for all time T' < co and with ug satisfying the hypotheses.
Now, we shall define the trajectories x(8,t) by the equation

dr(B,t)
GO = walp 0.0,
z(B,0) = B.

Considering the evolution of the solution along trajectories, it is easy to get the identity

du(z(B,t),t) dx(pB,t)
dt dt

= wy(x(B,t),t) + ug(x(B,1),t) = Hu(z(B,1),1),

and taking a derivative in time we obtain

d*u(x(B,1),1)

e = Hu(z(B,1),t) + u(z(B,t),t) Huy (z(B,t), 1)

= —H(uug)(x(8,1),1) — u(x(B,1), 1) + u(z(8,1), ) Hux (2(8, 1), ).

Since

we can write



and therefore it follows that

Pu(z(B,t),t) _ 1 [ (u@(B,1)) —uy,1))?*
—_— = d t),t). 8
T e e 1 e u(z(8.1),1) (®)
In order to continue with the proof we will prove the lemma below (for similar approach

see [4]):

Lemma 2.2 Let u € L*(R) N C'(R), for 0 < 6 < 1. Then

1 Mdy > Cu(z)*,

2 Jp o (x—y)

where
1

= 3E

and
B = [|ula

Proof of lemma Let us assume that u(z) > 0 (a similar proof holds for u(z) < 0).
Let © be the set
Q={yeR : |z—y| <A}

where A will be given below. And let Q! and Q2 be the subsets

Q= (e ) —uly) > "y,
@ = (ye ul) —ul) < D)= ea ) > Dy
Then )
% R(U(z_z)(é/)) p 2;(:22‘91’
On the other hand )
E= RU(y)2dy2/m u(y)*dy > u(z) Jog

and therefore

Since |Q!| = || — 22| and |Q| = 2A, we have that

L[ (u(z) —u(y)) u(z
o Jp (z—y)? dy = 8w A2

We achieve the conclusion of lemma by taking A =
u



Next, let us define J(t) = u(x(fo,t),t). Thus, applying lemma to the expression (g,
we obtain the inequality
Ju(t) > CJ(t)* — J(t). 9)

Since Hug(Bp) > 0 and Ji(t) = Hu(z (5o, t),t), we obtain that Jy(t) > 0 and J(t) > J(0)
for t € (0,t*) and t* small enough. Therefore, multiplying (@) by J;(t) we have that

1 C 1
() > g(J(t)5)t =5 (T VEE0,1),
Integrating this inequality in time from 0 to ¢ we get
g, 2C 5 5 2 2\ 2 *
J) = (10 + (07 = J0°) = (U@ = J0)) ", veelot).  (10)

Now, since CJ(0)* — J(0) > 0, by the statements of the theorem we obtain that Jy(t) >
Ji(0) > 0 for t € (0,t*). Therefore, Ji(t) is an increasing function [0,¢*). Thus, the inequality
(I0) holds for all time ¢ and we have a contradiction.

Remark 2.3 It is easy to check that there exists a large class of functions satisfying the
requirement of the theorem (21)). For example, we can consider the function

—ax
ug(z) = ma

a
Huole) = 1y

where a, b > 0. Choosing a and b in a suitable way we can have the norm |[ug||z2w) as small
as we want and the norm |[ugl|p~(r) as large as we want.

Remark 2.4 We note that the requirements (@) and (7) in theorem [Z1 can be replaced by
H’Lbo(ﬁo) > 0,
1/3
uo(Bo) > <327T||u0||%2(R)> :

attaining the same conclusion.

3 Blow up for the whole range 0 < a < 1.

In this section we shall show formation of singularities for the equation (), with 0 < o < 1.
The aim is to prove the following result:

Theorem 3.1 There exist initial data uy € L*(R) N CO(R), with 0 < § < 1, and a finite
time T, depending on ug, such that

L [fu(, t)lleres gy = 00

where u(x,t) is the solution to the equation ().



Proof: Let us assume that there exists a solution of the equation (), u(z,t) € C([0,T), C'T(R)),
for all time 7' < co. Let Jju be the convolution

TPu(z) = /R Wl — y)uly)dy

where

Y

() = |m|qs1gn( x) if|z| <1
LA ‘w‘pﬁgn( z) if|z| > 1

with 0 < ¢ < 1 and p > 2. In order to prove theorem Bl we shall need the following two
lemmas.

Lemma 3.2 Let f in C'™(R)N L3(R) and 0 < a < 1. Then
flx) = fy)

AYH f(z) = kg
i@ R |z —y[tte

sign (z — y)dy

where
I'(1+ «a)sin((1 4 a)7/2) ‘

™

ko = —

Proof: Let f be a function on the Schwartz class. The inverse Fourier transform formula
yields

A*Hf(z) = % /]R —isign (k)|k|® f (k) exp(ikz)dk.

We will understand the above identity as the following limit

A*H f(z) = lim %/R—isign (k)|k|* exp(—s|k|)exp(ik:n)</Rf(y) exp(—ik:y)dy)dk:

e—0t 27

= lim = fly) ( /000 kE* exp(—ek) sin(k(x — y))dk) dy.

e=0t T JR
Next, we can compute that

A*Hf(z) = lim rd+a) /R fw) 5 sin ((1 + a) arctan (%))dy

em0t T + (2 —y)?) It
~— lm L(1+a) /R f(; il ()yl)-‘,-a 7 sin ((1 + a)arctan (%))dy
(z

F(1+a)sm( (1+ 7r/2)/f
\

)~ leEa) sign (z — y)dy.

We achieve the conclusion of lemma by the classical density argument. =

Lemma 3.3 Let I (x) be the integral
wh(x) — wh(y)
1P (x :/usign T —y)dy
q( ) R ‘Z’ _ y‘l—l—a ( )
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where 0 < q <1 and p > 2. Then

K ifo< x| <}
1P (2)| < ﬁ;— if2 < |z| < 00
K? ifi<|z[ <2
where K, K? and K3 are universal constants depending on q and p.

Proof: Since the function I} (z) is even, we can assume that z > 0. The constant values
of K' and K? can be different along the estimates below.
First, let us consider the case 0 < z < 1/2. We split as follows

I¥(r) = /y|<1 dy + /y|>1 dy = I(x) + Ix(x).

It yields

7 Slgn( )W
ha)= [ " ign (= — y)dy
i<t |z —yltte

1,11 1,1

xd ya . x4 yq
= ————=sign(r —y) + 7>d ,
A Qx—ywm R P A

and a change of variables allow us to split further

1 [ 1—% . 1+ .5

= / /‘ e (@) + Fo(a).

For F(z) we find the bound
/‘H+M”a
1

A< | | rie
’1‘_/ 11— W”
On the other hand
1 1
F(x)—/’”(”_"_l " / / )+ ().
SV AN 11+mHﬂ IR

For ji(z) it is easy to obtain
1 E]
q 2
- ‘1+a‘ 77+/

uu>w_/

For j(z) we decompose as follows

T A (e R o
xXr) = — B .
J2 %qu ’1_77’14-04 ’14—7]’14-04 n % ‘1_77‘14-01 ’1_’_?,,‘14_@ Ui

dn < K.

1
nq
1+ 77,1+a ‘dn K.




Thus, since 0 < ¢ < 1 and

1 K!
‘ for ne€[3/2,00)

1
<
"1 — |+ T 11+ pital = |p|i+e”

we have that

\‘(x)\<K1/ooid+/oo( L1
J2\ T = %nq—i-ln s |T—gra ~ [T qpi+e

Let us continue with Iy which can be written in the form

dn < K.

L g L 1 1 1 1

7 —sign(Y)rm oo Lo 141
12(113):/|>1 - - ’1+a|y‘ Slgn(x—y)dy:/l < T I ] )dy
y

o |z —y|He Tz + oyt
B 1 oo wnp — 1 1 + np d
= pata [y (|1 e T I _77|1+a> -
The following decomposition
1 o 1 1
L(z) = gqura/l <|1+77|1+a T _77|1+a)d77

1 <1 1 1 )d
t e 1 n_p<|1_n|1+a+|1+n|1+a N

yields

K! 1 o q 1 1
|Ir(z)] < —— + —— —‘ + (dn
rato pto |1 77p |1 _ 77|1+a |1 + 77|1+a

K1+K1 001d<K1(1 +1)<K1
= gava T ppra [, @S z[ota " Jgo) = e

Next, we consider the case 2 < z < oo taking

IP(z) = /R 5 200 o o~ )y = /

dy—l—/ dy = Ji(x) + Jo(x).
|z — y|'te lyl<1 lyl>1 @) + Jo(a)

For Jy(x) we have that




and a change of variables provides

1 0 1—77% ] 1+—

:xa+p / / = a+p Hy(z) + Hy(x)).

For Hy(x) one could bound as follow
Hy(x Sg/i ‘____JL__dn4_j/ T
N J el s
On the other hand, in H;(z) we split further

H Yoy Ly d gd dn=h h

The term ho(x) is bounded by

@< [ |

We reorganize hi(z) so that

2 2

3 1 1 31 1 1
m)= [ ( )d /—< - )an.
1(®) / e D)W [ T~ e )

Since p > 2 and

dn < K*.

1

2
W(dﬁ—f{

| |1+a‘ n+

< K%*p for nel0,2/3],

1 1
| plite |14 g[ite

we obtain that

b (2)] < /0g

Therefore

1 . 1
[T —mn|tte 14 p[lte

2
3 1
d77+K2/1 Fdngﬂ(uﬂ—?).

1 1 K?
pto + x2+a) = p2+a’

[ a(a)] < K2 (

Next, we deal with J; given by

I 1 L1 L,

Ji(z) = ﬁ—&gn(y)wd _ [z T + 7 T d

1) = iz —y|ite YT iz — gyt " oty
ly|<1 Y 0 Y Y

P—a

_ 1 /; 1= n4 + 1+xf7;q d
“ e Jo \T—gre T | O




1 1
1 @ 1 1 1 = 1 1 1
= dn+— | - ).
Jl(x) xp-i—a/o (‘1 _/’7‘1+a + ‘1 +T]‘1+a) T,+ xq+a/() ?7‘1 ’1 +T]’1+OC ’1 — 7]’1+a Ui

Since p > 2 and

‘ 1 1
|1_|_77|1+a |1_77|1+a

<K%, for nel0,1/2],

we obtain that

K? K2 (i | of 1 1 K?
[Ni(@)l < —5 + a;q+°‘/0 T ldn < K (pr,a + x2+a> S e

The bound for 1/2 < z < 2 is obvious, which allow us to conclude the proof.

In order to prove theorem B we shall study the evolution of J(t) = Ju(wzy(t),t), where
xp is the trajectory z(t) = x(0,t). Hence

%t) = S TR()2) a(6),£) + TP Hulma(6),£) + i (1), ) (@) (mn(6), ).

We can write
and

where

Then, it is easy to check that

3T ())(@) + u(w) O Tpu) @) = 5 /R<u<:c> — u(y)* Wl (x — y)dy,
and therefore
B0 L [ )~ )W)~y + A0 (1)

Using lemma (B.2)), the linear term becomes

JIA“Hu(x) = k‘a/

Py — Msin — $)ds
qu( y)/]R gn (y — s)dsdy,

‘y _ S‘l—i—a

10



and a wise use of the principal value provides

o - —u(s) .
JPA*Hu(z) = k:a/wa;(x —y)P.V. /R Wﬁgn (y — s)dsdy

:k:a/wpx— P.V./Msin — s)dsd
A h(z—y) Ty —sre 8 (y — s)dsdy

= —u(s Msin — 5 S
= ko [ (u(o) —u(e)PV. [ S Dhsign (- o)y

B b ey
~ ke /R (ulz) — u(s) /R an (s — y)dyd

‘y_3’1+0c

to find finally

JIN*Hu(z) = ko /R(u(x) —u(s) IV (x — s)ds.
Therefore

JPA Hu(w)] < [k /R (@) — w2z — y)ldy

< fhal [ (u(o) — ) P13 - y)dyf (f Q()) dx)é |

1§ (x)? - IZIM% when |z| — 0
Wi(z) — \ZB\S*% when |z| — oo

Since

Y

~—

by taking 2 < p < 2+ 2« and ¢ < 2(1 — «), we obtain that

1

1
<5 [ (wle) =) Wyta = iy +C.
This inequality in the equation (IIJ) yields

D = 1 [ wlan) = )W (o) — 9y - o0

On the other hand

J(t) = /RU(y)wg(fcb(t) —y)dy = /R(U(y) — u(xy(t)))wy (p(t) — y)dy

< ( [ () = utwwptante) - y)dy)% (f e d:s)% .
The following bound

(&
wh(z)? _ { 7=t when |z] = 0

T when |z| — oo

11



allows us to obtain, for 2 < p <2+2aand 0 < ¢ < 1,

/R (ulan(t)) — uly))PWE(s(t) — y)dy > clq.p)I(1)?.

Therefore we obtain a quadratic evolution equation

%it) > c(q,p)J(t)* = C(q,p)

and by taking c(q, p)J(0)2 — C(q,p) > 0, we find a contradiction for the mere fact that

J(t) < C(q,p)|lul[e.

4 Appendix

In this section we generalize the pointwise inequality (@) evolving the nonlocal operator
2fA“f — A“(f?). Some simple applications to Gagliardo-Nirenberg-Sobolev inequalities are
also shown.

Lemma 4.1 Consider a function f :R"™ — R in the Schwartz class, 0 < a <2 and 0 < p <
oo. Then

F@PE < Clonp )11 oy (2F @A f () — A%(£2)(x)) (12)
for any x € R™.

Proof: The formula for the operator A in R"

1@~ 1w,

A f(2) = kan
f(@) "R =yt

and 0 < a < 2, allows us to find

() = f@)?

no |z —ylrte

2/ (@)X f () = A°()(a) = b |
We consider f(x) > 0, being the case f(x) < 0 analogous. Let Q, Q! and Q2 be the sets
Q ={yeR:|z-yl <A}
Q' ={y e Q: f(2) ~ fly) > f(x)/2},
0 ={y€Q: f(z) - fy) < f(2)/2} = {y €2+ f(y) > f(x)/2}.

Then ) )

a— gV = Mo Anee

2 (2)A f(2) — A(F2)(@) > Ko /Q

On the other hand oy
xr
1y = [ Py = T 1021,
R?’L

12



therefore

21| f1I7 0 )

. . f()? LGN
2/ (2)A F(2) = A*(F)(@) 2 kaniqetra (19 = [Q2]) = k (= 5

= a’”4An+a

)7

where ¢, = 27™/2/(nI'(n/2)). By choosing

B (n+«a)2P HfHLp(Rn
acy f(x)P

we obtain the desired estimate. =

Remark 4.2 Inequality (I2)) allows us to get easily the following Gagliardo-Nirenberg-Sobolev
estimate:

2_,_&711 % a 2
IRy < 2000 )11 gy 1A Ty

for0<a<2and0<p<oo.
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