Interface evolution: the Hele-Shaw and Muskat problems.

Antonio Coérdoba, Diego Cérdoba and Francisco Gancedo

23-5-08

Abstract

We study the dynamics of the interface between two incompressible 2-D flows where
the evolution equation is obtained from Darcy’s law. The free boundary is given by the
discontinuity among the densities and viscosities of the fluids. This physical scenario is
known as the two dimensional Muskat problem or the two-phase Hele-Shaw flow. We
prove local-existence in Sobolev spaces when, initially, the difference of the gradients of
the pressure in the normal direction has the proper sign, an assumption which is also
known as the Rayleigh-Taylor condition.

1 Introduction

We consider the following evolution problem for the active scalar p = p(z,t), x € R?, and
t>0:
Pt +v- VP = 07

with a velocity v = (v1,v2) satisfying the momentum equation

%'U: —Vp— (ngp)a (11)
and the incompressibility condition V - v = 0.

In the following we achieve a rather complete local existence analysis of the dynamics of
the interface between two incompressible 2-D flows with different characteristics (i.e. distinct
values of p and p) which are evolving under (1.1), also known as Darcy’s law [2]. This
system was studied by Muskat [15] in order to model the interface between two fluids in a
porous media, where p is the pressure, u is the dynamic viscosity, x is the permeability of the
medium, p is the liquid density and g is the acceleration due to gravity. Saffman and Taylor
[16] made the observation that the one phase version (one of the fluids has zero viscosity)
was also known as the Hele-Shaw cell equation [13], which, in turn, is the zero-specific heat
case of the classical one-phase Stefan problem.

There is a vast literature about those problems (see [5] and [14] for references). In order
to frame our result let us point out that in [17] is treated the case where both densities
are equal, showing global existence for small data in the stable case and ill-possednes in
the unstable case. In [1] the well-possednes in the stable case was considered under time
dependent assumption of the arc-chord condition. Finally, in the case where the viscosities



are the same, the character of the interphase as the graph of a function is preserved and in
[8] [9] this fact has been used to prove local existence and a maximum principle, in the stable
case, together with ill-possednes in the unstable situation.

Due to the direction of gravity, the horizontal and the vertical coordinates play different
rolls. Here we shall assume spatial periodicity in the horizontal space variable, says p(z1 +
2km, x9,t) = p(x1,z2,t). The free boundary is given by the discontinuity on the densities and
viscosities of the fluids, where (u, p) are defined by

1 - 1
(1, p) (w1, 2, 1) = { EZ%Z%: z E 328 —R2_ Ql(t), (1.2)

and p! # p?, and p' # p? are constants.
Let the free boundary be parameterized by

oV (t) = {z(a,t) = (21, 1), 29(, 1)) : @ € R}

such that
(Zl (a + 2]€7T, t)7 ZQ(a + Qkﬂ—? t)) = (2’1(06, t) + 21{;7{» Z2(a> t))a

with the initial data z(«, 0) = 2zo(a).

Notice that each fluid is irrotational, i.e. w = V x u = 0, in the interior of each domain
Q' (i = 1,2). Therefore the vorticity w has its support on the curve z(a,t) and it can be
shown easily to be of the form

w(z,t) = w(a,t)d(z — z(a, t)).

Then z(a,t) evolves with a velocity field coming from Biot-Savart law, which can be
explicitly computed and is given by the Birkhoff-Rott integral of the amplitude w along the
interface curve:

tanh("“?iz?ﬂt))(l + taDQ(M))

o2 (AE—AE | | o2 (2e—zan)

BR(z,w)(a,t) = —PV/w (B8,1)

21 (a,t)—21(B,t) )(1 . tanh2(zz(a,t)—z2 (B,t) ))

7PV [ =(5.0 i G Z dp)
) tan 21 (a,t)gzl (ﬁ,t)) + tanhQ(ZQ(a’t);Z2(B’t)) )

where PV denotes principal value [18]. It gives us the velocity field at the interface to
which we can subtract any term in the tangential direction without modifying the geometric
evolution of the curve

zt(a,t) = BR(z,w)(a, t) + c(a, t)0nz(a, t). (1.4)
A wise choice of ¢, t) namely:

a+m Onz(a, t)
27 T ‘aaz(a7t>‘2

o 80( R
- / m - 03BR(z,w) (B, t)dp,

c(a,t) = - 0uBR(z,w)(a, t)da

(1.5)



allows us to accomplish the fact that the length of the tangent vector to z(a,t) be just a

function in the variable ¢ only:
A(t) = [8az(a, ),

as will be shown in section 2 (see also [14] and [12]). Then we can close the system using
Darcy’s law with the equation:

2 1

w(a7 t) = _2A#BR('Z’ w)(a, t) ’ 8a2(04, t) - 2”@52 _T_ Zl aaz2(047 t): (16>
where B
4,
M1+ p2

is the Atwood number.
Finally we give the function which measures the arc-chord condition in the periodic case

B 3 /4
F(2)(e 5,1) = tan2(21(a,t)—;l(a—ﬁ,t)) + tanhz(m(a’t)_?(a_ﬁ’t)) Vo, f € (=mm), (1.7)
with ]
F(2)(,0,t) = PECDE

(see [12] for a closed curve).

Our main result consists on the existence of a positive time 7' (depending upon the initial
condition) for which we have a solution of the periodic Muskat problem (equations (1.3)-(1.6))
during the time interval [0,T] so long as the initial data satisfy zo(a) € H¥(T) for k > 3,
F(z0)(e, B) < o0, and

oo(a) = —(Vp*(20(a)) — Vp'(20(e))) - O3 20(cx) > 0,

where p/ denote the pressure in .
It is interesting to remark that the equality of pressure at each side of the free boundary
is obtained in section 2 directly from Darcy’s law without any other assumption.

Theorem 1.1 Let zo(a) € H¥(T) for k > 3, F(20)(a, B) < 00, and
o0(@) = — (V9 (20()) — Vi (20(a)) - O 20(a) > 0.

Then there exists a time T > 0 so that there is a solution to (1.3)-(1.6) in C'([0, T); H*(T))
with z(a,0) = zo(w).

We devote the rest of the paper to the proof of theorem 1.1 which is organized as follows.
In section 2 we derive the system of equations (1.3)-(1.6) with the corresponding choice of
c(a,t) and we also obtain the properties of the pressure. In section 3 and 4 we present
several crucial estimates on the operator T'(u)(«) = 2BR(z,u)(a) - 0o2() and on the inverse
operator (I —&T)~ 1, |€] < 1. Our proofs rely upon the boundedness properties of the Hilbert



transforms associated to C® curves, for which we need precise estimates obtained with
arguments involving conformal mappings, Hopf maximum principle and Harnack inequalities.
We then provide upper bounds for the amplitude of the vorticity, the Birkhoff-Rott integral,
the parametrization of the curve and the arc-chord condition, namely:

1|l < exp C(IF ()T + I21Fms1)  (section 5),

IBR(z, @)l < exp(C(|F(2)l[7e + l12[Fpns1)  (section 6),

i 212 _ K a(a,t) ko) (o o
el ) < s [ T oks(ant) - A@2) )
+exp L) (1) + [120%) (section 7).

and
%Ilf(Z)H%oo (t) < exp O(|F(2)[[ 70 (1) + ||2l[75 () (section 8),

where the operator A is defined by the Fourier transform A f (&) = |£]£(€) and o(a,t) is the
difference of the gradients of the pressure in the normal direction. In section 9 we study the

evolution of m(t) = miqrrla(oz, t), which satisfies the following lower bound
ac

m(t) Zm(O)—/O exp C(|F ()12 () + [z (s))ds.

Finally, in section 10, we introduce a regularized evolution equation where we use the previous
a priori estimates together with a pointwise inequality satisfied by the non-local operator A
[6] to show local existence.

2 The evolution equation

Here (u, p) are defined by

1 .1 o 1
(i, p)(x1, 22, 1) = { &2:22;: x g 8252,

where p! # p?, and p' # p?. Then using the Biot-Savart law we get

ooty = gopv [ CZHBIE s hag

for © # z(a,t) where the principal value is taken at infinity.
It is convenient to introduce the complex notation z = x; + tx2, then the complex conju-
gate v of the velocity field is given by

o(=t) = py [ ZOD

271 r 2z —2(8,1) ap.



In our case of periodic interface, z(« + 27k, t) = z(a, t) + 27k, the following classical identity

1 2z 1
LGt ; = k) = omtan(a)2)

yields

o) = (= [ oo, T PN+ (25 )
T am Jy " tan e 21(8.1) ) + tanh?(¥2=22%0 ZQW)

1 tan(w)( 1 — tanh?(%2=22(80) ),
& [=0.0 t 5
T tan (7“ 218, ))—i—tanhQ(3732 ZQ(B )

for © # z(a, t).

We have
v2(2(eu ), t) = BR(z,@)(a, t) + % |8Z((Z’ tt))|26az(a, t),
v!(z(a,t),t) = BR(z,w)(a,t) — ;maaz(a,t),

where v/ (z(a, t),t) denotes the limit velocity field obtained approaching the boundary in the
normal direction inside €/ and BR(z,@)(a,t) is given by (1.3).
Darcy’s law implies

U(:C,t)) - gamp(x’t)v

therefore

where TI(a, t) is given by
u2 =yl
K

(o, 1) = v(z(a, 1), 1) - 0y 2(t) + 8(p” = ph)Baza (o t).
It follows that:
p(z,t) = —2i / In (cosh(za — 2z2(a, ) — cos(z1 — 21 (e, 1)) (e, t)dex,
TJT

for x # z(a,t), implying the important identity

p2(2’(a, t)7t) = pl(z(a,t),t),

which is just a mathematical consequence of Darcy’s law, making unnecessary to impose it
as a physical assumption.



Let us introduce the following notation:

[/L’U](Oé, t) = (,LJ,QQ}z(Z(Oé, t)a t) — Mlvl(z(aa t),t)) - Oaz(a,t).
Then taking the limit in Darcy’s law we obtain

[l (a, t)

= = (VP (a(, ), 1) = V' (21 (,1),1)) - Daz(a, 1) = &(p” = p') Baza(at)

= —aa(p2(z(a, t)v t) - pl (Z(O" t)7 t)) - g(p2 - pl) aaz?(a’ t)
= —g(p2 - pl) aaz?(a7t)7

which gives us

2, 1 2 _ 1
P o (0nt) + B B ) 0,1) - a0 1) = (" — p)uza(on ),
so that
p* —p!
w(a,t) = —A2BR(z,w)(a,t) - Onz(a, t) — QKgﬁaazg(a,t).
12+ p

Next we modify the velocity of the curve in the tangential direction:

zt(a,t) = BR(z,w)(a, t) + c(a, t)0nz(a, t), (2.1)

where the scalar ¢(«, t) is chosen in such a way that the tangent vector only depends on the
variable t as follows:

10a2(a, t)]* = A(t). (2.2)
To find such a c¢(«, t) let us differentiate the identity (2.2)

Al(t) = 2052(a, t) - Oazi(a,t) = 2002(a,t) - O BR(2, @) (a, t) + 20ac(a, t) A(t),

so that

AU Ly et 9uBR(z =)o b). (2.3)

Oacla:t) = 57007 ~ A

Because ¢(a, t) has to be periodic, we obtain

A'(t)
2A(t)

1
- /T Daz(ort) - 9nBR(z, @) (a, t)dor (2.4)

Using (2.4) in (2.3), and integrating in «, one gets the following formula

clat) = 2T /T 057(B,1) . 93BR(z,@)(8,t)dp

T z 2
2 ) aﬂf(ﬁﬁ (gat)! (2.5)
_ /_ﬂ— W . aﬂBR(Za w)(ﬁ7t)dﬁ7



where we have chosen ¢(—m,t) = ¢(m,t) = 0.
Let us consider now the solutions of equation (2.1) with ¢(a, t) given by (2.5). It is easy
to check that

%laaz(a,t)\Q = c(a,t)8a|8az(a,t)|2 + b(t)|8az(a,t)|2,

where

1 0gz (0B, t
b(t) = — /T M-aﬁm(z,w)(g,t)dﬁ.

Next we solve this linear partial differential equation, assuming that (2.2) is satisfied initially,
to find that the unique solution is given by

1
s

¢
1002(a, t)]* = |0az(a, 0)]* + / /8az(a,t) -0sBR(z,w)(a, t)dods,
0 JT

which proves (2.2).
Our next step is to find the formula for the difference of the gradients of the pressure in
the normal direction:

—(Vp2(z(a, t),t) — Vpl(z(a, t),t)) - 85;2(04, t),

which we denote by o(«,t). Approaching the boundary in Darcy’s law, we get

2_ 1
o(a,t) = %BR(Z, w)(a,t) - 9L z(a, t) + g(p* — p)Oaz1 (e, t).
It is easy to check that

MBR(z,w)(a,t).aiz(a,t) = laa/w(ﬁ,t) log G(a, 8, 1)dp,
- 47 T

with

z1(a, t) ; 21 (57t))COSh2(

z1(a, t) — z1(B,t)
2

zo(a,t) — ZQ(,B,t))
2
zo(a,t) — z9(0, 1)
2

G(a, B,t) = sin®(

+ cos?( ) sinh?(

),

and therefore
p =t .
/ ——BR(z,w)(a,t) - 05 z(a, t)da = 0.
T

K

This shows that the condition p? # p! is crucial in order to have a constant sign in the normal
direction of the difference of the gradient. Furthermore, since z1(«,t) — « is periodic we have

/ Oaz1(a, t)da = 2.
T

Remark 2.1 If we consider a closed contour, then it is easy to check that

/ o(a,t)da =0,
T

which makes impossible the task of prescribing a sign to o along a closed curve.



3 The basic operator

Let us consider the operator 1" defined by the formula

T(u)(a) = 2BR(z,u) () - Onz(a). (3.1)
Lemma 3.1 Suppose that | F(2)||r~ < oo and z € C%° with 0 < 6. Then T : L?> — H' and
1Tl 2 < I F ) Tee 12120
Remark 3.2 In section 5, lemma 5.2. there is a proof showing that T also maps H* into
HFL k> 1.

Proof: Since the formula (1.3) yields

tanh( z2(a)—22(B)

7 )
Zl(a)—zl(ﬁ)) )dﬁ’
2

T(u)(a) = %aa /T u(B) axctan (

tan(

we have

which implies ||T(u)||z2 < [|0aT(w)||12-
Let us denote
V(0,8) = (Vo B), Vala, 3)) = (tan( LA o (200 222000,

In the following we shall refer to the Appendix for the definition of Vj, A; and their properties.
We write first:

0aT(u) = 2BR(z,u)(a) - 022() + 2002() - 9 BR(z,u)(a) = I + L.

), tanh

For I; we have the expression

O0t2(a) Otz(a) - 022(a)

I = 2(BR(z,u)(a) — WH(U)(Q)) - 072(0) + 2H (u) () Doz ()2
=Ji1+ Jo,
where H(u) is the (periodic) Hilbert transform of the function u.
Then
L[ Vale BV
B = —gtdale) [ u(e) e
L o V@AV (0, )
5 0ma(0) [ e B
_i 2, (o o — Voo, — 3) B 1 Onz2()
2 O )/T @A (aa=pP ~ Baz@P tan(s/2) P
1 2o [ wler — Vifa =) 1 Onz1(a)
T gpdeal )/T @A a=pP ~ Baz@P ran(s/2) P

= K1+ Ko+ K3+ Ky.



And we may use that |Va(a, 5)] < 1, to get |K1| + |K2| < C||z||c2]|ul 2
To estimate K3 let us observe that the following term

Al(Oé,Oé _ ﬁ) o ‘/Q(Oéva - ﬁ) 1 6(122(;)

T V(a =B 10a2(0)P tan(Z)

satisfies [|A1[|g~ < || F(2)||z=z]|%2 (see appendix lemma 11.1).
In K4 we have the term

Vi(a,ao = ) 1 Onz1()

As(a,a — B) = V(B2 |0az()]? tan(g) ;

which satisfies || Az||ee < C||F(2)]|peo]z]|%-
Then we obtain | K3|+| K| < CH]—"(Z)HLOO|]2H%2Hu\|L2, and therefore J; < CH]—"(z)HLooHz||?62HuHL2.
Since the estimate Jy < C||]:(z)|]1L/£||z||Cz|H(u)(a)| is immediate, we finally have

L] < CIF @) e 2lIE2 (lull 12 + [H () (@)]). (3-2)
Next we write 2BR(z,u)(«) as follows:

2BR(z,u)(a) = 21/1ru(ﬁ)(1 — V5 (e, 3))

™

= Jg(a) + J4(Oé).

VE(a, B) 1

Trgadd = 5 [ u(a)Va(o.0)(1.0)d8

Easily we have [05J4(c) - 0a2()| < C||z]|2:]|ul| 2. Taking one derivative in J3(c), and using
the cancellation dyz(a) - 0+ z(a) = 0, we get

Oad3(a) - Oaz(a) = K5 + K¢ + K7 + Kg + Ko,

R o [0~ Vi Vet )0z 2D 0 g
Ko = 3 [ w(8)(1 = V(0. 9)021(0)0n(0) 5,
s = 5 [ 0l5) 1=V 0 ) Oums (VP 0 ) za( . ) TN Dol g
K = o [ UV 0 ) @m0 il )+ Dz Vot ) 2Pl Dol g
" k- 5 [ U0 @u (@ Vi a8+l ater, )P Dol g

We have |K5| + |Kg| + | K7| + |K3] < CHzH%lHqu



Next we split K9 = —L1 — Lo, where

1 VE(a, B) - Oaz(a)
u(8)0az1 () V1 (v, B) V (e, B)*

Ll dﬁa

et % -
can be rewritten as follows

o, — — yANe} 1. (v
O O e

Ly dg.

= % -
We have L1 = M7 + M5 where

(922(a))* - Daz(a)
|0z (a)[*

My = |Oaz1 () H (u)(a),

and )
Mo /Tu(oz — 3)0az1(a) B, — 3)d3,

:27T

for

Via,a — B)*F - 0uz(a)
V(e a = B)[*

(922(a))* - Daz(a)
|0az(@)|* tan(5/2)

B(a,a— ) = Vi(a,a — ) — Op21()

The term M; satisfies |M;] < C’H.’F(z)Hng |zllc2 | H (u)(cr)|. We claim that

M| < CIIF ()72l G2s /T 1B ula — B)|dp

(see the appendix lemma 11.2 for the proof).
A similar estimate can be obtained for Lo. Finally we have

|I2| < CIF ()20 21l s ([l L2 + [H (u) ()] + /T 181 u(e = B)|dB).
This inequality together with (3.2) yields

10T (w)(a)| < CIIF(2)|Zoe |2l s (lull 2 + | H (u) ()] + /T 181"~ lu(e — B)|dB).

To finish we use the L? boundedness of H and Minkowski’s inequality to obtain the estimate
10T ()l 2 < CIIF ()T 2l 2. |l L2-

q.e.d.

10



4 Estimates on the inverse operator ([ —¢T)~
In 3.1 we have considered the operator T': L? — H!
T(u) = 2BR(z,u) () - Onz(a),

for F(z)(a, 3) < oo. Then T is a compact operator from Sobolev space L? to itself whose
adjoint is given by the formula

dp

1 / 5 Oaz2(0) tan(%) — Oa21(B) tanh(M)
— [ u
2m Jr tanz(M)ﬂLt&mh?(M)

2/ ﬁa@ 3) tan (@210 ¢ anhQ(M)dﬁ
™

tan2(z1(a) 21 5)) —|—tanh2(%)
w2 21(8) tanh (2202220 2 (21(0) 21 (B)
Cor T tan?(zl(a) 21 ﬁ)) —|—tanh2(%)

T (u)(a) =

dg.

We will show that, in H%, I — €T has a bounded inverse (I — ¢T)~! for €] < 1, whose
norm grows at most like exp(C|||z||[?) with |||z||| = ||z]| gz + || F ()] £~ -
Let z be outside the curve z(«), then we define

[3))

dp

1 Onza(B) tan(2=2B)y _ 9 21 (3 )tanh(zr
1) = 57 [ule =22 ) © gm0

/ ) Oaz2(B tan(z1 21(8) )tanhQ(Z2 22(f )dﬁ
tan2(2—210) )+tanh2(z2 ZZ“ ) '

1 / (ﬁ)(‘)azl(ﬁ)tanh(i” 200)) tan?(2=510) ;1<5>)d6
- U .
tan? (21— 2108)) 4 tanh?(22=220) 22(”8))

_ L [ uP)az(B)
L /’Jl‘tan( )dﬁ

that is f is the real part of the Cauchy integral

F) = 1) +igle) = g [ MO

21 J1 tan( -5

which is defined in both periodic domains €21, 22, placed above and below, respectively, of
the curve z(«). In the following we shall denote by ﬁj a corresponding fundamental domain
ie. Q= U{Q; +2mn}.

Taking z = z(a) + €0+ z(a) we obtain

1 9
fle(0) + 0d(e) = 39 | tan(fcf)ﬁ)zwgfglz(a))dﬁ

11



and letting ¢ — 0 we get
f(z(a)) = T*(u) — sign (¢)u(a). (4.1)
On the other hand we have

lim g(2(a) + 0y 2(a)) = lim SF(2(a) + 0, 2(e) = G(u)(a)

e—0
where
Ozt (B) tan(ZL21B)y (1 _ panh?(22(@)_z2(08)y)
G(u)(a) = — o PV / u(9) 2 =)
27T tan (M) _i_tanhQ(M)

z2(a)—22(8 z1(a)—z1 (B
Lpy [ A

tan2( 2210y 4 gapp? (2@l 20))

independent of the sign of ¢ — 0.

First we will show that T%u = Au = |\| < 1, and since T* is a compact operator (of
Hilbert-Schmidt type) we can then conclude the existence of (I — £7%)~! with |¢] < 1 (see
also [3]). To do that let us compute the value of Vf(z(«)). Denoting z = x1 + ixe, the
identity

fz) = - sA(L&’jéjf)dﬂ_ 1%/Eu(,@)agln(sin(z_;(ﬁ)))dﬂ

27 Jr tan(2=20) on
23 [ dsu(m) misin(<=2Pyyas,
vields
VI = 529 [ 0¥ inGsin == s
That is

Viz) =

tanh(%2=22(B:t) 22[315 14t 2(z1—21(B,t)
‘l/agu .1y 2 i 2

tan (7“ 221(5 t)) +tanh2(7m*z§(ﬁ’t))
t x1 zl(ﬁ t) _t h2 x2_22(57t)
tan z— Zl(ﬁt))+tanh2(x2 Zz(ﬁt))
Taking the limit as before we get
. Jpu(a)
= 2B - ——— =0, 4.2
V/(2(0) = 2BR(z 00u) (@) + sign (<) 552 2T 002(0) (1.2
Assuming now that 7*u = Au, the analyticity of F'(z) allows us to obtain:
Ot 2(a)
0</ F'(2)|?dx = — /f vf . dov
IF/(2) (2(a) -

= — u\o z u«o) - ai_Z(a) «
= [0 = N8R 0,0)(0) - 25

12



and

"(2)2dx = 2(a 2\ 'M o
0< [ 1FEPd = [ 1)) (4.4
— u(a Z,0qu) 'M @ |
_/T()\-i-l) (@)2BR(z, 0qu) () |8az(a)|d

where we have used (4.1) and (4.2). Multiplying together both inequalities we get
0t 2(a) 2
0<(1—A° 2BR(z, 04 ce s da)
(1=0)( [ w(@)2BR(.00)(0) - 2 )

and therefore |A\| < 1.

Proposition 4.1 The norms ||(I F T*)_lHLg are bounded from above by exp(C|||z|||?) for
some universal constant C' where the space L% is the usual L? with the extra condition of
mean value zero i.e. the subspace orthogonal to the constants.

Proof: With the notation introduced before we have
L =F/ = fi +ig
Fy =F/Qy = fo+ig2
f1/0Q2=T"u—u
f2/0Q =T "u+u
91/0Q = g2/0Q = G(u).

The proof follows easily from the estimate

_ *
iz o =Tl

< TS B el (4.5)
[T+ Toull 3

valid for every nonzero u € L3(99).
This is because if we assume ||u—T"u| ’L(z) <e

uw+ T*ullr2 > 2||lull;r2 — e2CI=I112 > 1 which contradicts (4.5). Therefore we must have
LO LO
Hu—T*uHL(z) > 201N for all |]u||L(2) =11ie. H(I—T*)_IHL(Q) < e2ClIENI” - Similarly we also
have [|(1 + T%)~Y|| 2 < 2CIII=IIZ,
0

Since v — T*u = H1(G(u)) and v + T*u = H2(G(u)) where H; denotes the Hilbert
transforms corresponding to each domain 2;, then (4.5) is a consequence of the estimate

2011211 for some ||u||L3 = 1 then we obtain

1Hjllr200,) < eClI=IE, (4.6)

where C' denotes a universal constant not necessarily the same at each occurrence.
This is because the identity H? = —1I implies

lu = T*ullz = [[H2(G )2 < V1P )IG ()] 2

2 2 *
< 620|||z||| HHQ(Q(U))HLg _ e2CH|ZH| Hu-f—T U,HL%
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and similarly we have ||u + T"u|z < e2C =)y — Tul| 2.
It is enough to prove (4.6) for Q; (the case Q9 will follows by symmetry) and we will rely
on the following geometric fact whose elementary proof is left to the reader.

Lemma 4.2 Let Q be a domain in R* whose boundary is a C*° parameterized curve z(c)
satisfying the arc-chord condition ||F(z)||L~ < 0o. Then we have tangent balls to the boundary
contained in both Q and R?/Q. Furthermore, we can estimate from below the radius of those
balls by C|||z|||~t, for some universal constant C > 0.

Let ¢ = u + iv be the conformal mapping from €2y to the upper half-plane ]R%r. Then v
is a non-negative harmonic function vanishing only on 9€;. Let ¢! be the inverse transfor-
mation.

Lemma 4.3 Since Q is 2w periodic in the horizontal direction we have ¢(z+2m) = ¢(2) +
for a certain fized real number .

Proof: Let us define ¢(w) = ¢(¢~1(w) + 27). Then ¢ is a conformal mapping from R?
to itself and, therefore, given by a linear fractional transformation ¥ (w) = ‘;:}’Ig satisfying
ad — bc = 1, where a,b,c and d are real numbers. Since ¢ can not have a fixed point in
R? then it follows that ¢ = 0 and a = d. Therefore taking z = ¢~ '(w) we get the formula

¢(z +2m) = ¢(2) + a with a = £, proving lemma 4.3.

Next we observe that ¢'(z+2km) = ¢'(z) for every z € 1 and since 9, is smooth enough
we know from general theory that ¢ and ¢’ extend continuously to 9€;. Furthermore, in
order to estimate the size of ¢'|gq, it will be enough to consider the compact part of that
boundary corresponding to a full period.

Composing with ¢, ¢~! one easily gets the formula

Hif =H(fo¢ ')od

H(fo¢ ) =Hi(f)oo™
therefore our problem is reduced to a weighted estimate for the Hilbert transform with re-
spect to the weight |(¢'(z,0))™!| = w(z) for which we have to show that w belongs to the
Muckenhoupt class As (see [11]). Now it turns out that for general C! chord-arc curves that
statement is false, but we will take advantage of the fact 9§ is of class C? (in fact C1® will

suffice) to show that in our case w(z) trivializes i.e. it is bounded above and below, more
precisely:

Lemma 4.4 Let w(z) = |(¢/(x,0))"Y| then we have
w(zo)e M < w(z) < w(xg)eCNIN*

where C' is a universal constant, |||z||| is our usual norm in the curve 0 and xo is any
point. Normalizing our conformal mapping ¢ one may take w(xg) = 1.

14



Proof: From the geometric lemma 4.3 we know the existence of tangent balls to 9
contained inside {; of radius 7 = O(1/[||z]||) and such that each one of those balls touches
the boundary 0€2; at a single point and its centers describe a parallel curve I" to 9€2; which
is also of class C2 with norms O(|||2]||). In the following we shall concentrate our attention
to the band B of those points in {21 whose distance to 9€2; is less that . Then the boundary
of B consists of two parts, namely 021 and its parallel curve I' at distance r» which can also
be parameterized throughout z(«) in an obvious manner.

The length of the part of " corresponding to a full period 0 < e < 27, is clearly O(|||z]]).
Then, after several applications of Harnack inequality in steps of length O(r), we obtain

ol < V(31 ez
(22)

<

for any 21, 29 € I'. Let us consider a point P € 0§} and @ € I to be the center of the circle of
radius r tangent to 0Q2; at P, furthermore let us denote by v the inner normal vector. Then
the non-negative harmonic function v takes its strict minimum at the point P and by Hopf
principle we get the estimate

ov (P) > gv@) (4.7)

ov r

for some absolute constant C' > 0. On the other hand we may consider a domain D contained
in the band B in such a way that its boundary consists of a piece of 9§21 of length 2r containing
P at its medium point, then the corresponding portion of I', says Ls, obtained by vertical
translation of the points of Li and finally two arcs of C? curves smoothly connecting L; and
Ly in such a way that 9D becomes a C? curve with norm O(]||z|||).

Let ¢ be conformal mapping from the unit ball B, to D with standard normalization.
By the Kellogg-Warschawski theorem it follows that ¢ extends continuously to the boundary
and its derivative is bounded from above and below by universal constants. We also have the
Poisson’s kernel K in D obtained by conformal mapping of the kernel for the ball of radius
r. Then we may represent the harmonic function v as the integral of its boundary values
against the Poisson kernel:

v(x) = | Kz, y)v(y)do(y)
oD
and 9 0K
o™= [,y 0, @V

which is a legitimate integral. We can take the limit (when z — P € 0€);) because v vanishes
identically in L1 and the points y € 0D — L are at distance at least r from P to obtain the
estimate

v

o

To finish we can invoke Dahlberg-Harnack principle up to the boundary for the positive
harmonic function v (see [4] and [10]), which gives us the inequality

C
(P) < 7supm€Dv(x)

% py< Cu) (48)

v r
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for some fixed constant C. Then the estimates (4.7) and (4.8) yield

Q) _ 2Py
0(@) = 2(py = Cu(@)

but we know from Harnack that

AP < V@1 _ cyalp
‘ = v(Q2) =¢

for two arbitrary points @1, Q2 in I'; and that ends the proofs of lemma 4.4 and proposition
4.1 because |¢'(z(a))| = |Vv(z(a))| = %(z(a)) since 02y is the level set v = 0 of the positive
harmonic function v (¢ = u + iv) q.e.d.

The identity I + T = £ + T7) + (1 — £)I allows us to conclude that

1+ E7*u) 7| 5 < €I

for 1 — e~ C1lll=lIP < |¢€] < 1 with an appropriate constant Cj, but for general £ (|¢] < 1) we
have

Proposition 4.5 For || <1 the following estimate holds

Il

I(I +¢T) (I +er)7Y| oy < el

-1 o
I =
for a universal constant C.

Proof: First let us consider the inequality
_ 2
| 19a 2 e (4.10)
j

where F; = f; +ig; is the Cauchy integral of u in ©; which follows easily from estimate (4.7)
for the derivative of the conformal mapping ¢:

2 2 _ 20 1 —1\|( 4—1V/|2
/ij,m - /QjAfj /RaAfJ@ (6]

0
= [oatea 2= [ et Lo

2
Ry

where % is the derivative in the normal direction

of; . 1 fulz—t)—ux)
a—y(x, 0) = lzmy_>07r / RN dt = Au(z).

Therefore we can conclude that

/ VP = /+Oof'0¢‘1f\(f'0¢‘1) = /H)olf\i’(f'ocb_l)l2 > e el 2
o, il = j j = j = !

— 00 —00

for a certain positive constant C as a consequence of the following lemma:
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Lemma 4.6 Let 1 be a diffeomorphism of the real line such that 0 < C~ < |/ (z)] < C
then we have the equivalence of Sobolev norms

O flls < 17 0 bl < CH
foro<s<1i.

Proof: Given f in H® we have

ol = <fow><x>A2s<fow><x>dx ~ [ sty [HEE TG s

// ]w_ ,1+1§s( )))2dydm

)2
5 | [ o Y@ )i

where Z comes from the application of the mean value theorem. From our hypothesis we
have

_ayes) _ @Y (@@ (®) 34+2s
s T <
which together with the equality

A2 = & / / |1+25 U@ =S )i,

allows us to finish the proof of the lemma.

Remark 4.7 In our case the diffeomorphism is given by ¥(a) = ®(z(«a)) and we will use
the periodic version of (4.10) i.e.

—C 2
PR T T
J

1
To continue, let us assume that proposition 4.5 is false, then there exist u € Hy, ||u] ]H 1 =

1 and |n| > 1 such that ||nu — T*u||H% < ¢~ Oslll=lI* | where C3 will be fixed later to be big
enough for our purposes.
Let us also assume that the following estimate holds

e BRG o . 2@
| [ =T 2B R () - EE o] <
0k2()

lnu — T*U”H% I2BR(z, Dqu) () - o 22%) | < e 50ClI=lI1?
(8%

Then from identities (4.3) and (4.4) we get

05 z(@)

Oy 2(a) . —5003]|2||2 4.11
e .

Ol /T(l — )u(@)2BR(z, o) () -

17



1
o—Call=IIl? S/T(Hn)u(a)?BR(zvaa“)( a): |gaz(( ))I

Adding these two inequalities together we obtain the positivity of

oke(e)
/Tu(aﬂBR(z,aau)(a) |8az(a)|d >0

and then we get a contradiction when we substitute the value of 7 in the first inequality of
(4.11), if n > 1, or in the second one, if n < —1. Therefore the hypothesis ||[nu — T*u||H% <

¢—Cslllzl|I2

da + e—50CallI=II17

1
is false for every u in Hj and Hu||H 4 =1 and that gives us the desired estimate.
To finish the proof we need to show the following inequality

1
%a2(@) o ClEIP Yy
H?2

I2BR( dau)(0) - 15 il

for a universal constant C.
In order to prove it let us first observe that

0y 2()
|00z ()|

0x2(a)

da(BR(z,u)(a) - [0az(c)]

) = BR(z,0qu)(c) - + Op(2)u

where O,(z) is a bounded operator in L? whose norm is controlled by eCllI=NI* for a convenient
value of C. Therefore our task is equivalent to show the estimate

1
0a2(@) Ul
H?2

I2BR(z u)(0) - 220y <

Decoding the notation we have to consider the operators 9.z (a) - Tju(a) where

=PV / ‘Z] ZJ ﬁ)zu(a—ﬁ)dﬁ.
Let ¢ be a C* cut-off function supported on |x] < r such that ¢ = 1 on |z| < § where
r= @ Then Tju(a) = Tju + T}u for

. ) - 5la=p)
riu=rpV [ 60 e - a5

Tiu=PV / (1—9(8)) |f<g):jgéa__ﬂﬁ)2u(a — B)dp.

It is straightforward to check that T]2 is a smoothing operator for which the desired esti-

mate trivializes. Furthermore a convenient Taylor expansion allows us to write leu(oz) =
m(a)Hu(a) + R(u) where R is a smoothing operator, H is the Hilbert transform and the
bounded smooth function m depends upon the curve z in such a way that || %—ZL | Lo < eCllI=II12,
Finally we may invoke the following commutator estimate

1 1
[A2(bv) — bAZv| 21y < C||Vb| Lo ||| L2(T)

to complete our task. q.e.d.
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Remark 4.8 Although it will not be needed to establish our main theorem we will improve
the estimate on the eigenvalues of T*,T by showing the existence of a constant Cy = Cp(z2)
whose inverse Cy' grows at most as a polynomial in |||z||| and such that the eigenvalues of
T* must satisfy the estimate |\| <1 — Cy. To see that let us consider the identities
2 2 O z(a)
|V f1]7dx + |V fa]“dx = 2 u(a)ZBR(z,(?au)( ) -
o) Qo |8 Z(Oé)|
2 (

|/ v d:c—/ V) da:|—2|A|/ @)2BR(:,00)(@) -1 o do.

)
)
Then it will be enough to show that both integrals fQj |V f|>dz are comparable i.e. there erists
a constant 1 < C = C(|||#]||) < oo such that

1
o[ vars [ var<c [ jvnp
951 Qs (941

Observe that the Cauchy-Riemman equations imply that this is equivalent to show the analo-
gous estimate for g in place of f.

The ezistence of such C depending continuously upon |||z||| follows easily by a standard
compactness argument. Nevertheless it is convenient to have a control of the growth of the
constants. In the following we present an argument to show that C(|||z|||) grows polynomially
with ||| z]]].

Proposition 4.9 We shall consider periodic curves z(«) (period 2w ). Because of the smooth-
ness and arc-chord conditions such a curve divide the cylinder R/2n7Z x (—o0,00) in two
regions 2 (j = 1,2, above and below the curve respectively) containing tangent balls as in
the previous lemma. Then there exist a constant C = P(||z||ck.s,||F(2)||L), polynomial in

[l|z]]|, such that
1
o[ wes [ mp<c [ mp
(951 Qo (o1

for any pair of periodic (in x1) holomorphic functions Fj = f; +1ig; (j = 1,2), with f;, g; in
Sobolev space Hl(Qj) and such that the imaginary parts g;, j = 1,2 (or respectively the real
part f; j =1,2) take the same boundary values.

Proof: In the following we shall use the expression P(v) for different constants, to denote
that they grow at most polynomially with .

For 1 = P(|||z||]) there exists two tangent circles to the curve z of radius r and contained
respectively in 1 and . Therefore we can foliate the plane near z by parallel curves 2
(z} = Z), these curves are the locus of points in ; whose distance to z is €, in such a way

that |||z2]]| < C|||2||] uniformly on 0 < e < &1 for some universal finite constant C.
The Cauchy-Riemann equations for the holomorphic functions F; = f; +ig; yields

/ \FJ/‘P:/ Iij\QZ/ Vg;|*
Q; Q; Q;

J
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Let us assume (without loss of generality) that

/\V91|22/ Vga|?
Ql Q2

then we want to show the estimate

/ rv91|2§P<r||zr||>/ Vgs?
Ql QQ

and that will finish the proof.
Let ¢ be a C™ cut-off function such that ¢(t) = 1 when |t| < %r and ¢ = 0 when
t| > %r, then we reflect the values of g1 near z(«) by the formula

91(P) = g2(Q)¢(dist(P, z))
where @ € Qg is obtained reflecting P € Q1 with respect to z, that is dist(P,z) = dist(Q, z),

and the line segment connecting them is normal to z at its medium point.
By Dirichlet principle

/!Vgl\ZS/ |vg1|2sp<|||z|||></ |v92|2|¢|2+/ 021V 6P%)
Ql Ql Q2 QQ

Since Fs is holomorphic we have the equalities

27 27
/ Fy(x,y1)dx I/ Fy(z,y2)dx
0 0

for y;| big enough so that the horizontal lines (x,y;) do not meet the curve z. The hypothesis
that f; € L?(S);) implies that

27
/ g2(z,y)dr =0
0

for those y which can be taken at distance P(|||z|||) of the curve z. For such a y we get the
estimate

27
()] < /0 Vaa(t,y)ldt

2 -y 2m -y
/ / ga(, )Pdsdz < (27)° / / Vg (t, ) dsdt
0 —y—1 0 —y—1

which tmplies

therefore
lga(a,5)] 2 10 2| Vallpz 0|0 < 7 < 27—y — 1 <5 <~} < 1o

where m denotes the Lebesgue measure.
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Let (2, ym) be in the curve z such that y,, has a minimum value. Then for all points Q
in Qg inside the band 1/(20r) < dist(Q, z) < 1/(20r) whose distance to (T, ym) s less than
1/P(|||z]|]]) (we shall denote by N the set of such Q) the segments connecting its points to
those of {(z,t), —y <t < —y — 1} are completely contained in Q. For each (zg,yo) € N let
us consider the line segment connecting (o, yo) with the set

E={(z,9)llg2(2, 5)| <10-27|[Vga[12(0)|0 < = < 27, —y =1 <5 < —y},

then given (x,s) € E we have the estimate
L
g2(a0,0)| < 1027 Vel 2oy + [ [V((oo,0) + )
0

where w = —E=T0S=Y0) 40 < [ < P(|[z]]])-
((z=20)?+(s—y0)?)2
Since the measure of E is big enough (> m) the measure of the region described in the unit

circle by those w’s is also big enough (> 1/P(|||z|||)). Therefore

o)l < PVl + [ [ F2Eb0 L2 gy,

This inequality implies that
. laaao o) Pz < PAUEID | Vet Py
2

To conclude the argument we just observe that because the parallel curves have tangent vector
whose lengths are uniformly bounded by P(|||z||]), the integral [, |92|?|V$|? is bounded by

P(lIz[ID(fy lg2(z0, yo) [Pdzodyo + [o, [Vga(x,y)[*dzdy), g.e.d.
5 Estimates on @

In this section we show that the amplitude of the vorticity w is at the same level than
O0n2. We prove the following result:

Lemma 5.1 Let w be a function given by

w(a) = %233(2 @)(@) - az() —2mg%aaz2(a). (5.1)
Then
o g < exp C(IF(2) 1700 + 120 Fp1)- (5.2)
for k > 2.

Proof: We have |A,| < 1, then the formula (5.1) is equivalent to

p* = p'
w(a) + AT (w)(a) = —2ﬁgm8a22(a), (5.3)

21



or

w(a) = _zﬁg%u + AuT) H(Baz2) (@),
It yields
l@ll, 3 < CIT+AT) M, 3 19az2],

and proposition (4.1) gives
Il 3 < exp C(IF ()70 + ll2]1Fs)- (5.4)

Taking the k derivative of (5.3) we get:

2 1
Ok (0) + AT(0h)(0) = Qu(@) + OO a0), € = —2mgly 0y

and using Leibniz’s rule we can write

(2(a) — 2(a = B))* - Daz(a)
2(@) = z(a = B)I?

k
Ou(w)() = > C; [ @i oIzl = ) + () ),

where S is a smoothing operator, C; are suitable constants and ® is a C°° cut-off such that
® = 0 outside the ball B(0,r) of radius 7 = gy and ® = 1 in B(0, 5).
Next let us consider

A20Fwm(a) + A,T(A20F @) (a) = A, T(A208w)(a) — A, A2T(0Fw) ()
+ A2 (@) + CA29R (),

using the estimate for the inverse (I + A,T)~! in the space H 2 we get

1
|l grsr = HAQG’QWIIH%
1
< exp(CllI2|IIP) (AL TA2 05wl 3 + Al TOaw ar + 1% + (12 )
Then we have
|IT0k w2 < Cll|2II[* ||| e

by Lemma 3.1, and
1% g1 < CIF(2) 700 ] el |21 32

by Lemma 5.2. (see below). Finally
1 1
ITAZ0%wl|, 3 < ITA208w|m < Clll=ll[*|wll vy

< Cl=IP

< (ClIlI

(U9l 3 + 120 g)

F ) Loe Ml o2 mez + 1121 pirg)
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where we have used O¥w(a) = (I — A,T)"1(Q + CO¥F12y) and the estimate of the norm in
H? of the inverse operator (I — A,T)~1.

A straightforward induction on k > 2 allows us to finish the proof. The estimates for
k = 1,3 are obtained similarly, but in all of them the norm ||z||ys has to appear i.e. we have

Iwll,5 < exp CUIF(2) 700 + l2lI7)-

Lemma 5.2 The operator T maps Sobolev space H*, k > 1, into H* 1 (s0 long as || 2| grr2 <
o0) and satisfies the estimate

1Tl g s < Ozl 2l 7

Proof: We have

® (z(a) — z(a — B) LI, z(«
T(u)(a)ZQBR(Z,U)(Q)@QZ(@):jrpv/ (2(a) = 2(a = B)) Dazla) 5y

oo 2(@) = 2(a = B)?
where, as usual and to simplify notation, we have dropped the time dependence of all func-
tions.

Let ¢ be a O cut-off such that 1) = 0 outside the ball B(0,r) of radius r = 5t and
Y =1in B(0,5). Then

u () = z(a = B)?
(2() = z(a = B)) Oaz(a)
|2(a) = 2(a = B)I?

&0 2(a) — z(a = B) 10,2 («
Te) = PV [~ o EE e IS o pjag

+oPv [ a-u) u(ar — B)dp
= Thu(a) + Tou(w).

i) Estimate of Thu(«): Leibniz’s rule gives us

> a) — z(a — )L 0uz(a
o 2(a) — z(a — B))F0F22(a

+ “other terms”
=1y + Is + " other terms "~

The estimate for “"other terms”™ is straightforward. For I; we integrate by parts:

oe 2(a) — z(a — 3))F0az(
11:717/_ W(ﬁ)(('l (= B)) " Oaz(a)

k —_
@ —2la_pp  aule= P

1 _ (z(a) — z(a — B))F0nz(a) Fofy
/_00(1 Y(6))9s( FOEECEDE )k u(a — B)dB.

™
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Then clearly we have:
1122 < ClII=IPHRws lul |

Regarding I we have
2
La) =Y 0k"2(a) - Liu(a)
j=1

and clearly ||Ljul|ge < C|||2]||?||ul|gx. Therefore
12122 < CIII2 P[22 ||l v
ii)Estimate of Tju(a): We have

— z(a = ) 0az()
(@) = z(a = B)?

k1) = 1 [ v ok ulor — 5)d

1% @ —2la =80t a)
- O S e

1 - (8§+1Z(a) _ 8§+1z(a - ﬁ))J—aaz(O‘)u o —
+ 7r/_Oow(ﬁ) FOEECETL (o — B)dB
+ “other terms”

= Ji1+ Js + J3+ “other terms”.

As in the previous case the “other terms™ are easy to handle and we shall show how to
estimate the remainder two cases.
We can write Jy in the form

2
Jo(e) =Y 08P z() / Y(B)Kj(a,a = Byu(a — B)dB =D 05+ zj() - Liju(a)
j=1

and observe that
1LjullLes < |[Ljullg < ClI|2I11P112] 2l |1
which yields
1 2llr2 < ClII2IP (121 ppee [l o

To estimate J; we integrate by parts

© 2(a) = z(a = B)) L 0,2(cx
o) = 1 [ wp e e IR gt - s

a) = 2(a— B))-dax(a)
2(a) — 2(a - B)P

)Oku(a — B)dp3

RO
= Ji+Ji
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For the first part J{ we have
111122 < ClHI2PI|2] Fps [l |-
And

o0 2o — B)) 0, z(c
s =2 [ o SIS ok gja

2 (% () — 20 ) 0nz(a)][daz(a—B) (2(0)— z(a—B))]
w2 ) 2(@)—z(a—B)"

Onula—p)ds
= Jpt P
For J7!
(Baz(a = B)) 8az(a) = (Gaz(a = f) — az(a)) Baz(a) = 822" (a)daz(a)B + O(6?),
and
|2(a) = z(a = B)* = |0a25 + O(6°)

where the constants in the ”O” terms (and in theirs first derivatives) are properly bounded
in terms of ||z||gs.
That is

_832J-(04)6az(a)

|2a(@)|?

where H denotes the Hilbert transform. Therefore for the first integral we get

TP ) = Ho*u(a) 4+~ bounded terms ~

2,1
1T 122 < ClHIZIP sl -

Finally for J12 2 we have

[(2() = 2(@=B)) " Baz(@)][Oaz(a—B) (2(a) —2z(a=P))] = %&izL(a)@aZ(a)IaaZ(a)l2ﬁ3+0(ﬁ4)
and

|2(a) = z(a = B)[" = 9a2]"8" + O(8").
By a similar approach we obtain

221 (a)0y2(a
) = S

Hoku(a) + ~ bounded terms ~,

and it yields

2,2
Iz < ClI2NP 2] Fs |l g
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To estimate J3 we observe first that the substitution of u(a — 3) by u(a) — dyu(a)s
produces an error bounded by ||z|%.|||2]|*|Jul| g
Using the expansions

GB) w1
2(a) = 2(@=B)F ~ [Baz(a)l2 3P

Otlz(a) = z(a - B) =1 / 1 O 2(a — tP)dt
0

+O0M)p(s)

and since the term corresponding to d,u(a)B can be handled very easily, it remains to

estimate:
ak—H ( ) 8k+1 ( ﬂ))J_a z
e EoEr e e / Hola
where
_ (a) 5 0522t (o = B) - Baz()
Kife) = 1 |2/ o . a5,

Finally, the L? boundedness of the Hilbert transform yields
1Kl 22 < [zl fapralul e ll]211]

uniformly on ¢, allowing us to finish the proof.

6 Estimates on BR(z,w)
This section is devoted to show that the Birkhoff-Rott integral is as regular as 0, 2.

Lemma 6.1 The following estimate holds

IBR(z,@)|| e < exp(C([|F(2) 17 + 2] F41)s (6.1)
for k> 2.
Remark 6.2 Using this estimate for k = 2 we find easily that

180 BR(2,@)|| e < exp(C(||F(2)[ 7 + [I21l75), (6.2)
which shall be used through out the paper.

Proof: We show the proof for k = 2, being the rest of the cases analogous. We have

(e 2047 a,
BR(z,w)(a) ;rpv?m _py(- @((jﬂv;’zg 9) Vila ﬁ)/(( )’< By,

dp

which is decomposed as follows:
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J_
BR(z,w)(a PV/wa 3) “‘// aaa‘)‘ ﬁ?‘)gdﬁ
Vi(a, B (6.3)
4 [t s - L [ @emaemas.0

= Pi(a) + P2(a) + P3(a).

Using that |Va(a, B)| < 1, we get |Pa(a)|+ | Ps(a)| < Cl|w||12, and lemma 5.1 yields || P 2 +

1P3]| 2 < exp(C(IF ()17 + [I2]1%5)-
Let us write

1 o
P(@) = 1= [ (~Arlava = 8). Ao = (o~ B)d5 + 220 Hev(a)da
=J1+ Jo,
where as before |  Vaa-B) ) Do)
=) = i a = A [8ae(@F tan(d)
and
Ag(ara— f) = Vila,a — ) 1 Onz1 ()

Vi,a =B [0a2(a)]? tan(Z)

For Jp since || A1z < | F(2)||z<]|2]lc2 and ||Az2||pe < C||,7-'(2)HLooHzH%2 (see appendix) one
. . _ /2 .
gets [[J1]l2 < CIF(2)l|zell2llczl|2ll 2 |l 2. The inequality [9az ()|~ < [|F(2)]| 2 give us
1/2

1720122 < CIF@IEE Nzl

Next it is easy to check that |92P3(c)| < Cllw||12(]022()] + [|z]|22) and to estimate
|02 Ps|| 2. The kernel in the integral Py(«) has order 1 in 3, and taking two derivatives in a
we get integrals as in P3 and kernels of degree —1 which can be estimated as before. Similar
terms of lower order are obtained in 92 Pj(a) which are controlled analogously. The most
singular terms are given by

ule) = 3oV [ dhmta At s
@l PV/ i v?a,f =
Qs(a) = —PV/w a—g M(wa,a—ﬂ)-(agz(a)—agz(a— )))dB.
We have
&= 3V [ (G~ ) o)
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giving us
1Q1(a)] < CIIF() | |2l|E2 102 12 + 1F ()| 2 | H (82) ()|
< (14 [H(9Zw)(a)]) exp C(I|F (2)[|7 (8) + (121175 (£))-
Next we write Q2 = Ry + Ro + R3 where

1 0xz(er) — Daz(a — )

Rife) = 5 | (la— ) = e 2R = .
_ =) 2(a) — 0 z2(a — L — 4
Rafe) = 52 [ Ghote) = 025t = D a5~

_ b @ () 2 () —02 20— 4 1 1 @ (a) 2.\ (o
Rof) = g5 [ Oete)=0Reta-9) (1~ o)A+ 5 1o e AR o).

Using that

|022(a) — 92z(a — B)] < 18°]|2]l 2,
we get
|R1(@)] + [Ra(@)] < @l [F)FN2lEs < exp CUF ()7 + 112117)-
While for R3 we have
|R3(@)| < Cllwllpe |F(2) = (2]l 2 + [A(022)()])
< (14 [A@22)(@)]) exp C(I|F (2) |70 + [12]175)

that is
|Q2()| < (14 |A(8Z2)(a)]) exp C(|F(2) 1100 + |21 5. (6.5)

Let us consider Q3 = R4 + Rs + Rg + R7 + Rg + Rg, where

+ o, X —
Ru= g [0 = @) G S Ve = 8)- el ~ st - 9)d5
wlo a, o — — Og 2\t =
By = - / e ywi),a fm(,ﬁﬁ/ (Vo= 5)- @2s(a) - ela— )5

wl ZOZJ' o, — — zZ\x : 2ZJOK— 2204—
Rg = — ()(Zc;r()) /TB(V(» B) = Oaz(@)B/2) - (952(a) — D52( 5))%’

V(e,a = B)1t

B _w(a)(({)az(oz))L )| 320822 (0) — 92 5 (er— 1 B 16
Ry = fom - 0urte) | (@82(0) -8R0 (e~ e A
w(a)(Opz(a))* 4 1
Ry = - iw?egmi)\)‘l) 0nzte) [ (08=(e) = et~ ) (i3 ~ a4
and
_ w(@)(9az(a))*
flo == |0az ()[4 Doz () - MO32()).
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Proceeding as before we get
|Q3()] < (L +]A@22)()]) exp C(|F(2) | Foe + [I2]75),
which together with (6.4) and (6.5) gives us the estimate
02 P ()] < (1+[A0%2)(@)| + [H(93w)()]) exp C(|F(2) [ Foe + [I2]75),

and [|02 Pi[| 2 < exp C([F ()17 + lI2[1)-
Finally we get
102BR(2, @) 12 < exp C(IF (2) |70 + lI2lI3)- (6.6)

7 Estimates on z(a,t)

In this section we give the proof of the below lemma for £ = 3. The case k > 3 is left to
the reader.

Lemma 7.1 Let z(a,t) be a solution of 2DM. Then, the following a priori estimate holds:

d

,t)
7 Ok z(a,t) - AO%2) (v, t)da

B K / (a
2m(p1+p2) Jr [Oaz(a)[* “ (7.1)
+exp O(IF (2) |7 (1) + 1 ll7),

217 () <

for k> 3.

We split the proof in the following four parts.

7.1 Estimates for the L? norm of the curve

‘We have

331 [ Pda = [ s(a) - zfayda = [ s(a)- BRG.=)(@)da+ [ da)2(a) - 0az(a)da
=1 + I.

Taking I1 < ||z||p2||BR(2,w)||2 and the inequality (6.1) let us estimate I.
Next we get

I <Al/Q(t)||c]\LmA|z(a)|da<Q/T|0aBR(z,w)(oz)|da/T|z(a)]doc

which yields
I < exp(C||[F(2) |70 + 12112

if we consider the estimate (6.2). We conclude that

%I\Z\I%z(t) < exp(C|[II%) (7.2)

for an appropriate finite constant C, where as before |||z|[|? = [|F(2)[|3 0 + ||2]/%s.
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7.2 The integrable terms in 03BR(z,w)
Since z¢(a) = BR(z,w)(a) + c(@) - Jpz(a) we have

/ P 2(a) - B (a)da = / 9 =(a) - B2 BR(z, w)(a)da + [ 932(a) - 02 (c(a)Baz(a))da
T
=1 + I.

Here and in 7.3 we study I;. We shall estimate Is in 7.4.
Let us write BR(z,w)(a) = Pi(a) + Pa(«) + P3(«) as in (6.3). Then it is easy to check
that
0 Ps(@)] < Cllwll2(10522(c)] + [12[1E2)

giving us a term controlled by the energy estimate. The kernel in the integral Py(«) has order
1 in 3, therefore taking two derivatives in o produces regular integrals as in P53 and kernels
of degree —1 in 3, for which we first exchange 3 by a — 3 and then take one more derivative.
We obtain kernels of grade —1 in § acting in @ or w, which can be estimated as before. For
the most singular term P (), we have

/83 83P1( )da213+14+15+16,

where

=55 [, Lo () wta o
=57 [, JLosteei |v<o(zaaa— 3 oot = 3
=iy [, Lo (s et

ls = 4 / / Oa( H‘iLaaaa ﬂ)ﬁ|)2>83 (o= ),

The most singular terms for I3 are those in which three derivatives appear and the kernels
have degree —1. The rest of the terms have kernels with degree £ > —1 and can be estimated
as before. One of the two singular terms of I3 is given by

1 (@ 2(0) ~ Bo(a— )"
h= g [ o) - REG O I o — paga,
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which we decompose as follows:

3
//83 a a)|2(ﬁ)) (ﬂ)dﬁda
/ [ et 83)|2(6)) =U0) £ 7(0) 134,
83 w(f) — w(a
L /a?» ) =) o) =)

—K1 + K.

That is we have made a kind of integration by parts in Ji, allowing us to show that the most
singular term K; vanishes:

Bz(a) — 932(8)F w(B) + w(a)
O y e
(33 (a) — 932(8))F @w(B) + w(a)
16ﬂt/1/ﬁ83 V(e 5P 5 dbda

whether for K9 we have

w(a) — @ ()
Ky = 1677//83 )+ |V( )|2 dBdo

/w ?m)%&? //ﬁ

where | By (o, 8)| < C||F(2)|lz=l|zllc2||@ || cr.s]81° L. The other singular term with three deriv-
atives in z(«) and kernel of degree —1 inside I3 is given by

i o f

Here we take Jo = K3 + K4 + K5 where

— B8))* Bi(e, B)dBda,

Vo, a—p)

V(e a—pB)* (@) =03 2(a—B))w(a—B)dBder

Via,a=p) - (8§z

i [ [oste) B 0,5 - Wia8) - 02s(0) RN
J_ a,
i [ et T Baaa-g) - @s(0) - 0sta- )l )dsda
with
By(a,a— ) = W(a,a — ) — Onz(a)3/2,
and

z1(a) — z21(8)

Wi, B) = (( D) )pa( 9 )p)
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is defined in the appendix. Finally we have:

/ / 2 M@ #(a) - (932(0) = 0az(a—B)w(a—B)dfda.

The L*° norm of V(e f)
W(V(%ﬁ) - W(a, 3))

is given in the appendix, allowing us to estimate the term K3 as before.
Next we split K4 = L1 + Lo, where

J_ Oé o—
/ / P 2(a) -~ VA@a=h) by o p) - 92x(a)w(a—B)dAda,

V(e a=B)t
and
L(
= [ [etste) 00 e ﬂf,)432<a,a—ﬁ>-8é’;z<a—ﬁ>w<a—ﬁ>dﬂda,
We have

L1 < C| /Tﬁgz( |g zz(( ))‘482 (v )-agz(a)Hw(a)dﬁda’

+ 1052z 1F () < N2l 2 o oo

|La| < C|/Ta§z( ’g ZZ(( ))|4 (a)022(ct) - H(822)()dBdc|

+ 105zl 217 (2) | e 2ll s o

and the term K is controlled.
For K5 we split

K=o / / O3 +( m(ﬁaz(a)—ﬁaz(a—ﬁ))-8§z(a—ﬁ)w(a—ﬁ)dﬂda,

_ W/qy/ﬂ‘aaz{a) - By(a, = B3)(0gz(c) - 02 2(t) — Dpz(ar—B) - 03 2(av—B))dBdax
= L3+ Ly

where
Vo, a—pB)w(a—pB)B
V(e,a=p)t

B3(Oé, Oé—ﬁ) =

Then we have

ILy| gc\/wagz(a).my (a) - H(8?2 w)(a)dal

022217 (2) | e 2ll g2 ol e -

32



For L, we use an appropriated integration by part:
Oaz(a) - Og2(a) = ~|922(a),
to obtain
/ / 822() - Bs(a, a—B)(|622(a) 2 — |622(a—B)[2)dBda

Next we write Ly = My + M>, with

=5 | [ 922(0) - Clona = B)(132x(0) = 02(a=B) ) dda
for
B Bieas) . 2EEe)w()
Clona =)= Bl o) = o it (372
Vi a-fmle-p)5 _ 20ixa)w(a)
V=B [ s (5/2)
and
= 32(a) - 0t 2(« M 2212 do
My = [ [ 0e(0) - 0 x(0) 2 S A(0ReP)a
Since 1
Clava=B)| < IF@lu ez =len 5

(see lemma 11.3 in the appendix for more details) and

1
102(e)|? — |822(a—B)?| < 2||2ca 8] / 82 2(a + (s — 1)8)|ds

we get [Mi] < [|[F(2)||zellzllc2llwller (0521172
For the term My we use the estimate

1922122 = 190a(102217) |22 < 2110321052122,
to obtain [Ma| < C|F(2)l| 1 @ oo 1052 o= 1052117

For I, the most singular terms are those for which two derivatives are applied to z(«).
One of those is J3

_ 3 (a2 daw(a — f)
By=C | [ 98x(0) - (02x(0) = 220 — ) H Oz as,
We split J3 = K¢ + K7 + Kg

_ 3.0a) - (022(a) — 2x(ar — daw@(a = ) — Oaw(a)
Ko=C [ [ 0a(a) - 9Rx(0) —e(o — o) BT 26T g5,
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1 4

2 2
K=C [ o= (@22(e) = (0~ ) (o a =5~ stalEe ™
22(a) — 0%z(a —
ngC'/Taaw(a)agz(oz)‘/Taa (@) 52& ( mdﬁ,
Using that )
022(a) —9%2(a—p) = ﬂ/o z(a+ (s —1)B)ds (7.3)

and |0, (a — ) — Oaw ()| < ||w]|c1.5]8]° we have
1
Kol < CIF@ I lulens [ [ 1307 [ o2e(e0kz(a+ (s = 1)3) dodsds
1
< CIFElu=llens [ [1807 [ (02 + 1082(0+ (s = DB))dodsds
< Ol F (@) reollwllcrs 102275
Due to (7.3) and the estimates obtained in the appendix we have
|K7| < C|IF(2) || wllor [l o2 1932117 2-
Then using that 1/ — 1/2sin(/3/2) is bounded, we get
Ks < C||F(2)llze[wllcr 932117 -

Regarding I5, its most singular term is giving by

3 Ozw(a—P)
I, _c//a (@) = Bzl — B) B S
which after being decomposed in the form
3 8 z(a) = Oaz(a =) 2022(a) 9 B
n=c [ foreter (PG ~ e mngam) 2 009
3 z(a) 2
+C’/8 W H(0 w)(a)da.

can be estimated as before |J4| < O||F(2)| Lo ||z ||c2.s |02 w]| 12|02 2| 13-

7.3 Looking for o(«a)

The term Ig will gives us the proper sign (Rayleigh-Taylor condition) that has to be
imposed upon o(«). Let us recall the formula

2 1
o(a,t) = F—LoBR(z, @) (a,1) - 0y 2(at) + 8(p* = p")daz1 (0, )
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We write Ig in the form I = J; + Jo where

3 Viaafﬂ)_ (Oaz(a )) 5 .
h= 477//8 |Va a—P0)?  |0az(a )|2tan(ﬁ/2))8 w(a — B)dpda,

a= [ [ e gi - H(0) (o) o

Let us denote the kernel of J; by ¥(«, o — 3), which is of degree 0 in 3. After an integration
by parts we obtain:

and

-/ / 32(0) - (e, a - B)95(02(a — ))dfda
/ / 2() - 9% (o, a — B)0iw(a — B)dBda.

Then 03X (a, & — 3) has terms of degree 0 which are estimated easily. The term with degree
—1 is given by

(Gaz(e — B)* n (Daz(a))* ~ VHa,a-p)
V(e a=B)P  2/0az(a)?sin®(B/2)  [V(a,a=pB)I*

Via,a — ) - 0qz(a — ),

and we decompose it as a sum of a kernel of degree 0 (easy to estimate)

(Daz(e)) " (i _ 1 )
B 2sin®(6/2)”

|
and six kernels of degree —1, (Py,..., Ps) given by
(Oaz(a = B) = daz(a))*

|0az(a)l?

[
Pitose ) = O (o R
Aoa= ) = 7 OO (00 - ) (0uz(a) — dusla — )
Pulava =) =~ (00— ) daz(@)2) ),
Po(oa— ) = — \3a2(2a)!26 Vi(a, ﬁ/zj)a—_%;(a)ﬂ/{
e ) = = a3~ Bt

To control the term with kernel P, we consider P, = Q1 + Q2
(Oaz(a))t 2002(a) - 0% 2()

o]

2 Oaz()*B

Ql(a,a—ﬁ):Pg(a,a—ﬁ)—
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Oaz(a) - 022() ( 1 1 N Oaz(a) - 022() )

Q2(05704_ﬁ) :_aéz(a)< ‘6QZ(C¥)‘4 7

5 2n(3/2) © Pucto)2tan(3/2))
It is shown in the appendix that ||Q1]|f= < H.’F(z)H’ZooHzH’éw\ﬁ\‘S*l, (see lemma 11.4) giving

= / [ 02:@)- Qulava = Blo2e(a — B)dBda < CUF ) elelnall O3 2|02
The integral
K = 4ﬁ//a3 ) - Qal, o — B)2w(a — B)dBda
is bounded by
1| < CIlFE2 2l e / 1032(0) (|02l 2 + | H(92w)(a) ) dax
< OIIF@)IF2 N2l o2 10321 12 |02 ] 2.

It is now very clear that the other P; terms can be estimated as above or as before i.e. we
finally have
2 2
Ji < exp O([|F(2)]| 1 + [12l57s)

We consider now the Jy term which can be written as follows

T2 = - A / 93 2( 2()A(02w)(a)da = 47le(t) /T A2z - 01 2) ()0 w(a)do

and using the formula (5.3) we separate Jo as a sum of two parts, Ko and K3, where

kg —ph) 3. 91110185 2 (a)dar
27T(u2+u1)A(t)/TA(aa 9y 2) (@) 0y 22()da,

and

Kz = —47:2“(75) /TA(f)gz 0L 2)()02T (w)(a)dar.

For K5 we decompose further K9 = L1 + Lo, where

__ nelp? = ph)
B om(p? + ) A() /TA@i%%@)(@)ﬁi@(a}da,

and

_ rglpt=pY)
T RN I) /qrA(agzﬁazl)(a)ag%(a)dw

Then L4 is written as L1 = My + My with

~ kg(p*—p!)
T 2n(p® + ph)A() /T(A(a‘i“aaz?)(“) — M(0321) ()00 22(00)) D5 22( ) dor,
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and ) .
kg(p® —p’)

2m(p? + pt) At
Using the commutator estimate, we get

M, =

) /T ADB 21)(0) B 22() 03 25 (@) de.

My < CIF (@)l 2llezs 1032072 < exp CUIF (27w + [12l79)

The identity
Oaz2(0) B 22(ct) = —0a21 () 0p 21 () — |93 2() 2,

lets us write My as the sum of N; and Ny where

. /ig(pz_pl) SZ a 22 o 2 o
27T(u2+M1)A(t)/EA(8a 1)(@)]052(a) | dey,

and

 rg(p*—p")
N2 = o £ AW /Taazl(a)agzl(a)A(aizl)(a)da-

Integration by parts shows that
N1 < CIF @)zl 211052172 < exp CUIF ()T + l12]7).

Writing Lo in the form:

1
_ ke(p* — p') 3 3
Ly = T2 AAD /0 z1(a) 0522 () A0 22) (av)dav,

we obtain finally

2/fg

Ky <exp C(”]:(Z)H%OO + HZH%’S) N 47r ,u +M

t/@zl 108 2(a) - A2 2)(a)dar.

In the estimate above we can observe how a part of o(a) appears in the non-integrable terms.
Let us now return to K3 = L3 + L4 + L5, where

b= = s [ M@z 042)@) 0B ) (@) -ducla)da
b= ‘zﬁf(t) /TA@Z 022)(@)0aBR(z,@)(2)) - Oyz(0)dar,
and
Ly =~y [ A@3= 02) (@) BRG, )(0) - i@

We will control first the terms L3 and L4 and then we will show how the rest of o(«) appears
in Ls. Integrating by parts in L4 and we obtain

Ly < C|F ()= H (a7 - 02 2)ll 12 (103BR(2, @) 121052l o + [0 BR(2, @) | L 10321l 2)
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and using the estimates for ||02BR(z,w@)|12, we get Ly < exp C(||F(2)||7 + |2[135) With
L3 we also integrate by parts to obtain Ly = M3 + M, where

M; =

47TA /H (922 - 0L2)(a)(202BR(z, w)(a)) - 92 2()da,

and

/H (922 - 0L2)(a) (203 BR(z, @)(a)) - Opz()dax

M, —
4 47TA

Fasily we have
M;s < C|F(2) ||| H (932 - 95 2)l| 2|02 BR(2, @) || 12 022l 1 < exp CO(|F (2)[[Zoet |21 Frs)-

In My the application of Leibniz’s rule to 92 BR(z,w) produces many terms which can be
estimated with the same tools used before with Iy and I5. For the most singular terms we
have the expressions:

N3 = _47rAM(t) /TH(aiz - 0£2)(a)200(BR(2,0%w)(a)) - O42(a)da
_ (@3- 0 - 33() Opz(a— B)* ;
Ni= g e ok / Viaa-gp 0 Ol
N5 = 27TA / H(332z-9tz) /w o — (,a— B) - (032(a) — 92 2(a — B)))dBde,
where

VAo, — B) - Oaz(a)
‘V(O&,a - ﬁ)‘4

B(a,a—3) = V(a, o — ).
Let us consider

Ou(BR(z,02)(a) - 9a() = 0(BR(2,02)(@)) - dax() — BR(z, 62w)(a) - 62:(a)
= L u(T(@w)(a)) ~ BR(z, &) (a) - 022(0)
which yields
Ny < CIF e [ H@22 - 022) |2 (IT@2) | + | BR(z, 62)| 210221 1)

and therefore
N3 < exp C(|F(2) 3ot [|2]1%3)-

Next we write Ny = O1 + O + O3 + O4 + Os,

/H (9 2-012)(a )(agz(a))L.aaz(a)/( wla=f) A=) a0

01 = p \V(a,a= AP [Gaz(@)PI5P

27TA

A w(o — w(a
0s = gzt | 1080k @ et ) (T o g e




— A 3.0 ) () (a) (2 z(a))t - 0,2(« i 1 e
0 = —5=hay [ 10k o) (@)= (@) @) - ux(0) [ (1 = i),

. A# 32' Lzawa 3ZC¥— 4L (o i_ 1 a

0i= 5t | 1@ o) @)te) [ (@t = ) 0x(0) (g = 7).
05 = iy | 10k 0k)(0)(0)0uc(e) - Al(02) ) a)do.
The terms O1, Oz, O3 and Oy4 can be estimated as before. Then we split O5 = Ry + Ry where
= 2ﬂﬁ5<t> /TH (032 922) () (A(waz - (332) 1) (@) — w(a)Baz(a) - A((932) 1) (a))da,
and A
Ry =5 /T H@P 2 - 022)(0)A(@az - (332) 1) (a)da.

Using the commutator estimate, we obtain

Ry < O||F(2)|[7o 1H (052 - 03 2) | 2| w8zl 0161|0221 12 < exp CUF ()Tt l12l13)-

The identity A(H) = —0, gives
Ry = 27rig(t) /T@a(aiz -0y 2)(a)w () daz(e) - (O32(r)) " da
= —z{fx% A5a<azz 0y 2) (@)@ (@)D () - 9y 2(a)da

and integrating by parts we get
2 > oo a”  Yu 2 (o] L>® > [, H3):
Ry < O||F(2)|[ 11037 - 05 2|72 /10aw ]| o < exp C((|F (2) |7 [|2]7s)
Regarding the term N5 we have the expression

(V(a,a — B) — 0qz(a)B3/2)* - Oqz(ar)

Bla,a =)= Vioa— A

V(a,a—0)

which shows that B(«a,a — ) has order —1 and, therefore, the term N5 can be estimated as
before.

Finally we have to find o(«) in Ls to finish the proof of the lemma. To do that let us
split Ly = My 4+ Mg + M7 + Mg where

Ay

Ms = 500 /TA(agzlaa@)(a)BRl(%W)(a)ﬁizl(a)da,
My = _27:?4”(75) /TA(82Z26a21)(04)BR1(Z,w)(a)ag’ézl(a)da’
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Ms = _27r/f(t) /TA(a(iZ?aaZl)(a)BRﬂz,W)(a)8322(a)da

and BRj, j = 1,2, is the jth-component of the Birkhoff-Rott integral.
Then

Ms = 273(@ A(A(amagzl)(a) — Oaz2(a)A(3221)(0)) BRy (2, @)() 33 21 (a)da
* 27TAM(t) /T8°‘Z2(a)BR1(Z7w)(a)azzl(@)A(agm)(a)da

and the commutator estimates yields

Ms < expC(Hf(z)||%oo+\|z||H3)4*/BR1 2,w)(@)0az2(a) 0521 () A(Da21) (@)daw (T.4)

In a similar way we have
A
Ms < exp CUF et I205)+ 5245 / BRy (2, m)(0)a22(0) 93 25(0) A(9321) () da
T

Let us introduce the notation

Ny = / BRa (2, 0)(0)daza(0) 3% 20() A(9E 21) () da,

m
27TA(t> T
the equality Oy 22(a)0322(a) = —0421()0321(a) — |022(a)|? gives Ny = Og + O7 where

Ay

Og = 27rA( )/BRQ(Z w)()|022()|*A(82 21) () dv,

Or= zﬁu >/ BRy(2, @) ()21 ()01 (@) A(0321) () der.

Integrating by parts in Og we get

O <C|F(2) |l (10a BR(2, @)l| 1|03+ | BR(2, @) | oo 02 2| oo |02l 2) | H (9 21) | 2
< exp C(||IF (2) | 2ot Il277s).

Finally we get the estimate

Mg <exp C(I|F(2) |1tz 7:) )0az1(@)0521 () A(9521) (a)der.

Which together with (7.4) yields

A,
2A()

With M7 and Mg we use the equality 9,21(a)0321 () = —0a22(a)02 20(a) — |02 2()|>. Then
operating similarly as we did with M5 and Mg, we get

M+ M <exp C(|F ()3t 12113) / BR(z,)(a) - 02 2(a) 9321(a) A(9321) (a)da.

M7+ Mg SeXpC(If(z)lliooﬂLIIZII?{s)—m/quR(zw)(a)@iZ(@) Oaz2(a)A (95 22)(@)dar.
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The addition of both inequalities produces
A,

Ls <exp C(|F(2) [ Lt 12l 75) = 5 Al )/BR(Z @) (@) - 9y (@) Baz(a) - A(932) () dev.

and all the previous discussion shows that I5 satisfies identical estimates than Ls.

7.4 Estimates on 92 (c(a, t)0,2(a,t)).

In the evolution of the L? norm of 83z(«) it remains to control the term
I = / 93 2( (@)0nz())da.
Let us recall the formula
cla, 1) = O‘” /agz (8,1) - 95BR(z, w)(5,1)dp
0] / 032(5,1) - 03B R(z. =) (3.1)d5.
We take Is = Jy + Jo + J3 + J4, where

J = A@iz(a) L9t z(a) e(a)da, Ty = S/T 102 2()|? O () dox

J3 = 3/1Ta§z(a) 2022(a) Be(a)da, Jy = Aazz(a) - Onz() B3 c(a)da.

An integration by parts in J; yields

(7.5)

1
3= =5 [0 oncta)da < [Duclloe 02213 < 2AF N2 100 BR, =)l 02213

and the estimate for ||0,BR(z,w)| L~ obtained before gives us
J1 < exp O(|F(2) |70 (8) + [z (1))
The term Js satisfies that Jo = —6J7, therefore
J2 < exp C(IF ()1 (8) + [|2175(2)).

Next we split J3 = K1 + K5, where

22 (a
= _3/ 3 z(a) - 92 2( )]682(())|2 - 0o BR(z,w)da,

= —3/ 2 2(a) - 922( )M - 02BR(z,w)da.
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We have
Ky <3| F(2)llL 121122 0a BR(z, @) || 1 1052 12 < exp C(||F(2) |7 (8) + [|2]1 35 (2)),

K> < |F(2) 2 2] 021032 12|02 BR(2, ) | 2,
and therefore
I3 < exp O (|| F(2) |70 (8) + [|2[|73 (1))
The equality 92 2(a) - Oa2(a) = —|022()|? yields
/ 10%2(a) 203 c(a)do = 2/ 3 2(a) - 022() D2 c(a)do = I3,
T

and finally
I < exp (| F(2)[[ 1 (1) + |27 (1))

8 The arc-chord condition

In this section we analyze the evolution of the quantity ||F(z)| re(t), which gives the
local control of the arc-chord condition.

Lemma 8.1 The following estimate holds

%HF(Z)H%W (t) < exp O(|F (2)l[70 (8) + 12172 (1)) (8.1)

Proof: Let take p > 1. It follows that

824\
a7 dt// Viava—gop) P
_II+IQ+I37
where Viaya— B,1) (o) — 2l — 5,1)
a,a— B,t) - (ze(a,t) — ze(a — S,
n=—p [ [asi2> e s dpdor
VS(Oé,Oz—/B,t)(Z (a,t)—z (Oé—ﬁ,t))
e N A R e 4pdor
and

_ Vi(a,a — B,t)(za¢(a, t) — zo4(a — B, 1))
N K R e dpda

For I; we have

|6]/2 op+1 ]2t (, t) — z¢ (a0 — B3, 1)
nzr [ Graas 5o X dfder
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Let us consider

z(a) — z(a=pP) = (BR(z,@w)(a) — BR(z, @w)(a — B)) + (c(a) — c(a — B3))0az(a)
+ c(a = B)(Oaz(@) = Oaz(a = )
=Ji+ Jo+ Js.
Then for J; we get |J1| < ||0a BR(z,w)||1=|3|, and the estimate (6.2) gives

| J1] < exp C([|F(2) | Fo0 () + [12]1 2 (2))15].
Using the definition for ¢(a) easily we obtain that

10 BR(z, @)|| o0

(o) — clo— ) <

181,
and again using (6.2) we get

| T2| < exp C([|F(2) | Fo0 () + |21 32 (2))5]-
For J3 we have |J3| < ||c||z=]|z||c2|8| that is

| T3] < exp C|F(2) | F00 () + 2] 32 (1)) 5]-

Those estimates obtained for J; allow us to write

2 2 B2 e
I SpeXpC(H]:(Z)”LOO(t) + HZHHg(t))/T/T (\V(a,a —ﬁ,t)|) dpd
< PIIF I () (exp CUIF ()00 (1) + 12l (0) 17 (2) 17, (8).
Holder inequality implies
| I <pCHZIt”L°°// WQ )|) 7 dBda < pCllz1 i)~ (1 + | F (2)|2,)
< p(exp C(||F(z )IILoo( )+ HZHm( IIF I

Since |Va(a, a0 — )| < 1 we have

2
|I3|<2p||z2t||L°0// ’V a‘i’/ /8 )|)2pdﬁda

< 2p(exp CIF(2) |70 (1) + 1217 () 1 F ()2

Those estimates for I1,l> and I3 gives us

%Hf( W7o (t) < p(exp CUIF(2)IZ0e () + 2l () I F ()17 (2),

therefore

%Hf(Z)IILp (t) < (exp C(IF () 1T (1) + Nl s (D)) IF (2) 2o (8).
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After an integration in the time variable ¢ we get
R o )
IF(2)|| 1o (¢ + h) < [|F(2)|| o (t) exp (/ LUl (Z)”Loo(S)+||Z||H3(S))d8)’
t
and letting p — oo we obtain
bR o )
I o=+ 1) < IFEll @ exp ([ €07 ),
t
Therefore
d . _
T IF e (1) = T (I7(2) | p= (8 + 2) = | F(2) | (£))27F

t+h z 2 S 4 2 S
< |F (=) = (1) Jim (exp (/t CUF@I e (1215 (9) g) _ 1)1
< |’f(z)||Lw(t)ec(llf(z)\\%oo(t)+HZ||§{3(t))‘

With this we finish the proof of lemma 8.1. g.e.d.

9 The evolution of the minimum of o(«,t)

In this section we get an a priori estimate for the evolution of the minimum of the difference
of the gradients of the pressure in the normal direction to the interface. This quantity is given
by

2_ 1
o(a,t) = %BR(z,w)(a,t) O 2(a,t) + g(p? — pM)azi(ayt). (9.1)

Lemma 9.1 Let z(«a,t) be a solution of the system with z(a,t) € C*([0,T); H®), and

t) = mi t).
m(t) = mino(a, )

Then
m(t) = m(0) —/0 exp C([|F(2) |70 (s) + 2] 73 (5))ds.

Proof: Suppose that z(a,t) € C1([0,T]; H?) is a solution of the system, then the result
obtained in the preceding sections together with Sobolev inequalities show that o(a,t) €
C1([0,T] x T). Therefore we may consider oy € T such that

m(t) = mino(a,t) = o(ay,t),

aeT

which is a Lipschitz function differentiable almost everywhere. With an analogous argument
to the one used in [7] and [9], we may calculate the derivative of m(t), to obtain

m/(au,t) = ooy, t).
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The identity (9.1) yields

op(a,t) = 5 ;“ O (BR(z,@)) (o, 1) - 9 2(a 1)

N —pu!
k
=1 + I>.

+( BR(z,w)(a) - Oxzi(a,t) + g(p* — p")daz11(c, 1))

And we have
[I2| < C([|[BR(2, @)oo + 1)||Oazt]| .

We can easily estimate ||BR(z,w)|| o, obtaining
12| < exp C(IF (2)l[70 + ll2]72) 1002t 2o
Next we use equation (1.4) to get

< (10aBR(2,@)| o + |0acllz=[|0azl L + |lcll]|032( )

< C||0uBR(z, @)1 (1 + [|F ()12 |2l c2)s

10azt]| Lo

and with the bound obtained before for |0, BR(z,w)||1 (6.2), we have
| 12| < exp O(|F (2)l[70 + ll2172).

Let us write BR(z,w)(a,t) = Pi(a,t) + Pa(a,t) + P3(a,t), where the P; were defined in
(6.3). We have
|0:Po ()| + 10:Ps()| < Ol 2 + @] 2]l o< )-

The norm ||z¢||ze is bounded by (1.4), and the adequate estimates for ||co¢|| ;2 which will be
introduced later. In 9;P; there are terms of lower order which can be estimated as 0; P and
0y P53, but the most singular ones are given by

Vi(a,a—p)
PV/wt a o — ﬁ)‘Qdﬁ’
_ 1 B Zt a) — z(a— )
A ST e
VJ_
= ‘PV/ o= By fyaaa 5?4 (V(asa = B) - (21(a) — z(a — B)))dB,
Let us now split J; in a similar way as we did before, to obtain
1 V- (o, a—p) 0t 2(a) 0t z(a
M= = O asa B ~ e Pan@) T o,z@p D)

and
1/2
1] < CIF () |[5eo |22 lliell 2 + | F )12 e co-
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Next we divide Jy = K7 + Ko + K3 where

_ 1 zi(a) — ze(a — B)
= g [ - o) S
w(a 1 4
Ky = 2 [ G == (a3 ~ )

1 w(a) 4 1 1 @(a)
= Gt (@) = o= ) (g — )+ 5 1 s A o).
The identity

K3

1
zi(a) — ze(a— B) = B/ Oazt(a+ (s — 1)B)ds,
0
gives us
1K1 | + | Ka| < @l [ F(2) 1|22 1002t oo -

And for K3 we have
|K3| < Cllwllpes | F ()|l Lo= |2¢]l cr.s-

In order to control ||w||s we will use the inequality

[flles < CUSMez + 1 Fliz0),

with
|f(a) = f(B)]
la—p°

Let us now take the time derivative of the identity (5.1), we get

1 fll=s = sup
' oB

AH p2 _ pl
wi(a) + AT (wy)(a) = —==R(a) — QKgmaazﬂ(a)

which yields
Il < CIT+AD L UIRI g + 18az] )

and since we control ||(I + A,T)7!| 1 it remains to estimate ||R|| 1.
H2 H?2

Instead we will estimate || R|| g1, and to do that we consider the splitting R = S; + .52+ S3
where

Vaaa_ —8aZOZ 2L-aaza
51(04):/Tw(oz—ﬂ)at<( ( ﬁ|)‘/(a,a(—)ﬁﬁ)|/2) ( ))dﬁ,
— LJ— o, — - Ozl
i) = = [ o= @0 (oo G s

Sy(a) = — /T (0~ 9)k (Vala. @ — oz (@) ) dB.

The terms Sa(«) and S3(«v) are controlled as follows:

|S2(a)] + [S3()| < Cllztllcn [l 2
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For 51 we split S1(a) = Q1(a) + Q2() + Q3(a) + Qu() + Q5(ar), where

i V(00— B) ~ 0a2(0)B/D) " ala)
‘/T =0 Via.a— AP "
B (ze(a) — ze(a— B) — 8azt(oz)ﬁ)J— - Opz(a)
/w o Viwa—B)P 40,
V(@0 5)~0a()B/D)" Baz(e)
/m Viaya— AT Blasa=mi
with
Bla,a— §) = V(a,a—f) < ( )—Zt(a—ﬁ)),
)
/wa— ]Vozoz— )\Qdﬁ’
Clava - B) = VE(a,a — B)(214(a) — 214(a — B))0aza(a)
+ VR0 — B)(224(a) — 221(a — §))nz1(a)
(Viaa=0)-0uc@)3/2)" Ouzle)
Qs() =~ [ wla—p) I T D(a, o~ B)dp,

D(a,a = B) = Vi (a, a = B)(21:(a) — z1e(a = B)) = V' (e, a = B)(224(0) — 224(a = B)).

We have |Q4(a)| < Clz||c1||@] r2]|2t]| poe. In a similar way this estimates follows for Qs:

1/2
1Qs(a)] < C(llzller + IF N2 NlZ) Il 2 22 -
For Q1 we proceed as before to obtain
Qu(a)] < ClIF(2) ||z ||zl ezl 2l 2ell oo -

The inequality
|2t(a) — ze(e = B) — Oazt(a)B] < |zt s |8

gives
Qa2(a)| < ClIF )|zl zller @l Lo 2] o6
And
|2¢(c) = ze(e = B)| < [|zellen |81,
yields

1Q3(a)] < IIF)2 120 %e 1w 2|2t .
Finally we have

|R1 ()| < IF2 1215 |2t o5
Using (5.1) we obtain

lills < CUIT(@) s + 1Rl + [19azll ).
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For § < 1/2 we have
IT(@e)llzs < 1T (@)1 < 2010aT (@)l L2 < IIF(2) |20 |21l s 1wt 2.

Now to estimate [|R| 55 < [|[R|z: we consider ||0aR|z2. The most singular terms for this
quantity are those with two derivatives in o and one in time, or with one derivative in «, one
in time and a principal value. Let us write:

V(00— )~ 0a(0)3/2)" - 0(a)
/w ) Via,a— B)P i
B 8 2(@) — Onzt(a — B) — 0% 2(a) B)* - Onz(c)
/“ ¢ Via,a— )P i
V(0B =00/ 0ux()
/w o Tt D~ B)d,
with
D(a,a— ) =V(a,a—pB) - (Oazt(a) — Oqze(a—P)). (9.3)
We have
|Q6()| < IF ()7 |2l G2 llwll 121022 ()],
and

|Qs()| < |F(2)ITeoll2l1Eellwlzoe ll2e () [l s
Let us split Q7(«) = Jy + J5 where

_ 1 oo — (0azt(@) — Baze(a — B))* - Daz(c)
Jy = 2PV/T (a—0) Vioa D) dg,
and . ;
Js = —5(8§zt(a))L . 8az(a)PV/Tw(Oz — ﬁ)mdﬁ

For J; we have |J5| < || F(2) |5 || 2]|5a||w]| g1|022¢()|. Next we divide Jy = K4+ K5+ Ke+ K7

where
1 o — B) — ol (Oazt(@) — Opze(a — B))F - Ouz(a)
Ki=3 [ (o= 9) - =(@) N v s,
_ =) 2(@) — Opze(a — B))F - Buz(a 1 - 1
KB - 9 /T(aoz t( ) aoz t( /8)) aoz ( )(|V(a,a—ﬁ)|2 ’aaz(a)|2|ﬁ|2)d67
2w(a) 1 1

L. Z\x
Ko = proets [ @uo) = Bzl = B)* - (o) ).

lﬁwz((a)m (A(Baze) (@) " - Daz(a).

We have | Ky|+|K5| < C||F ()| | 2ll¢e [wll i llzellovs, [ K6l < 1 F(2)l|zee |2l c2llwll |22l e
and |K7| < [|F(2)|| |zl c2 wl g [A(Oazi) ()]

K7 =21
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Finally let us observe |z¢||c1.s < ||2¢| g2, which provide us the control of |92z ;2. We
consider now the terms of 92z (a) given by

I3 = QiBR(z,w)(a), Iy = 8§(c(a)aaz(a)).
Easily we get
|Is] < | F(2) |7 2]l 6 (1 + [032(a)| + |02 BR(2, @) (e)),

which yields
1Zall 2 < (IF ()| Fec 12012 (1 + |2)l s + 102 BR(z, )] 2),

so that we can control ||02BR(z,w)| 2 as in (6.6), and finish the estimate of I3.
The upper bound
joe(a, )] < exp C(|F(2) [ (1) + 211 (1),
gives us
m/(t) > —exp C(|F(2) | Zoe (t) + [|2]3a(2)),

for almost every t. And a further integration yields lemma 8.1
! 2
m(t) = m(©) ~ [ exp(Cll[2]| P
0

10 Regularization and approximation

Our next step is to use the a priori estimates to get local-existence. For that purpose we
introduce a regularized evolution equation having local-existence independently of the sign
condition on o(a,t) at t = 0. But for o(«,0) > 0, we find a time of existence for the Muskat
problem uniformly in the regularization, allowing us to take the limit.

Let z¢(a, t) be a solution of the following system:

tanh(w)(l _{_tanQ(w))
taHQ(M) _i_tanhQ(w) +5
L =(8,1) tan(w)(l—tanh%M»

Am Jr tan2(220_21GDy | oy (222G 4 4

62’@0& :—i ()
BRI (2, w)(a,t) = ( A 8,) a8,

dg),

2 1
= (0,1) = ~Auge # 62 % (BR(, ) - 02°) (@) = 2o Ly 00w 020 (0055) @),
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o+ 002 (i, t)
o)=L /Tr e 0uBR (™) o tda

“ 8‘)"2575 ﬁa t
- /_ W((at))P - g BR (27, @) (3,1)d,

p e CX[R), ¢(a) 20, ¢(-a)=¢(a), /Rcﬁ(a)da =1, ¢(a) = ¢a/e)/e,

for e > 0 and § > 0. X

Then the operator I + A, ¢. * ¢ * T has a bounded inverse in H?2, for € small enough,
with a norm bounded independently of € > 0. For this system there is local-existence for
initial data with F(zo)(c, 5) < oo even if o(a, 0) does not have the proper sign (see [12]). So
that there exists a time 79 and a solution of the system 259 € C1([0,T°], H*) for k < 3,
and as long as the solution exists, we have [9,259(a, )|> = A%%(t). Taking advantage of this
property, and using that @/ is regular, we obtain estimates which are independent of 6.
Letting now & — 0 we get local-existence for the following system:

zi(a,t) = BR(2%, @) (e, t) + ¢ (a, 1) 0p 2% (e, t),
2*(a,0) = zo(a),

where
. _a+m 0a2% (a1, t) ‘ P
(o, t) = o /11‘ ERECIE 0aBR(2°,w)(a, t)da
& 0n25(0,t
[ ta PR o 008
0% — pl
@ (a, t) = —Apge * ¢ x (2BR(2°,@%) - 002°)(ar) — 2ngm¢€ * Pe * (0n25) ().
Next we will show that for this system we have
d €12 K / Us(a7t) ke ke
ad < _ -A
a0 = =50 ) Jo 1B, 7 Goe D Mg e oo e
+exp O(|F () 1700 (1) + [12°]1 0 (8))-
where

o (a,t) = BR(2°, @) (a,t) - X 25 (i, t) + g(p* — pH)0azi(a,t).

12—
K
To do the task we have to repeat the arguments in our previous sections, with the exception of

7.3. (looking for o°(«)) where we proceed differently using the following well-known estimate
for the commutator of the convolution:

0= (9f) — 9¢= * (Nl < Cllgller £ 22 (10.2)
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regarding, where the constant C' is independent of €.

In the following we will present the details of the evolution of the L? norm of the third
derivatives, being the case of the kth-derivative (k > 3) completely analogous. Furthermore,
with regards of the different decompositions introduced in the previous sections, in the follow-
ing we shall select only the more singular terms, showing for them the corresponding uniform
estimates and leaving to the reader the remainder easy cases.

If we consider the term corresponding to K5 in section 7.3 we have

2_ 1
K = gl [ 402 04) @0+ (0255 oo

which, we write in the following manner

- rglp’=pY e gl,e e
K5 = gl [ (e (0250459 ()0 = (8255) ()

Then we have K5 = L] + L5, where

e /‘ig(pQ - ,01) R R s
M= onur + 1) 250 /TA(¢E # (03210025)) (@) 0= * (93.25) (@) dor,

Ii= 50 i;pAE / A= % (0355002%)) (@) % (9355) () dov

Next we write L§ = M} + M5 + M5 + Mj where

2 1
M; = %(’ji(_ﬁulf Al(t) /?r A (02 # (83270225 — 6c * (9%20)0a25) (@)6: = (9525) (@)day,

kol p?— pl
M5 =5 ;(_ﬁul)”Al(t) / [A(6#(937)9a75) (@) = A (-3 (D32)) ()05 () 6% (9525) () dav,

M = QWMiu_pAa / A(e * (0321)) (@) [0az5 (@) de * (9325) (@) — e * (0a250425)()]da,

€ _ Hg p P 3 Cs .
Mi = 2 (2 +pl)As(t /A e * (0,2 )(O‘)d)s * (002505 25) (o) dar.

Using (10.2), we get
M < C||F(2°) oo | A(¢e * (02210a23) — e * (025)0a25) [l 12]l0e * (9225) 172
< CIF () e llde * (95250025) — e * (0321)0az3ll i 10025172
< Ol F (%)l 10525 | r2 1| 0025l 192251 2

and therefore
M; < exp C(|F(2°) 17 + 12°]173)-
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For M5 we use the commutator estimate for the operator A to obtain

M5 < Ol F (=)l llge * (05201210025l crs 0 + (9225 2 < exp C(IF(2%)|IZoe + [12°177a).

Regarding MS$ we have

ng —p)
Ms = Sl At / ¢ * (0527) () A (Daz50 * (0325) — ¢ * (00230325)) (a)da,

showing that it can be estimated as M7.
The identity
0a25(00) 0325 (o) = — 02 () 0521 () — 052 (e) 7,

allow us to write M} as the sum of N and N5 where

Np = =B [ A6+ 050) @6, = () e

and

3
NQE - 27T M —|—Iu, A€ /¢5 O‘Zl )(O‘)A((lss * aazi) (a)dor.
Then an integration by parts shows that
NF < CIFE |2 10227 % < exp CUF ) + [12150)

Using again the identity (10.2) in N5, we obtain finally

15 < Bl [ Do (020 @A (. = (3320) (@)

+expC(||F (2 )IILoo +112°I13)-

In a similar way we get for L§

5 < B L) [ D)6, = () @A (6. + (3h) (@)

+exp O(||F (2 )IILoo + 2% %),

giving us

<. ke(p*-p') B Al % (82 (a)dar
K5 < gl [ usie)oe « 022)(0) - Ao + (02) (@)

+exp O(|F ()17 + [12°[1770)-
The formula for o (a, t) begins to appear in the non-integrable terms. Using a similar method
for the rest of the non-integrable terms we obtain the inequality (10.1) for k& = 3.

The next step is to integrate the system during a time T independent of . First let us
observe that if zy(a) € H*, then we have the solution 2° € C'([0,7¢]; H*). And if initially
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o(a,0) > 0, there is a time depending on ¢, denoted by T¢ again, in which o°(«, t) > 0. Now,
for t < T* we have (10.1), and then we use the following pointwise inequality (see [6]):

Fl@)Af(@) ~ JAU) (@) 20,

to obtain
d £ 2 <I C f I 2 c 2
%HZ 156 (t) < 1+ exp C(||F(2°)[| 700 () + |[2°] 5% (2)),
where 1
K
I=- (0 )5 A * (052°) %) (o, t)da
277(#1+M2)A5(t)/ﬂ-0 (a >2 (|¢5*( a® )’ ) (o, t)da
We have

IA(0) o= (t) < Cllo®llm=(t) < CUIBR(=%,@%) |12 (8) + 02 BR(=%, @)l 2 (t) + 1|2 s (1),

and writing
K

= — 0-5 a } * kzs 2 o o
I'= 27T(M1+,LL2)A£(t)/TA( )( 7t)2’¢e (052 (a, t)de,

we obtain
I < C|IF () A0 [1052°(172 < exp CUF () + [12°17)-
Finally, for t < T we have

d

o1 5 (8) < Cexp CUF ()= (8) + 1127370 (1)) (10.3)

We have also (see section 8):

%Hf(zs)llioo (t) < Cexp O(IF (%) |[Z00 (t) + [12°]7a (2)),

and from (10.3) it follows that

%(Hngqu (8) + IF ()7 (1)) < Cexp O(|12]3 (8) + [ F ()12 (1))

for t < T*¢. Integrating

121177 (8) + 17 (25) 1 Z< (8) < —% In (—t+exp(=C(ll20ll7x + 17 (20) 7)), (10.4)

t < T¢. Let us mention that at this point of the proof we can not assume local-existence,
because we have the above estimate for ¢ < T¢, and if we let ¢ — 0, it could be possible that
T¢ — 01i.e. we cannot assume that if the initial data satisfy o(«,0) > 0, there must be a time
T, independent of &, in which (10.4) is satisfied. In other words, at this stage of the proof
we do not have local-existence when € — 0. But since in the evolution equation everything
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depends upon the sign of o¢(a, t), the following argument will allow us to continue the proof.
First let us observe that as in section 9 we have

m=(t) Zm(O)—/O exp C(|F (=) [ Z< () + [|2°1 72 (5))ds, (10.5)

where
3 _ 3 13
m*(t) = min o*(e, t),
and t < T¢. Using (10.4) in (10.5) we get
m?(t) = m(0) +C(||20l[Fp + | F (20) [ 70¢) +1n (=t +exp(=C (|| 20] 5 + | F (20) 7)), (10.6)

for ¢ < T¢. Using (10.6) and (10.4), now we find that if ¢ — 0, then T° - 0, because if we
take T'= min(77,T») where T} satisfies

m(0) + C(llzoll Fpe + 17 (20) |70 ) +1n (= T3 + exp(=C(||20ll7 + [F(20)[I <)) > 0,

and T2 1
— 50 (= T+ exp(=C(|lzoll + [ (z0) 1)) < oo.

For t < T we have m®(t) > 0 and
€12 €112 1 2 2
HkE L>® > - - Ol frke 01l Lo )
12505 (8) + IF G2 (1) < =5 I (= T + exp(=Cllz0ll7n + [ (z0)llz<))) < o0

and T only depends on the initial data zg. Now we let € tends to 0, to conclude the existence
result.

11 Appendix

Let us denote

(21(04) — 21(8)

V(au8) = (Vila, ), Vala, ) = (san(

and

z1(0) —21(8),  z2(0) = 22 (8)
S e (),

W(O&,ﬂ) = (Wl(avﬁ)vw2(aaﬁ)) = ((

where (a), is the periodic extension of the function a in T. We give the following equalities
for the hyperbolic tangent function:
(tanh(a) — (@),)/ tanh?(a) = (a),f(a) with f € L®(R), (11.1)

(tanh(a) — (@)p)/tanh®(a) = g(a) with g€ L®(R). (11.2)
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For the tangent function it holds

(tan(a/2) — (o/2)p)/ tan(a/2) = (a/2)ph(er)  with  h € L™(R),

(tan(a/2) — (/2)p)/ tan’(a/2) = (a/2)pj(e)  with  j € L¥(R),

(tan(a/2) — (a/2),)/|tan®(a/2)| = k(o)  with k€ L®(R).

Also we shall use that the below functions are bounded on [—, 7]
2/a — 1/ tan(a/2), 4/a* — 1/sin*(a/2) € L=(T),
and the following estimates:

W (@~ §) ~ Ba(@)B/2] < 3lzlcalBl?

(W (e, a = B) = 0az(a)B/2 — Raz(c) 32 /4] < %”'ZHC275|B|2+6'

Lemma 11.1 Given

- B ‘/2(04,04*6) _ 1 0a22(0£)
A=) = [ a B T [Bar @) tan(2
Vl(Oé,Oé _ ﬁ) 1 aazl(a)
A 4y — _
100 =P = 0 e — B 10ar(@)P tan(Z)
we have
[A1(a, 0 = B) [ zoe < [|F(2) || Loe 2] o2
and

[A2(er, @ = B) [ Lo < [[F(2) Lo |22
Proof: We introduce the splitting A; (o, — §) = I + Is + I3 + I; where

L= tanh(zZ(a)f?(a*ﬁ)) _ (zg(a)fgg(afﬁ) )p

V(a,a = f)
I = F(2)(a, gy 20 Z 2@ = gp/f)p ~ doza(0)3/2
_ 9a22(0) gy
I3 = ﬂ/2 (F( )( aﬁ) |3az(oz)|2)’

7 Oaz2(e) 2 1
T 0a2(@)2 8 tan(2)”

and F(z)(a, #) was defined in (1.7).
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(11.5)

(11.6)

(11.7)
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Since

I = V21(a - f(22(0<) - ;2(04 - 5))(22(04) - ;2(04 - B) "
14+ 45—
VE(a,a—B)

1/2

by (11.1), we get I; < C. Also Iy < || F(2)|r||2]/c2 using (11.7), and Iy < C||F(2)|| /-

rewrite

I = Onz2(a) (0az()B/2 4+ V(a,a — ) - (Ouz(a)B/2 — V(a,a — )

B/2 |0az() PV (a, e = B)[? ’

and split further

Is = Jy + Ja,
where

J = aaZZ(a) (aa21(06)6/2 + Vl(a> o — ﬂ))(aazl (O‘)ﬁ/2 — ‘/1(@7 o — B))
B/2 |Oaz(a) PV (o, = B)? ’
Ty — Oaz2() (Oaz2()B/2 + Va(a, a — B))(Oaz2(a)3/2 — Va(a, e — 3))
( )

B/2 0az(a)?|V (e, — B)]?
We continue as follows
J1 = Ky + Ko,
for
_ Onz2()0nz1(a)(0qz1()3/2 — Vi(a, a0 — 3))
|00z () [V (a, 0 — B)? ’
_ Oaz2()Vi(a, a0 — 3)(0a21()3/2 — Vi(a, a0 — 3))
|0a2() 2|V (a, 0 — B)26/2 ’

K,

K>
to take K1 = L1 + Lo,

_ On22()Daz1 () (=28 V(0,0 — )

B 0u(@PIV (a0 = P ,
Ly — Oaz2()0n21()(Onz1(0)3/2 — (M)p)
Buz(@)PIV (a0~ AT
We find
Ly = Oaz2(@)0uz1(2) 1 (M)p —Vi(a,a — )
0r(@F 11 Bead  Vaa-
)P 1y GeaD I
and using (11.4), we obtain L; < C.
Since o
_ Oaza(a)Oaz1(a) (Oaz1 ()82 — (H=22l0=0))
L2 - ‘80[2(06)’2 f(z)(a,ﬁ) /82/4
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we have Ly < C||F(2)||r||z||c2. Next let us write Ko = L3 + Ly, for

1. _ dama(@)Vila,a = B)((HF), V(a0 - )
o 00 z(a)]2[V (e, a — B)[28/2 ’

I — Onz2(a)Vi(a, o0 — 3)(0nz1(0)3/2 — (M)p)
! 0az(@)2[V (e, — B)I?B/2

In a similar way we find that

L Oamle) 1 (), Va2
Oar(@)? | 4 Vi 0) Vi(a,a - ) 5

2
"/12 ((X?a_ﬁ)

By (11.3) one gets
21(a) =21 (a—p)
|00z ()| [(F— )pl
Ly <C <C.
7= T 0az(a)? 181/2 =

As before we conclude that

|02 ()82 — (2le)=2ile=B)) |

Ly < C|F(2)| Lo~ Kk

< ClF )Lzl -

We consider now Jo = K3 + K4, where

_ |0022()|? Opz2(a)B/2 — Vala, o — f3)
|Oaz(a)]? V(e,a = B)

K3

and
Ky — Oaz2(@) Va(aya —f) Oaza(@)B/2 - Va(a,a - B)

 0az(@)? [V (a,a = )2 B/2
Using (11.1), we find

Oaz2(a)]? |0az2(a)3/2 — (M)M

< ClIF )|z~ llzllcz-

|0az(a)]? V(a, 00— B)?
and
K, < |8a22(a)|( Va(a,a = B) = Wala,a =)l |0a22(a)5/2—W2(a,a—ﬁ)l)
~ 10az(@)2 A (14 (e ) Vs (0, a- 8)]|8/2) V(a,a=p)|]5/2]
1o | (ApeB)) [0nz2(a)8/2 — (2lapadly |
< ClIF ()| = ,;/2, + [ F(2) ]| e G2 :

< CllF @)L=zl 2,

that is K3 + K4 < C||F(2)|lz<|2]|c2-
Putting all the previous estimates together we get |41 (o, — 3)| < C||F(2)| L= ||z c2-
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Regarding

i (Oé, a — ﬁ) 1 Oaz1 (Oé)
A - B)= —
10D = Y a B [Bacl@) tan(3/2)
we have the splitting As = I5 + I + I7 + I, where

Vi(a,a - f) - (5=,

h= Viaa—B)P ’

1o = Fe) (o E B o= Qon(e))2

B2 /4 ’
_ Oqz1(a) New B) — 1
-[7 - 6/2 (f( )( aﬁ) |0az(a)|2)’
_ Oami(a) 2 1
5= @l 3~ s

Then the same arguments used above allows us to obtain |As| < C||F(2)| < |z|lc2-

Lemma 11.2 Let B(«, 3) be defined by

Vi, — B)* - 0az(a) (022(a))t - Ouz()

Bla,a— p) = Vi(a,a — ) — Opz1()

Viaa—B)p BT tan(3/2)
Then it satisfies the inequality
|B(a,a = B)] < C|IF(2)|[7e 1222561
Proof: Let us decompose B(«, ) = I; 4+ I2 where

Zl<a) - Zl(a - ﬁ)) )V(aa o — ﬁ)l ) aaz(a)
2 o Viea=-ppt

Il = (Vl(Oz,Oé — ﬂ) —(

and

z1(a) —z1(a—B), V(ia,a—B)*t - 042(a)

) (022())" - Daz()
2 " Viea =g

L= ez ()| tan(8/2)"

— Opz1()

Using the identity (11.5), we can rewrite I as follows:

1 V(, o = B)* - Baz(a)
L = k(zi(a) = zi(a = 8)——
. z1(a) — z1(« (1 N “2282;)3/2 [V (a, o — B)]

to get |I1] < Cl|z||cn.
Next we consider I = J; + Jo, where
(V(a,a — B) — W(a,a — )t - 0a2(c)
’V(aaa - 5)’4 ’

J1 = Wl(a,a — ﬁ)

o8



and

Wie,a— )" Baz(a) (922(0))" - 9uz(a)
Viea—p) Oar(@)[Ttan(5/2)

Using (11.2), (11.5), and the fact that (3/2),/ tan(3/2) is bounded, we obtain |J;| < C||z]|c1.

To continue we can rewrite Jy as follows:

(W, = B) = 8az(@)B/2)" - 9az(@) (@) (022())" - Oaz()
V(e,a = B)[* : |0az(a)|* tan(3/2)

JQ = Wl(Oé, o — ﬂ) - 8a21(a)

Jo = Wi(a, a0 — )

and Jy = K1 + Ko + K3 + K4, where

(W(O" a — B) - aozz(()‘)ﬁ/2)L i aaz(a)
V(e,a = B)1* ’

Ky = (Wi(o, a = ) = daz1(a)B/2)

(W (e, o = B) = Baz(c) /2 — O32() 32 /4) " - Daz(a)

Ky = azl( )6/2

‘V(aa o — B)|4 ’
Ky = 20,0 (08 l)* - 0a2())(F() a0, B = o) B
 0un(@)(022(0) Buza) 2 1
Ka= Daz(a)] G~ )

Clearly we have |K4| < C[|F(2)| z/z]lc2, and using (11.7) we obtain |K1| < C||F(2)||F e || 2]|2-
Furthermore the estimate (11.8) allows us to obtain |Ks| < C||F(2)[|2 Hz\|g2,5|ﬂ|5_1. Next
we consider in K3 the factor L(a, 3) given by

1
O

We can write L(a, 3) as follows:

(10a2() 232 /44 |V (@, a=B)I?) (Ba2() /24 V (@, 0= B))-(Dn2(@) 8/2—=V (@, a = 13))
|Oaz(a) 1V (a, =) V(a,a=p)]5

(11.9)
Then proceeding as in the previous lemma we get |Ks| < C||F(2)||7|z[%2 and this ends the
proof. g.e.d.

Lemma 11.3 Given C(«, 3) by the following equality

Via,a=Bwla-B)B  20x(0)w(a)
Via,a— B 922(a)| T sin?(3/2)’

Cla,a—p) =

we obtain 1
|C(a,a = B)| < CHF(Z)II%OO\|Z||c2IIW\|01W-
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Proof: We decompose C(«, e — 3) = Iy + Iy + I3 + I4 + I5 where

(V(e,a = ) = W(a,a — ) w(a - §)B

= Viaa—B) |
Iy = (W(a,a = ) — 8az(a)3/2)  w(a — )5
|V(Oé, o — ﬂ)|4 7
- Oee)F (o~ §) ~ w(a)
’ 2V (a,a = B)[* ’
1
I = 80 z(a)w(a) (F(2)(ax, B)* — m)/ﬁza
B 0 z(a)w(a) .
Is = 2w(4/52 — sin®(5/2)).

Using (11.2) and (11.5) we get |I;]| < CH]—"(z)HlL/oonHLoo Using (11.7) clearly we obtain
|| < C||F(2)|%<2llc2llw|| L /|B]. For the next term it holds
13| < ClIF ()< lI2llor @ llen /18]
The reference (11.6) gives |I5] < C||.7-'(z)Hi/£||wHLoo Finally, the estimate given in the
previous lemma for the term
(F) a0 — )/
’ |Oaz(a)[*7

written in (11.9) allows us to conclude |I4| < || F(2)||2 ||zl c1 ||l L /||
Lemma 11.4 Let Q1(«, 3) be given by

(8042(04)%( 1 B 4 n 2002(ax) - (ﬁz(a))
2 Viw,a=B)P  |0az(a)?|5? Oaz(a)['B 7

Qi(a,a— ) = —

Then it satisfies the estimate ||Q1|zee < || F(2)[|5 oo l|2]150 5181771
Proof: To simplify we will consider

1 B 4 40p2(ar) - 02 2()
Vi{,a=B)P  0az(a)?|B[? Oaz(a)'B

and we will show that ||C||pe < H.7-'(z)||’200||z||782,5|ﬁ|5_1. We can rewrite

C(a,a _ﬁ) =

(Oaz()B +2V(a,a—f)) - (0az(a)B — 2V (a,a—f))  4042(a) - 92z(a)
[V (a, 0 = B)P|0az(c) P 5] Oaz()|*B

and then take C(o, o« — 3) = I + Iy + I3 where

Cla,a—p) =
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_2V(a 0 = B) — daz(a) B
[V (a, a0 = B)0az(c) [? B>
I, — 20az(@)f - 2V(a,a = f) — Oaz(a)f — 92z()3?/2)
[V(er,a = B8)1?|0az(a) 7|82 ’
Onz(a) - ng(a)ﬁ( 1 4 )
0az(@)? V(o= B)*  [Oaz(a)?|B]7

I =

I3 =

Since

2V(ay0 - 8) — 2W(a,a— A . PW(aya — B) — daz()d]
V(e,a = B)P0az(a)PIBP [V, o = B)[?|0az() P[5
using (11.1), (11.3) and the inequality (11.7) we control the term I;. For I it holds

|| <

4V (o, — B) = W(a,a— B)|  4W (o, — B) — 0az(a)B — 022() 3% /2|
V(e a = B)[*|0az(a)]|B] [V(a,a = B)?|0az(a)||A] ’

and using (11.1), (11.4), and (11.8) we get the appropriate inequality. For I3 we write

|I] <

_4(%2(04)-822((1) N §) — 4
Baz(@lz @ B~ F o EIEe

I3 = )/ B,

and proceed as before.
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