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Abstract. Relationships between the Ricci curvature and the squared mean
curvature and between the shape operator associated with the mean curva-
ture vector and the sectional curvature function for slant submanifolds of an
S-space-form are proved, particularizing them to invariant and anti-invariant
submanifolds tangent to the structure vector fields.

1 Introduction.

In words of B.-Y. Chen, to “find simple relationships between the main extrinsic
invariant and the main intrinsic invariants of a submanifold” is one of the basic
problems in the theory of submanifolds ([7]). In this way, he established a
relationship between sectional curvature function and the shape operator for
submanifolds in real space-forms [7] and another relationship between the Ricci
curvature and the squared mean curvature [8]. Corresponding relationships have
been proved in [13] for slant submanifolds of Sasakian space-forms.

Slant immersions in complex geometry were defined by B.-Y. Chen as a natu-
ral generalization of both holomorphic and totally real immersions [9]. Recently,
A. Lotta has introduced the notion of slant immersion of a Riemannian manifold
into an almost contact metric manifold [11] and slant submanifolds of Sasakian
manifolds have been studied in [2]. For a general view about slant submanifolds,
the survey written by A. Carriazo ([3]) can be consulted. On the other hand,
for manifolds with an f -structure, D.E. Blair has introduced S-manifolds as the
analogue of the Kaehler structure in the almost complex case and of Sasakian
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structure in the almost contact case [1] and we have defined and begun with the
study of slant submanifolds in such S-manifolds [4,5,6].

The purpose of this paper is to obtain similar relationships to Chen’s ones
mentioned above, generalizing and improving in some sense the ones proved in
[13], for slant submanifolds in S-space-forms. To this end, after reviewing, for
later use, necessary details about S-manifolds and slant submanifolds in Section
2, we devote Section 3 to get an inequality between Ricci curvature and squared
mean curvature vector and discuss the equality case. Finally, in Section 4 we
establish an inequality between the shape operator associated with the mean
curvature vector and the sectional curvature function for slant submanifolds of
S-space forms. In both cases, we particularize these inequalities for invariant
and anti-invariant submanifolds tangent to the structure vector fields.

2 Preliminaries.

Let (M̃, g) be a Riemannian manifold and denote by TM̃ the Lie algebra of
vector fields in M̃ . M̃ is said to be a metric f -manifold if there exist a (1, 1)
tensor field f , s global unit vector fields ξ1, . . . , ξs (called structure vector fields)
and s 1-forms η1, . . . , ηs on M̃ such that

f2X = −X +
s∑

α=1

ηα(X)ξα, g(X, ξα) = ηα(X),

fξα = 0, ηα ◦ f = 0

and

g(fX, fY ) = g(X, Y )−
s∑

α=1

ηα(X)ηα(Y ),

for any X, Y ∈ TM̃ and α = 1, . . . , s. Let F denote the fundamental 2-form in
M̃ given by F (X, Y ) = g(X, fY ), for any X,Y ∈ TM̃ . The f -structure f is said
to be normal if [f, f ] + 2

∑
α ξα ⊗ dηα = 0, where [f, f ] is the Nijenhuis torsion

of f . M̃ is called an S-manifold if the structure is normal and F = dηα, for
any α = 1, . . . , s.

Given an S-manifold M̃ , a plane section π in TpM̃ is called an f -section if it is
spanned by X and fX, where X is a unit tangent vector field orthogonal to the
distribution M spanned by the structure vector fields. The sectional curvature
K(π) of an f -section π is called f -sectional curvature. An S-manifolds is said
to be an S-space-form if it has constant f -sectional curvature c and then, it
is denoted by M̃(c).
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Now, let M be a submanifold isometrically immersed in an S-manifold M̃ .
Let TM be the Lie algebra of vector fields in M and T⊥M the set of all vector
fields normal to M . We denote by σ the second fundamental form of M and by
AV the shape operator associated with any V ∈ T⊥M . They are related by the
equation g(σ(X, Y ), V ) = g(AV X, Y ), for any X,Y ∈ TM and any V ∈ T⊥M .
The mean curvature vector H is defined by H = (1/dim(M))trace(σ). The
submanifold is said to be minimal if H vanishes identically and it is said to be
totally geodesic if σ(X, Y ) = 0, for any X, Y ∈ TM . Moreover, the relative

null space of M is defined by:

N = {X ∈ TM : σ(X, Y ) = 0, for all Y ∈ TM}.

For any X ∈ TM , we put fX = TX + NX, where TX (resp. NX) is the
tangential (resp. normal) component of fX. The submanifold M is said to be
invariant if N is identically zero, that is, if fX ∈ TM , for any X ∈ TM and
it is said to be anti-invariant if T is identically zero, that is, if fX ∈ T⊥M , for
any X ∈ TM .

From now on, we suppose that the structure vector fields are tangent to M

and we denote by n + s (resp. 2m + s) the dimension of M (resp. M̃). Hence,
if we denote by L the orthogonal distribution to M in TM , we can write the
orthogonal direct decomposition TM = L ⊕M.

It is well-known that
σ(X, ξα) = −NX, (2.1)

for any X ∈ TM and any α = 1, . . . , s. In particular, σ(ξα, ξβ) = 0, for any
α, β = 1, . . . , s.

Now, given a local orthonormal basis

{e1, . . . , en, en+1, . . . , e2m, ξ1, . . . , ξs}

of TM̃ , such that {e1, . . . , en} is a local orthonormal basis of L, we can write
the mean curvature vector H and the squared norms of T and σ by:

H =
1

n + s

n∑

i=1

σ(ei, ei), (2.2)

‖T‖2 =
n∑

i,j=1

g2(ei, T ej), (2.3)

‖σ‖2 =
n∑

i=1

‖σ(ei, ei)‖2 + 2
∑

1≤i<j≤n

‖σ(ei, ej)‖2 + 2
n∑

i=1

s∑
α=1

‖σ(ei, ξα)‖2. (2.4)
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The curvature tensor field R of a submanifold M of an S-space-form M̃(c)
satisfies

R(X, Y, Z, W ) = g(σ(X, W ), σ(Y, Z))− g(σ(X, Z), σ(Y, W ))+

+
∑

α,β

(g(fX, fW )ηα(Y )ηβ(Z)− g(fX, fZ)ηα(Y )ηβ(W )+

+g(fY, fZ)ηα(X)ηβ(W )− g(fY, fW )ηα(X)ηβ(Z))+

+
c + 3s

4
(g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW ))+

+
c− s

4
(F (X, W )F (Y, Z)− F (X,Z)F (Y,W )− 2F (X, Y )F (Z,W )), (2.5)

for any X, Y, Z, W ∈ TM̃(see, for references, [1,10]).
The scalar curvature τ of M is defined by

τ =
1
2

∑

i 6=j

K(ei ∧ ej) +
n∑

i=1

s∑
α=1

K(ei ∧ ξα), (2.6)

where K(X∧Y ) denotes the sectional curvature of M associated with the plane
section spanned by X, Y ∈ TM .

From (2.1)-(2.6), we obtain the following relation between the scalar curvature
and the mean curvature of M [4]:

2τ = (n + s)2‖H‖2 − ‖σ‖2 + n(n− 1)
c + 3s

4
+ 2ns +

3(c− s)
4

‖T‖2. (2.7)

If for each nonzero vector X ∈ TpM−Mp, we consider the angle θ(X) between
fX and TpM , then the submanifold is said to be θ-slant [6] if such angle is a
constant, which is independent on the choice of p ∈ M and X ∈ TpM −Mp.
The angle θ of a slant immersion is called the slant angle of the immersion.
Invariant and anti-invariant submanifolds tangent to the structure vector fields
are slant submanifolds with slant angle θ = 0 and θ = π/2, respectively. A
slant immersion which is not invariant nor anti-invariant is called a proper slant
immersion.

In [6], we have proved that a θ-slant submanifold M of a metric f -manifold
M̃ satisfies

g(TX, TY ) = cos2 θg(fX, fY ),

for any X,Y ∈ TM . Moreover, it is easy to show that, using a local orthonormal
basis {e1, . . . , en+s} of TM ,

n+s∑

j=1

g2(ei, fej) = cos2θ(1−
s∑

α=1

η2
α(ei)), (2.8)

for any i = 1, . . . , s.
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3 The Ricci curvature for slant immersions.

Let M be an (n+s)-dimensional isometrically immersed submanifold in a (2m+
s)-dimensional S-space-form M̃(c), tangent to the structure vector fields. In this
section, we want to study the Ricci curvature of unit vector fields in M , normal
to the structure vector fields, when M is a slant submanifold and to relate them
with the mean curvature vector. For this reason, we shall assume that n ≥ 2,
because it is known that there are not proper slant submanifolds of dimension
1 + s ([5]). Throughout the section, we consider local orthonormal basis of
TM̃(c),

{e1, . . . , en, en+1, . . . , e2m, e2m+1 = ξ1, . . . , e2m+s = ξs}, (3.1)

such that {e1, . . . , en} is a local orthonormal basis of L. First, we have the
following general result:

Theorem 3.1. Let M be an (n+ s)-dimensional submanifold M̃(c), tangent to
the structure vector fields. Then,

4Ric(U) ≤ (n + s)2‖H‖2 + (n− 1)(c + 3s) + ‖TU‖2(3c + s), (3.2)

for any unit vector field U ∈ L.

Proof. We choose a local orthonormal basis of TM̃(c) as in (3.1) and such that
e1 = U . Then:

‖σ‖2 =
1
2
(n + s)2‖H‖2 + 2

∑

1≤i<j≤n

‖σ(ei, ej)‖2 + 2
n∑

i=1

s∑
α=1

‖σ(ei, ξα)‖2+

+
1
2

n∑

i=1

‖σ(ei, ei)‖2 −
∑

1≤i<j≤n

g(σ(ei, ei), σ(ej , ej)). (3.3)

Thus, from (2.7) and (3.3), we have:

1
4
(n + s)2‖H‖2 = τ − 1

8
n(n− 1)(c + 3s)− 3

8
‖T‖2(c− s)− ns+

+
∑

1≤i<j≤n

‖σ(ei, ej)‖2 +
n∑

i=1

s∑
α=1

‖σ(ei, ξα)‖2+

+
1
4

n∑

i=1

‖σ(ei, ei)‖2 − 1
2

∑

1≤i<j≤n

g(σ(ei, ei), σ(ej , ej)). (3.4)
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On the other hand, since from (2.6),

τ = Ric(U) +
∑

2≤i<j≤n

K(ei ∧ ej) +
n∑

i=2

s∑
α=1

K(ei ∧ ξα)

and, by using (2.5), we get

∑

2≤i<j≤n

K(ei ∧ ej) =
1
8
n(n− 1)(c + 3s) +

3
4

(‖T‖2
2

− ‖TU‖2
)

(c− s)+

+
∑

2≤i<j≤n

(
g(σ(ei, ei), σ(ej , ej))− ‖σ(ei, ej)‖2

)

and
n∑

i=2

s∑
α=1

K(ei ∧ ξα) = (n− 1)s−
n∑

i=2

s∑
α=1

‖σ(ei, ξα‖2,

then, substituting into (3.4) and taking into account (2.1), we obtain:

Ric(U) =
1
4
(n + s)2‖H‖2 +

1
4
(n− 1)(c + 3s) +

1
4
‖TU‖2(3c + s)−

−1
2

∑

2≤i<j≤n

g(σ(ei, ei), σ(ej , ej)) +
1
2

n∑

i=2

g(σ(U,U), σ(ei, ei))−

−
n∑

i=2

‖σ(U, ei)‖2 − 1
4

n∑

i=1

‖σ(ei, ei)‖2. (3.5)

Now, if we put σr
ij = g(σ(ei, ej), er), for any i, j = 1, . . . , n and r = n+1, . . . , 2m,

(3.5) becomes

Ric(U) =
1
4
(n + s)2‖H‖2 +

1
4
(n− 1)(c + 3s) +

1
4
‖TU‖2(3c + s)−

−
2m∑

r=n+1


1

4

(
σr

11 −
n∑

i=2

σr
ii

)2

+
n∑

i=2

(σr
1i)

2


 , (3.6)

which completes the proof.

Observe that, if we also put σr
1(2m+α) = g(σ(U, ξα), er) = −g(NU, er), for any

α = 1, . . . , s and r = n + 1, . . . , 2m, we have

Ric(U) =
1
4
(n + s)2‖H‖2 +

1
4
n(c + 3s) +

1
4
(3‖TU‖2 − 1)(c− s)−

−
2m∑

r=n+1


1

4

(
σr

11 −
n∑

i=2

σr
ii

)2

+
n∑

i=2

(σr
1i)

2 +
s∑

α=1

(σr
1(2m+α))

2


 (3.7)
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and, consequently:

4Ric(U) ≤ (n + s)2‖H‖2 + n(c + 3s) + (3‖TU‖2 − 1)(c− s) (3.8).

When s = 1, this upper bound is the one obtained in [13] for submanifolds of
Sasakian space-forms tangent to the structure vector field. However, it is easy
to show that it is worse (in the sense of higher) than the one of (3.2). Moreover,
both upper bounds are equal if and only if ‖NU‖2 = 0, that is, if and only if,
from (2.1), σ(U, ξα) = 0, for any α = 1, . . . , s. If it is the case, their common
value is (n + s)2‖H‖2 + n(c + 3s) + 2(c− s). Then, we can prove the following
theorem.

Theorem 3.2. Let M be an (n+s)-dimensional minimal submanifold of M̃(c),
tangent to the structure vector fields. Then, a unit vector field U in L satisfies
the equality case of (3.8) if and only if U lies in the relative null space of M .
Moreover, in this case:

4Ric(U) = n(c + 3s) + 2(c− s).

Proof. If U ∈ L is a unit vector field satisfying the equality case of (3.8), then it
also satisfies the equality case of (3.2) and so, σ(U, ξα) = 0, for any α = 1, . . . , s.
Furthermore, choosing a local orthonormal basis of TM̃(c) as in (3.1) such that
e1 = U , from (3.7) we get σr

1i = 0, for any i = 2, . . . , n, r = n + 1, . . . , 2m and

σr
11 =

n∑

i=2

σr
ii,

for any r = n + 1, . . . , 2m. But, since H = 0,

σr
11 = −

n∑

i=2

σr
ii,

for any r = n + 1, . . . , 2m, that is, σr
11 = 0. Thus, U ∈ N .

Conversely, if U ∈ N , choosing a local orthonormal basis of TM̃(c) as in
(3.1) with e1 = U , we have that σr

1i = 0 and σr
1(2m+α) = 0, for any i =

1, . . . , n, α = 1, . . . , s, r = n + 1, . . . , 2m. Again, since H = 0, we obtain that
σr

22 + · · · + σr
nn = 0, for any r = n + 1, . . . , 2m. Then, from (3.7) we get the

equality case of (3.8). Finally, from (2.1) we complete the proof.

Now, observe that if the equality case of (3.8) holds for all unit vector fields
U ∈ L, the equality case of (3.2) is true for these vector fields too. Thus,
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from (2.1), NU = 0 for any U ∈ L and M is an invariant submanifold. Then,
it is easy to show that it is minimal. Consequently, making use of Theorem
3.2, U ∈ N , for any U ∈ L and M is totally geodesic. The converse result is
a straightforward computation. So, we have proved the following corollary of
Theorem 3.2.

Corollary 3.1. Let M be an (n+s)-dimensional minimal submanifold of M̃(c),
tangent to the structure vector fields. Then, the equality case of (3.8) holds for
all unit vector field in L if and only if M is a totally geodesic submanifold.

Next, we are going to study the equality case of (3.2). To this end, we recall
that an (n+s)-dimensional submanifold of an S-manifold, tangent to the struc-
ture vector fields, is said to be a totally f -geodesic submanifold (resp., totally
f -umbilical) if the distribution L is totally geodesic (resp., totally umbilical),
that is, if σ(X, Y ) = 0 (resp., σ(X, Y ) = g(X,Y )V , being

V =
n + s

n
H),

for any X, Y ∈ L ([12]). Then, we can prove the following theorem.

Theorem 3.3. Let M be an (n+ s)-dimensional (n ≥ 2) submanifold of M̃(c),
tangent to the structure vector fields. Then, the equality case of (3.2) holds
for all unit vector field in L if and only if either M is a totally f -geodesic
submanifold or n = 2 and M is a totally f–umbilical submanifold.

Proof. If the equality case of (3.2) is true for any unit vector field U ∈ L, then,
by choosing local orthonormal basis of TM̃(c) as in (3.1) and since e1 can be
chosen to be any arbitrary unit vector fields in L, from (3.6) we get

2σr
ii = σr

11 + · · ·+ σr
nn, i = 1, . . . , n,

σr
ij = 0, i 6= j,

for any r = n + 1, . . . , 2m. Thus, we have two cases, namely either n = 2 or
n > 2. In the first case, σr

11 = σr
22, for any r and M is a totally f -umbilical

submanifold, while in the second case σr
ii = 0, i = 1, . . . n and M is a totally f -

geodesic submanifold. The converse part is a straightforward computation.

The above results correspond to that one proved by B.-Y. Chen in [8] for
submanifolds in real space-forms. Moreover, they imply the following theorem
for a slant submanifold isometrically immersed in an S-space-form.
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Theorem 3.4. Let M be an (n + s)-dimensional (n ≥ 2) θ-slant submanifold
of an S-space-form M̃(c). Then:

(i) For each unit vector field U ∈ L, we have:

4Ric(U) ≤ (n + s)2‖H‖2 + (n− 1)(c + 3s) + cos2 θ(3c + s). (3.9)

(ii) The equality case of (3.9) holds for all unit vector field in L if and only if
either M is a totally f -geodesic submanifold or n = 2 and M is a totally
f–umbilical submanifold.

Proof. For any unit vector field U ∈ L, by using a local orthonormal basis of
TM̃(c) as in (3.1), such that e1 = U , we get from (2.8) that

‖TU‖2 = cos2 θ

and so, from (3.2) we have (3.9). Rest of the proof is similar to that of Theorem
3.3.

In particular, if M is an invariant submanifold (then, it is a minimal manifold
too), we have:

Theorem 3.5. Let M be an (n+s)-dimensional (n ≥ 2) invariant submanifold
of an S-space-form M̃(c) tangent to the structure vector fields. Then:

(i) For each unit vector field U ∈ L, we have:

4Ric(U) ≤ n(c + 3s) + 2(c− s). (3.10)

(ii) The equality case of (3.10) holds for all unit vector field in L if and only if
either M is a totally f -geodesic submanifold or n = 2 and M is a totally
f–umbilical submanifold.

Finally, if M is an anti-invariant submanifold, we obtain:

Theorem 3.6. Let M be an (n + s)-dimensional (n ≥ 2) anti-invariant sub-
manifold of an S-space-form M̃(c) tangent to the structure vector fields. Then:

(i) For each unit vector field U ∈ L, we have:

4Ric(U) ≤ (n + s)2‖H‖2 + (n− 1)(c + 3s). (3.11)

(ii) The equality case of (3.11) holds for all unit vector field in L if and only if
either M is a totally f -geodesic submanifold or n = 2 and M is a totally
f–umbilical submanifold.

These results improve those ones proved in [13] for slant submanifolds of a
Sasakian space-form (case s = 1).
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4 The shape operator in slant submanifolds.

Let M be an (n+ s)-dimensional θ-slant submanifold of a (2m+ s)-dimensional
S-space-form M̃(c). Let p ∈ M and a number

b >
c + 3s

4
+

3(c− s)
4

cos2θ

such that the sectional curvature of M , K ≥ b at p. Throughout this section,
we consider an orthonormal basis of the tangent space Tp(M̃),

{e1, . . . , en, en+1, . . . , en+s, en+s+1, . . . , e2m+s}

with {e1, . . . , en+s} being an orthonormal basis of Tp(M), en+s+1 parallel to the
mean curvature vector at p and e1, · · · , en+s diagonalizing the shape operator
An+s+1. As above, we put σr

ij = g(σ(ei, ej), er), for any i, j = 1, . . . , n + s and
r = n + s + 1, . . . , 2m + s. Then, we have

An+s+1 =




a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an+s


 , (4.1)

where ai = σn+s+1
ii , i = 1, . . . , n + s. Moreover, if r = n + s + 2, . . . , 2m + s,

Ar = (σr
ij), i, j = 1, . . . , n + s and so,

traceAr =
n+s∑

i=1

σr
ii = 0, (4.2)

since
n+s∑

i=1

σr
ii = g((n + s)H, er) = 0,

for any r = n + s + 2, . . . , 2m + s because H is parallel to en+s+1.
Now, for i 6= j, i, j = 1, . . . , n + s, we define

uij = aiaj = σn+s+1
ii σn+s+1

jj = uji

and from (2.5), (2.8) and by using (4.1), we obtain, for X = Z = ei, Y = W =
ej :

uij ≥ b− c + 3s

4
− 3(c− s)

4
cos2 θ −

2m+s∑
r=n+s+2

(
σr

iiσ
r
jj − (σr

ij)
2
)
. (4.3)

Taking into account these formulas, we can prove the following technical lemma
for uij , i, j = 1, . . . , n + s, i 6= j.
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Lemma 4.1. (i) For any fixed i ∈ {1, · · · , n + s}:
∑

i 6=j

uij ≥ (n + s− 1)
(

b− c + 3s

4
− 3(c− s)

4
cos2 θ

)
> 0.

(ii) uij 6= 0.

(iii) For distinct i, j, k ∈ {1, · · · , n + s}:

a2
i =

uijuik

ujk
.

(iv) For a fixed k, 1 ≤ k ≤
[
n + s

2

]
:

k∑

i=1

n+s∑

j=k+1

uij ≥ k(n− k + s)
(

b− c + 3s

4
− 3(c− s)

4
cos2 θ

)
.

(v) uij > 0.

Proof. First, from (4.2) and (4.3), a straightforward computation gives (i). Now,
if uij = 0, then ai = 0 or aj = 0. If ai = 0, we have uik = 0, for any
k ∈ {1, . . . , n + s}, k 6= i. Thus,

∑

j 6=i

uij = 0,

which contradicts to (i). Now, (iii) is direct from the definition of uij , uik

and ujk. Again, a straightforward computation using (4.2) and (4.3) gives (iv).
Finally, if we suppose that u1(n+s) < 0, from (iii) we get u1iui(n+s) < 0, for
1 < i < n + s. Without loss of generality, we may assume

u12, . . . , u1k, u(k+1)(n+s), . . . , u(n+s−1)(n+s) > 0,

u1(k+1), . . . , u1(n+s−1), u2(n+s), . . . , uk(n+s) < 0,

for some k such that:
[
n + s− 1

2
+ 1

]
≤ k ≤ n + s− 1.

If k = n+s−1, then u1(n+s)+u2(n+s)+· · ·+u(n+s−1)(n+s) < 0, which contradicts
(i). Consequently, k < n + s− 1. From (iii), we obtain

a2
n+s =

ui(n+s)ut(n+s)

uit
> 0,
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where 2 ≤ i ≤ k, k + 1 ≤ t ≤ n + s− 1 and so, uit < 0. This implies that

k∑

i=1

n+s∑

t=k+1

uit =
k∑

i=2

n+s−1∑

t=k+1

uit +
k∑

i=1

ui(n+s) +
n+s∑

t=k+1

u1t < 0,

which contradicts to (iv) and completes the proof.

In the following theorem, we establish a relationship between the shape oper-
ator associated with the mean curvature vector and the sectional curvature for
slant submanifolds in an S-space-form.

Theorem 4.1. Let M be an (n + s)-dimensional θ-slant submanifold isomet-
rically immersed in a (2m + s)-dimensional S-pace-form M̃(c). If at a point
p ∈ M there exits a number

b >
c + 3s

4
+

3(c− s)
4

cos2 θ

such that the sectional curvature of M , K ≥ b at p, then the shape operator
associated with the mean curvature vector satisfies

AH >
n + s− 1

n + s

(
b− c + 3s

4
− 3(c− s)

4
cos2 θ

)
In+s,

at p, where In+s is the identity map.

Proof. Let p ∈ M and a number

b >
c + 3s

4
+

3(c− s)
4

cos2 θ

such that the sectional curvature K ≥ b at p. We choose a orthonormal basis
of Tp(M̃) as in the beginning of the section. Then, from the above lemma, we
observe that a1, . . . , an+s have the same sign. We assume that aj > 0, for any
j ∈ {1, . . . , n + s}. Thus:

∑

j 6=i

uij = ai(a1 + · · ·+ an+s)− a2
i ≥ (n + s− 1)

(
b− c + 3s

4
− 3(c− s)

4
cos2 θ

)
.

(4.4)
From (4.1) and (4.4), we get, for any i = 1, . . . , n + s:

ai(n + s)|H| ≥ (n + s− 1)
(

b− c + 3s

4
− 3(c− s)

4
cos2 θ

)
+ a2

i >

> (n + s− 1)
(

b− c + 3s

4
− 3(c− s)

4
cos2 θ

)
.

This completes the proof.
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For the particular cases of invariant and anti-invariant submanifolds (cases
θ = 0 and θ = π/2, respectively), we have the following two theorems.

Theorem 4.2. Let M be an (n+s)-dimensional invariant submanifold isomet-
rically immersed in a (2m + s)-dimensional S-space-form M̃(c) tangent to the
structure vector fields. If at a point p ∈ M there exists a number b > c such that
the sectional curvature of M , K ≥ b at p, then the shape operator associated
with the mean curvature vector satisfies at p:

AH >
n + s− 1

n + s
(b− c)In+s.

Theorem 4.3. Let M be an (n + s)-dimensional anti-invariant submanifold
isometrically immersed in a (2m + s)-dimensional S-space-form M̃(c) tangent
to the structure vector fields. If at a point p ∈ M there exists a number

b >
c + 3s

4

such that the sectional curvature of M , K ≥ b at p, then the shape operator
associated with the mean curvature vector satisfies at p:

AH >
n + s− 1

n + s

(
b− c + 3s

4

)
In+s.

These results should be compared with those ones proved in [13] for Sasakian
space-forms (case s = 1).
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