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In [1], S-manifolds, which reduce in a special case to Sasa-
kian manifolds, were defined. In this note, a condition for an
invariant submanifold of codimension greater than 2 in an S-mani-

fold to be totally geodesic is obtained.

0. INTRODUCTION.- D. Blair, (Blair, [1]), has defined
S-manifolds which reduce, in a special case, to Sasakian
manifolds. On the other hand, many authors have studied
invariant submanifolds of Sasakian manifolds, (see, e.g., Kon,
[5] and Kon, [6]). Kobayashi and Tsuchiya, (Kobayashi and
Tsuchiya, [4]), have investigated some topics in the geometry
of invariant submanifolds of S-manifols. Specially, they have
obtained a condition for an invariant submanifold of
.codimension 2 1in an S-manifold ' of constant invariant
f-sectional curvature to be totally geodesic.

The purpose of the present note is to study invariant
submanifolds of codimension greater that 2 and with flat
normal connection in S-manifolds whose invariant f-sectional

curvature is constant and to obtain a condition for them to be
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totally geodesic. To this end, in section 1, we give a brief
summary of notations and formulas for submanifolds and, in
section 2, definitions and some properties of S-manifolds. In

section 3 we get the main result.

1. PRELIMINARIES.- Let N° be a Riemannian manifold of
dimension n and M" an m-dimensional submanifold of N". Let g
be the metric tensor field on N as well as the induced metric
on M". We denote by V the covariant differentiation in N? and
by V the covariant differentiation in M" determined by the
induced metric. Let T(N) (resp. T(M)) be the Lie algebra of
vector fields on N© (resp. on Mm) and 'I‘(M)l the set of all
vector fields normal to M.

The Gauss - Weingarten formulas are given by
@ =) §XY = Y + o(X,Y),
V = -A X + DV, X,YeT(M), VeT (M) %,

<

X

where D is the connection in the normal bundle, & is the
second fundamental form of Mm, Av is the Weingarten
endomorphism associated with V and it satisfies:

g(BX,¥) = g(o(X,¥),V).

We denote by R, R and RD the curvature tensors associated
with V, V and D respectively. If rP vanishes identically the
normal connection D is said to be flat. The Ricci equation is
given by
@) R(X,¥,0,v) = RO(X,Y,U,V) - g([Ay,A,lX,¥),

X,YeT (M), U,VeT(M)",

where [AU,AV]X = AUAVX = AVAUX.
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Finally, the submanifold M" is said to be totally
geodesic in N? if its second fundamental form is identically
zero.

2n+s

2. S-MANIFOLDS.- Let N be a (2nt+s)-dimensional manifold

with an f-structure f of rank 2n. If there exist on N2n+s
vector fields gl,...,gs, such that, if Myre--sNgy are dual

1-forms, then

(2’1) na(EB) = aaB; fEa = 0; naof =0;
2
fe = Tl ) Ea © M o,Be{l,...,s},
o
2n+s . s E
N is said to have an f-structure with complemented frames.

Further, the f-structure is said to be normal if

[EEEs] T 25 Ea ® dna =0,

where [f,f] is the Nijenhuis torsion of f. Moreover, it is
known that there exists a Riemannian metric g on N2n+s

satifying, (Yano, [7]):

(2.2) g(x,Y) = g(£fx,£fY) + &(X,Y), X,YeT(N),
where ¢ (X,Y) = } nv(X)nV(Y)‘ The fundamental 2-form F on N2n+S
v
is defined by
F(X,Y) = g(X,fY), X,YeT(N).

A normal f-structure with F closed is called a
K-structure and N°""® is called a K-manifold. In such a
manifold, the ga are KRilling vector fields, (Blair, [1]).

Let ¢ denote the distribution determined by = and M the

complementary distribution. M is determined by f2 + I and

spanned by El""’gs' If Xe¥, then na(X) = 0, for any o and if
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XeM, then fX = 0.

A K-structure such that F = dna, o =1,...,8, is called

an S-structure and N2n+s is called an S-manifold. These

manifolds have been studied in (Blair, )R Eor = iEhe
Riemannian connection V of g on an S-manifold N2n+s, the

following were also proved:

(243) §Xga = —fX, XeT(N), oc{ld,..«,S},
(2.4) (ﬁxf)y = Z[g(fX,fY)Ea + na(Y)fzx], X, YeT (N) .
o

A plane section m is called an invariant f-section if it
is determined by a vector Xef(p), peN2n+S, such that (X, fX) is
an orthonormal pair spanning the section. The sectional
curvature K(X,fX), denoted by H(X), is called an invariant

f-sectional curvature. If N2n+s

is an S-manifold of constant
invariant f-sectional curvature k, then its curvature tensor
has the form, (Kobayashi and Tsuchiya, [4])

(2.5) R(X,Y,Z,W) = ) (9(£X,fW)n (¥)ng(2) -
o,

= g(fX,fZ)na(Y)nB(W) i3 g(fY,fZ)na(X)nB(W) =

= 9(£Y, fW)n (X)mg(2) } +

+ ((1/4) (k+3s) {g(X,W)g(fY,fZ) - g(X,Z2)g(fY,fwW) +

+ g(fY,fw)®(X,2) - g(fY,fZ)®(X,W)} +

+ (1/4) (k-s) {‘F(X,W)F(Y,Z) - F(X,Z)F(Y, W) -

- 2F(X,Y)F(Z,W)}, X,Y,Z,WeT(N).

In the case s = 1, an S-manifold is a Sasakian manifold.

For s=2, examples of S-manifolds are given in (Blair, [1]),
(Blair, [2]), (Blair, Ludden and Yano, [3]). Thus, the bundle
space of a principal toroidal bundle over a Kaehler manifold

with certain conditions is an S-manifold. In this way, a
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generalization of the Hopf fibration 700 SETH S TV
introduced as a canonical example of an S-manifold playing the
role of complex projective space in Kaehler geometry and the
odd-dimensional sphere in Sasakian geometry.

Now, let M" be an m-dimensional submanifold immersed in
an S-manifold N2n+s. For any XeT (M), we write
(2.6) £X = TX EINX,
where TX is the tangential component of fX and NX is the
normal component of £fX. Then, T is an endomorphism of the
tangent bundle and N is a normal-bundle valued 1-form on the
- tangent bundle. It is easy to show that if T does not vanish,
it defines an f-structure in the tangent bundle. On the other
hand, if one of the Ea is normal to Mm, then T = 0, because

g(X,£fY) = F(X,¥) = dn_ (X,¥) = 0, X,YeT(M),

The submanifold M" is said to be invariant if all of Ea
(x = 1,...,s) are always tangent to.Mm and N is identically
zero, i.e., fXeT (M), for any XeT(M). It is easy to show that
an invariant submanifold of an S-manifold is such that
fVeT (M)*, for any VeT(M)l. Moreover, it is an S-manifold too
and, so, m = 2p+s. For later use, we prove the following

- Lemma 2.1.=- Let M2p+s

2n+s

be an invariant submanifold of an

S-manifold N Then, for any XeT(M), VeT(M)l, (4= 1k 5 s A

(2.7) A X = FAX = A FX.
Proof: By using the Weingarten formula (1.1), (2.4) and

m+s

the fact that M is an invariant submanifold, it is easy to

show that AfVX = fAVX. Now, if YeT (M), we have

I(RgyX,¥) = 9(X,Apy¥) = g(X,fALY) = -g(A£X,Y)
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and (2.7) holds.

3. INVARIANT SUBMANIFOLDS WITH FLAT NORMAL CONNECTION.- In

this section, let N2n+s(k) be an . S-manifold whose invariant
f-sectional curvature is a constant k. Let M2p+s be an
invariant submanifold of N2n+s(k) such that the normal

D

ZBhs is flat, i. e., R = 0. Then, by using the

connection of M
Ricci equation (1.2) and Lemma 2.1, we have
R(X,£Y,V,£V) = 2g(AX,A ),
for any vector field X,YeT(M) and any unit vector field
VeT(M)l. Now, from (2.5) we obtain
(a¥E) (s-k)g(£X,£Y) = 4g(AyX,A,Y).
Then, we get the following

2p+s

Proposition 3.1.- Let M be an invariant submanifold of an

2n+s

S-manifold N (k) with flat normal connection. Then, K=s and

2p+s

the equality holds if and only if M is totally geodesic.

Now, we prove

Theorem 3.2.- Let M2p+s be an invariant submanifold of an
S-manifold N2n+s(k). If the codimension of M2p+s is greater
than 2, then the normal connection of M2p+s

is flat if and

2p+s

only if k = s and M is totally geodesic.

Proof: From the Riceci equation (1.2) and (2.5), it is

2pt+s

clear that if M is totally geodesic, then its normal

2p+s

connection is flat. Now, we suppose that M is not totally

geodesic. We can choose a local field of orthonormal frames

2pts

for vector fields in M in the form



(Byoeee B By = fBp, 00 By = £E €0, £ ).

If Av(Ei) = 0, for some unit vector field VeT(M)l, then,

from (3.1), we get that M2P*'S

is totally geodesic, by virtue
of Proposition 3.1. Thus, AV(Ei) # 0, for any Ei and V, and
so, AV(El)""’AV(Ezp) are linearly independent.

on the other hand, it is easy to show, by using (3.1)
again, that
(3.2) AAL + AAL = 0,

for any orthonormal vector fields V,WeT(M)l.

Thus, from (1.2)
and (3.2), we get ‘
R(X,Y,V,W) = 29 (A X,ALY), X,YeT(M).
Using (2.5), we obtain

(3.3) (s-k)g(X,£Y)g(V,fW) = 4g (A X,ALY) .

If the codimension of M2p+s

is greater than 2, we can
take a unit vector field W in T(M)l which is orthogonal to V
and fV. Regarding to (3.3), it follows that g(AVX,AWY) =0,
for any X,YeT(M). Consequently, the vector fields

AV(El) ISA0ES IAv(Ezp) IAw(El) 5SS, IAw(Ezp)

are linearly independent, which is a contradiction. Therefore,

M2P*S g totally geodesic and k = s.

Finally, for codimension 2, we have the following
Theorem 3.3.- (Kobayashi and Tsuchiya, [4]) Let M5 pe an
invariant submanifold of codimension 2 in an S-manifold
2n+s

N (k). Then, M™S is totally geodesic if and only if T

is of constant invariant f-sectional curvature.
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