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normal connection in S-manifolds whos e invariant f-sectional
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The Gauss - Weingarten formulas are given by

~ is the Weingarten

R(X,Y,U,V) = RO(X,y,U,V) - g([~,~]X,y),

X,YET(M), U,VET(M).l,

We denote by ~ the covariant differentiation in Nn and~.

(1. 2)

given by

endomorphism associated with V and it satisfies:

where [~,~]X = ~X - ~X.

g(~X,y) = g«(}'(X,Y) ,V).

We denote by R, R and RO the curvature tensors associated

with ~, 'V and ° respectively. If RO vanishes identically the

normal connection ° is said to be flato The Ricci equation is

( 1.1)

~XV -~X + 0XV, X,YeT(M), VET(M).l,

where D is the connection in the normal bundle, a is the

by 'V the covariant differentiation in Mm determined by the

second fundamental form of Mm,

l. PRELIMINARIES.- Let Nn be a Riemannian manifold of

on

induced metric. Let T(N) (resp. T(M» be the Lie algebra of

vector fields on Nn (resp. on ~) and T (M).l the set of all

vector fields normal to ~.

dimension n and Mm an m-dimensional submanifold of Nn. Let g

be the metric tensor field on Nn as well as the induced metric

section 2, definitions and sorne properties of S~manifolds. In

surnmary of notations and formulas for submanifolds and, in

totally geodesic. To this end, in section 1, we give a brief

section 3 we get the main resulto



zero.

are dual

ong

if

a Riemannian metric

such that,

exists

f-structure with F closed is called a

g(X,Y) = g(fX ,fY) + ~(X,Y), X,YeT(N),

fields

A normal

(2.2)

F(X,Y) = g(X,fY), X,YeT(N).

~a(~~) = °a~i f~a = Di ~aof =Oi
2

f = -I + ¿ ~a 0 ~a' a,~e{l, ... ,s},
a

N2n+ s is said to have an f-structure with complemented frames.

is defined by

K-structure and N2n+ s is called a K-manifold. In such a
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[f,f] + 2¿ ~ 0 d~ = O,
a a a

where [f, f] is the Nij enhuis torsion of f. Moreover, i t is

Further, the f-structure is said to be normal if

1-forms, then

manifold, the ~ are Killing vector fields, (Blair, [1]).. a

Let ~ denote the distribution determined by _f2 and ~ .the

complementary distribution. ~ is determined by f2 + I and

where ~(X,Y) = ¿ ~D(X)~D(Y) . The fundamental 2-form F on N2n+ s

D

satifying, (Yano, [7]):

spanned by ~l' .. . '~s. If Xe~, then ~a(X) = O, for any a and if

known that there

(2.1)

vector

Finally, the submanifold MID is said to be totally

geodesic in Nn if its second fundamental form is identically

2. S-MANIFOLDS. - Let N2n+ s be a (2n+s) -dimensional manifold

with an f-structure f of rank 2n. If there exist on N2n+ s
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invariant f-sectional curvature k, then its curvature tensor

theN 2n+s
. ,

[ 1] ) . For the

X, YeT (N) .

an S-manifoldonof g

-fX, XeT(N), ae{l, ... ,s},

= L[g(fX,fY)~a + ~a(Y)f2xJ,
a .

connection ~

- 2F(X,Y)F(Z,W)}, X,Y,Z,WeT(N).

R(X,y,Z,W) = ¿ {g(fX,fW)~a(Y)~~(Z) -
a,~

- g(fX,fZ)~a(Y)~~(W) + g(fy,fZ)~a(X)~~(W) -

- g(fy,fW)~a(X)~~(Z)} +

+ «1/4) (k+3s) {g(X,W)g(fY,fZ) - g(X,Z)g(fY,fW) +

+ g(fY,fW)~(X,Z) - g(fY,fZ)~(X,W)} +

+ (1/4) (k-s) {F(X,W)F(Y,Z) - F(X,Z)F(Y,W) -

In the case s = 1, an S-manifold is a Sasakian manifold.

(2.5)

with certain conditions is an S-manifold. In this way, a

space . of a principal toroidal bundle over a Kaehler manifold

(Blair, [2]), (Blair, Ludden and Yano, [3]). Thus, the bundle

For s~2, examples of S-manifolds are given in (Blair, [1] ) ,

has the form, (Kobayashi and Tsuchiya, [4])

an orthonormal pair spanning the section. The sectional

Aplane section rr is called an invariant f-section if it

2n+sis determined by a vector Xe~(p), peN , such that {X,fX} is

curvature K(X, fX), denoted by H(X), is called an invariant

f-sectional curvature. If N2n+ s is an S-manifold of constant

following were also proved:

Riemannian

manifolds have been studied in (Blair,

A K-structure such that F = d~a' a = 1, ... ,s, is called

an S-structure and N2n+ s is called an S-manifold. These

(2.3)

(2.4)

XeM, then fX = O.
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an invariant submanifold of an S-manifold is such that

an

fX = TX + NX,(2.6)

(2.7)

and, so, m = 2p+s. For later use, we prove the following

Lemma 2.1.- Let M2p+s be an invariant submanifold of

Proof: By using the Weingarten formula (1.1), (2.4) and

the fact that Mm+s is an invariant submanifold, it is easy to

show that AfVX = f~X. Now, if YeT(M), we have

g(AfVX,y) = g(X,AfVY) = g(X,f~Y) = -g(~fX,y)

l lfVeT(M) , for any VeT(M) . Moreover, it is an S-manifold too

. 2n+s l
S-man~fold N . Then, for any XeT(M), VeT(M) , ae{l, ... ,s}:

it defines an f-structure in the tangent bundle. On the other

hand, if one of the ~a is normal to Mm, then T =O, because

g(X,fY) = F(X,Y) = d~a(X,y) = O, X,YeT(M),

The submanifold ~ is said to be invariant if all of ~a

(a 1, ... ,s) are always tangent to ~ and N is LderrtLcaLty

zero, i.e., fXeT(M), for any XeT(M). It is easy to show that

tangent bundle. It is easy to show that if T does not vanish,

normal component of fX. Then, T is an endomorphism of the

tangent bundle and N is a normal-bundle valued 1-form on the

where TX is the tangential component of fX and NX is the

introduced as a canonical example of an S-manifold playing the

role of complex projective space in Kaehler geometry and the

odd-dimensional sphere in Sasakian geometry.

Now, let ~ be an m-dimensional submanifold immersed in

an S-manifold N2n+s. For any XeT(M), we write

generalization of the Hopf fibration rr':S2n+1~~~n is
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Ricci equation (1.2) and Lemma 2.1, we have

and (2.7) holds.

anLet M2p+s be

such that the normal

(s-k)g(fX,fY) = 4g(~X,~y).

Now, we prove

Theorem 3.2. - Let M2p+s be an invariant submanifold of an

. 2n+s 2p+s
S-man~fold N (k). If the codimension of M is greater

than 2, then the normal con~ection of M2p+s is flat if and

only if k = s and M2p+s is totally geodesic.

Proof: From the Ricci equation (1.2) and (2.5), i t is

clear that if M2p+s is totally geodesic, then its normal

connection is flato Now, we suppose that M2p+s is not totally

geodesic. We can choose a local field of orthonormal frames

for vector fields in M2p+s in the form

R(X,fy,V,fV) = 2g(~X,~y),

for any vector field X,YeT(M) and any unit vector field

V~T(M)i. Now, from (2.5) we obtain

Then, we get the following

proposition 3.1.- Let M2p+s be an invariant submanifold of an

S-manifold N2n+s(k) with flat normal connection. Then, k~s and

the equality holds if and only if M2p+s is totally geodesic.

(3.1)

invariant submanifold of N2n+s(k)

connection of M2p+s is flat, i. e., RD = O. Then, by using the

f-sectional curvature is a constant k.

3 . INVARIANT SUBMANIFOLDS WITH FLAT NORMAL CONNECTION. - In

this section, let N2n+s (k) be an . S-manifold whose invariant
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is of constant invariant f -sectional curvature.

again, that

~ +~ = O,

and fV. Regarding to (3.3), it follows that g(~X,~y) = O,

for any X,YeT(M). Consequently, the vector fields

~(E1)'" .,~(E2p) ,~(E1)'·· · ,~(E2p)

are linearly independent, which "is a contradiction. Therefore,

M2p+s is totally geodesic and k = s.

invariant submanifold of codimension 2 in an S-manifold

N2n+s(k). Then, 1f"l+s is totally geodesic if and only if 1f"l+s

Finally, for codiroension 2, we have the following

Theorero 3.3. - (Kobayashi and Tsuchiya, [4]) Let 1f"l+s be an

" ~

for any orthonorroal vector fields V,WeT(M) . Thus, froro (1.2)

and (3.2), we get

R(X,y,V,W) = 2g(~X,~y), X,YeT(M).

Using (2.5), we obtain

{E1,···,Ep,Ep+1 = fE1,···,E2p = fE p'€l'···'€S }·

If ~(Ei) = O, for soroe unit vector field VeT(M)~, the~,

froro (3.1), we get that M2p+s is totally geodesic, by virtue

of Proposition 3.1. Thus, ~(Ei) ~ O, for any Ei and V, and

so, ~(E1), ... ,~(E2p) are linearly independent.

on the other hand, it is easy to show, by using (3.1)

(3 .3) (s-k)g(X,fY)g(V,fW) = 4g(~X,~y).

If the codiroension of M2p+s is greater than 2, we can

take a unit vector field W in T(M)~ which is, orthogonal to V

(3.2)
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