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This paper presents some characterizations of S-manifolds

whose invariant f-sectional curvature is constant. The antiinva-

riant f-sectional curvature, the axiom of invariant f-planes
the axiom of antiinvariant f-planes are used in order to get

results.

0.- INTRODUCTION. For manifolds with an f-structure, David_E.
Blair (Blair, [1l]) has introduced the analogue of Kaehler
structure in the almost complex case and of quasi-Sasakian
structure in the almost contact case, thus defining S-mani-
folds. He has also proved that the invariant f-sectional cur-
vature determines the curvature of an S-manifold completely.
In this paper, we shall present some characterizations
of S-manifolds whose invariant f-sectional curvature is con-
stant. In section 1, we shall give a brief summary of basic
formulas on S-manifolds. In section 2, we shall use the anti-
invariant f-sectional curvature to characterize S-manifolds
with constant invariant f-sectional curvature. In the last
section, we shall prove that if an S-manifold satisfies the
axiom of invariant f-planes, then it is of constant invariant
f-sectional curvature. The same result is obtained, under cer-
tain restrictions on the dimension of the S-manifold, using

the axiom of antiinvariant f-planes.
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1.- PRELIMINARIES. Let M?"'S Le an S-manifold of dimension

2n+s, with structure tensors (f,El,...,CS,nl,...,n +9). Let
: : +
T(M) be the Lie Algebra of vector fields in M2n =% Then, the

structure tensors satisfy the following equations (Blair, [1]):

(1.1) ng(Eg) = 6,,5 £ = 0; n_(£X) = 0
2 S \W o
5 =T = é,g& X N,
g(Xx,Y) = g(£fXx,fy) + ¢(X,¥), X,YeT(M), o,Be{l,..., s},

)
where ¢ (X,Y) = 7 na(X)na(Y). Thus, the tensor f is an f-struc-
(¢}

ture (Yano, [7]) of rank 2n and the metric g is compatible

with £f. Moreover, f is normal and so:

(2 [£:0] 22 e —idn =0
where [£,f] is the ;ijenhuis torsion of f. The covariant dif-
ferentiation v of M2n+s satilsties ((Bladir, 88 e fixe Ve TI(M)E,
G iils s o6 503
(EIESER) Vs =-fX. ;
(G (i = 1 oG ad)BE o i () il -
Furthermore, oi an S-manifold we have F = dna,a =Ty S,
where F is the fundamental 2-form defined by F(X,Y) = g(X,£fY),

X,YeT (M) .

Let L denote the distribution determined by —f2 and\}tthe
complement distribution.\}Zis determined by f2 + I and spanned
by {£;,...,6,}. If Xef, then n (X) = 0 for any o and if xel,
then fX = 0.

Examples of S-manifolds are given in (Blair, [1]), (Blair,
[2]), (Blair, Ludden and Yano, [3]). Thus, the bundle space
of a principal toroidal bundle over a Kaehler manifold with
certain conditions is an S-manifold. In this way, a generali-
zation of the Hopf Fibration 7': S2n+l > BC" is intro-
duced as a canonical example of an S-manifold (playing the
role of complex space in Kaehler geometry and the odd-dimen-
sional sphere in Sasakian geometry) as follows:

Let A denote the diagonal map. We define a principal

toroidal bundle over PC- by the following diagram:




+
H2n+s A 2n+1 ; = S2n 1

m T e e st e AT
rc” A Pc” x ... x pC”
that is:
H2r1+s Z {(Plr---rps)552n+l S el S2n+l /
n'(pl) e e n'(ps)}.
By virtue of Theorem 3.1 in (Blair, [1]), H2n+s is an
S-manifold.
For later use, we recall the following (Blair, [1]):
1.1.- Lemma. On an S -manifold M2n+s:
((155) RIUGKT Ve, X0, o Ve) == R (XY YA & F SIPA(EXe SV SXERTYA) B2
(1.6) RE(EXS BV S EX aVA) S —— RE (0Xe - Yo, o X R Vi) B = S PI(GXE Ve X S aVa) &
(CIL570) R(X,fY,fZ,W) = R(X,Y,Z,W),
for any X,Y,Z,WeJ: where:
P(X,Y,Z2,W) = F(Y,Z)g(X,W) - F(X,Z)g(Y¥,W) =

—F(YIW)Q(X:Z) + F(er)g(le)-

2.- INVARIANT AND ANTIINVARIANT f-SECTIONAL CURVATURES OF AN
S-MANIFOLD. Let M2n+S be an S-manifold. By a plane section we
mean a 2-dimensional lineal subspace of a tangent space. A
plane section m is called an invariant f-section (resp. an
antiinvariant f-section) if fn = m (resp. if frm is perpendic-
ular to m). The sectional curvature for an invariant (resp.
antiinvariant) f-section is called an invariant (resp. anti-
invariant) f-sectional curvature.

An invariant f-section is determined by a unit vector
Xsl}p), peM2n+S such that {X,fX} is an orthonormal pair
spanning the section. On the other hand, it is easy to show
that orthonormal vectors X,Ysi}p), peM2n+S, span an anti-
invariant f-section if and only if X, ¥ and fX are orthonormal.

: +
We denote by K(X,Y) the sectional curvature of M2rl =

determined by orthonormal vectors X,Yeiﬁp), peM2n+S and by
H(X) the invariant f-sectional curvature of an invariant
f-section spanned by {X,fX}, that is, H(X) = K(X,fX).

The fact that the invariant f-sectional curvature deter-
mines the curvature of an S-manifold completely is well known,

(Blair, [1]). Moreover, in (Kobayashi and Tsuchiya, [5]) it is
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proved that if an S-manifold has constant invariant f-sec-

tional curvature k, then its curvature tensor has the form:

22350 RU(CXS, Y, Z W) = ) [g(fx,fw)na(Y)nB(Z) =
aB
= g(fX,fZ)na(Y)nB(W) t; g(fY,fZ)na(X)nB(W) =

= g(fY,fW)nu(X)nB(Z)] + % (k+3s)[g(X,W)g(£fY, f2) -

9(X,2)g(fY,fW) + gq(£Y,fW)e(X,2) -

g(fY,£2) ¢ (X,W)] + %(k-s)[F(X,W)F(Y,2) -

- F(X,Z)F(Y,W) - 2F(X,Y)F(Z2,W)], X,Y,Z,WeT(M).

Now, we can prove:

2.1.- Theorem. Let M2n+s be an S-manifold with n>2. If the

invariant f-sectional curvature at any point is independent
of the choice of the invariant f—section'at the point, then
it is constant on the manifold and the curvature tensor is
given by formula (2.1), where k is the constant invariant
f-sectional curvature.

Proof: By virtue of Theorem 2.6 in (Blair, [1]), it is
easy to see that the curvature tensor has the form of (2F19)

with k a function on the manifold. Then, the Ricci tensor S
2n+s

and the scalar curvature p of M are given by:
(2.2) S(X,Y) = 5(n(k+3s) + k-s)g(fX,fyY) +

+ 2nff n (X)n_(¥), X,YeT(M).

aa il B
(2.3) p = %(n(2n+l) (k+3s) + n(k-s)).
Now, from the second Bianchi identity:
2v_S? - v.o = 0,
<) J

where S? are the components of the Ricci tensor of type (1,1).
Making use of (2.2) and (2.3), we- have:
] _a

(n+1) (n-1)v.k + (n+l)] nggavak =0,
that is: i

(=Aels 48 Nz Ky = 0

H a (0]
Applying this t& 58, B = S, We get:

(n~l)(dk)€B + EBk 0
and so, 5Bk S0 R s e P hen L dk :'O, for n # 1 and the
proof is complete.

As an example, it is well known (Blair, [0, = (Blaim,* [2]])

and (Blair, Ludden and Yano, [3]) that H2n+S has constant

invariant f-sectional curvature 1 - 3s/4. In general, if M2n+s
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is the bundle space of a principal toroidal bundle over a

Kaehler manifold of constant holomorphic scectional curvature
K, which is an S-manifold, then M2n+S has constant invariant
f-sectional curvature K - 3s/4.

With regard to the antiinvariant f-sectional curvature

of an S-manifold, we have:

2.2i5= Propesitionk Let M2n+s(k) be an S-manifold of constant

: : : +
invariant f-sectional curvature k. Then, M2n S(k) has constant

antiinvariant f-sectional curvature equal to %(k+3s).
Proof: By virtue of (2.1), if X,Ye f span a1 antiinvar-
iant f-section, then we have:
K(X,Y)=R(X,Y,Y,X) = %(k+3s)

as desired.

Now, we want to prove the converse. We need the following:

2.3.- Lemma. Let M2n+S be an S-manifold. If X,Yeliare ortho-
normal vectors, then:
(2.4) R (X)) =K (£XS, £Y0)5;
(52:5355) K(X,fY) = RK(£fX,Y).

Moreover, if X,Y span an antiinvariant f-section, then:
2:56)) RI(EXS XS, Y, i) =S K (X6, Y8 Bt K (XS V) SRS D S £

BrROOE (2 240 and (25 5 Folil ow it rom (15574 SN oW, EEXe Ve 10
span an antiinvariant f-section, from the first Bianchi iden-

tity, we get:

2 7) RI(EXe A X R Va) 8 == RUCX N X Ve P ERI (GRS RVE, SEXTVA)
and making use of (1.6), since g(X,fY) = 0 = g(Y¥,£fX) =
= g(X,fX) = g(Y¥,fY), we have:
RO N ey = RUEDKLIEE N SO NN IG) - o & =
=IO YD) 5 S
and
RICXS, B, -E X Y RE= RU(EXS WENE e S EYe) B = S = RS (PXe = FVa) B =S s
Then, replacing these into (2.7), we obtain the result.
2.4.- Theorem. Let M2rl+s be an S-manifold with n>3. If M2n+s

S q % +
has constant antiinvariant f-sectional curvature c, then M2r1 3

has constant invariant f-sectional curvature equal to 4c-3s.
Proof: Let X,Y be orthonormal vectors fields which span
an antiinvariant f-section. Then, (X+Y)//2 and (fX-fY)//2 span

an antiinvariant f-section too. Then, making use of Lemma 1.1
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and Lemma 2.3, we get:

c = %K(X+Y,EX-fY) = 4R(X+Y,EX-£fY,fX-FfY,X+Y) =
=" AEHER) AR UG = AROKNY) = AR(OGE0) HE G3]%
Since KX, YY) = k(X £V ="c, we obtain:
Hi(E) =L H () =8t ==6'S
Now, let p be an arbitrary point of M2n+S and let X,Y be
unit vectors in(i(p). Since n»3, we can choose a unit vector

Zei}p) orthogonal to the plane sections spanned by {X,fX}

and {Y,fY}. It is easy to show that the plane sections spanned
by {X,Z} and {Y,Z} are antiinvariant f-sections. Then we know
that H(X) + H(Z) = 8c-6s = H(Y) + H(Z). Thus, H(X) = H(Y).
Since X and Y are arbitrary vectors, the invariant f-sectional
curvature does not depend on the choice of the invariant f-sec-

3 ; 2 2n+
tion at p. But p is an arbitrary point of M 55 oo Now, from

+s . : : :
Theorem 2.1, M2r1 S is of constant invariant f-sectional cur-

vature equal to 4c-3s, by virtue of (2.8).

These results should be compared with the corresponding

results for Kaehler manifolds (s = 0), (Chen and Ogiue, [4]).

3.- THE AXIOM OF INVARIANT (ANTIINVARIANT) f-PLANES. An S-man-

: S : : - : :
ifold M2n ® is said to satisfy tha axiom of invariant (resp.

2 : ; + : ;

antiinvariant) f-planes if for each pstn ® and each invariant

(resp. antiinvariant) f-section m at p, there exists a 2-di-
2n+s

mensional totally geodesic submanifold N of M such that
peN and Tp(N) = 7.
3.1.- Theorem. Let M2r1+S be an S-manifold. Then, M2n+S sat- !

isfies the axiom of invariant f-planes if and only if M2n+s

of constant invariant f-sectional curvature.
The proof is a very lengthy computation, but similar to

that given by Ogiue (Ogiue, [6]), for Sasakian manifolds. Now,

we shall prove:

+
3.2.- Theorem. Let M2rl S be an S-manifold with n>»3 such that

+
M2n S

satisfies the axiom of antiinvariant f-planes. Then,
2n+s . : ; :
M is of constant invariant f-sectional curvature.

Proof: Let p be an arbitrary point of M2rl+S and let

X,Yei(p) be orthonormal vectors spanning an antiinvariant f-
section m. Let N be a 2-dimensional totally geodesic sub-

: +
manifold of M2n 2 such that peN and Tp(N) = m. Since m is an

antiinvariant f-section, fX is normal to N. Then, from
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Weingarten's formula, we get:

R(X,Y,£X,X) = g(V,9,fX,X) - g(V 7 £X,X)
= 97y yTXX) = g7, D FX,X) - g(V,Dy£X,X) =
= g(DyD £X,X) - g(D D fX,X) = 0,

where we have used the fact that N is totally geodesic and so,
AV = 0, for any vector field V normal to N.

Now, since X and Y span an antiinvariant f-section at p,
then X+Y and fX-fY span an antiinvariant f-section too. Then:

RICXeEYSSEXE BV E XEE RV YOI =102

Using Lemma l.l1 and Lemma 2.3, a direct expansion gives:
(3519 H(X) = H(Y).

Now, let X and Y be unit arbitrary vectors in f}p). Itic
the section {X,Y} is an invariant f-section, then H(X) = H(Y).
If it is not an invariant f-section, since n>»3, we can choose
a unit vector 7% incﬁ(p), orthogonal to the sections {X,fX}
and {Y,fY}. Then, from (3.1), H(X) = H(Z) = H(Y). Since X and
Y are arbitrary vectors, the invariant f-sectional curvature
does not depend on the choice of the invariant f-section at p.
But p is arbitrary too. So, from Theorem 2.1, we complete the

proof.

This result should be compared with that in the case of
s = 0, (Chen and Ogiue, [4]).
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