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Abstract

In this paper two main results are obtained for a nematic liquid crystal model with time-

dependent boundary Dirichlet data for the orientation of the crystal molecules. First, the

initial-boundary problem is considered, obtaining the existence of global in time (up to infinity

time) weak solution, the existence of global regular solution for viscosity coefficient big enough,

and the weak/strong uniqueness. Second, using these previous results and the existence of

time-periodic weak solutions proved in [2], the regularity of any time-periodic weak solution

is deduced for viscosity coefficient big enough.

Keywords: solution up to infinity time, time-periodic solutions, uniqueness, Navier-Stokes equa-

tions, Nematic liquid crystal models, coupled non-linear parabolic system.

1 Introduction

In this work, a simplified Ericksen-Leslie version for a nematic liquid crystal model is consid-

ered; see for instance [8] for a formulation of a more complete liquid crystal problem.

This model can be seen as a variant of the Navier-Stokes problem (respect to the velocity-

pressure unknowns (u, p)) coupled with a convection-diffusion system for a new variable d, which

is a unit vectorial function modelling the orientation of the crystal molecules. On the other hand,

it is usual to consider an approximation by Ginzburg-Landau penalization ([1]) for the constraint

|d| = 1 (|d| = |d(t, x)| denotes the point-wise euclidean norm). This penalized model (where

the constraint |d| = 1 is relaxed by |d| ≤ 1) was introduced by Lin in [6] and studied (from a

mathematical point of view) by Lin and Liu in [7, 8]. Coutand and Shkoller in [4] also studied

this simplified model but including stretching effects.

We assume a (newtonian) fluid confined in an open bounded domain Ω ⊂ IRN (N = 2 or 3)

with regular boundary ∂Ω. In the penalized model the constraint |d| = 1 is partially conserved to

∗First and second authors have been partially financed by the projets P06-FQM-02373 and MTM2006–07932.
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|d| ≤ 1 as consequence of the maximum principle for the Ginzburg-Landau equation considering

the function f(d) =
1

ε2
(|d|2 − 1)d where ε > 0 is the penalization parameter. There exists a

potential function F(d) =
1

4ε2
(|d|2 − 1)2 such that f(d) = ∇dF(d) for each d ∈ IRN . Then, we

consider the following PDE system in (0,+∞)× Ω: ∂tu + (u · ∇)u− ν∆u +∇p = −∇dt∆d, ∇ · u = 0,

∂td + (u · ∇)d = ∆d− f(d), |d| ≤ 1,
(1)

The constants ν, λ and γ are positive, representing respectively, the fluid viscosity, an elasticity

constant and a relaxation time (for simplicity we consider λ = γ = 1 and ν > 0 and for the last

result, large enough). The problem (1) is completed with the (Dirichlet) boundary conditions

u(x, t) = 0, d(x, t) = h(x, t) on ∂Ω× (0,+∞) (2)

(assuming as in [2] a time-depending boundary data for d given by h : ∂Ω × (0,+∞) 7→ IRN ; in

[7, 8] only a time-independent boundary data is considered) and either the initial condition

u(x, 0) = u0 d(x, 0) = d0 in Ω (3)

or the time-periodic condition:

u(x, 0) = u(x, T ), d(x, 0) = d(x, T ) in Ω, (4)

where T > 0 is a given final time. In this last case, we assume, moreover, that h(0) = h(T ).

This model has, beside well known difficulties for the Navier-Stokes problem (a nonlinear

parabolic system with the free divergence constraint related to the pressure), other different diffi-

culties which come from the strongly nonlinear coupling between the orientation vector d and the

velocity-pressure (u, p) and from the constraint |d| ≤ 1.

An essential characteristic of the problem for d (given u), either the initial-value problem with

(3) or the time-periodic case with (4), is the following weak maximum principle (see [7, 2]): Assume

|h| ≤ 1 on ∂Ω × (0, T ) and either |d0| ≤ 1 in Ω for the initial-value problem or h(0) = h(T ) on

∂Ω for the time-periodic problem. Then, given u ∈ L2(0, T ;V) ∩ L∞(0, T ;H) (see the notations

below for the definition of spaces V and H), any point-wise solution for the d-problem verifies

|d(x, t)| ≤ 1 a.e. in Ω× (0, T ).

In [7], considering the initial-value problem (1)-(3) with time-independent boundary conditions

for d, authors prove existence of global weak solution (with u ∈ L∞(L2)∩L2(H1), d ∈ L∞(H1)∩
L2(H2)), existence of global regular solution (with u ∈ L∞(H1)∩L2(H2), d ∈ L∞(H2)∩L2(H3))

if ν is big enough for N = 3 and uniqueness of regular solutions. However, in these previous

results of [7] there is an important simplification; the boundary data h does not depend on time.

In this case, the time-periodic problem (1),(2),(4) with boundary condition independent of the

time (d(x, t)|∂Ω×(0,T ) = d0(x)), leads to a trivial problem (see [2]), because all “static” solutions

u = 0 and d verifying stationary problem −∆d + f(d) = 0 in Ω, d|∂Ω = d0, are in particular

time-periodic solutions. Respect to the nontrivial case of time-dependent boundary condition, the

existence of weak time-periodic solutions of (1),(2),(4) is proved in [2].
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The main results of the present article are the following: always for boundary data h depending

on the time, we prove existence of global weak solution (defined in [0,+∞)) for the initial value

problem (1)-(3), existence of global strong solutions under the constraint of viscosity coefficient

ν big enough and uniqueness of strong/weak solutions, that is any weak solution coincides with

the strong solution (if this strong solution exists). Moreover, we prove existence of regular time-

periodic solutions under the same type of constraint.

A existence result of regular time-periodic solutions for a generalized Boussinesq model can be

seen in [3].

The paper is organized as follows. In Section 2, some differential inequalities in weak norms

are deduced, whereas Section 3 is devoted to obtain differential inequalities in strong norms. In

Section 4, the global in time solution of the initial-value problem is studied (at infinity time),

and finally the existence of strong time-periodic solution is obtained in Section 5, using results of

Section 4 and the existence of weak time-periodic solution of [2].

Notations

• We denote Q = (0,+∞)× Ω, QT = (0, T )× Ω, Σ = (0,+∞)× ∂Ω and ΣT = (0, T )× ∂Ω.

• In general, the notation will be abridged. We set Lp = Lp(Ω), p ≥ 1, H1
0 = H1

0 (Ω),

etc. If X = X(Ω) is a space of functions defined in the open set Ω, we denote by Lp(X)

the Banach space Lp(0, T ;X). Also, boldface letters will be used for vectorial spaces, for

instance L2 = L2(Ω)N .

• The Lp norm is denoted by |·|p, 1 ≤ p ≤ ∞, the Hm norm by ‖·‖m (in particular |·|2 = ‖·‖0)

and the product norm in Hn ×Hm by ‖ · ‖m×n. The inner product of L2(Ω) is denoted by

(·, ·).

• We set V the space formed by all fields u ∈ C∞0 (Ω)N satisfying ∇ · u = 0. We denote H

(respectively V ) the closure of V in L2 (respectively H1). H and V are Hilbert spaces for

the norms | · |2 and ‖ · ‖1, respectively. Furthermore,

H = {u ∈ L2; ∇ · u = 0, u · n = 0 on ∂Ω}, V = {u ∈ H1; ∇ · u = 0, u = 0 on ∂Ω}

• In the sequel, C,D > 0 will denote different constants, depending only on the fixed data of

the problem, as Ω, λ, γ.

2 Differential inequalities in weak norms

2.1 A lifting function

We define d̃(t) as the weak solution of the Laplace-Dirichlet problem −∆d̃ = 0 in Ω,

d̃ = h(t) on ∂Ω.
(5)
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In the time-periodic case, since by hypothesis h(0) = h(T ) on ∂Ω, then d̃(0) = d̃(T ) in Ω.

Therefore, if we define d̂(t) = d(t)− d̃(t), then ∆d̂ = ∆d in Ω×(0, T ) and d̂ = 0 on ∂Ω×(0, T ).

In the time-periodic case, d(0) = d(T ) if and only if d̂(0) = d̂(T ). Then, we can rewrite the problem

(1)-(2) in the variables (u, d̂) (with d = d̂ + d̃) as follows:
∂tu + (u · ∇)u− ν∆u +∇p+∇dt∆d̂ = 0, ∇ · u = 0 in QT ,

∂td̂ + (u · ∇)d−∆d̂ + f(d) = −∂td̃ in QT ,

u = 0, d̂ = 0 on ∂Ω× (0, T ),

(6)

jointly with either the initial condition u(0) = u0, d̂(0) = d0− d̃(0) or the time-periodic conditions

u(0) = u(T ), d̂(0) = d̂(T ).

Remark: The choice of this type of lifting function allows us to obtain estimates up to infinity

time, which is not possible with the lifting function that we will consider in Section 3.

2.2 Differential inequalities

We will give two different differential equalities in the next two lemmas.

Lemma 1 If u and d are regular enough, the following differential inequality holds:

d

dt

(
|u|22 + |∇d̂|22

)
+ 2ν|∇u|22 + |∆d̂|22 ≤ 2

(
|f(d)|22 + |∂td̃|22

)
, (7)

Proof: Taking u and −∆d̂ as test functions in (6), adding up, taking into account that

((u · ∇)u,u) = 0 and (∇dt∆d̂,u)− ((u · ∇)d,∆d̂) = 0, (8)

one arrives (at least formally) at the following energy equality:

1

2

d

dt

(
|u|22 + |∇d̂|22

)
+ ν|∇u|22 + |∆d̂|22 = (f(d),∆d̂) + (∂td̃,∆d̂).

Consequently, applying Young inequality, one has (7).

Lemma 2 If u and d are regular enough, the following differential inequality holds:

d

dt

(
|u|22 + |∇d̂|22 + 2

∫
Ω

F (d)

)
+ 2ν|∇u|22 + |∆d̂− f(d)|22 ≤ |∂td̃|22 (9)

Proof: Taking u and −∆d̂ + f(d) as test functions in (6), adding up and taking into account (8),

∂td · f(d) = ∂tF(d) and ((u · ∇)d, f(d)) = 0, one obtains

1

2

d

dt

(
|u|22 + |∇d̂|22 + 2

∫
Ω

F (d)

)
+ ν|∇u|22 + |∆d̂− f(d)|22 = (∂td̃,∆d̂− f(d)).

****************** By rewriting the second term as

(∂td̃,∆d̂) = (∂td̃,∆d̂− f(d)) + (∂td̃, f(d)),

by using |f(d)| ≤ 1

ε2
owing to the maximum principle |d| ≤ 1 one has

|(∂td̃,∆d̂)| ≤ 1

2
|∂td̃|22 +

1

2
|∆d̂− f(d)|22 +

1

ε2
|∂td̃|1.

Therefore, one arrives (at least formally) at (9).
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3 Differential inequalities in regular norms

3.1 A lifting function

We will consider another suitable lifting function d̃ for the boundary data h (that we denote

equal) in such a way that we could made estimates of H3-type for the homogeneous variable

related to d (see [5]). Concretely, we define d̃ as the solution of the problem:{
∂td̃−∆d̃ = 0 in QT ,

d̃ = h on ∂Ω× (0, T ),
(10)

jointly d̃(0) = d0 in Ω for the initial valued problem or d̃(0) = d̃(T ) in Ω for the time-periodic

case.

Then, the d−problem of (1) can be rewritten as follows: ∂td̂ + (u · ∇)d−∆d̂ + f(d) = 0 in QT ,

d̂ = 0 on ∂Ω× (0, T )
(11)

and d̂(0) = 0 in Ω for the initial-valued problem or d̂(0) = d̂(T ) in Ω for the time-periodic case. As

consequence of the maximum principle |d| ≤ 1 and |d̃| ≤ 1. Although we do not know if |d̂| ≤ 1,

we have ‖d̂‖L∞(L∞) ≤ ‖d‖L∞(L∞) + ‖d̃‖L∞(L∞) ≤ 2.

We are going to consider the following equivalents norms:

‖u‖1 ≈ |∇u|2, ‖d̂‖1 ≈ |∇d̂|2 in H1
0,

‖u‖2 ≈ |∆u|2, ‖d̂‖2 ≈ |∆d̂|2 in H1
0 ∩H2

‖d̂‖3 ≈ |∇(∆d̂)|2 + |∆d̂|2 = ‖∆d̂‖1 in H1
0 ∩H3

Remark: Owing to the lifting function considered in this section, we have that ∆d̂− f(d)|∂Ω = 0

because the rest of the terms in (11) vanish on the boundary. That is not true with the lifting

function of the Section 2.

3.2 Differential inequalities

In the previous conditions, the following regularity result will be frequently used.

Lemma 3 Assume d = d̂ + d̃, with |d| ≤ 1,

a) if ∆d̂− f(d) ∈ L2(Ω) and d̃ ∈ H2(Ω), then d ∈ H2(Ω) and

‖d‖2 ≤ ‖d̃‖2 + C (1 + |∆d̂− f(d)|2),

b) if ∆d̂− f(d) ∈ H1(Ω) and d̃ ∈ H3(Ω), then d ∈ H3(Ω) and

‖d‖3 ≤ ‖d̃‖3 + C (|∇d|2 + |∇(∆d̂− f(d))|2).

5



Proof: For the proof, it is fundamental that ∆d̂− f(d) = 0 on ∂Ω. We have ‖d‖2 ≤ ‖d̂‖2 + ‖d̃‖2
and ‖d‖3 ≤ ‖d̂‖3 + ‖d̃‖3. Then, by adding and subtracting f(d) into the norms ‖d̂‖2 ≈ |∆d̂|2 and

‖d̂‖3 ≈ ‖∆d̂‖1, we obtain the first and second inequality, respectively, using that |f(d)| ≤ C and

|∇f(d)| ≤ C|∇d|.

Lemma 4 Assume d̃ ∈ L∞(0,+∞;H3(Ω)), u ∈ L∞(0,+∞;L2(Ω)) and d ∈ L∞(0,+∞;H1(Ω)).

Then, if u and d are regular enough, the following differential inequality holds:

d

dt

(
‖u‖21 + |∆d̂− f(d)|22

)
+ ν‖u‖22 + 2|∇(∆d̂− f(d))|22

≤ D(1 + |∆d̂− f(d)|22) +
E

ν

(
‖u‖1‖u‖22 + (1 + |∆d̂− f(d)|22)|∇(∆d̂− f(d))|22

)
,

(12)

where D,E > 0 are constants independent of ν.

Proof: Taking Au as test functions in the u-system of (1) (A being the Stokes operator) and

applying adequately Hölder and Young’s inequalities, one obtains:

d

dt
‖u‖21 +

4

3
ν‖u‖22 ≤

C

ν

(
|(u · ∇)u|22 + |∇td∆d|22

)
≤ C

ν

(
|u|23|∇u|26 + |∇td|23|∆d|26

)
≤ C

ν

(
|u|2‖u‖1‖u‖22 + ‖d‖1‖d‖2‖d‖23

)
Hence, owing to Lemma 3, weak estimates (|u(t)|2 ≤ C, ‖d(t)‖1 ≤ C a.e. t ∈ (0,+∞)) and strong

regularity of d̃ ∈ L∞(0,+∞;H3(Ω)) (in particular, inequalities of Lemma 3 derive in the simplest

inequalities: ‖d‖2 ≤ C (1 + |∆d̂− f(d)|2) and ‖d‖3 ≤ C (1 + |∇(∆d̂− f(d))|2)), we have:

d

dt
‖u‖21 +

4

3
ν‖u‖22 ≤ C

ν

(
‖u‖1‖u‖22 + (1 + |∆d̂− f(d)|2)|∇(∆d̂− f(d))|22

)
+ C(1 + |∆d̂− f(d)|2).

(13)

In the last term we have considered that C/ν is uniformly bounded respect to ν, as ν ≥ ν0.

By taking gradient in the d̂-system (11), multiplying by −∇(∆d̂− f(d)), integrating by parts

in the ∂td̂-term (where all the boundary terms vanish owing to the choice of the lifting function d

that implies (∆d̂− f(d))|∂Ω = 0) and adding both sides the term −(∂tf(d),∆d̂− f(d)), we find:

1

2

d

dt
|∆d̂− f(d)|22 + |∇(∆d̂− f(d))|22 = −(∂tf(d),∆d̂− f(d))

−((∇u · ∇)d,∇(∆d̂− f(d))) + (u · ∇∇d,∇(∆d̂− f(d)))
(14)

By using the d̂-system we have that

−∂tf(d) = −∇df(d)∂td = ∇df(d)
(

(u · ∇)d−∆d̂ + f(d)−∆d̃
)

hence, the first term on the right hand side of (14) can be written as

(∇df(d)(u · ∇)d,∆d̂− f(d))− (∇df(d)(∆d̂− f(d)),∆d̂− f(d))− (∇df(d)∆d̃,∆d̂− f(d)).

Taking into account that ‖∇df(d)‖L∞(L∞) ≤ C, weak estimates (|u|2 ≤ C, ‖d‖1 ≤ C) and the

strong regularity for d̃ ∈ L∞(0,+∞;H3(Ω)), we can bound these terms by:

C(|u|∞|∇d|2|∆d̂− f(d)|+ |∆d̂− f(d)|22 + |∆d̃|2|∆d̂− f(d)|2)

≤ C(‖u‖1/21 ‖u‖
1/2
2 ‖d‖1|∆d̂− f(d)|2 + |∆d̂− f(d)|22 + 1)

≤ ν

18
‖u‖22 +

C

ν
|∆d̂− f(d)|22 + C(|∆d̂− f(d)|22 + 1).
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The second term on the right hand side of (14) is estimated by

| − ((∇u · ∇)d,∇(∆d̂− f(d)))| ≤ C|∇u|6|∇d|3|∇(∆d̂− f(d))|2

≤ ν

18
‖u‖22 +

C

ν
‖d‖1‖d‖2|∇(∆d̂− f(d))|22

≤ ν

18
‖u‖22 +

C

ν
(1 + |∆d̂− f(d)|2)|∇(∆d̂− f(d))|22.

Analogously, the last term on the right hand side of (14) is bounded by

|(u · ∇2d,∇(∆d̂− f(d)))| ≤ C|u|∞|∇2d|2|∇(∆d̂− f(d))|2

≤ ν

18
‖u‖22 +

C

ν
‖d‖22|∇(∆d̂− f(d))|22

≤ ν

18
‖u‖22 +

C

ν
(1 + |∆d̂− f(d)|22)|∇(∆d̂− f(d))|22.

Consequently, applying previous estimates in (14) and considering that C/ν is uniformly bounded

respect to ν as ν ≥ ν0, we arrive at

d

dt
|∆d̂− f(d)|22 + 2|∇(∆d̂− f(d))|22 ≤

ν

3
‖u‖22 + C(1 + |∆d̂− f(d)|22)

+
C

ν
(1 + |∆d̂− f(d)|22)|∇(∆d̂− f(d))|22.

(15)

From (13) and (15) we obtain (12).

4 Global solution of the initial-value problem

Definition 5 We say that (u,d) is a weak solution of (1)-(3) if

∇ · u = 0 in Q, u|Σ = 0, d|Σ = h,

‖(u(t),d(t))‖0×1 ≤ C1 ∀t ≥ 0 i.e. (u,d) ∈ L∞(0,+∞;L2 ×H1), (16)

∀γ > 0, e−γt
∫ t

0

eγs‖(u(s),d(s))‖21×2 ds ≤ C2, ∀t ≥ 0, (17)

verifying

〈∂tu, v〉+ ((u · ∇)u, v) + (∇u,∇v) + (∇dt∆d, v) = 0 ∀ v ∈ V,

∂td + (u · ∇)d + f(d)−∆d = 0, |d| ≤ 1 a.e. in Q

u(0) = u0, d(0) = d0 in Ω.

In the finite time case (T <∞), (17) holds even when γ = 0, i.e. (u,d) ∈ L2(0, T ;H1 ×H2).

Remark: (16) and (17) imply that (∂tu, ∂td) ∈ L4/3
loc ([0,∞);V′ × L2).

Definition 6 We say that (u, p,d) a weak solution of (1)-(3) is also a strong solution if

‖(u(t),d(t))‖1×2 ≤ C3 ∀t ≥ 0, (18)
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∀γ > 0, e−γt
∫ t

0

eγs‖(u(s),d(s))‖22×3 ds ≤ C4, ∀t ≥ 0, (19)

verifying the following system a.e. in Q: ∂tu + (u · ∇)u− ν∆u +∇p = −∇dt∆d, ∇ · u = 0,

∂td + (u · ∇)d = ∆d− f(d), |d| ≤ 1.
(20)

In the finite time case (T <∞), again γ = 0 can be taken in (19). tu

Remark: (18) and (19) imply that for all γ > 0 and for all t ≥ 0:

e−γt
∫ t

0

eγs|∂tu(s)|22 ds ≤ C5, (21)

|∂td(t)|2 ≤ C6, e−γt
∫ t

0

eγs‖∂td(s)‖21 ds ≤ C7, (22)

and

e−γt
∫ t

0

eγs|∇p(s)|22 ds ≤ C8. (23)

Theorem 7 (Existence and uniqueness of the initial-valued problem)

(1) Let Ω be a bounded domain in R3 with boundary ∂Ω of class C1,1. Assume (u0,d0) ∈
H × H1 with |d0| ≤ 1 in Ω, h ∈ L∞(0,+∞;H3/2(∂Ω)) with |h| ≤ 1 on Σ and ∂th ∈
L∞(0,+∞;L2(∂Ω)), verifying the compatibility condition d0|∂Ω = h(0). Then there exists

a weak solution (u,d) of (1)-(3) in [0,+∞) which verifies (16)-(17) with constants C1, C2

independent of ν for each ν ≥ 1/2, and the follow energy inequality:

|u(t)|22 + |∇d̂(t)|22 + 2

∫ t

0

(
ν|∇u|22 + |∆d̂|22

)
≤ |u0|22 + 2

∫ t

0

∫
Ω

(
f(d) ·∆d̂− (u · ∇)d · ∂td̃

) (24)

where the lifting function d̃ is defined as in Section 3.

(2) If moreover, ∂Ω is of class C2,1, (u0,d0) ∈ H1 × H2 with ‖(u0,d0)‖H1×H2 ≤ M0, h ∈
L∞(0,+∞;H5/2(∂Ω)) and ∂th ∈ L∞(0,+∞;H1/2(∂Ω)), for each ν ≥ ν0, with ν0 = ν0(M0,h, ∂th),

there exists an unique strong solution of (1)-(3) in [0,+∞), which verifies (18) and (19) with

constants C3, C4 independent of ν.

(3) If (u1,d1) is a weak solution of (1)-(3) which verifies the energy inequality (24) and (u2,d2)

is a strong solution of (1)-(3), then both solutions coincide.

Proof:

(1) In the proof of this part a semi-Galerkin method will be used. Let {wi}n ≥ 1 a “special” basis

of V formed by eigenfunctions of the Stokes problem

(∇wi,∇v) = λi(wi,v) ∀v ∈ V, wi ∈ V, with ‖wi‖L2 = 1, λi ↗ +∞.

Let Vm be the finite-dimensional subspace spanned by {w1,w2, . . . ,wn}.
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For each m ≥ 1, we say that (um,dm) is an approximate solution, if um : [0,+∞) 7→ Vm and

dm : [0,+∞) 7→ H2 with d̂m = dm− d̃ and d̃ the lifting function given in Section 3 (in particular,

from regularity hypothesis of h, one has that d̃ ∈ L∞(H2) and d̃t ∈ L∞(L2)), and the following

variational formulation holds:

(∂tum(t), vm) + ((um(t) · ∇)um(t), vm) + ν(∇um(t),∇vm)

+(∇dtm(t)∆dm(t), vm) = 0 ∀ vm ∈ Vm, a.e. in t,

∂td̂m(t) + (um(t) · ∇)dm(t) = ∆d̂m(t)− f(dm(t)), |dm| ≤ 1, a.e. in Q,

um(0) = u0m = Pm(u0), dm(0) = d0 in Ω.

(25)

Here, Pm : H 7→ Vm denotes the usual orthogonal projector from H onto Vm. In particular,

u0m → u0 in L2.

The existence and uniqueness of local in time solution of (25) (in QT , for small enough T ) is

proved in the Appendix. Moreover, one has the estimates (independent of m): um bounded in

L∞(0, T ;H)∩L2(0, T ;V) and dm bounded in L∞(0, T ;H1)∩L2(0, T ;H2). This suffices to control

nonlinear terms and to pass to the limit in (25). Therefore, we get a weak solution of initial-valued

problem (1)-(3) in [0, T ]. Next, to extend the solution to whole [0,+∞) we will prove that the

approximate solutions (um(t),dm(t)) are bounded in [0,+∞). By using the lifting (5) (Section

2), the approximate problem (25) can be rewritten as follows:

(∂tum(t), vm) + ((um(t) · ∇)um(t), vm) + ν(∇um(t),∇vm)

+(∇dtm(t)∆dm(t), vm) = 0 ∀ vm ∈ Vm, a.e. t,

∂td̂m(t) + (um(t) · ∇)dm(t) = ∆dm(t)− f(dm(t))− ∂td̃(t) in Q,

um(0) = u0m = Pm(u0), dm(0) = d0 in Ω.

(26)

Notice that d̂m and d̃ are not the same functions in (25) and (26) respectively, since the lifting

functions furnished in (5) or (10) are different, but the function dm does not change.

From (7), one has in particular

d

dt

(
|um|22 + |∇d̂m|22

)
+ C0(|um|22 + |∇d̂m|22) ≤ 2

(
|f(dm)|22 + |∂td̃|22

)
≤ C, (27)

where C0 = min{ 2ν
P ,

1
P } and P is a Poincaré constant (for each ν ≥ 1/2, C0 = 1/P a constant

independent of ν). In the last estimate we have used that |f(dm)|22 is bounded in L∞(0,+∞) and

|∂td̃|22 ∈ L∞(0,+∞). Multiplying by eC0t,

d

dt

(
eC0t(|um|22 + |∇d̂m|22)

)
≤ CeC0t

and integrating in [0, t] we have

|um(t)|22 + |∇d̂m(t)|22 ≤ e−C0t
(
|u0m|22 + |∇d̂0|22

)
+ C(1− eC0t) ≤ |u0|22 + |∇d̂0|22 + C (28)

for all t ≥ 0, with C > 0 a constant independent of ν, hence (16) holds with a constant C1

independent of ν for all ν ≥ 1/2.

9



Now, getting back to (7), multiplying by eγt for any γ > 0 and using the uniform in time

estimates (28), we get

d

dt

(
eγt(|um|22 + |d̂m|22)

)
+ eγtC0(|∇um|22 + |∆d̂m|22) ≤ Ceγt.

From this last differential inequality is easy to deduce (17) for a constant C2 independent of ν for

all ν ≥ 1/2. Then, existence of weak solution of (1)-(3) in (0,+∞) can be proved by means of a

rather standard pass to the limit argument.

To obtain (24), we consider the approximated problem in the formulation (25). By taking

vm = um as test function, multiplying the dm-system by −∆d̂m, adding up and taking into

account that (∇dtm∆d̂m,um) = ((um · ∇)dm,∆dm)− ((um · ∇)dm, ∂td̃m) (notice that now, with

the lifting function given in (10), ∆d 6= ∆d̂ in general) and taking limit as m goes to ∞, one

arrives at (24).

(2) Let (um,dm) be the solution in (0,∞) of problem (25), obtained in the previous section. Now,

the lifting function is more regular, concretely d̃ ∈ L∞(H3) and d̃t ∈ L∞(H1). If we denote

Φ1(t) = ‖um‖21, Φ2(t) = |∆d̂m − f(dm)|22, Ψ1(t) = ‖um‖22, Ψ2(t) = |∇(∆d̂m − f(dm))|22

and

Φ = Φ1 + Φ2, (29)

then (12) is rewritten as follows:

Φ′ +

(
ν − E

ν
Φ

1/2
1

)
Ψ1 +

(
2− E

ν
(1 + Φ2)

)
Ψ2 ≤ D(1 + Φ), a.e. t ∈ [0,∞), (30)

where E,D > 0 are constants (independent of ν).

We will prove that Φ(t) ≤ M for all t ∈ [0,∞), where M will be a constant independent of ν

that we will specify latter. By an absurd argument, let t∗ > 0 be a time such that

Φ(t∗) = M and Φ(s) < M ∀ t ∈ [0, t∗).

Next, we shall assume that ν ≥ ν0 where ν0 = ν0(E,M) is a constant verifying

ν0 −
E

ν0
M1/2 ≥ 1 and 2− E

ν0
(1 +M) ≥ 1

(recall that E is independent of ν). In particular ν0 > 1. Then,

Φ′ + Ψ ≤ D(1 + Φ) in [0, t∗].

We denote P = 1/C̄ where C̄ is the Poincaré constant such that Φ ≤ C̄Ψ. Therefore, Ψ ≥ PΦ,

hence

Φ′ + PΦ ≤ D(1 + Φ) in [0, t∗]. (31)

Multiplying (31) by ePt and integrating in [0, t∗] one finds:

Φ(t∗) ≤ Φ(0)e−Pt
∗

+De−Pt
∗
∫ t∗

0

ePs(1 + Φ(s)) ds.
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By using estimate (17), one has Φ(t∗) ≤ Φ(0) +
D

P
(1 − e−Pt

∗
) + D C2. Since ν0 > 1, ∀ν ≥

ν0, the constant C2 is independent of ν. Therefore, if we choose a constant M > 0 such that

Φ(0) +
D

P
+D C2 < M (notice that M is independent of ν), we arrive at contradiction.

Consequently, if ν ≥ ν0, Φ(t) = ‖um‖21 + |∆d̂m−f(dm)|22 is bounded for any t ∈ [0,∞]. Finally,

taking into account Lemma 3 a), (18) is deduced. Getting back to (30) we have

Φ′ + Ψ ≤ D(1 + Φ) in [0,∞).

Multiplying by eγt for any γ > 0 and integrating in [0, t] it is easy to deduce that

e−γt
∫ t

0

eγsΨ(s) ds ≤ C ∀t ≥ 0,

hence, (19) is deduced taking into account Lemma 3 b). Finally, by passing to the limit, one finds

that the limit (u, p,d) is the strong solution of (1)-(3) in (0,+∞).

Now, we are going to prove estimates (21), (22) and (23) using the semi-Galerkin problem (25).

To prove (21) it suffices to consider ∂tum as test function in the um-system of (25), multiply by

eγt, integrate in [0, t] and use (18) and (19).

To prove (22), first one proves that |∂td̂m(t)|22 is bounded for all t. Indeed, from dm−system

of (25) we have

|∂td̂m(t)|22 ≤ C
(
‖um‖21‖dm‖22 + |f(dm)−∆dm|22 + |∂td̃|22

)
(32)

and owing to (18) and (19) the right hand side of (32) is bounded. Second, differenciating with

respect to the time the dm-system of (25) and multiplying by ∂td̂m(t) one has

1

2

d

dt
|∂td̂m|22 + |∂t∇d̂m|22 = −((∂tum · ∇)dm, ∂td̂m)− ((um · ∇)∂td̃, ∂td̂m)− (∂tf(dm), ∂td̂m)

= ((∂tum · ∇)∂td̂m,dm) + ((um · ∇)∂td̂m, ∂td̃)− (∂tf(dm), ∂td̂m)

The three terms on the right hand side of the previous inequality are bounded respectively, by

1

9
|∂t∇d̂m|22 + C|∂tum|22‖dm‖21‖dm‖22,

1

9
|∂t∇d̂m|22 + C‖um‖21|∂td̃|23 and

1

9
|∂t∇d̂m|22 + C|∂td̃|22,

therefore, applying L∞ in time estimates already deduced, one arrives at

d

dt
|∂td̂m|22 + |∂t∇d̂m|22 ≤ C(1 + |∂tum|22).

Then, multiplying by eγt for each γ > 0, integrating in [0, t] and using the bound (21) previously

obtained, one arrives to (22).

Finally, estimate for pressure (23) can be deduced in a similar way from the um-system.

(3) We will use an argument of strong/weak uniqueness (see for instance [9] for Navier Stokes case).

Let (u1,d1) be a weak solution of (1)-(3) verifying (24) and let (u2,d2) be a regular solution. We

denote u = u1 − u2 and d = d1 − d2 (notice that d = d̂).
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Adding the energy inequality (24) for (u1,d1) and for (u2,d2), and subtracting the result of

multiplying the (u2,d2)-system by (u1,−∆d1) and the result of considering (−u2,∆d̂
2
) as test

function in (u1,d1)-system, and finally integrating in Ω× [0, t] one arrives at:

1

2

(
|u(t)|22 + |∇d̂(t)|22

)
+

∫ t

0

(ν|∇u|22 + |∆d̂|22)

≤ −
∫ t

0

((u · ∇)u2,u)−
∫ t

0

(∇dt∆d̂
2
,u)

+

∫ t

0

((u2 · ∇)d,∆d̂)−
∫ t

0

(f(d2)− f(d1),∆d̂)−
∫ t

0

(∇dt∆d̂,u).

(33)

By bounding adequately the terms on the right hand side of (33) (see [2]), using that f is locally

lipschitz, |d1| ≤ 1, |d2| ≤ 1 and recalling that d̂ = d, one arrives at

|u(t)|22 + |∇d(t)|22 +

∫ t

0

(ν|∇u|22 + |∆d|22)

≤ C
∫ t

0

(
|∆d2|23 + |u2|84 + 1

) (
|u(s)|22 + |∇d(s)|22

)
.

(34)

Since (u2,d2) is a strong solution, |∆d̂
2
|23 and |u2|84 are bounded in L1(0, t). Applying Gronwall’s

Lemma, one has u = 0 and ∇d = 0. Finally, since d = 0 on Σ, then d = 0. Therefore, uniqueness

of strong/weak solutions for the initial-boundary problem (1)-(3) is proved.

5 Solution of time-periodic problem

In this section, we assume that T > 0 is finite and fix.

Definition 8 We say that (u, p,d) is a regular time-periodic solution of (1), (2) and (4) if u ∈
L2(H2)∩L∞(H1), ∂tu ∈ L2(L2), p ∈ L2(H1), d ∈ L2(H3)∩L∞(H2) and ∂td ∈ L2(H1)∩L∞(L2)

satisfying (1) a.e. in (0, T ) × Ω, boundary conditions (2) and periodic conditions u(0) = u(T ),

d(0) = d(T ) in the sense of spaces V and H2 respectively.

Theorem 9 (Existence and uniqueness of time-periodic solutions) Let Ω be a bounded do-

main in R3 with boundary ∂Ω of class C2,1 and T > 0. If h ∈ L∞(0, T ;H5/2(∂Ω)), ∂th ∈
L∞(0, T ;H1/2(∂Ω)) with h(0) = h(T ) and ν ≥ ν0, for a certain positive constant ν0 = ν0(T,ht),

then there exists a regular periodic solution of (1), (2) and (4), which verifies (18) and (19) with

constants C3 and C4 independent of ν.

Proof: Let (u,d) a weak time-periodic solution in (0, T ) of problem (1), furnished as in [2] by

means of a Galerkin method.

Here, we will consider d̂ = d − d̃, where d̃ is the lifting function given in Section 2. From

weak estimates of the weak time-periodic solutions made in [2], there exits a constant C > 0

(independent of ν) such that

∫ T

0

(ν|∇u|22 + |∆d̂|22)dt ≤ C. Therefore, there is a t0 ∈ [0, T ] such

that

ν|∇u(t0)|22 + |∆d̂(t0)|22 ≤
C

T
.
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In particular, recalling (29) and that |f(d)| ≤ 1

ε2
one has that

Φ(t0) ≤M0, for all ν ≥ 1

(Φ is defined in (29)). We will prove that Φ(t) is bounded in the whole time interval [0,+∞) in

two steps. For that, we will choose two constants M1 and M2 that we will specify latter.

First step: There are two positive constants M1 = M1(M0) and ν1 = ν1(M0), such that if ν ≥ ν1,

then Φ(t) ≤M1, ∀ t ∈ [t0,+∞].

We consider the strong solution of the problem (1), (2) with the initial condition fixed at

t0: (u(t0),d(t0)), which is defined in [t0,+∞) provided ν ≥ ν1(M0) (see Theorem 7). Owing

to uniqueness of weak/strong solution, this strong solution coincides in [t0,+∞) with the weak

time-periodic solution. In particular, Φ(t) ≤ M1, ∀ t ∈ [t0,+∞) (indeed, it suffices to repeat the

proof of Theorem 7 (2), starting from t0).

Second step: There are two positive constants M2 = M2(M1) and ν2 = ν2(M1), such that if ν ≥ ν2,

then Φ(t) ≤M2, ∀ t ∈ [0, t0].

By time periodicity Φ(0) = Φ(T ), hence Φ(0) ≤M1. Again the strong solution of the problem

(1), (2) with the initial condition fixed at 0: (u(0),d(0)), is defined in [0,+∞) for each ν ≥ ν2(M1),

verifies Φ(t) ≤M2 for all t ≥ 0 and coincides with the weak time-periodic solution in [0,+∞).

Consequently, Φ′ + Ψ ≤ D(1 + Φ) in [0,+∞), hence one has strong estimates (18) and (19) as

in the proof of Theorem 7 (2).

Finally, the regularity for ∂tu, ∂td and p is obtained as in the proof of Theorem 7 (2).

Appendix

Theorem 10 There is a time T > 0 depending on u0, d0, m and Ω such that the semi-Galerkin

problem (25) has a unique solution in QT .

Proof: To prove the existence of semi-Galerkin approximate solution, a linearized argument will

be used by splitting the problem (25) into the two following problems:

Let T > 0 and um ∈ C([0, T ];Vm).

a) To find dm ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) such that{
∂td

m + (um · ∇)dm = ∆dm − f(dm) in QT ,

dm(0) = d0 in Ω, dm = h on ΣT .
(35)

b) Known dm, to find um ∈ H1(0, T ;Vm) such that
(∂tu

m,u) + ((um · ∇)um,u) + (∇um,∇u) = −(∇dmT∆dm,u),

∀u ∈ Vm, a.e t ∈ (0, T ),

um(0) = um0 in Ω.

(36)
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First step: There exists an unique solution dm of problem (35) which is bounded in L∞(0, T ;H1)∩
L2(0, T ;H2) if um is bounded in C([0, T ];L2(Ω)).

It suffices to prove that if ‖um‖2C([0,T ];L2(Ω)) ≤M (M > 0 a constant), there exists a constant

C = C(m,M) such that ‖dm‖L∞(0,T ;H1)∩L2(0,T ;H2) ≤ C(m,M).

By considering the lifting function d̃ given in (10), the problem (35) can be rewrite as{
∂td̂

m
+ (um · ∇)dm = ∆d̂

m
− f(dm) in QT ,

d̂
m

(0) = 0 in Ω, d̂
m

= 0 on ΣT .
(37)

Multiplying the previous system by −∆d̂
m

and integrating in Ω, one obtains:

d

dt
|∇d̂

m
|22 + |∆d̂

m
|22 ≤ 2(|um · ∇dm|22 + |f(dm)|22).

Since |dm| ≤ 1 in QT , then ‖f(dm)‖2L∞(L2) ≤ C. On the other hand, by hypothesis ‖um‖2L∞(L2) ≤
M . In particular, since um(t) ∈ Vm, a finite dimensional space, one has ‖um‖2L∞(L∞) ≤ CmM .

Consequently,

|um · ∇dm|22 ≤ CmM |∇d
m|22 ≤ CmM(|∇d̂

m
|22 + |∇d̃|22)

Therefore,
d

dt
|∇d̂

m
|22 + |∆d̂

m
|22 ≤ CmM(|∇d̂

m
|22 + |∇d̃|22) + C.

By applying the Gronwall’s Lemma, one obtains:

|∇d̂
m

(t)|22 +

∫ t

0

|∆d̂
m
|22ds ≤ eCmMT

∫ t

0

(CmM |∇d̃|22 + C)ds.

Since d̃ ∈ L2(0, T ;H1), the term on right hand side is bounded, hence dm is bounded in L∞(0, T ;H1)∩
L2(0, T ;H2) by a constant which depends on the bound of ‖um‖2L∞(0,T ;L2) and on m. In particular,

‖∇d̂
m
‖2L∞(0,T ;L2) ≤ e

CmMT

∫ T

0

(CmM |∇d̃|22 + C)ds := K(T,M), (38)

where K(T,M)→ 0 as T → 0, for each M > 0. That finishes the first step.

Second step: There exists an unique solution um of problem (36) bounded in H1(0, T ;H1) by a

constan which depends on the bound of ‖um‖L∞(0,T ;L2).

Assume that um =

m∑
i=1

ηi(t)w
i then, the problem (36) can be written as the following first

order differential system:
d

dt
ηj +

m∑
i=1

((um · ∇)wi,wj)ηi + ηj = −(∇dmT∆dm,wj), ∀j = 1, . . . ,m

ηj(0) = (u0,w
j), ∀j = 1, . . . ,m.

(39)

which has an unique solution defined in [0, Tm) belonging to H1(0, Tm)m for a certain Tm > 0.

Therefore, there exists a solution of (36) in [0, Tm), where

Tm = T or lim sup
t→Tm

|um(t)|2 = +∞.
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We will prove that Tm = T . For that, we will see that um is bounded in L∞(0, Tm;L2(Ω)) ∩
L2(0, Tm;H1(Ω)). Indeed, by taking u = um in (36),

1

2

d

dt
|um|22 + ν|∇um|22 = −

∫
Ω

(∇dmt∆dm) · um

By using that ∇ · (∇dmt∇dm) = ∇dmt∆dm + ∇
(
|∇dm|2

2

)
the previous term on right hand

side is equal to
∫

Ω
(∇dmt∇dm)∇umdx.

Taking into account that |∇um(t)|∞ ≤ Cm|∇um(t)|2 for any t ∈ [0, Tm), one arrives to

d

dt
|um|22 + ν|∇um|22 ≤

Cm
ν
|∇dm|42

and integrating in [0, Tm] one obtains

|um(t)|22 + ν‖∇um‖2L2(0,Tm;L2) ≤ |u
m(0)|22 +

Cm
ν
Tm‖∇dm‖4L∞(0,Tm;L2) ∀ t ∈ [0, Tm). (40)

By using the first step, ∇dm is bounded in L∞(0, Tm;L2) if um is bounded in L∞(0, Tm;L2).

Therefore, the right hand side of (40) is bounded if um is bounded in L∞(0, Tm;L2). Hence,

Tm = T and um is bounded in L∞(0, T ;L2) ∩ L2(0, T ;H1) by a constant depending on the

bound of ‖um‖L∞(0,T ;L2) and m. Finally, by applying this estimate in (39), one have that
d

dt
ηj is

bounded in L2(0, T ), hence um is bounded in H1(0, T ;H1) by a constant depending on the bound

of ‖um‖L∞(0,T ;L2) and m. Therefore second step is finished.

Third step: A fixed point argument implies the existence of solution of problem (25).

Let us define the operator

ΦT : um ∈ C([0, T ];Vm)→ dm ∈ L2(0, T ;H2) ∩ L∞(0, T ;H1)→ um ∈ H1(0, T ;Vm)

where dm is the solution of (35) in [0, T ] and um the solution of (36) in [0, T ]. ΦT is continuous

because the solutions of (35) and (36) depend continuously on data.

Moreover, taking into account the previous two steps, given um ∈ C([0, T ];Vm) there exists an

unique um ∈ H1(0, T ;Vm) solution of problem (36) bounded in H1(0, T ;Vm) if um is bounded in

C([0, T ];Vm). Compactness of H1(0, T ;Vm) into C([0, T ];Vm) (owing to Vm is a finite dimension

space) gives that ΦT is compact from C([0, T ];Vm) into itself.

On the other hand, we take M > 0 such that |u0|22 ≤ M/2. If |um(t)|22 ≤ M for all t ∈ [0, T ],

from (38) and (40) we have

|um(t)|22 ≤
M

2
+
C

ν

(
K(T,M)2 + ‖∇d̃‖4L∞(0,T ;L2)

)
.

Then, since K(T,M)→ 0 as T → 0, there exists T0 > 0 small enough depending on M such that

|um(t)|22 ≤M, ∀t ∈ [0, T0].

Therefore, applying Schauder’s Theorem, there exists a fixed point um ∈ H1(0, T0;Vm). More-

over, um is bounded in L∞(0, T0;L2(Ω)) ∩ L2(0, T0;H1(Ω)) and dm is bounded in

L∞(0, T0;H1(Ω)) ∩ L2(0, T0;H2(Ω)) by constants depending on M .
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[2] B. Climent-Ezquerra, F. Guillén-González, M.A. Rojas-Medar Reproductivity for a nematic

liquid crystal model, Z. Angew. Math. Phys., 576 (2006) no. 6, 984-998.
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