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ABSTRACT. The structure of attractors for differential equations is one of the main topics
in the qualitative theory of dynamical systems. However, the theory is still in its infancy in
the case of multivalued dynamical systems. In this paper we study in detail the structure
and internal dynamics of a scalar differential equation, both in the autonomous and non-
autonomous cases. To this aim, we will also show a general result on the characterization
of a pullback attractor for a multivalued process by the union of all the complete bounded
trajectories of the system.

1. Introduction. The study of the structure of the global attractor for nonautonomous
equations is a challenging problem which has drawn the attention of several authors over
the last years. The main idea consists in applying in the nonautonomous case some methods
which are similar to those used in the autonomous case. But this is not an easy task. To
begin with, it is necessary to define a suitable concept of nonautonomous equilibria. This
is done in the particular case of a nonautonomous Chafee-Infante equation (see [5, Chapter
6]; see also [12]), where a global solution with asymptotic stability is introduced as a
suitable concept. In this way, it was proved in [14] (see also [5]) that a nonautonomous
Chafee-Infante equation possesses a unique positive, bounded, non-degenerate, complete
trajectory, which attracts all positive solutions. Such a solution plays the same role as the
unique positive equilibria of the autonomous Chafee-Infante equation. We remark that the
structure of the whole attractor for the nonautonomous Chafee-Infante equation is still far
from being completely understood.

Our aim in this paper is to extend such kind of results to a nonautonomous differential
inclusion in which uniqueness of the Cauchy problem fails. Although we intend to study a
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partial differential inclusion in the near future, as a first step we are considering an ordinary
differential inclusion, as this allows us to obtain a better understanding of the problem
and of the difficulties that could appear in such type of problems. More precisely, for a
differential inclusion governed by a nonautonomous Heaviside function we prove that the
pullback attractor consists of three nonautonomous equilibria, two of which are positive and
stable, whereas the third one is equal to zero and unstable, and the heteroclinic connections
between them. Moreover, there exist only bounded complete trajectories which go from
the zero solution to the stable equilibria.

For the development of this canonical model, we give a result on the characterization of
backwards bounded pullback attractors for multivalued processes as the union of bounded
backwards trajectories. This is done in Section 2. Section 3 develops our nonautonomous
multivalued differential equation with Heaviside function, for which a full understanding of
the internal dynamics can be obtained. In particular, a strong order relation of solutions is
shown. The ideas also serve as the framework to describe in detail the structure of the global
attractor in the autonomous case. We think this should be the standard behaviour in both
positive and negative cones for a nonautonomous multivalued Chafee-Infante equation,
which we plan to study in the near future.

2. Characterization of pullback attractors for multivalued processes. First, let us re-
call briefly the main concepts and results of the theory of pullback attractors for multivalued
processes.

Let X be a complete metric space with metric ρ and let P(X) be the set of all non-empty
subsets of X . Denote Rd = {(t,s) ∈ R2 : t ≥ s}.

The map U : Rd×X → P(X) is called a multivalued process if:

1. U (t, t, , ·) = Id is the identity map;
2. U (t,s,x)⊂U (t,τ,U (τ,s,x)) for all s≤ τ ≤ t, x ∈ X ,

where U (τ,s,B) = ∪z∈BU (τ,s,z) for a subet B⊂ X .

It is called strict if, moreover, U (t,s,x) =U (t,τ,U (τ,s,x)) for all s≤ τ ≤ t, x ∈ X .
For any t ∈ R, B⊂ X the ω-limit set ω (t,B) is defined by

ω(t,B) =
⋂
s≤t

⋃
τ≤s

U(t,τ,B).

Denote by B (X) the set of all non-empty bounded subsets of X and by Oε(B) = {y ∈
X : dist(y,B)< ε} an ε-neighborhood of the set B. Let dist(A,B) = supy∈A infx∈B ρ(y,x).

Definition 2.1. The familiy of sets {K(t)}t∈R is called pullback attracting if attracts every
B ∈B(X) in the pullback sense, that is,

dist(U(t,s,B),K(t))→ 0, as s→−∞. (1)

Definition 2.2. The family of compact sets {A (t)}t∈R is called a pullback attractor if:

1. It is pullback attracting.
2. A (t)⊆U(t,s,A (s)), for all t ≥ s (negative semi-invariance);
3. {A (t)}t∈R is minimal in the sense that if {K(t)}t∈R is a pullback attracting family

of closed sets, then A (t)⊂ K(t) for all t ∈ R.
The pullback attractor is strictly invariant if A (t) =U(t,s,A (s)), for any t ≥ s.

Theorem 2.3. [9, p.536] Let us suppose that there exists a pullback attracting family of
compact sets {K(t)}t∈R and that the map x 7→ U(t,τ,x) has closed graph for all t ≥ τ .
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Then there exists a pullback attractor {A (t)}t∈R, which is defined by

A (t) =
⋃

B∈B(X)

ω(t,B)

and satisfies A (t)⊂ K(t) for all t ∈ R.

We can obtain the strict invariance of the pullback attractor with some additional as-
sumptions.

Definition 2.4. The family of sets {K(t)}t∈R is said to be backwards bounded if there
exists τ such that the set Kτ = ∪t≤τ K (t) is bounded.

Lemma 2.5. If U is a strict process possessing a backwards bounded pullback attractor,
then this attractor is strictly invariant.

Proof. Let t∗ be such that B = ∪t≤t∗A(t) is bounded. Since A (t) is negatively semi-
invariant and U is strict, for τ ≤ t∗, τ ≤ s≤ t we have

U(t,s,A(s))⊂U(t,s,U (s,τ,A(τ)))

=U (t,τ,A(τ))⊂U(t,τ,B).

Then, passing to the limit as τ →−∞ we obtain that U(t,s,A(s))⊂ A(t).

Remark 1. This lemma was proved in [7] using the stronger condition that ∪t≤τ A(t) is
bounded for all τ ∈ R.

We observe that since a pullback attractor {A (t)}t∈R attracts every bounded set, for any
backwards bounded family {K(t)}t∈R we have

dist (U (t,s,K (s)) ,A (t))≤ dist (U (t,s,∪r≤τ K (r)) ,A (t))→ 0 as s→−∞.

Hence, we highlight that the pullback attractor attracts in fact not only bounded sets but
some families of sets as well. In particular, we obtain the following result.

Lemma 2.6. If the pullback attractor {A (t)}t∈R is backwards bounded, then

dist (U (t,s,A (s)) ,A (t))→ 0 as s→−∞,

that is, it pullback attracts itself.

We would like to give a more detailed characterization of the dynamics inside the pull-
back attractor by using bounded complete trajectories in a similar way to the single-valued
case [5, p.37]. For this aim we need to consider the particular case of generalized processes,
which were introduced at first in [1], whereas in [2] the properties of ω-limit sets for such
processes were studied. It is worth pointing out that in the autonomous case a comparison
between the two approaches to the multivalued case using either multivalued semiflows or
multivalued processes is given in [6].

Let us denote Wτ =C([τ,∞);X) and let R = {R(τ)}τ∈R consists of maps ϕ ∈Wτ sat-
isfying:

(H1) For any τ ∈ R and x ∈ X there exists ϕ ∈R (τ) such that ϕ (τ) = x.
(H2) ϕs = ϕ |[τ+s,∞)∈R (τ + s) for any s≥ 0, ϕ ∈R (τ) (translation property).

Consider also some additional assumptions, which will be needed in order to obtain
good properties. Namely:
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(H3) Let ϕ,ψ ∈R be such that ϕ ∈R(τ), ψ ∈R(r) and ϕ(s) = ψ(s) for some s≥ r≥ τ .
Then the function θ defined by

θ(t) :=
{

ϕ(t), t ∈ [τ,s],
ψ(t), t ∈ [s,∞),

belongs to R (τ) (concatenation property).
(H4) For any sequence ϕn ∈R (τ) such that ϕn (τ)→ ϕ0 in X , there exists a subsequence

ϕnk and ϕ ∈R (τ) such that

ϕ
nk (t)→ ϕ (t) , ∀t ≥ τ.

We define the multivalued map U : Rd×X → P(X) associated with the family R in the
following way:

y ∈U (t,s,x) if there is ϕ ∈R (s) such that y = ϕ (t) , ϕ (s) = x.

The following lemma is straightforward to prove.

Lemma 2.7. If (H1)− (H2) hold, then U is a multivalued process. If, moreover, (H3)
holds, then U is a strict multivalued process.

If (H4) is satisfied, then x 7→U(t,τ,x) has closed graph for all t ≥ τ.

Definition 2.8. A map γ : R→ X is called a complete trajectory of R if

ϕ = γ|[τ,+∞) ∈R (τ) , for all τ ∈ R. (2)

It is obvious that
γ (t) ∈U (t,s,γ (s)) for all s≤ t. (3)

The complete trajectory γ is said to be backwards (forwards) bounded if there exists
τ ∈ R such that ∪r≤tγ (r) (∪r≥tγ (r)) is bounded. It is bounded if ∪r∈Rγ (r) is a bounded
set. Clearly, γ is bounded if and only if it is backwards and forwards bounded.

By the pullback attracting property and (3) it is easy to see that if γ (·) is a backwards
bounded complete trajectory, then γ (t) ⊂ A (t) for any t ∈ R, where {A (t)}t∈R is the
pullback attractor. We shall show that if the pullback attractor is backwards bounded, then
it consists exactly of all backwards bounded complete trajectories.

Theorem 2.9. Assume that (H1)− (H2) , (H4) hold and that U possesses the backwards
bounded pullback attractor A (t) . Then

A (t) = {γ (t) : γ is a backwards bounded complete trajectory}. (4)

Proof. We have already seen that γ (t) ∈ A (t) for any backwards bounded complete tra-
jectory γ .

Let z ∈A (t), t ∈ R be arbitrary. For any sequence sn→−∞ we have that z ∈A (t)⊂
U (t,sn,A (sn)). Then there exists un ∈R (sn) such that z = un (t) and un (sn)∈A (sn). By
(H2) we have v0

n = un |[t,∞)∈R (t) . Thus, (H4) implies that up to a subsequence v0
n (r)→

v0 (r) , for all r ≥ t, where v0 ∈ R (t), v0 (t) = z. As v0 (r) = limn→∞ un (r) and un (r) ∈
U (r,sn,A (sn))⊂U (r,sn,Bτ) for sn ≤ τ , where Bτ = ∪s≤τA (s) and τ is chosen in such a
way that Bτ ∈B (X), we obtain that v0 (r) ∈ ω (r,Bτ)⊂A (r) for any r ≥ t.

Let now v1
n = un |[t−1,∞)∈R (t−1). Since v1

n (t−1)= un (t−1)∈U (t−1,sn,A (sn))⊂
U (t−1,sn,Bτ), passing to a subsequence v1

n (t−1)→ z−1. Therefore, arguing as before
we obtain the existence of v1 ∈ R (t−1) and a subsequence of v1

n (denoted again by v1
n)

such that v1
n (r)→ v1 (r) for all r ≥ t − 1. Also, it is clear that v1 (r) ∈ A (r), for any

r ≥ t−1, and that v1 (r) = v0 (r) if r ≥ t. In particular, v1 (t) = z.
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Proceeding in the same way we can define a sequence of functions v j ∈R (t− j), j ∈
Z+, such that v j (r) ∈ A (r), for any r ≥ t − j, v j (r) = v j−1 (r) , for r ≥ t − j + 1, and
v j (t) = z.

We define v(·) by taking the common value of the functions v j (·) for all r ∈ R. Thus,
v(·) is a complete trajectory of R, v(t) = z and it is backwards bounded since v(r)∈A (r),
for any r ∈ R, and the pullback attractor is backwards bounded.

If the pullback attractor is bounded, that is, ∪t∈RA (t) is bounded, then it can be char-
acterized by the union of all bounded complete trajectories.

Corollary 2.10. Assume that (H1)− (H2) , (H4) hold and that U possesses the bounded
pullback attractor A (t) . Then

A (t) = {γ (t) : γ is a bounded complete trajectory}. (5)

Proof. If the pullback attractor A (t) is bounded, it follows from (4) that every backwards
bounded complete trajectory γ is bounded as well. Hence, the result follows using again
(4).

We can obtain the same results but using condition (H3) instead of (H4) .

Theorem 2.11. Assume that (H1)−(H3) hold and that U possesses the backwards bounded
pullback attractor A (t) . Then

A (t) = {γ (t) : γ is a backwards bounded complete trajectory}. (6)

Proof. We know that γ (t) ∈A (t) for any backwards bounded complete trajectory γ .
Let z ∈A (t). By (H1) there exists γ0 ∈R (t) such that γ0 (t) = z. Lemmas 2.5, 2.7 im-

ply that γ0 (r) ∈A (r) for any r≥ t. Further, since z ∈A (t)⊂U (t, t−1,A (t−1)), there
is v1 ∈R (t−1) satisfying v1 (r) ∈ A (r), for all r ≥ t− 1, and v1 (t) = z. Concatenating
v1 and γ0 we obtain using (H3) a function γ1 ∈R (t−1) such that γ1 (r) ∈ A (r), for all
r ≥ t−1, γ1 (t) = z and γ1 (r) = γ0 (r) if r ≥ t. In the same way, we can define inductively
a sequence of functions γ j ∈R (t− j), j ∈ Z+, such that γ j (r) ∈ A (r), for all r ≥ t− j,
γ j (t) = z and γ j (r) = γ j−1 (r) if r ≥ t − j + 1. Taking γ as the common value of γ j at
any point t ∈ R we obtain a complete trajectory satisfying γ (t) = z and γ (r) ∈ A (r) for
any r ∈ R. Since the pullback attractor is backwards bounded, γ is bacwards bounded as
well.

Corollary 2.12. Assume that (H1)−(H3) hold and that U possesses the bounded pullback
attractor A (t) . Then

A (t) = {γ (t) : γ is a bounded complete trajectory}. (7)

3. On the structure of the attractor for a nonautonomous multivalued scalar equa-
tion.
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3.1. Setting of the problem. Let us consider the differential inclusion{ du
dt

+λu ∈ b(t)H(u), t ≥ s,

u(s) = us,
(8)

where λ > 0, H is the Heaviside function given by

H(u) =

 1 if u > 0,
[−1,1] if u = 0,
−1 if u < 0,

and b : R→ R+ is a continuous function satisfying

0 < b0 ≤ b(t)≤ b1.

The function u : [s,+∞)→ R is called a solution of (8) if u ∈ C ([s,+∞),R),
du
dt
∈

L∞
loc ([s,+∞),R) and there exists h ∈ L∞

loc ([s,+∞),R) such that h(t) ∈ H(u(t)), for a.a.
t > s, and

du
dt

+λu = b(t)h(t) for a.a. t > s. (9)

It is obvious that problem (8) possesses at least one solution for every initial data. If
us > 0, the unique solution of the linear problem{ du

dt
+λu = b(t) ,

u(s) = us,
(10)

is clearly a solution to (8). When us < 0 the same is true replacing b(t) by −b(t) in the
right-hand side of (10). Finally, if us = 0, then u(t) ≡ 0 is a solution, though not the only
one, as we will see later on.

We will denote by Rb
s the set of all solutions of (8) starting at s. In the autonomous case,

that is, when b(t)≡ b > 0, the set of all solutions starting at s = 0 will be denoted by Rb.
We will check first that the concatenation of two solutions gives us a new solution.

Lemma 3.1. Let u ∈Rb
τ , v ∈Rb

r with τ ≤ r ≤ s and u(s) = v(s). Then

w(t) =
{

u(t) if τ ≤ t ≤ s,
v(t) if t ≥ s,

belongs to Rb
τ .

Proof. It is clear that w satisfies w ∈C ([τ,∞),R),
dw
dt
∈ L∞

loc ([τ,+∞),R) and there exists

h ∈ L∞
loc ([τ,+∞),R) such that h(t) ∈ H (w(t)), for a.a. t > τ, and

dw
dt

+λw = b(t)h(t) for a.a. t > τ.

The function h is defined by

h(t) =
{

h1(t) if t ∈ (τ,s) ,
h2 (t) if t > s,

where h1,h2 are the selections corresponding to u and v respectively in equality (9).

The goal of this paper is to show that the solutions to (8) generate a multivalued process
having a pullback attractor and to give a complete description of its structure.
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3.2. Strong comparison of solutions. We shall firstly prove some strong comparison re-
sults for the solutions of (8).

To start with let us consider the autonomous case b(t)≡ b.

Lemma 3.2. Let b(t)≡ b and x0 ≤ y0. Then there exist y,x ∈Rb with y(0) = y0, x(0) = x0
such that

x(t)≤ y(t) for all t ≥ 0, x(·) ∈Rb, x(0) = x0, (11)

x(t)≤ y(t) for all t ≥ 0, y(·) ∈Rb, y(0) = y0. (12)

Proof. Let us prove (11). We consider two cases.
Case 1. y0 ≥ 0.
Let y(·) be the unique solution to the problem{ dy

dt
+λy = b,

y(0) = y0.

It is clear that y(t) ≥ 0 for all t ≥ 0, and then y ∈Rb. On the other hand, for any solution
x(t) with x(0) = x0 it holds

dx
dt

+λx(t) = g(t),

where g(t) ∈ bH(x(t)) for a.a. t and g ∈ L∞
loc(R+,R). Since g(t)≤ b, standard comparison

between these two problems gives

x(t)≤ y(t) for all t ≥ 0.

Case 2. y0 < 0.
In this case it is easy to see that the solutions x(t), y(t) to (8) corresponding to x0 and y0

are unique and solve the problem { dz
dt

+λ z =−b,

z(0) = z0.

Again, standard comparison implies x(t)≤ y(t) for all t ≥ 0.
The proof of (12) is rather similar.

Corollary 3.3. If y0 ≥ 0, then there exists y ∈Rb such that y(t)≥ 0 for all t ≥ 0.

Proof. Since x(t)≡ 0 is a solution, it follows directly from Lemma 3.2.

This is a strong comparison principle. It implies in particular that for every initial data
there exists a maximal and a minimal solution. Further, let us consider the nonautonomous
case.

Lemma 3.4. Let us ≥ 0. Then there exists y ∈Rb1 with y(0) = us such that

u(t)≤ y(t− s) for all t ≥ s, (13)

if u ∈Rb
s , u(s) = us.

Let us > 0. Then there exists x ∈Rb0 with x(0) = us such that

0 < x(t− s)≤ u(t) for all t ≥ s, (14)

if u ∈Rb
s , u(s) = us.
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Proof. Let us prove the existence of y ∈ Rb1 . The solution y(·) is chosen as the unique
solution to the problem { dy

dt
+λy = b1,

y(0) = us,

whereas u(·) is the solution of the problem{ du
dt

+λu(t) = g(t), t > s,

u(s) = us,
(15)

where g(t) ∈ b(t)H(u(t)) for a.a. t > s and g ∈ L∞
loc([s,∞),R). Since y(t) ≥ 0 for any

t ≥ 0, we obtain that y ∈Rb1 . The result follows from b(t)≤ b1 and standard comparison
theorems.

For the second case, if us > 0, then x(·) is chosen as the unique solution to the problem{ dx
dt

+λx = b0,

x(0) = us,

and it is easy to see that x(t) > 0 for all t ≥ 0, so x ∈ Rb0 . On the other hand, u(·) is
a solution of problem (15) and at least in some interval [s, t0] it is true that u(t) > 0, so
g(t) = b(t) a.e. in (s, t). Again, from b(t) ≥ b0 and standard comparison theorems it
follows that u(t)≥ x(t− s) for all t ∈ [s, t0]. In fact, this inequality remains true whenever
u(t)> 0. Let [s,Tmax) be the maximal interval in which u(t)> 0. Thus, either Tmax =+∞

or u(Tmax) = 0. The last is not possible as in such a case we would have by continuity that
x(Tmax− s)≤ 0, but we have seen that x(t)> 0 for all t ≥ 0. Therefore, u(t)≥ x(t− s) for
all t ≥ s and we are done.

Remark 2. If us = 0, it is not possible to obtain (14) even without the assumption 0 <
x(t− s), but for any solution u ∈Rb

s satisfying u(t)≥ 0 for all t ≥ s, by taking x(t)≡ 0 it
is obvious that

x(t− s)≤ u(t) for all t ≥ s.

Corollary 3.5. If us > 0, then u(t)> 0 for all t ≥ s and all u ∈Rb
s with u(s) = us.

If us < 0, then u(t)< 0 for all t ≥ s and all u ∈Rb
s with u(s) = us.

Hence, for any us 6= 0, the solution of problem (8) is unique and is given by

u(t) = e−λ (t−s)us +
∫ t

s
e−λ (t−τ)b(τ)dτ. (16)

If us = 0, there are infinitely many solutions given by

u∞ ≡ 0, (17)

u+r (t) =
{

0 if s≤ t ≤ r,∫ t
r e−λ (t−τ)b(τ)dτ,

(18)

u−r (t) =
{

0 if s≤ t ≤ r,
−
∫ t

r e−λ (t−τ)b(τ)dτ,
(19)

where r ≥ 0 is arbitrary, and these are the only possible solutions.

Proof. Let us > 0. The first statement follows from (14). This implies that any u∈Rb
s with

u(s) = us > 0 is a solution of the problem{ du
dt

+λu = b(t) ,

u(s) = us,
(20)
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which possesses a unique solution defined by (16). We note that if u(·) is a solution of (8),
then −u(·) is also a solution. Thus, the result follows for us < 0.

Let us = 0. It is obvious that u∞ ≡ 0 is a solution. Using Lemma 3.1, the solution u+r is
obtained concatenating u∞ with the unique solution to the problem du+

dt
+λu+ = b(t),

u+(r) = 0,
(21)

given by the expression

u+ (t) =
∫ t

r
e−λ (t−τ)b(τ)dτ.

Since u+ (t)≥ 0 for all t ≥ r we can see that u+ (·) is a solution to (8). In a similar way we
prove that u−r is a solution.

There cannot be any other solutions. Indeed, let u(·) be an arbitrary solution such that
u(s) = 0 and u 6= u∞. In view of the first two statements, there exists r≥ s such that u(t) =
0, if s ≤ t ≤ r, and u(t) 6= 0 for any t > r. In the last situation, suppose for example
that u(t) > 0 for any t > r. Then u(·) has to be the unique solution of problem (21), so
u(t)≡ u+r (t). The case where u(t)< 0 is treated similarly.

As the proof of the following lemma is rather similar to the proof of Lemma 3.2, we
omit its proof.

Lemma 3.6. Let xs ≤ ys and s ∈ R. Then there exist y,x ∈Rb
s with y(s) = ys, x(s) = xs

such that

x(t)≤ y(t) for all t ≥ s, x(·) ∈Rb
s , x(x) = x0, (22)

x(t)≤ y(t) for all t ≥ s, y(·) ∈Rb
s , y(x) = y0. (23)

Let us come back to problem (8). We will show first that (10) generates a strict multi-
valued process.

We recall that Rb
τ is the set of all solutions of (8) starting at τ . Then we take R (τ) =Rb

τ .
It is quite obvious that (H1)− (H2) hold. Also, (H3) follows from Lemma 3.1. Therefore,
(8) generates the strict multivalued semiflow U .

In order to prove the existence of a pullback attractor we need to obtain a family of
compact pullback attracting sets.

Lemma 3.7. There exists a bounded pullback attracting family of compact sets {K (t)}t∈R.

Proof. Multiplying (9) by any solution u of (8) we obtain

1
2

d
dt
|u|2 +λu2 = b(t)h(t)u(t)≤ λ

2
u2 +

1
2λ

b1.

Hence,

|u(t)|2 ≤ e−λ (t−s) |u(s)|2 + b1

λ 2 , (24)

and the required family is given by K (t) = {y ∈ R : |y| ≤
√

b1
λ
}.

Lemma 3.8. (H4) is satisfied.

Proof. Let xn→ x and un ∈Rb
s be such that un (s) = xn.

First, assume that x > 0. Then xn > 0 for n ≥ n0. In view of Corollary 3.5 the function
un (·) is the unique solution to problem (20) with initial data xn. Hence, it converges in
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C ([s,∞),R) to the unique solution u to problem (20) with initial data x, which belongs to
Rb

s .
The case x < 0 is proved in a similar way.
Let x = 0. Passing to a subsequence if necessary, one can consider without loss of

generality only the following three cases.
Case 1. xn > 0 for all n.
As before, the function un (·) is the unique solution to problem (20) with initial data xn,

which converges in C ([s,∞),R) to the function u+s ∈Rb
s defined in (18).

Case 2. xn < 0 for all n.
The proof is similar to the previous one
Case 3. xn = 0 for all n.
Using Corollary 3.5 one can suppose without loss of generality that one of the following

options is satisfied for any n: un = u∞, un = u+rn or un = u−rn , where rn ≥ s.
If un = u∞, it is obvious that un→ 0 ∈Rb

s in C ([s,∞),R) .
If un = u+rn , we consider two cases. First, assume that rn is bounded, so that up to a

subsequence rn → r. It follows easily that un → u+r ∈ Rb
s in C ([s,∞),R) . Secondly, if

rn→+∞, then un→ 0 ∈Rb
s in C ([s,∞),R) .

The case un = u−rn is similar to the previous one.

Theorem 3.9. The multivalued process U possesses the strictly invariant pulback attractor
{A (t)}t∈R. Moreover, it is bounded and

A (t) = {γ (t) : γ is a bounded complete trajectory}. (25)

Proof. The multivalued process U is strict and the map x 7→U(t,τ,x) has closed graph for
all t ≥ τ in view of Lemma 3.8. On the other hand, from Lemma 3.7 there exists a bounded
pullback attracting family of compact sets {K (t)}t∈R. The existence of the strictly invariant
pullback attractor follows from Theorem 2.3 and Lemma 2.5. The characterization (25) is a
consequence of Corollary 2.12. Since A (t)⊂ K (t), the pullback attractor is bounded.

Sometimes it is interesting due to physical motivations to consider only non-negative
solutions. We cannot state that the positive cone R+ is positively invariant, as negative
solutions can appear for initial data equal to zero. However, we can define in R+ a process
U+

b . Namely,

Rb,+
s = {u ∈Rb

s : u(t)≥ 0 ∀t ≥ s}.

It is clear that any u ∈ Rb
s with u(s) > 0 belongs to Rb,+

s , and similary to the previous
arguments one can check that Rb,+

s satisfies properties (H1)− (H4). Hence, the map
U+

b : Rd×R+→ P(R+) given by

U+
b (t,s,x) = {u(t) : u ∈Rb,+

s , u(s) = x}

is a strict multivalued process and U+
b (t,s,x) = Ub(t,s,x) if x > 0. The existence of a

strictly invariant pulback attractor {A +(t)}t∈R satisfying (25) is proved in a similar way.

3.3. Structure of the pullback attractor. In this section we will provide a full description
of the dynamics inside the pullback attractor.

First, we shall obtain an upper bound of any bounded complete trajectory of problem
(8). Hence, we obtain at once a lower bound.
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Theorem 3.10. There exists a maximal bounded complete trajectory ξM (·) of Rb, which
means that for any bounded complete trajectory ψ (·) we have

−ξM(t)≤ ψ(t)≤ ξM(t) for all t ∈ R.
It is defined by

ξM(t) =
∫ t

−∞

e−λ (t−τ)b(τ)dτ.

Moreover, for any u0 6= 0 we have

lim
s→−∞

Ub(t,s,u0) = ξM(t) if u0 > 0, (26)

lim
s→−∞

Ub(t,s,u0) =−ξM(t) if u0 < 0, (27)

and the interval [−ξM(t),ξM(t)] is positively invariant.

Proof. For any x > 0 we have

Ub(t,s,x) = e−λ (t−s)x+
∫ t

s
e−λ (t−τ)b(τ)dτ →

∫ t

−∞

e−λ (t−τ)b(τ)dτ
de f
= ξM(t)

as s→−∞. It is obvious from b0 ≤ b(t)≤ b1 that
b0

λ
≤ ξM(t)≤ b1

λ
.

Also, ξM (·) is a complete trajectory, which follows from

Ub(t,τ,ψ(τ)) = lim
s→−∞

Ub(t,τ,Ub(τ,s,x)) = lim
s→−∞

Ub(t,s,x) = ξM(t).

Here, we have used (H4) and the uniqueness of solutions for positive initial data.
Hence, (26) is proved and (27) follows from the fact that if u(·) is a solution of (8), then

−u(·) is also a solution.
Let now ψ (·) be an arbitrary bounded global trajectory. Let φ > 0 be such that ψ (s)≤ φ

for all n and s. Then, ψ (t) ∈Ub(t,s,ψ (s)) and Lemma 3.6 imply that

ψ (t)≤Ub(t,s,φ)→ ξM(t) as s→−∞.

The inequality −ξM(t)≤ ψ (t) is obtained in the same way.
Finally, using again Lemma 3.6 and the uniqueness of solutions for positive initial data

for any −ξM(s)≤ us ≤ ξM(s), u ∈Rb
s , u(s) = us, t ≥ s, we have

−ξM(t) =Ub(t,s,−ξM(s))≤ u(t)≤Ub(t,s,ξM(s)) = ξM(t),

so the interval [−ξM(t),ξM(t)] is positively invariant.

We shall show further that ξM (·) (−ξM (·)) is the only bounded strictly positive (nega-
tive) complete trajectory.

Lemma 3.11. If ψ (·) is a bounded complete trajectory of Rb such that ψ (t)> 0 (ψ (t)< 0)
for all t ∈ R, then ψ (t)≡ ξM (t) (ψ (t)≡−ξM (t))

Proof. Let us consider the case where ψ (t)> 0. In view of Corollary 3.5 ψ (·) is a solution
of problem (20) on any interval [s, t], so

ψ (t) = e−λ (t−s)
ψ (s)+

∫ t

s
e−λ (t−τ)b(τ)dτ.

As s < t is arbitrary, passing to the limit as s→−∞ we obtain that

ψ (t) =
∫ t

−∞

e−λ (t−τ)b(τ)dτ = ξM(t) for any t ∈ R.
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The second case is proved in a similar way.

Moreover, one can prove that every solution with positive (negative) initial data ap-
proaches to the complete solution ξM (t) (−ξM (t)) asymptotically as t→+∞.

Lemma 3.12. Let us > 0, vs < 0. Then

|Ub (t,s,us)−ξM (t)| → 0,

|Ub (t,s,vs)+ξM (t)| → 0, as t→+∞.

Proof. By Corollary 3.5 we have

Ub (t,s,us) = e−λ (t−s)us +
∫ t

s
e−λ (t−τ)b(τ)dτ.

Hence,

|Ub (t,s,us)−ξM(t)|=
∣∣∣∣e−λ (t−s)us +

∫ t

s
e−λ (t−τ)b(τ)dτ−

∫ t

−∞

e−λ (t−τ)b(τ)dτ

∣∣∣∣
≤ e−λ (t−s)us + e−λ t

∫ s

−∞

eλτ b(τ)dτ → 0 as t→+∞.

The second case is checked similarly.

When the initial data is equal to 0, uniqueness of solutions fails. In this particular case,
apart from the zero solution, there exist solutions which approach asymptotically to the
complete bounded trajectories ±ξM (t) as time increases.

Lemma 3.13. For any s ∈R there exist at least two bounded complete trajectories φ+
s ,φ−s

such that φ+
s (t) = φ−s (t) = 0, for all t ≤ s, and∣∣φ+

s (t)−ξM(t)
∣∣→ 0 as t→+∞,∣∣φ−s (t)+ξM(t)
∣∣→ 0 as t→+∞.

Proof. For t ≥ s we consider the function u+s defined in (18), which is a solution to (8).
Further, ∣∣u+s (t)−ξM(t)

∣∣= ∣∣∣∣∫ t

s
e−λ (t−τ)b(τ)dτ−

∫ t

−∞

e−λ (t−τ)b(τ)dτ

∣∣∣∣
= e−λ t

∫ s

−∞

eλτ b(τ)dτ → 0 as t→+∞.

Then, we concatenate this function with v(t) = 0 in (−∞,s] and obtain the desired bounded
complete trajectory φ+

s .
The proof for the other one is rather similar by using u−0 from (19).

The functions ±ξM(t), φ±s as defined in Theorem 3.10 and Lemma 3.13 and ψ (t) ≡ 0
are the only possible bounded complete trajectories of Rb.

Corollary 3.14. Let ψ (·) be a bounded complete trajectories of Rb. Then either ψ (t) ≡
±ξM(t), ψ (t)≡ 0 or there exists s ∈ R such that ψ(t) = φ±s (t).

Proof. In view of Lemma 3.11 if ψ (t) > 0 (ψ (t) < 0) for all t ∈ R, then ψ (t) ≡ ξM (t)
(ψ (t)≡−ξM (t)). Therefore, assume that for some s ∈R it holds that ψ (s) = 0. It follows
from Corollary 3.5 that ψ (t) = 0, for all t ≤ s, and also that either ψ (t) = 0, for any t ≥ s,
or there exists r ≥ s for which either ψ (t) = u+s (t) or ψ (t) = u−s (t) for all t ≥ s. Hence,
either ψ (t)≡ φ+

s (t) or ψ (t)≡ φ−s (t) .
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At light of the previous results we are able to provide a full description of the structure
of the pullback attractor for the multivalued process generated by (8).

In view of (25) the pullback attractor A (t) consists of all bounded complete trajectories.
Three of these trajectories are the functions ψ1 (t) ≡ ξM(t), ψ2 (t) ≡ −ξM(t), ψ3 (t) ≡ 0,
which can be considered as nonautonomous equilibria. Corollary 3.14 implies that the
other possible complete trajectories are the functions φ±s (t).

We note that |φ+
s (t)−ξM(t)| →

t→+∞
0 and φ+

s (t) = 0 for all t ≤ s (see Lemma 3.13). Thus,

φ+
s is a heteroclinic connection from 0 to the nonautonomous equilibria ξM . In the same

way, φ−s is a heteroclinic connection from 0 to the nonautonomous equilibria −ξM .
Therefore, the pullback attractor consists of three nonautonomous equilibria and the

heteroclininc connections which go from 0 to the non-zero equilibria.
We observe that, in our application, we have defined three nonautonomous equilibria.

One of them is a classical equilibrium and the other ones are defined as the unique bounded
complete trajectories which are not equal to 0 at any point. For a more general concept of
nonautonomous equilibria see [5, Chapter 13].

If we consider the multivalued process U+
b , then it can be proved in a similar way the

existence of a pullback attractor, which is characterized by the two equilibria ψ1 (t) ≡
ξM(t), ψ3 (t)≡ 0 and the heteroclinic connections from 0 to the nonautonomous equilibria
ξM.

Remark 3. Using the methods developed in [8], [11] and [15] we might study other prop-
erties for the solutions of problem (8) such as regularity in stronger spaces or the existence
of trajectory attractors. However, in this paper we focus mainly on the structure of the
pullback attractor.

3.4. Structure of the global attractor in the autonomous case. Let us consider now the
autonomous inclusion, that is, the case where b(t) ≡ b > 0. We recall that the set of all
solutions starting at s = 0 is denoted by Rb, which is a subset of the space C([0,∞);R).

In a similar way to the nonautonomous case one can check that this set satisfies the
following properties:
(K1) For any x ∈ R there exists ϕ ∈Rb such that ϕ (0) = x.
(K2) ϕτ (·) = ϕ (·+ τ) ∈Rb for any τ ≥ 0, ϕ (·) ∈Rb (translation property).
(K3) Let ϕ1,ϕ2 ∈Rb be such that ϕ2(0) = ϕ1(s), where s > 0. Then the function ϕ (·) ,

defined by

ϕ(t) =
{

ϕ1 (t) if 0≤ t ≤ s,
ϕ2 (t− s) if s≤ t,

belongs to Rb (concatenation property).
(K4) For any sequence ϕn (·) ∈Rb such that ϕn (0)→ ϕ0 in R, there exists a subsequence

ϕnk and ϕ ∈Rb such that

ϕ
nk (t)→ ϕ (t) , ∀t ≥ 0.

We can define the multivalued map Gb : R+→ P(R) by

Gb (t,x) = {y : y = u(t) , u ∈Rb, u(0) = x}.
Since (K1)− (K3) hold, Gb is a strict multivalued semiflow [10, Lemma 5]. This means
that Gb (0, ·) is the identity map and that

Gb (t + s,x) = Gb (t,Gb (s,x)) for all x ∈ R, t ≥ s≥ 0.

Lemma 3.2 implies that the multivalued semiflow Gb is order-preserving in the follow-
ing sense [3]: if x0 ≤ y0, then
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1. there exists x(t) ∈ Gb(t,x0) such that

x(t)≤ y(t), for all y(t) ∈ Gb(t,y0);

2. there exists y(t) ∈ Gb(t,y0) such that

x(t)≤ y(t), for all x(t) ∈ Gb(t,x0).

For short, we denote this property by Gb(t,x0)≤ Gb(t,y0) whenever x0 ≤ y0.
The compact set A is said to be a global attractor for Gb if:
1. A ⊂ Gb (t,A ) , ∀t ≥ 0 (negatively semi-invariance);
2. For any bounded set B⊂ R,

dist(Gb(t,B),A )→ 0, as t→+∞. (28)

3. It is minimal, that is, for any closed set C satisfying (28) it holds A ⊂C.

It is called invariant if, moreover, A =Gb (t,A ) , for all t ≥ 0.
Property (K4) implies that the map x 7→ Gb (t,x) has closed graph for any t ≥ 0. Also,

in view of Lemma 3.7 the compact set K = {y ∈ R : |y| ≤
√

b1
λ
} is attracting, that is,

dist(Gb (t,B) ,K)→ 0, as t→+∞,

for every bounded set B.
Hence, Gb possesses the global invariant attractor A =ω (K), where ω (K) is the ω-limit

set given by ω (K) =
⋂

s≥0
⋃

t≥s Gb(t,B) (see [16, p.11-12] or [13, Theorem 4 and Remark
7]).

In order to study the structure of the attractor we need to recall the concepts of equilibria
(or fixed points) and of complete trajectories of Rb.

We say that z ∈ R is a fixed point of Rb if ϕ (t) ≡ z belongs to Rb. In view of (K1)−
(K4) this is equivalent to the property

z ∈ Gb (t,z) for any t ≥ 0.

See [10, Lemma 7]. It is also easy to see that z is a fixed point if and only if

λ z ∈ bH(z).

Hence, the autonomous problem (8) possesses three fixed points given by

z+1 =
b
λ
, z−1 =− b

λ
, z0 = 0.

We observe that z+1 = ξM(t), z−1 = −ξM(t), so z±1 coincide with the nonautonomous non-
zero equilibria. This fact reinforce the choice of ±ξM(t) as generalized equilibria in the
nonautonomous case.

A map γ : R→ R is called a complete trajectory of Rb if

γ(·+h)|[0,+∞) ∈Rb, ∀h ∈ R,

that is, if γ|[τ,+∞) is a solution of (8) on (τ,+∞) for any τ ∈ R.
Every complete trajectory γ (·) of Rb satisfies

γ(t + s) ∈ Gb(t,γ(s)), ∀t ≥ 0, s ∈ R. (29)

Conversely, (K1)− (K4) imply that every continuous map γ : R→ R satisfying (29) is a
complete trajectory of Rb (see [6, Lemma 5] or [10, Lemma 8]).

Let K be the set of all bounded complete trajectories of Rb. In view of [10, Theo-
rems 9 or 10] the global attractor can be described as the union of all bounded complete
trajectories:

A = {γ (0) : γ ∈K}= ∪t∈R{γ (t) : γ ∈K}.
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Corollary 3.14 implies that if γ is a bounded complete trajectory, then either it is a fixed
point or

γ (t) = φ
+
s (t) =

{
0 if t ≤ s,

b
λ

(
1− e−λ (t−s)

)
if t ≥ s,

γ (t) = φ
−
s (t) =

{
0 if t ≤ s,

− b
λ

(
1− e−λ (t−s)

)
if t ≥ s,

where s ∈ R. Therefore, the attractor is characterized by the fixed points and the bounded
complete trajectories connecting them. The trajectories which are not equilibria tend to
z0 = 0 when t → −∞ (in fact they reach 0 at some s and remain there for all t ≤ s) and
converg to z+1 or z−1 as t→+∞. In other words, it consists of the three fixed points and the
heteroclinic connections which go from 0 to either z+1 or z−1 .

In conclusion, we can see that using the generalized concept of nonautonomous equilib-
ria the structure of the global attractor in the autonomous case and of the pullback attractor
in the nonautonomous case share the same dynamical features.
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