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In this paper, for both the sharp front surface quasi-geostrophic
equation and the Muskat problem, we rule out the “splash singu-
larity” blow-up scenario; in other words, we prove that the con-
tours evolving from either of these systems cannot intersect at a
single point while the free boundary remains smooth. Splash sin-
gularities have been shown to hold for the free boundary incom-
pressible Euler equation in the form of the water waves contour
evolution problem. Our result confirms the numerical simulations
in earlier work, in which it was shown that the curvature blows up
because the contours collapse at a point. Here, we prove that
maintaining control of the curvature will remove the possibility
of pointwise interphase collapse. Another conclusion that we pro-
vide is a better understanding of earlier work in which squirt sin-
gularities are ruled out; in this case, a positive volume of fluid
between the contours cannot be ejected in finite time.

incompressible flow | porous media

We consider the following general transport evolution equation:

ζtðx; tÞ+ vðx; tÞ ·∇ζðx; tÞ= 0; x∈R2;  t∈ ½0;∞Þ;
ζðx; 0Þ= ζ0ðxÞ;

[1]

where ζ is an active scalar driven by the incompressible velocity
vðx; tÞ:

∇ · vðx; tÞ= 0: [2]

Depending upon our choice of the relation between the velocity
and the scalar, we will obtain from this system both the surface
quasi-geostrophic (SQG) equation for sharp fronts and theMuskat
problem. In this paper, we present a unified method to establish
the absence of splash singularities for both of these systems in
different scenarios. Specifically, we show that the dynamics of
a smooth contour cannot cause an intersection at a single point.
We obtain the SQG equations from systems 1 and 2 by ex-

pressing the velocity v in terms of a stream function

v=∇⊥ψ= ð−∂x2ψ; ∂x1ψÞ;

where the function ψ satisfies ζ=− ð−ΔÞ1=2ψ. Here, ð−ΔÞ1=2 is the
Zygmund operator defined on the Fourier side by

bð−ΔÞ1=2 = jξj:

This may be shown to be equivalent to the condition

vðx; tÞ= ð−R2ζðx; tÞ;R1ζðx; tÞÞ; [3]

which relates the temperature to the velocity by means of the
Riesz transforms R1 and R2.
The SQG system is physically important as a model of atmo-

spheric turbulence and oceanic flows (see, e.g., refs. 1–3 and the
references therein). This equation is derived in the situation of
small Rossby and Ekman numbers and constant potential vorticity

(4), where the scalar ζ is the evolution over time of the temperature
of the fluid. SQG has been the subject of many studies from dif-
ferent points of view. Underlying its mathematical interest are
its strong analogies to the 3D Euler equations (see refs. 1 and 5
for these discussions). A very actively studied question for this
system has been the formation of singularities in finite time for
smooth initial data (see, e.g., refs. 6–11 and references therein).
The SQG system furthermore has been used as a mathematical

model in the meteorological process of frontogenesis. Here, the
dynamics of hot and cold fluids are studied in the context of the
formation and time evolution of weather sharp fronts in which
the temperature exhibits discontinuity jumps (further informa-
tion may be found in ref. 1 and the references therein). In light
of this interest, Rodrigo (12) studied the case in which the initial
temperature takes two different constant values on complemen-
tary domains:

ζ0ðxÞ=
�
ζ1; x∈Ω0;
ζ2; x∈R2∖Ω0;

[4]

where ζ1 ≠ ζ2. The initial data represent sharp fronts, and the
interest is in their dynamics, which evolve by SQG. The transport
character of Eq. 1 shows that the temperature as it evolves in
time should have the form

ζðx; tÞ=
�
ζ1; x∈ΩðtÞ;
ζ2; x∈R2∖ΩðtÞ : [5]

In this formulation, ΩðtÞ is a moving domain. Then, a contour
dynamics problem is obtained by considering the time evolution
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of the free boundary ∂ΩðtÞ. For Eqs. 1–3, the SQG equation for
the evolution of a sharp front is then given by

xtðαÞ= ζ2 − ζ1

2π

Z
T

x′ðαÞ− x′ðβÞ
jxðαÞ− xðβÞj dβ: [6]

Here, the boundary is parameterized by the closed one-to-one
curve xðα; tÞ:

∂ΩðtÞ= fxðα; tÞ= ðx1ðα; tÞ; x2ðα; tÞÞ: α∈ ½−π; π�=Tg;

which satisfies the chord-arc condition (see ref. 13 for a detailed
derivation of the contour equation in this form). Above the sub-
script t and the prime notation denote the partial derivatives in
time and α (or β), respectively. In [6], the time dependence is
disregarded for notational simplicity.
Then, fundamental questions to study are the existence of

front-type solutions and the possible singularity formation in the
evolution of ∂ΩðtÞ. These issues are comparable to the vortex-
patch problem for the 2D Euler equations (see refs. 5 and 14),
but the SQG front system is more singular (see ref. 12 for more
details on this discussion).
Local-in-time existence and uniqueness in this situation were

proven in ref. 12 for C∞ contours using Nash–Moser arguments.
This tool was used because the operator involved in the contour
equation is considerably singular; it loses more than one de-
rivative (Eq. 6). In ref. 13, the result was extended within the
chain of Sobolev spaces because of several cancellations. See
also ref. 15 for a proof of local existence for analytic contours. In
ref. 16, numerical simulations indicate the possibility of singu-
larity formation on the free boundary. More specifically, initial
data were shown in which the curvature blows up numerically
because two branches of the fluid interphase collapse in a single
point in a self-similar way. Therefore, this work provides an in-
teresting stable scenario for a possible singularity formation. Re-
cently, there has been an active interest in the study of almost sharp
front-type weak solutions of the SQG equation (see ref. 17 and
the references therein for more details).
We next discuss the Muskat problem; this system models the

physical scenario of multiple fluids with different characteristics
in porous media. Specifically, we will study the dynamics of in-
terphases between fluids that are immiscible and incompressible.
To derive the equations of the Muskat problem, system 1–2 is
used, and we choose the velocity vðx; tÞ to satisfy Darcy’s law:

vðx; tÞ= −∇pðx; tÞ− ð0; ζðx; tÞÞ: [7]

Above the scalar pðx; tÞ is the pressure, and in this situation, ζ is
the scalar density. Also, the acceleration due to gravity and the
viscosity of the fluid are set to unity to simplify the notation.
Then, system 1–2 turns out to be the conservation of mass, which
together with [7] yields the incompressible porous media (IPM)
equation (18–20). By considering a solution of the form 5, the
interphase ∂ΩðtÞ is a free boundary, and it describes the density
jump between each fluid. The evolution equation is given by

xtðαÞ= ζ2 − ζ1

2π

Z ðx1ðαÞ− x1ðβÞÞ
�
x′ðαÞ− x′ðβÞ�

jxðαÞ− xðβÞj2 dβ [8]

(see ref. 21 for the whole derivation). Above, α; β∈T for
closed contours and α; β∈R for the asymptotically flat case when
xðα; tÞ− ðα; 0Þ→ 0 as α→∞. Further, α; β∈R for periodic curves
in the x1 direction when xðα+ ð2π; 0Þ; tÞ= xðα; tÞ. The integral in
[8] is understood as a principal value when that is necessary.
The Muskat problem is a classical well-established problem

(22). It has been highly studied, particularly because of strong
similarities to the contour dynamics of fluids in Hele-Shaw cells

(23). For both these completely different physical scenarios, it
therefore is possible to reach similar conclusions. These problems
may be studied in the situation of fluids with different viscosities
(24) and with surface tension effects (25). Notice that formula-
tion 8 above describes the case in which the viscosities and pres-
sures are equal across the interphase (and [8] is in the situation
with no surface tension).
TheMuskat problem has been shown to exhibit instabilities and

ill-posedness in several situations (see, for instance, refs. 18, 20,
24, and 25). For the situation we are studying in this paper, e.g.,
the contour evolution system ([8]), the instabilities in the system
will appear when the heavy fluid lies on top of the light one (26).
When the light fluid lies above the heavy fluid, this is called

the stable scenario, and in this case, the system has been shown
to be well-posed (26). More generally, for the Muskat problem,
the well-posedness condition amounts to the positivity of the
difference of the gradient of the pressure jump at the interphase
in Darcy’s law ([7]) (27). This condition must hold for the initial
data in order for the system to be well-posed (28). It is known in
the literature as the Rayleigh–Taylor sign condition (23, 29). The
stable framework gives rise to global-existence results for initial
data with small norms (24, 25, 30, 31). On the other hand, global
existence may be false for certain scenarios with large initial
data. In ref. 21, it was proven that initial data exist in the stable
regime for Eq. 8 such that the solution turns to the unstable re-
gime in finite time. This interface initially is a smooth stable graph
(with the heavier fluid below), but later it enters into an unstable
regime. In other words, the interphase is transformed into a non-
graph in finite time: when this happens, we say the interphase
“turns over.” The particular significance of a turnover is that the
Rayleigh–Taylor condition breaks down. At some branch in the
interphase, it is possible to localize the heavy fluid on top of
the lighter one. Then later, the regularity of the contour breaks
down (32), i.e., the Muskat problem develops a singularity in
finite time starting from regular stable initial data.
We briefly discuss the 2D water waves problem, which is an-

other incompressible fluid interphase dynamics equation. This
system can be given by [1]–[2] together with the 2D density
variable Euler equations:

ζðx; tÞðvt + v ·∇vÞðx; tÞ=−∇pðx; tÞ−ð0; ζðx; tÞÞ: [9]

We have solutions to this system in the form of [5], which estab-
lishes the evolution of a free boundary given by air, ζ1 = 0, and
water, ζ2 = 1, governed by the gravity force. The velocity is as-
sumed to be rotationally free on each side of ∂ΩðtÞ but concen-
trated on the moving interphase as a delta distribution:

∇⊥ · vðx; tÞ = ωðα; tÞδðx = xðα; tÞÞ: [10]

There is a large body of mathematical literature on the 2D water
waves problem (see ref. 29 and the references therein). This system
has been shown to be well-posed if the Rayleigh–Taylor condition
is satisfied initially (33). Recent global-in-time results exist for
small initial data (see refs. 34–36 and the references therein). On
the other hand, for large initial data with an “overturning shape,”
the system develops finite time splash singularities (37–39). More
precisely, there is a family of initial data satisfying the chord-arc
condition such that the interface xðα; tÞ from the solution of the
system [1], [2], [5], [9], and [10] satisfying ζ1 = 0 touches itself at
a single point at time ts > 0 while xðα; tsÞ is smooth. In particular,
the curvature is finite. We also would like to mention recent devel-
opments by C. Fefferman, A. D. Ionescu, and V. Lie (40) on the
absence of splash singularities for two incompressible fluids.
With the results below, we prove that to have a pointwise

collapse, the second derivative and therefore the curvature, must
blow up. Splash singularities turn out to be false for the SQG
sharp fronts and the Muskat problem. This phenomenon was
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observed numerically in ref. 16, in which computer solutions
of the SQG sharp front system exhibit a pointwise collapse
and the curvature blows up at the same finite time.
We also improve the result in ref. 41, in which it is shown that

a positive volume of fluid between the contours cannot be
ejected in finite time. That result is proved by showing that the
velocity is bounded (8) for the Muskat problem for smooth
contours. The velocity may be related to the density using sin-
gular integral operators with even kernels ([7]). Then, the fact
that ζ is given by a step function ([5]) allows one to show that v is
in L∞. A cancellation used to establish that v is bounded was
obtained previously by Bertozzi and Constantin (14). They ap-
plied it to the 2D vortex-patch problem to prove global regu-
larity. The present work contributes the information that the
level set cannot collapse even pointwise.
The pointwise collapse of smooth level sets, and therefore

splash singularities, for regular solutions of SQG, IPM, and
general active scalar equations has been studied extensively
(see e.g., refs. 8 and 10). Although for initial data that are not
necessarily a sharp front ([4]), the situation might be a priori less
singular, and the problem is still open.
We will explain the proof of our results first for the multiphase

Muskat problem. Our reasoning is twofold. First, the Muskat
scenario we present is well posed (41), and there are no Rayleigh–
Taylor instabilities (42). Second, the proof in this case will appear
more clearly. We will consider fluids that have three different
constant values for the density:

ζðx1; x2; tÞ=
8<
:

ζ1 in fx2 > f ðx1; tÞg;
ζ2 in f f ðx1; tÞ> x2 > gðx1; tÞg;
ζ3 in fgðx1; tÞ> x2g;

where we suppose that f ðx1; tÞ> gðx1; tÞ and that the two dynamic
surfaces, which are defined by x2 = f ðx1; tÞ and x2 = gðx1; tÞ, can be
parameterized as a graph at time t= 0. The constant densities satisfy

ζ1 < ζ2 < ζ3: [11]

This keeps us in the stable situation. Furthermore, we work in
the situation in which

lim
x1→∞

f ðx1; tÞ= f∞ > g∞ = lim
x1→∞

gðx1; tÞ:

Then, our result may be stated as follows:
Theorem 1. Suppose the free boundaries f ðα; tÞ and gðα; tÞ are

smooth forα∈R and t∈ ½0;TÞwithT > 0 arbitrary.Define thedistance:

0< SðtÞ= min
α∈R

ð f ðα; tÞ− gðα; tÞÞ � minf f∞ − g∞; 1g: [12]

Then, the following uniform lower bound for t∈ ½0;TÞ holds:

SðtÞ≥ exp

�
lnðSð0ÞÞexp

�Z t

0

Cð f ; gÞðsÞds
��

: [13]

Here, Cðf ; gÞ is a smooth function of
����f ″����L∞ +

����g″����L∞ and jjf jjL∞ +
jjgjjL∞ , which is defined in [17] below.
After proving Theorem 1, we will extend these results to the

SQG sharp front system based on the previous approach used for
the Muskat problem.
Theorem 2. Consider a smooth curve xðα; tÞ that is a solution to

the sharp front SQG system for t∈ ½0;TÞ with T > 0 arbitrary. Let
SðtÞ> 0 be defined as the minimum distance between two different
branches of the interphase that are approaching each other as
t→T+. Then, SðtÞ is bounded below by an explicitly computable
positive function that goes to zero double-exponentially fast for t
traveling to infinity.

Finally, at the end of this paper, we will show additional sce-
narios in which our result will hold, such as the multiphase SQG
system. For Muskat, we also consider the cases of closed con-
tours and overturning shaped interphases, although in those sit-
uations, Rayleigh–Taylor instabilities appear and the interphases
have to be analytic for there to be bona fide solutions (32).

The Multiphase Muskat Problem
The contour equation for the multiphase Muskat problem may
be written as

ftðαÞ=
Z
R

�
ζ21Kð f ; f Þ+ ζ32Kð f ; gÞ�ðα; βÞdβ;

gtðαÞ=
Z
R

�
ζ32Kðg; gÞ+ ζ21Kðg; f Þ�ðα; βÞdβ; [14]

where ζ21 =defðζ2 − ζ1Þ=ð2πÞ, ζ32 =defðζ3 − ζ2Þ=ð2πÞ,

Kð f ; gÞðα; βÞ= βδβ
�
f ′; g′

�ðαÞ
β2 +

�
δβð f ; gÞðαÞ

�2;
δβð f ; gÞðαÞ= f ðαÞ− gðα− βÞ;

and for simplicity we denote

δβf ðαÞ= f ðαÞ− f ðα− βÞ:

We remark that it is possible to recover [8] by taking ζ32 =
gðαÞ= 0 and xðα; tÞ= ðα; f ðα; tÞÞ (see ref. 41 for a detailed deriva-
tion of this equation).
We next check the evolution of [12] and denote αt ∈R such that

SðtÞ= f ðαt; tÞ− gðαt; tÞ. We use the Rademacher theorem to obtain
that SðtÞ is differentiable almost everywhere and that StðtÞ=
ftðαt; tÞ− gtðαt; tÞ (see refs. 43 and 44 for the whole argument).
We plug this identity into [14] to split the integration regions as

StðtÞ=
Z

jβj<SðtÞ

dβ+
Z

SðtÞ<jβj<1

dβ+
Z

jβj>1

dβ

= I + II + III:

For the first integral, we bound the kernels K in absolute value
using the crucial identity

f ′ðαt; tÞ= g′ðαt; tÞ

to find

I ≤ 2
�
ζ21

����f ″����L∞ + ζ32
����g″����L∞

� Z
jβj<SðtÞ

1dβ;

and therefore we obtain

I ≤C
�����f ″����L∞ +

����g″����L∞

�
SðtÞ:

For the second integral, we further split II = ζ21II1 + ζ32II2. We
will show how to deal with II1 and observe that II2 is analogous.
Notice that we have

II1 =
Z

SðtÞ<jβj<1

βδβf ′ðαtÞ
h�
δβðg; f ÞðαtÞ

�2 − �
δβf ðαtÞ

�2i
Dðg; f ; βÞ dβ; [15]

where the denominator is given by
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Dðg; f ; βÞ =def
h
β2 +

�
δβf ðαtÞ

�2ihβ2 + �
δβðg; f ÞðαtÞ

�2i
:

We further split

II1 = −
Z

SðtÞ<jβj<1

βδβ f ′ðαtÞSðtÞδβðg; f ÞðαtÞ
Dðg; f ; βÞ dβ

−
Z

SðtÞ<jβj<1

βδβ f ′ðαtÞSðtÞδβ f ðαtÞ
Dðg; f ; βÞ dβ

[16]

to obtain

II1 ≤ 2
����f ″����L∞SðtÞ

Z
SðtÞ<jβj<1

jβj−1dβ:

The last calculation yields

II1 ≤ − 2
����f ″����L∞SðtÞln SðtÞ:

The term II2 can be estimated similarly, and we obtain

II ≤ −C
����� f″����L∞ +

����g″����L∞

�
SðtÞln SðtÞ:

For the last term III, we arrange the terms as in [16] to find

III ≤Cðf ; gÞSðtÞ
Z

jβj>1

jβj−2dβ;

with

Cð f ; gÞ=C
�����f ″����L∞ +

����g″����L∞

�ðjj f jjL∞ + jjgjjL∞ + 1Þ: [17]

Collecting all the previous estimates, we obtain that

StðtÞ≥Cð f ; gÞSðtÞln SðtÞ:

A further time integration yields [13]. Notice that lnðSð0ÞÞ< 0.
Thus, SðtÞ cannot go to zero in finite time.

SQG Sharp Front
For the SQG sharp front equation, we choose the parameteri-
zation for the contour equation that yields the equation

xtðαÞ=
Z
T

δβx′ðαÞ��δβxðαÞ�� dβ; [18]

where we take ζ2 − ζ1 = 2π for the sake of simplicity. We now
assume without loss of generality that the pointwise approaching
“splash” is going to take place in a small ball B of radius e0=2 and
center ð0; 0Þ. The two branches of the interfaces will be ap-
proaching horizontally so that they are represented by ðα; f ðα; tÞÞ
and ðα; gðα; tÞÞ inside 2B with f > g. We then find for the chart
xðαÞ= ðα; f ðαÞÞ for α∈ ð−e0; e0Þ the equation

ftðαÞ=
Ze0
−e0

δβf ′ðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 +

�
δβf ðαÞ

�2q dβ

+
Z−e0
e0

δβ
�
f ′; g′

�ðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 +

�
δβð f ; gÞðαÞ

�2q dβ+Rðf Þ;

where Rðf Þ is the remainder in the integral equation in the
second component in [18]. For the chart xðαÞ= ðα; gðαÞÞ, we
similarly have

gtðαÞ=
Ze0
−e0

δβ
�
g′; f ′

�ðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 +

�
δβðg; f ÞðαÞ

�2q dβ

+
Z−e0
e0

δβg′ðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 +

�
δβgðαÞ

�2q dβ+RðgÞ;

and RðgÞ is again the remainder given by [18]. We now define as
before

SðtÞ =def min
½−e0;e0�

ð f ðα; tÞ− gðα; tÞÞ= f ðαt; tÞ− gðαt; tÞ;

with αt ∈ ð−e0=2; e0=2Þ. We proceed as in the previous section to
follow StðtÞ for almost every t. We find that the integrals above
may be handled similarly, except for Rðf Þ and RðgÞ. For these
remainder terms, we can choose e0 small enough so that Rðf Þ−
RðgÞ=OðSðtÞÞ. In fact,

jRð f Þj≤
����x″����L∞

cCA

Z
T∖½−e0 ;e0�

dβ;

where cCA > 0 is the chord-arc constant of the curve outside the
ball B: ��δβxðαÞ��≥ cCAjβj;   α∈ ½−e0=2; e0=2�;   β∈T∖½−e0; e0�:

The analogous estimate for RðgÞ follows similarly. We thus can
obtain

StðtÞ≥CðxÞSðtÞln SðtÞ;

where CðxÞ=C
�����x″����L∞ ; cCA; e0

�
. We therefore again control the

size of SðtÞ from below by double-exponential time decay.

Additional Scenarios for Muskat and SQG
This analysis also works for the multiphase SQG sharp front
system. In that case, the equations for the 2π -periodic contours
f ðα; tÞ and gðα; tÞ are given by

ftðαÞ=
Z
T

�
ζ21Σð f ; f Þ+ ζ32Σð f ; gÞ�ðα; βÞdβ;

gtðαÞ=
Z
T

�
ζ32Σðg; gÞ+ ζ21Σðg; f Þ�ðα; βÞdβ:

Above, ζ21 = ðζ2 − ζ1Þ=ð2πÞ and ζ32 = ðζ3 − ζ2Þ=ð2πÞ with no or-
der needed in the size of ζ1, ζ2, and ζ3 as in [11], because
there are no instabilities for SQG. The kernel Σðf ; gÞðα; βÞ
behaves like

Σð f ; gÞðα; βÞ= δβ
�
f ′; g′

�ðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 +

�
δβð f ; gÞðαÞ

�2q
for β close to 0 and f ðαÞ close to gðα− βÞ. Hence, the same
approach as described previously for SQG follows.
We end by proposing two additional scenarios. These are

closed and overturning shaped contours for the Muskat equation
([8]). In those cases, the same results can be shown as for the
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SQG sharp fronts. However, because of the Rayleigh–Taylor
instabilities, the solutions to the interphase equations have to
be analytic to make rigorous mathematical sense (21).
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